US3094634A - Radioactive batteries - Google Patents

Radioactive batteries Download PDF

Info

Publication number
US3094634A
US3094634A US365207A US36520753A US3094634A US 3094634 A US3094634 A US 3094634A US 365207 A US365207 A US 365207A US 36520753 A US36520753 A US 36520753A US 3094634 A US3094634 A US 3094634A
Authority
US
United States
Prior art keywords
radioactive
junction
units
semiconductive
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US365207A
Inventor
Rappaport Paul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Priority to US365207A priority Critical patent/US3094634A/en
Application granted granted Critical
Publication of US3094634A publication Critical patent/US3094634A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21HOBTAINING ENERGY FROM RADIOACTIVE SOURCES; APPLICATIONS OF RADIATION FROM RADIOACTIVE SOURCES, NOT OTHERWISE PROVIDED FOR; UTILISING COSMIC RADIATION
    • G21H1/00Arrangements for obtaining electrical energy from radioactive sources, e.g. from radioactive isotopes, nuclear or atomic batteries
    • G21H1/06Cells wherein radiation is applied to the junction of different semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S257/00Active solid-state devices, e.g. transistors, solid-state diodes
    • Y10S257/909Macrocell arrays, e.g. gate arrays with variable size or configuration of cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making

Definitions

  • This invention relates to improved means for converting the energy of nuclear radiations into useful electrical energy. Particularly the invention relates to irradiating a semiconductive device with nuclear emissions to provide useful electrical power which is available at the output terminals of the device. The electric power thus provided may be utilized to supply voltage and cur-rent to a load circuit.
  • An object of the instant invention is to provide improved means for utilizing the energy of nuclear radiations.
  • Another object of the invention is to provide improved means for converting the energy of nuclear radiations into useful electrical energy.
  • a further object of the invention is to provide improved voltage :and/ or current sources which employ radioactive isotopes.
  • a further object of the invention is to provide an improved radioactive battery having an extremely long life.
  • a still further object of the invention is to provide a radioactive battery which is especially suitable for powering transistor circuits.
  • a junction or a point-contact semi-conductor device in the path of radiations emitted by a radioactive source.
  • the radiations penetrate the device to liberate charge carriers therein (electrons and holes) which flow within the device to provide a potential at its output terminals.
  • the output energy may be utilized to supply current to a load circuit.
  • Various embodiments of the invention are disclosed in which desired values of voltage and current may be achieved.
  • FIGURE 2 is an energy level diagram which is helpful in describing the theory of operation of the device of FIGURE 1;
  • FIGURE 3 is a schematic diagram of an embodiment of the invention in which a point-contact semiconductive device is employed
  • FIGURE 4 is a partially schematic view of a radioactive battery fabricated in accordance with the invention and having a plurality of semiconductive units connected in parallel for supplying current to a load circuit;
  • FEGURE 5 is a perspective view showing the manner in which ohmic connections may be made to the units of FIGURE 4;
  • FIGURES 7 and 8 are partially schematic views of further embodiments of the invention.
  • a novel radioactive battery includes a cold source 11 of high energy nuclear radiations.
  • the term cold is definitive of a radioactive source and is used herein in contradistinction to thermionic.
  • the sources 11 may comprise one or a combination of materials which emit charged particle radiations and/or neutral radiations.
  • Such emitters may include, for example, polonium and uranium (both emitters of positively charged alpha particles), strontium or tritium (emitters of negatively charged beta particles), cobalt (an emitter of neutral gamma rays), and numerous other radioactive isotopes.
  • the semiconductive device 13 to be irradiated comprises a p-n junction device either of the grown junction type or of the alloy type.
  • a method of fabricating a grown type of junction having adjacent P and N regions as shown herein is disclosed in a copending application of G. K. Teal, Serial No. 168,184, filed June 15, l950, now US Patent 2,727,840. If the device is of the alloy type it may be fabricated, for example, as described in copending application Serial No. 294,741 filed June 20, 1952, assigned to the same 'assignee as the instant application, now US. Patent 2,894,862.
  • the material alloyed therewith to provide the adjacent p-type region may be indium, boron, or gallium. If p-type germanium or ptype silicon is used for one of the regions, the alloy material may be, for example, lead, antimony or goldantimony, respectively. Point-contact semiconductive devices also may be utilized as a part of the radioactive battery herein disclosed and claimed.
  • the area and thickness of the semi-conductor device 13 are sufficient to absorb substantially all the radiations emitted by the source 11.
  • a germanium device having a thickness of the order of fifty mils is adequate.
  • the thickness of a similarly irradiated silicon device is of the order of a hundred mils.
  • the junction device 13 is positioned in the path of the high energy radioactive emissions so that as much as possible of the incident radiations is absorbed in the junction region 15.
  • the radiations emitted by the cold source 11 interact with the valence bonds in the solid semi-conductor device '13 (when a valence bond type of crystal as germanium or silicon is employed), causing charge carriers (electrons and holes) to be liberated within the solid.
  • the liberation of these charge carriers corresponds to raising electrons from the filled band 23 to the conduction band 25 thereby leaving behind holes in the filled band.
  • the incoming radiation having a minimum quantum energy which is equal to or greater than the energy gap of the empty or forbidden region, both electrons and holes are produced within the solid device 13.
  • These charge carriers are available to take part in a current conduction process.
  • the energy gaps for germanium and silicon for example, are of the order of 0.72 electron volt and 1.l2 electron volts, respectively.
  • An electrostatic potential barrier exists in the junction region between the p and n sections of the device. Under the influence of this electrostatic potential the liberated charge carriers flow across the junction in one direction only. In the diagram electrons may be said to flow down the slope of curve 25 and holes flow up the slope of curve 23. Substantially all the charge carriers which get into the junction region may be expected to be collected and contribute to the terminal voltage and the output current of the device. Some of these carriers are produced in the junction region. Other charge carriers are produced outside the junction region 15 and initially are subjected to no electrostatic potential.
  • circuit 21 may be connected to the irradiated semiconductive device 13 by ohmic connections 17 and 19, for example, solder, which provides contact to the p and n sections of the device, respectively.
  • the radioactive emitter material may be coated on one or more surfaces of the semi-conductor device to provide physical support for the emitter and to insure most efiicient use of the emission.
  • e is the charge of an electron
