US3107999A - Creep-resistant nickel-chromiumcobalt alloy - Google Patents

Creep-resistant nickel-chromiumcobalt alloy Download PDF

Info

Publication number
US3107999A
US3107999A US66440A US6644060A US3107999A US 3107999 A US3107999 A US 3107999A US 66440 A US66440 A US 66440A US 6644060 A US6644060 A US 6644060A US 3107999 A US3107999 A US 3107999A
Authority
US
United States
Prior art keywords
alloys
creep
alloy
vacuum
chromiumcobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US66440A
Inventor
Gittus Jolm Henry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huntington Alloys Corp
Original Assignee
International Nickel Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Nickel Co Inc filed Critical International Nickel Co Inc
Application granted granted Critical
Publication of US3107999A publication Critical patent/US3107999A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%

Definitions

  • the present invention relates to alloys resistant to the deleterious effects of high stress and high temperatures and, more particularly, to heat-resistant, nickelchromium-cobali alloys.
  • gas turbine blades and other articles and parts that are required to be resistant to creep when subjected to stress at elevated temperatures are commonly made of alloys in which the principal constituent is nickel or nickel plus cobalt and which also contain chromium, aluminum and titanium, these last two elements forming a precipitable phase with some of the nickel.
  • Other elements, for example, molybdenum and tungsten, can also be present with beneficial effects on the creep resistance and it has also been found that melting the alloys under vacuum may further improve the properties.
  • Another object of the invention is to provide a novel process for producing a novel, hot-workable alloy.
  • the present invention contemplates hot-workable alloys having particularly good creep resistance which contain about 3% to about 7% cobalt, about 13% to about 17% chromium, about 3% to about 7% molybdenum, about 0.10% to about 0.2% carbon and also titanium and aluminum in such amounts that the Ti/Al ratio is from 0.1 to 3.0 and the total content of 'titanium and aluminum (i.e., Ti plus Al) is given by the formula:
  • the invention is based on the discovery that in alloys containing cobalt, chromium and molybdenum which have been vacuum melted or treated by holding in the molten state under vacuum, the creep resistance depends not only on the basic composition of the alloys but also both on the ratio of the content of titanium (Ti) to that of aluminum (Al) and on the total content of titanium 3,107,990 Patented Oct. 22., 1953 series of alloys having a given Ti/Al ratio, the life-to rupture under given conditions of stress and temperature passes through a maximum as the Ti plus Al content is increased; and the Ti plus Al content at which this maximum occurs increases as the Ti/Al ratio is increased. Accordingly, for the highest creep resistance, the Ti/Al ratio must be correlated with the Ti plus Al content.
  • Correlation of the Ti/Al ratio with the Ti plus Al content according to the formula ensures that the life-torupture lies at or near the maximum value obtainable for the particular ratio or content used.
  • the maximum life-to-rupture also increases and advantageously, therefore, the Ti/Al ratio is at least 1.5.
  • the upper limit of 3.0 is imposed by the increasing difficulty of working the alloys as the total amount of titanium and muminum present also increases.
  • the vacuum melting or vacuum treatment of th alloys is carried out at a pressure not exceeding 100 micron of mercury, advantageously, at five microns of mercury or less.
  • the molten alloy is subjected to such a pressure for at least five minutes and, advantageously, for at least ten minutes at a temperature of 1400 C.-1600C.
  • the alloys are first vacuum melted and then held under vacuum before casting, but the invention also includes alloys which have been melted in air and then held under vacuum in the molten state. Once the alloys have been vacuum melted or maintained in the molten state under vacuum or both, it makes little difference to their properties whether they are cast in vacuum or in air.
  • Ingots cast from the vacuum-treated metal can be hot worked to produce bar, and to develop their creep-resistin-g properties the alloys are subjected to a precipitationhardening treatment consisting of solution heating at a temperature in the range 1l50 C. to 1250 C., followed by ageing at a temperature in the range 700 C. to 1100 C.
  • the solution temperature should be as high as possible, the limit being set by the desirability of avoiding excessive grain-growth.
  • the ageing temperature should be higher than the anticipated service temperature of components made from the bar.
  • the present invention is particularly applicable to alloys and the production of alloys having an optimum combination of hot workability, heat resistance and resistance to stress for use as components in gas turbine structures such as turbine blades, stator blades, guide vanes, etc.
  • the alloys of the present invention can be employed as bolts, fastenings, etc., in structures subject to the deleterious action of high temperature and high stress.
  • a vacuum treated alloy for structural members subjected in use to a combination of high stress and high temperature consisting essentially of about 5% cobalt, about 1 15% chromium, about 5% molybdenum, about 0.15% carbon, about 0.05% zirconium, about 0.01% boron, about 0.3%silic0n and aluminum and titanium in a ratio of titanium to aluminum of 0.1 to 3.0 and a total per:

Description

United States Patent 3,107,999 CREEP-RESISTANT NICKEL-CERGMIUM- CGBALT ALLGY John Henry Gittns, Clifton, near Preston, England, as-
signor to The International'Nickel Company, inc,
New York, N.Y., a corporation of Delaware N0 Drawing. Filed'Nov. 1, 1960, Ser. No. 6,440 Claims priority, application Great Britain Nov. 4, 1959 1 Claim. (Cl. 75-171) The present invention relates to alloys resistant to the deleterious effects of high stress and high temperatures and, more particularly, to heat-resistant, nickelchromium-cobali alloys.
It is well known that gas turbine blades and other articles and parts that are required to be resistant to creep when subjected to stress at elevated temperatures are commonly made of alloys in which the principal constituent is nickel or nickel plus cobalt and which also contain chromium, aluminum and titanium, these last two elements forming a precipitable phase with some of the nickel. Other elements, for example, molybdenum and tungsten, can also be present with beneficial effects on the creep resistance and it has also been found that melting the alloys under vacuum may further improve the properties.
Heretofore, the art has been unable to properly correlate each of the foregoing factors in vacuum-treated, hot-workable alloys in order to achieve the advantageous optimum combination of desirable alloy characteristics. Although attempts were made to provide alloys having an optimum combination of characteristics, none, as far as I am aware, was entirely successful when carried into practice commercially on an industrial scale.
It has now been discovered that by means of a specifically cor-related composition, alloys can now be provided which exhibit an optimum combination of advantageous alloying characteristics.
It is an object of the present invention to provide a novel, vacuum-treated, hot-workable alloy.
Another object of the invention is to provide a novel process for producing a novel, hot-workable alloy.
Other objects and advantages will become apparent from the following description.
Generally speaking, the present invention contemplates hot-workable alloys having particularly good creep resistance which contain about 3% to about 7% cobalt, about 13% to about 17% chromium, about 3% to about 7% molybdenum, about 0.10% to about 0.2% carbon and also titanium and aluminum in such amounts that the Ti/Al ratio is from 0.1 to 3.0 and the total content of 'titanium and aluminum (i.e., Ti plus Al) is given by the formula:
the balance, apart from impurities, being nickel. Advantageously, the alloys also contain small effective amounts of boron and/ or zirconium in amounts up to about 0.05% boron and 0.2% zirconium in order to enhance the creep resistance and/ or ductility of the alloys. The alloys can also contain from 0% to about 0.5% silicon, from 0% to 0.5% manganese and from 0% to 1.0% iron.
The invention is based on the discovery that in alloys containing cobalt, chromium and molybdenum which have been vacuum melted or treated by holding in the molten state under vacuum, the creep resistance depends not only on the basic composition of the alloys but also both on the ratio of the content of titanium (Ti) to that of aluminum (Al) and on the total content of titanium 3,107,990 Patented Oct. 22., 1953 series of alloys having a given Ti/Al ratio, the life-to rupture under given conditions of stress and temperature passes through a maximum as the Ti plus Al content is increased; and the Ti plus Al content at which this maximum occurs increases as the Ti/Al ratio is increased. Accordingly, for the highest creep resistance, the Ti/Al ratio must be correlated with the Ti plus Al content.
Correlation of the Ti/Al ratio with the Ti plus Al content according to the formula ensures that the life-torupture lies at or near the maximum value obtainable for the particular ratio or content used. As the Ti/Al ratio increases, the maximum life-to-rupture also increases and advantageously, therefore, the Ti/Al ratio is at least 1.5. The upper limit of 3.0 is imposed by the increasing difficulty of working the alloys as the total amount of titanium and muminum present also increases.