  • R is the rate of generation of charge carriers
  • L is the carrier diffusion length
  • m is a current multiplication factor
  • I is the equivalent current of the radioactive source 11.
  • the structure hereinbefore described affords a primary source of electrical energy which has numerous advantages.
  • the battery size may be extremely small, of the order of a fraction of a cubic centimeter.
  • the unit is a selg contained primary source in the sense that the electrical energy available at its output terminals is derived solely from the energy of radioactive emissions. No thermionic cathodes or external electrical inputs are required.
  • the battery is rugged from a physical standpoint and is not afliected by vibration or mechanical shock.
  • the nuclear-lto-electrical energy conversion efficiency is quite good as is evidenced by typical current multiplication factors listed in the above table.
  • the battery impedance is appreciably lower than presently known primary radioactive energy sources and is particularly adapted for powering transistor and other circuits which require low voltages and currents.
  • the useful life of the energy source is extremely long. For example, if cobalt is used the source may last for more than five years while if the battery employs strontium it may last as long as twenty-five years.
  • Spacers 29 such as polystyrene or mica separate adjacent semiconductive units and prevent them from effectively short-circuiting each other.
  • germanium units are stacked in the manner described above and a strontium emission source is used, three or four junction units each having thicknesses from ten to fifteen mils are sufficient to almost completely absorb the radiations.
  • silicon units are used, the order of six units absorb the incident radiations. However, a greater number of thinner units may be used if desired.
  • One advantage of the arrangement of FIG. 4 is that the high energy radiations penetrate the units in a direction transverse with respect to the junction region. Since some charge carriers are produced outside the junction region, and the units are thin, these carriers have shorter distances through which to travel to get into the junction region. This reduces the number of recombinations of electrons and holes which may occur and enhance the output current. This particular arrangement is desirable when using semiconductive materials in which the charge carriers have short diffusion lengths.
  • FIGURE 6 shows another embodiment of the invention which is useful for producing higher voltages than those produced in the embodiments heretofore described.
  • the semiconductive units 1'3 are of the alloy type.
  • the body portion 31 of the device 13 may be n-type germanium and the p-type portion is the junction region shown by the dashed lines between the body portion 31 and a pellet of indium 33.
  • other materials and other types of semiconductive devices such as those mentioned previously (i.e., grown junction and point-contact devices) also may be used.
  • the semiconductive units 1'3 are stacked so that the incident nuclear radiation from the source 11 successively penetrates the units.
  • the units are arranged so that the p-type pellet material of one semiconductive unit physically is butted against and contacts the n-type material of the next adjacent unit.
  • the total output voltage of the battery is the sum of the voltages of the individual units.
  • Electrical connection may be made to the stacked array for connecting the array to a load circuit 21 by a nickel tab 18 connected to the germanium material and a conductive lead 35 which makes contact with the indium pellet.
  • the thickness and number of units which may be stacked is governed by substantially the same factors mentioned with respect to the structure of FIGURES 4 and 5 and also the terminal voltage desired from the stacked array. These factors include the energy and type of nuclear radiations emitted, the geometry cf the semiconductive :units, and the type of materials from which the units are fabricated.
  • the radioactive source '11 is disposed between a pair of alloy type semiconductive units which are arranged in a back-to-back relation.
  • the high energy radiations create charge carriers in each unit which flow across their rescpective junctions to provide a voltage at the output terminal of each unit.
  • Ohmic connection between the n-region 31 of one unit and the n region 31 of the other unit is afforded via the radioactive emitter material 11 which preferably is supported by a conductive support member.
  • the radioactive emitter is connected to one terminal of the load circuit 21.
  • the pellets 33 which yield p-type conductivity to the body portion 31 of each unit are connected together and to the other terminal of the load circuit.
  • the thickness of each unit 13 preferably is equivalent to the range of the radioactive emissions in the material. Advantages of the above described embodiments are an increase in output current by a factor of two', and more efficient utilization of the emissions produced by the cold source 11.
  • FIGURE 8 shows a further embodiment of the invention wherein the semiconductive unit 13 comprises an alloy type junction device having a body portion 31 into which two impurity pellets initially are alloyed and diffused. Electrostatic potential barriers 44 result from the alloying process and are created between the portion 31 and the pellets 33. If the body portion 31 is n-type germanium the impurity pellets diffused therein may be indium or one of the other materials heretofore mentioned. The impurity pellet which is alloyed and diffused into the portion of the semiconductive body which is to be spaced from but nearest the cold source 11 is then removed from the body portion 31. When the device thus fabricated is irradiated by the source 11, charge carriers flow in the direction of each electrostatic potential barrier.
  • the fact that two barriers are provided is important since the number of recombinations of electrons and holes which tend to occur is reduced by a factor of the order of two. Since the recombinations are reduced, the output current supplied to the load circuit 21 increases by a corresponding amount.
  • the purpose in removing the one impurity pellet adjacent the cold source 11 is for the purpose of eliminating material which would absorb the radioactive emissions without contributing to the output of the unit.
  • FIGURE 9 shows a still further embodiment of the invention in which a plurality of semiconductive devices 37 of the grown junction type are employed.
  • Each device comprises a suitably shaped ingot or filament in which pand n-type conductivity regions occur alternately.
  • the device 37 may be fabricated according to several methods. One of these methods is disclosed in copending application Serial No. 168,184, now US. Patent 2,727,840, cited previously. Briefly this method involves dipping a seed of germanium into a molten mass of germanium. The seed is withdrawn from the molten mass at a rate sufiicient to draw some of the molten mass therewith. As the seed is withdrawn the impurity balance in the melt is altered to effect a controlled variation in the conductivity, or an inversion in the conductivity,
  • a primary source of electrical energy comprising, a pair of semiconductive devices, each with a junction and regions of difierent conductivity on opposite sides of the junction, said devices being arranged with regions of the same conductivity adjacent each other, a cold source of high energy nuclear emissions positioned between said adjacent regions, and connection means coupled to said devices for deriving a load current.