The vacuum melting or vacuum treatment of th alloys is carried out at a pressure not exceeding 100 micron of mercury, advantageously, at five microns of mercury or less. To obtain the best properties the molten alloy is subjected to such a pressure for at least five minutes and, advantageously, for at least ten minutes at a temperature of 1400 C.-1600C. More advantageously, the alloys are first vacuum melted and then held under vacuum before casting, but the invention also includes alloys which have been melted in air and then held under vacuum in the molten state. Once the alloys have been vacuum melted or maintained in the molten state under vacuum or both, it makes little difference to their properties whether they are cast in vacuum or in air.
Ingots cast from the vacuum-treated metal can be hot worked to produce bar, and to develop their creep-resistin-g properties the alloys are subjected to a precipitationhardening treatment consisting of solution heating at a temperature in the range 1l50 C. to 1250 C., followed by ageing at a temperature in the range 700 C. to 1100 C. The solution temperature should be as high as possible, the limit being set by the desirability of avoiding excessive grain-growth. The ageing temperature should be higher than the anticipated service temperature of components made from the bar.
For the purpose of giving those skilled in the art'a better understanding of the invention by way of example, a number of alloys of the same base composition, apart from their titanium and aluminum contents, were made by melting in vacuum under a pressure of one micron of mercury, held in the molten state at 1500 C. (i.e., about 2730 F.) for 15 minutes under the same pressure and then vacuum cast under the same pressure to ingots 2% inches in diameter. These ingots were extruded to inch diameter bar which was heat treated by solution heating for 1 /2 hours at 1200 C., air-cooling to room temperature, aging for 16 hours at 1050 C. and again air-cooling. Standard creep test pieces having a gage length of 1% inches were machined from the heat treatedbars and tested under a stress of 7 tons per square inch (i.e., 15,680 pounds Percent;
o Cr Si 3 Table Ti-l-Al, 7+% 6+% Lite to Alloy No Ti/Al percent (TilAl) (Ti/A1) rupture (hours) It is to be noted that each of the alloys in accordance with the invention exhibited lives-to-rupture under the stated conditions of more than 100 hours and even more than 150 hours. On the other hand, alloys not in accordance with the present invention had lives-to-rupture less than 100 hours under the stated conditions.
The present invention is particularly applicable to alloys and the production of alloys having an optimum combination of hot workability, heat resistance and resistance to stress for use as components in gas turbine structures such as turbine blades, stator blades, guide vanes, etc. In addition, the alloys of the present invention can be employed as bolts, fastenings, etc., in structures subject to the deleterious action of high temperature and high stress.
Although the present invention. has been described in conjunction with preferred embodiments, it is to be under- ZZ I g stood that modifications and variations may be resorted to Without departing from the spirit and scope of the invention, as those skilled in the art will readily understand.
Such modifications and variations are considered to be Within the purview and scope of the invention and appended claim.
I claim:
A vacuum treated alloy for structural members subjected in use to a combination of high stress and high temperature consisting essentially of about 5% cobalt, about 1 15% chromium, about 5% molybdenum, about 0.15% carbon, about 0.05% zirconium, about 0.01% boron, about 0.3%silic0n and aluminum and titanium in a ratio of titanium to aluminum of 0.1 to 3.0 and a total per:
centage of titanium plus aluminum in excess of 6 plus.
References Cited in the file of this patent FOREIGN PATENTS 548,778 Canada Nov. 12, 1957
US66440A 1959-11-04 1960-11-01 Creep-resistant nickel-chromiumcobalt alloy Expired - Lifetime US3107999A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB37434/59A GB887746A (en) 1959-11-04 1959-11-04 Creep-resistant nickel-base alloys