Description

' June 18, 1963 PPAP RT 3,094,634
RADIOACTIVE BATTERIES Filed June 30, 1955 592 Jmz'r/m/ [fad/V44 pa a/om l war T I lgww fPT/Ul? e fl 567/70 [11/5/16 Y INVENTOR.
fall Mia Haiti ATTORNEY United States Patent Ofi ice 3,094,634 Patented June 18, 1963 This invention relates to improved means for converting the energy of nuclear radiations into useful electrical energy. Particularly the invention relates to irradiating a semiconductive device with nuclear emissions to provide useful electrical power which is available at the output terminals of the device. The electric power thus provided may be utilized to supply voltage and cur-rent to a load circuit.
An object of the instant invention is to provide improved means for utilizing the energy of nuclear radiations.
Another object of the invention is to provide improved means for converting the energy of nuclear radiations into useful electrical energy.
Another object of the invention is to provide improved means for converting the energy of either charged or nuetral high energy radiations into useful electrical energy. 1
A further object of the invention is to provide improved voltage :and/ or current sources which employ radioactive isotopes.
A further object of the invention is to provide more efficient means for converting the energy of nuclear reactions into electrical energy.
A further object of the invention is to provide an improved radioactive battery having an extremely long life.
A still further object of the invention is to provide an improved radioactive battery which employs semiconductors.
A still further object of the invention is to provide a radioactive battery which is especially suitable for powering transistor circuits.
The foregoing objects and advantages are provided in accordance with the invention by disposing either a junction or a point-contact semi-conductor device in the path of radiations emitted by a radioactive source. The radiations penetrate the device to liberate charge carriers therein (electrons and holes) which flow within the device to provide a potential at its output terminals. The output energy may be utilized to supply current to a load circuit. Various embodiments of the invention are disclosed in which desired values of voltage and current may be achieved.
The invention will be described in detail with reference to the accompanying drawing in which:
FIGURE 1 is a schematic diagram of a radioactive battery, according to the invention;
FIGURE 2 is an energy level diagram which is helpful in describing the theory of operation of the device of FIGURE 1;
FIGURE 3 is a schematic diagram of an embodiment of the invention in which a point-contact semiconductive device is employed;
FIGURE 4 is a partially schematic view of a radioactive battery fabricated in accordance with the invention and having a plurality of semiconductive units connected in parallel for supplying current to a load circuit;
FEGURE 5 is a perspective view showing the manner in which ohmic connections may be made to the units of FIGURE 4;
' FIGURE 6 is a view including a schematic circuit diagram of a novel radioactive battery in which a plurality of junction-type semiconductive devices are connected in series;
FIGURES 7 and 8 are partially schematic views of further embodiments of the invention; and
\ FIGURE 9 is a perspective view of a still further embodiment of the invention in which a novel radioactive 'battery employs a semiconductive device having a plurality of grown junctions.
Similar reference characters are applied to similar elements throughout the drawing.
Referring to FIGURE 1, a novel radioactive battery includes a cold source 11 of high energy nuclear radiations. The term cold" is definitive of a radioactive source and is used herein in contradistinction to thermionic. The sources 11 may comprise one or a combination of materials which emit charged particle radiations and/or neutral radiations. Such emitters may include, for example, polonium and uranium (both emitters of positively charged alpha particles), strontium or tritium (emitters of negatively charged beta particles), cobalt (an emitter of neutral gamma rays), and numerous other radioactive isotopes.
The semiconductive device 13 to be irradiated comprises a p-n junction device either of the grown junction type or of the alloy type. A method of fabricating a grown type of junction having adjacent P and N regions as shown herein is disclosed in a copending application of G. K. Teal, Serial No. 168,184, filed June 15, l950, now US Patent 2,727,840. If the device is of the alloy type it may be fabricated, for example, as described in copending application Serial No. 294,741 filed June 20, 1952, assigned to the same 'assignee as the instant application, now US. Patent 2,894,862. With n-type germanium chosen for one region of the device, the material alloyed therewith to provide the adjacent p-type region may be indium, boron, or gallium. If p-type germanium or ptype silicon is used for one of the regions, the alloy material may be, for example, lead, antimony or goldantimony, respectively. Point-contact semiconductive devices also may be utilized as a part of the radioactive battery herein disclosed and claimed.
It may be assumed that the area and thickness of the semi-conductor device 13 are sufficient to absorb substantially all the radiations emitted by the source 11. For example, with a strontium source a germanium device having a thickness of the order of fifty mils is adequate. The thickness of a similarly irradiated silicon device is of the order of a hundred mils.
The junction device 13 is positioned in the path of the high energy radioactive emissions so that as much as possible of the incident radiations is absorbed in the junction region 15. The radiations emitted by the cold source 11 interact with the valence bonds in the solid semi-conductor device '13 (when a valence bond type of crystal as germanium or silicon is employed), causing charge carriers (electrons and holes) to be liberated within the solid. In the energy level diagram of FIGURE 2, the liberation of these charge carriers corresponds to raising electrons from the filled band 23 to the conduction band 25 thereby leaving behind holes in the filled band. With the incoming radiation having a minimum quantum energy which is equal to or greater than the energy gap of the empty or forbidden region, both electrons and holes are produced within the solid device 13. These charge carriers are available to take part in a current conduction process. The energy gaps for germanium and silicon, for example, are of the order of 0.72 electron volt and 1.l2 electron volts, respectively.