Publications (1)

Publication Number Publication Date
US3107999A true US3107999A (en) 1963-10-22

Family

ID=10396450

Family Applications (1)

Application Number Title Priority Date Filing Date
US66440A Expired - Lifetime US3107999A (en) 1959-11-04 1960-11-01 Creep-resistant nickel-chromiumcobalt alloy

Country Status (5)

Country Link
US (1) US3107999A (en)
BE (1) BE596719A (en)
CH (1) CH405723A (en)
DE (1) DE1433117A1 (en)
GB (1) GB887746A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3148054A (en) * 1959-06-08 1964-09-08 Int Nickel Co Casting alloy
US3228095A (en) * 1960-04-13 1966-01-11 Rolls Royce Method of making turbine blades
US3232751A (en) * 1962-01-26 1966-02-01 Int Nickel Co Nickel-chromium-cobalt alloys
US3648832A (en) * 1970-08-21 1972-03-14 David Kirshenbaum Card carrying case

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA548778A (en) * 1957-11-12 The International Nickel Company Of Canada Nickel-base heat-resistant alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA548778A (en) * 1957-11-12 The International Nickel Company Of Canada Nickel-base heat-resistant alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3148054A (en) * 1959-06-08 1964-09-08 Int Nickel Co Casting alloy
US3228095A (en) * 1960-04-13 1966-01-11 Rolls Royce Method of making turbine blades
US3232751A (en) * 1962-01-26 1966-02-01 Int Nickel Co Nickel-chromium-cobalt alloys
US3648832A (en) * 1970-08-21 1972-03-14 David Kirshenbaum Card carrying case

Also Published As

Publication number Publication date
DE1433117A1 (en) 1968-10-17
CH405723A (en) 1966-01-15
GB887746A (en) 1962-01-24
BE596719A (en) 1961-05-03

Similar Documents

Publication Publication Date Title
US3061426A (en) Creep resistant alloy
US4039330A (en) Nickel-chromium-cobalt alloys
US3164465A (en) Nickel-base alloys
US2994605A (en) High temperature alloys
US3343950A (en) Nickel-chromium alloys useful in the production of wrought articles for high temperature application
US4288247A (en) Nickel-base superalloys
US3811960A (en) Process of producing nickel chromium alloy products
US3720509A (en) Nickel base alloy
US3107999A (en) Creep-resistant nickel-chromiumcobalt alloy
US5730931A (en) Heat-resistant platinum material
US2766156A (en) Heat-treatment of nickel-chromiumcobalt alloys
US5330711A (en) Nickel base alloys for castings
US2975051A (en) Nickel base alloy
US3069258A (en) Nickel-chromium casting alloy with niobides
US3145124A (en) Heat treatment of nickel chromiumcobalt alloys
EP1149181A1 (en) Alloys for high temperature service in aggressive environments
US2575915A (en) Nickel base high-temperature alloy
US3047381A (en) High temperature heat and creep resistant alloy
US3166413A (en) Tungsten-containing nickel-chromium alloys
USRE24242E (en) Alloys and electrical resistance
US2744010A (en) High temperature co-cr alloys
US3220829A (en) Cast alloy
US3110587A (en) Nickel-chromium base alloy
US2842439A (en) High strength alloy for use at elevated temperatures
US3166411A (en) Nickel-chromium alloys