An electrostatic potential barrier exists in the junction region between the p and n sections of the device. Under the influence of this electrostatic potential the liberated charge carriers flow across the junction in one direction only. In the diagram electrons may be said to flow down the slope of curve 25 and holes flow up the slope of curve 23. Substantially all the charge carriers which get into the junction region may be expected to be collected and contribute to the terminal voltage and the output current of the device. Some of these carriers are produced in the junction region. Other charge carriers are produced outside the junction region 15 and initially are subjected to no electrostatic potential. However, if these carriers have sufiiciently great lifetimes and diffusion lengths and do not recombine with oppositely charged carriers, they also enter the junction region (solely by the diifusion process) and enhance the output current. The output current flows through the load circuit 21. The
circuit 21 may be connected to the irradiated semiconductive device 13 by ohmic connections 17 and 19, for example, solder, which provides contact to the p and n sections of the device, respectively.
The radioactive emitter material may be coated on one or more surfaces of the semi-conductor device to provide physical support for the emitter and to insure most efiicient use of the emission.
The following table comprises pertinent data for the radioactive battery of FIG. 1 when a 50 millicurie strontium emission source is employed.
where e is the charge of an electron, R is the rate of generation of charge carriers, L is the carrier diffusion length, m is a current multiplication factor, and I is the equivalent current of the radioactive source 11.
KT 1,, V e 111 where I is the junction reverse saturation current, T is absolute temperature in degrees Kelvin, and K is Boltzmanns constant.
The structure hereinbefore described affords a primary source of electrical energy which has numerous advantages. The battery size may be extremely small, of the order of a fraction of a cubic centimeter. The unit is a selg contained primary source in the sense that the electrical energy available at its output terminals is derived solely from the energy of radioactive emissions. No thermionic cathodes or external electrical inputs are required. The battery is rugged from a physical standpoint and is not afliected by vibration or mechanical shock. The nuclear-lto-electrical energy conversion efficiency is quite good as is evidenced by typical current multiplication factors listed in the above table. The battery impedance is appreciably lower than presently known primary radioactive energy sources and is particularly adapted for powering transistor and other circuits which require low voltages and currents. Additionally, the useful life of the energy source is extremely long. For example, if cobalt is used the source may last for more than five years while if the battery employs strontium it may last as long as twenty-five years.
FIGURE 3 shows an embodiment of the invention in which a point-contact semi-conductor device 24 rather than a junction rtype semi-conductor device is employed. The theory of operation is much the same as described above. The incoming nuclear emissions create charge carriers in the semi-conductive portion 26 of the device. The charge carriers created in the junction region surrounding the point-contact electrode 27 (and charge carriers which difiuse into this region) flow undirectionaliy across the junction under the influence of an electrostatic potential barrier. This conduction process results in a voltage being developed at the output terminals of the semiconductive device is energized by emissions from the radioactive source 11 and provides a portion of the output current of the device. Spacers 29 such as polystyrene or mica separate adjacent semiconductive units and prevent them from effectively short-circuiting each other. if germanium units are stacked in the manner described above and a strontium emission source is used, three or four junction units each having thicknesses from ten to fifteen mils are sufficient to almost completely absorb the radiations. If silicon units are used, the order of six units absorb the incident radiations. However, a greater number of thinner units may be used if desired. One advantage of the arrangement of FIG. 4 is that the high energy radiations penetrate the units in a direction transverse with respect to the junction region. Since some charge carriers are produced outside the junction region, and the units are thin, these carriers have shorter distances through which to travel to get into the junction region. This reduces the number of recombinations of electrons and holes which may occur and enhance the output current. This particular arrangement is desirable when using semiconductive materials in which the charge carriers have short diffusion lengths.
FIGURE 5 shows a convenient means by which the ohmic connections 17 and 1-9 of FIGURE 4 may be made. A pair of tabs 17 and 19 is afiixed to each of the spaced semiconductive units by any desired means such as a low melting point solder. One of the tabs 17 is connected to the p-type conductivity material while the other tab 19 is connected to the n-type conductivity material. The tabs 17 and 19 may be, for example, nickel and may be connected to the p and 11 type materials at any convenient portion of their surfaces.
FIGURE 6 shows another embodiment of the invention which is useful for producing higher voltages than those produced in the embodiments heretofore described. In the arrangement illustrated in FIGURE 6 the semiconductive units 1'3 are of the alloy type. As a typical example the body portion 31 of the device 13 may be n-type germanium and the p-type portion is the junction region shown by the dashed lines between the body portion 31 and a pellet of indium 33. However, other materials and other types of semiconductive devices such as those mentioned previously (i.e., grown junction and point-contact devices) also may be used. The semiconductive units 1'3 are stacked so that the incident nuclear radiation from the source 11 successively penetrates the units. The units are arranged so that the p-type pellet material of one semiconductive unit physically is butted against and contacts the n-type material of the next adjacent unit.
By so arranging the materials, ohmic contact is provided between adjacent units and the total output voltage of the battery is the sum of the voltages of the individual units. Electrical connection may be made to the stacked array for connecting the array to a load circuit 21 by a nickel tab 18 connected to the germanium material and a conductive lead 35 which makes contact with the indium pellet. The thickness and number of units which may be stacked is governed by substantially the same factors mentioned with respect to the structure of FIGURES 4 and 5 and also the terminal voltage desired from the stacked array. These factors include the energy and type of nuclear radiations emitted, the geometry cf the semiconductive :units, and the type of materials from which the units are fabricated.
In FIGURE 7 the radioactive source '11 is disposed between a pair of alloy type semiconductive units which are arranged in a back-to-back relation. The high energy radiations create charge carriers in each unit which flow across their rescpective junctions to provide a voltage at the output terminal of each unit. Ohmic connection between the n-region 31 of one unit and the n region 31 of the other unit is afforded via the radioactive emitter material 11 which preferably is supported by a conductive support member. The radioactive emitter is connected to one terminal of the load circuit 21. The pellets 33 which yield p-type conductivity to the body portion 31 of each unit are connected together and to the other terminal of the load circuit. The thickness of each unit 13 preferably is equivalent to the range of the radioactive emissions in the material. Advantages of the above described embodiments are an increase in output current by a factor of two', and more efficient utilization of the emissions produced by the cold source 11.
FIGURE 8 shows a further embodiment of the invention wherein the semiconductive unit 13 comprises an alloy type junction device having a body portion 31 into which two impurity pellets initially are alloyed and diffused. Electrostatic potential barriers 44 result from the alloying process and are created between the portion 31 and the pellets 33. If the body portion 31 is n-type germanium the impurity pellets diffused therein may be indium or one of the other materials heretofore mentioned. The impurity pellet which is alloyed and diffused into the portion of the semiconductive body which is to be spaced from but nearest the cold source 11 is then removed from the body portion 31. When the device thus fabricated is irradiated by the source 11, charge carriers flow in the direction of each electrostatic potential barrier. The fact that two barriers are provided is important since the number of recombinations of electrons and holes which tend to occur is reduced by a factor of the order of two. Since the recombinations are reduced, the output current supplied to the load circuit 21 increases by a corresponding amount. The purpose in removing the one impurity pellet adjacent the cold source 11 is for the purpose of eliminating material which would absorb the radioactive emissions without contributing to the output of the unit.
FIGURE 9 shows a still further embodiment of the invention in which a plurality of semiconductive devices 37 of the grown junction type are employed. Each device comprises a suitably shaped ingot or filament in which pand n-type conductivity regions occur alternately. The device 37 may be fabricated according to several methods. One of these methods is disclosed in copending application Serial No. 168,184, now US. Patent 2,727,840, cited previously. Briefly this method involves dipping a seed of germanium into a molten mass of germanium. The seed is withdrawn from the molten mass at a rate sufiicient to draw some of the molten mass therewith. As the seed is withdrawn the impurity balance in the melt is altered to effect a controlled variation in the conductivity, or an inversion in the conductivity,
of the melt and of the Withdrawn material. For example, if the melt is n-type initially, it may be converted to p-type by adding an acceptor material such as gallium. Reconversion to n-type is attainable by adding a donor material such as antimony.
The devices 37 each are similar to the series connected device shown in FIGURE 6 and are placed relatively close together. Interspersed between the units 37 is the radioactive emission material 11. Since the emitter 11 has a low ohmic resistance, insulating members 39 are disposed between the emitter 1 1 and the devices 37. In the present example the units are connected in parallel for supplying current at higher voltages to a load 21. However, if even higher voltages are desired it will be appreciated that the units may be connected in series with each other. Voltages of the order of volts may be 7 realized in this manner.
With the arrangement of FIGURE 9 (i.e., a plurality of grown junctions) it is essential that alternate junctions be made to have low ohmic resistance. Thus junctions 41 and 43 are destroyed by some such means as sandblasting or copper plating. If the junctions are not treated in this manner the current flowing across a given junction is approximately equal to and flows in a direction opposite to that of an adjacent junction. The net current produced by each unit 37 then would be almost zero.
What is claimed is:
11. A primary source of electrical energy comprising, a pair of semiconductive devices, each with a junction and regions of difierent conductivity on opposite sides of the junction, said devices being arranged with regions of the same conductivity adjacent each other, a cold source of high energy nuclear emissions positioned between said adjacent regions, and connection means coupled to said devices for deriving a load current.
2. A primary source of energy as claimed in claim 1 wherein said emission source is in contact with said adjacent regions and said devices are connected in parallel.
References Cited in the file of this patent UNITED STATES PATENTS 2,543,039 McK-ay Feb. 27, 1951 2,560,594 Pearson July 17, 1951 2,582,850 Rose Jan. 15, 1952 2,641,713 Shive June 9, 1953 2,650,311 Bray et a1. Aug. 25, 1953 2,661,431 Linder Dec. 1, 1953 2,670,441 McKay Feb. 23, 1954 2,719,253 Willardson et al Sept. 27, 1955 2,727,840 Teal Dec. 20, 1955 2,754,431 Johnson July 10, 1956 2,847,585 Christian Aug. 12, 1958 OTHER REFERENCES Physical Review, vol. 71, #2, pp. 129-30, Ian. 15, 1947.

Claims (1)

1. A PRIMARY SOURCE OF ELECTRICAL ENERGY COMPRISING, A PAIR OF SEMICONDUCTOR DEVICES, EACH WITH A JUNCTION AND REGIONS OF DIFFERENT CONDUCTIVITY ON OPPOSITE SIDES OF THE JUNCTION, SAID DEVICES BEING ARRANGED WITH REGIONS SOURCE OF HIGH ENERGY NUCLEAR EMISSONS POSITIONED BETWEEN SAID ADJACENT REGIONS, AND CONNECTION MEANS COUPLED TO SAID DEVICES FOR DERIVING A LOAD CURRENT.
US365207A 1953-06-30 1953-06-30 Radioactive batteries Expired - Lifetime US3094634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US365207A US3094634A (en) 1953-06-30 1953-06-30 Radioactive batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US365207A US3094634A (en) 1953-06-30 1953-06-30 Radioactive batteries

Publications (1)

Publication Number Publication Date
US3094634A true US3094634A (en) 1963-06-18

Family

ID=23437913

Family Applications (1)

Application Number Title Priority Date Filing Date
US365207A Expired - Lifetime US3094634A (en) 1953-06-30 1953-06-30 Radioactive batteries

Country Status (1)

Country Link
US (1) US3094634A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3195217A (en) * 1959-08-14 1965-07-20 Westinghouse Electric Corp Applying layers of materials to semiconductor bodies
US3714474A (en) * 1970-10-07 1973-01-30 Ecc Corp Electron-voltaic effect device
US3751303A (en) * 1971-06-03 1973-08-07 Us Army Energy conversion system
US3793713A (en) * 1969-07-09 1974-02-26 N Lidorenko Semiconductor photoelectric generator and method of its manufacture
US3829889A (en) * 1963-12-16 1974-08-13 Signetics Corp Semiconductor structure
US3936319A (en) * 1973-10-30 1976-02-03 General Electric Company Solar cell
US3939366A (en) * 1971-02-19 1976-02-17 Agency Of Industrial Science & Technology Method of converting radioactive energy to electric energy and device for performing the same
US5008579A (en) * 1989-03-03 1991-04-16 E. F. Johnson Co. Light emitting polymer electrical energy source
US5124610A (en) * 1989-03-03 1992-06-23 E. F. Johnson Company Tritiated light emitting polymer electrical energy source
US5235232A (en) * 1989-03-03 1993-08-10 E. F. Johnson Company Adjustable-output electrical energy source using light-emitting polymer
US5620464A (en) * 1992-12-18 1997-04-15 Angeion Corporation System and method for delivering multiple closely spaced defibrillation pulses
US5674248A (en) * 1995-01-23 1997-10-07 Angeion Corporation Staged energy concentration for an implantable biomedical device
WO1997048105A1 (en) * 1996-06-14 1997-12-18 Southwest Research Institute Charged-particle powered battery
US5859484A (en) * 1995-11-30 1999-01-12 Ontario Hydro Radioisotope-powered semiconductor battery
US20040150290A1 (en) * 2003-01-31 2004-08-05 Larry Gadeken Apparatus and method for generating electrical current from the nuclear decay process of a radioactive material
US20040150229A1 (en) * 2003-01-31 2004-08-05 Larry Gadeken Apparatus and method for generating electrical current from the nuclear decay process of a radioactive material
WO2004068548A2 (en) * 2003-01-21 2004-08-12 Rensselaer Polytechnic Institute Three dimensional radiation conversion semiconductor devices
US20060185722A1 (en) * 2005-02-22 2006-08-24 Pentam, Inc. Method of pre-selecting the life of a nuclear-cored product
US20060185720A1 (en) * 2005-02-22 2006-08-24 Pentam, Inc. Method of recycling a nuclear-cored battery
US20060185975A1 (en) * 2005-02-22 2006-08-24 Pentam, Inc. Decomposition unit
US20060185724A1 (en) * 2005-02-22 2006-08-24 Pentam, Inc. Super electromagnet
US20060185719A1 (en) * 2005-02-22 2006-08-24 Pentam, Inc. Nuclear-cored battery
US20060185153A1 (en) * 2005-02-22 2006-08-24 Pentam, Inc. Method of making crystalline to surround a nuclear-core of a nuclear-cored battery
US20060185974A1 (en) * 2005-02-22 2006-08-24 Pentam, Inc. Decomposition cell
US20060186378A1 (en) * 2005-02-22 2006-08-24 Pentam, Inc. Crystalline of a nuclear-cored battery
US20070133733A1 (en) * 2005-12-07 2007-06-14 Liviu Popa-Simil Method for developing nuclear fuel and its application
US20110031572A1 (en) * 2009-08-06 2011-02-10 Michael Spencer High power density betavoltaic battery
US9090472B2 (en) 2012-04-16 2015-07-28 Seerstone Llc Methods for producing solid carbon by reducing carbon dioxide
US9221685B2 (en) 2012-04-16 2015-12-29 Seerstone Llc Methods of capturing and sequestering carbon
US9475699B2 (en) 2012-04-16 2016-10-25 Seerstone Llc. Methods for treating an offgas containing carbon oxides
US9556031B2 (en) 2009-04-17 2017-01-31 Seerstone Llc Method for producing solid carbon by reducing carbon oxides
US9598286B2 (en) 2012-07-13 2017-03-21 Seerstone Llc Methods and systems for forming ammonia and solid carbon products
US9604848B2 (en) 2012-07-12 2017-03-28 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
US9650251B2 (en) 2012-11-29 2017-05-16 Seerstone Llc Reactors and methods for producing solid carbon materials
US9731970B2 (en) 2012-04-16 2017-08-15 Seerstone Llc Methods and systems for thermal energy recovery from production of solid carbon materials by reducing carbon oxides
US9779845B2 (en) 2012-07-18 2017-10-03 Seerstone Llc Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same
US9783421B2 (en) 2013-03-15 2017-10-10 Seerstone Llc Carbon oxide reduction with intermetallic and carbide catalysts
US9796591B2 (en) 2012-04-16 2017-10-24 Seerstone Llc Methods for reducing carbon oxides with non ferrous catalysts and forming solid carbon products
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
US10322832B2 (en) 2013-03-15 2019-06-18 Seerstone, Llc Systems for producing solid carbon by reducing carbon oxides
US10815124B2 (en) 2012-07-12 2020-10-27 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
US11749419B2 (en) 2021-11-11 2023-09-05 Stargena, Inc. High performance power sources integrating an ion media and radiation
US11752459B2 (en) 2016-07-28 2023-09-12 Seerstone Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2543039A (en) * 1947-05-14 1951-02-27 Bell Telephone Labor Inc Bombardment induced conductivity in solid insulators
US2560594A (en) * 1948-09-24 1951-07-17 Bell Telephone Labor Inc Semiconductor translator and method of making it
US2582850A (en) * 1949-03-03 1952-01-15 Rca Corp Photocell
US2641713A (en) * 1951-03-21 1953-06-09 Bell Telephone Labor Inc Semiconductor photoelectric device
US2650311A (en) * 1950-10-26 1953-08-25 Purdue Research Foundation Radiant energy detecting method and apparatus
US2661431A (en) * 1951-08-03 1953-12-01 Rca Corp Nuclear electrical generator
US2670441A (en) * 1949-09-07 1954-02-23 Bell Telephone Labor Inc Alpha particle counter
US2719253A (en) * 1953-02-11 1955-09-27 Bradley Mining Company Nonlinear conduction elements
US2727840A (en) * 1950-06-15 1955-12-20 Bell Telephone Labor Inc Methods of producing semiconductive bodies
US2754431A (en) * 1953-03-09 1956-07-10 Rca Corp Semiconductor devices
US2847585A (en) * 1952-10-31 1958-08-12 Rca Corp Radiation responsive voltage sources

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2543039A (en) * 1947-05-14 1951-02-27 Bell Telephone Labor Inc Bombardment induced conductivity in solid insulators
US2560594A (en) * 1948-09-24 1951-07-17 Bell Telephone Labor Inc Semiconductor translator and method of making it
US2582850A (en) * 1949-03-03 1952-01-15 Rca Corp Photocell
US2670441A (en) * 1949-09-07 1954-02-23 Bell Telephone Labor Inc Alpha particle counter
US2727840A (en) * 1950-06-15 1955-12-20 Bell Telephone Labor Inc Methods of producing semiconductive bodies
US2650311A (en) * 1950-10-26 1953-08-25 Purdue Research Foundation Radiant energy detecting method and apparatus
US2641713A (en) * 1951-03-21 1953-06-09 Bell Telephone Labor Inc Semiconductor photoelectric device
US2661431A (en) * 1951-08-03 1953-12-01 Rca Corp Nuclear electrical generator
US2847585A (en) * 1952-10-31 1958-08-12 Rca Corp Radiation responsive voltage sources
US2719253A (en) * 1953-02-11 1955-09-27 Bradley Mining Company Nonlinear conduction elements
US2754431A (en) * 1953-03-09 1956-07-10 Rca Corp Semiconductor devices

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3195217A (en) * 1959-08-14 1965-07-20 Westinghouse Electric Corp Applying layers of materials to semiconductor bodies
US3829889A (en) * 1963-12-16 1974-08-13 Signetics Corp Semiconductor structure
US3793713A (en) * 1969-07-09 1974-02-26 N Lidorenko Semiconductor photoelectric generator and method of its manufacture
US3714474A (en) * 1970-10-07 1973-01-30 Ecc Corp Electron-voltaic effect device
US3939366A (en) * 1971-02-19 1976-02-17 Agency Of Industrial Science & Technology Method of converting radioactive energy to electric energy and device for performing the same
US3751303A (en) * 1971-06-03 1973-08-07 Us Army Energy conversion system
US3936319A (en) * 1973-10-30 1976-02-03 General Electric Company Solar cell
US5008579A (en) * 1989-03-03 1991-04-16 E. F. Johnson Co. Light emitting polymer electrical energy source
US5124610A (en) * 1989-03-03 1992-06-23 E. F. Johnson Company Tritiated light emitting polymer electrical energy source
US5235232A (en) * 1989-03-03 1993-08-10 E. F. Johnson Company Adjustable-output electrical energy source using light-emitting polymer
US5620464A (en) * 1992-12-18 1997-04-15 Angeion Corporation System and method for delivering multiple closely spaced defibrillation pulses
US5674248A (en) * 1995-01-23 1997-10-07 Angeion Corporation Staged energy concentration for an implantable biomedical device
US5859484A (en) * 1995-11-30 1999-01-12 Ontario Hydro Radioisotope-powered semiconductor battery
US5861701A (en) * 1996-03-11 1999-01-19 Southwest Research Institute Charged-particle powered battery
WO1997048105A1 (en) * 1996-06-14 1997-12-18 Southwest Research Institute Charged-particle powered battery
WO2004068548A2 (en) * 2003-01-21 2004-08-12 Rensselaer Polytechnic Institute Three dimensional radiation conversion semiconductor devices
WO2004068548A3 (en) * 2003-01-21 2004-09-23 Rensselaer Polytech Inst Three dimensional radiation conversion semiconductor devices
US20040150290A1 (en) * 2003-01-31 2004-08-05 Larry Gadeken Apparatus and method for generating electrical current from the nuclear decay process of a radioactive material
US20040150229A1 (en) * 2003-01-31 2004-08-05 Larry Gadeken Apparatus and method for generating electrical current from the nuclear decay process of a radioactive material
US6774531B1 (en) 2003-01-31 2004-08-10 Betabatt, Inc. Apparatus and method for generating electrical current from the nuclear decay process of a radioactive material
US6949865B2 (en) 2003-01-31 2005-09-27 Betabatt, Inc. Apparatus and method for generating electrical current from the nuclear decay process of a radioactive material
US20060185153A1 (en) * 2005-02-22 2006-08-24 Pentam, Inc. Method of making crystalline to surround a nuclear-core of a nuclear-cored battery
US20060185720A1 (en) * 2005-02-22 2006-08-24 Pentam, Inc. Method of recycling a nuclear-cored battery
US20060185975A1 (en) * 2005-02-22 2006-08-24 Pentam, Inc. Decomposition unit
US20060185724A1 (en) * 2005-02-22 2006-08-24 Pentam, Inc. Super electromagnet
US20060185719A1 (en) * 2005-02-22 2006-08-24 Pentam, Inc. Nuclear-cored battery
US20060185722A1 (en) * 2005-02-22 2006-08-24 Pentam, Inc. Method of pre-selecting the life of a nuclear-cored product
US20060185974A1 (en) * 2005-02-22 2006-08-24 Pentam, Inc. Decomposition cell
US20060186378A1 (en) * 2005-02-22 2006-08-24 Pentam, Inc. Crystalline of a nuclear-cored battery
US7482533B2 (en) * 2005-02-22 2009-01-27 Medusa Special Projects, Llc Nuclear-cored battery
US7491882B2 (en) * 2005-02-22 2009-02-17 Medusa Special Projects, Llc Super electromagnet
US20070133733A1 (en) * 2005-12-07 2007-06-14 Liviu Popa-Simil Method for developing nuclear fuel and its application
US9556031B2 (en) 2009-04-17 2017-01-31 Seerstone Llc Method for producing solid carbon by reducing carbon oxides
US10500582B2 (en) 2009-04-17 2019-12-10 Seerstone Llc Compositions of matter including solid carbon formed by reducing carbon oxides
US20110031572A1 (en) * 2009-08-06 2011-02-10 Michael Spencer High power density betavoltaic battery
US8487392B2 (en) * 2009-08-06 2013-07-16 Widetronix, Inc. High power density betavoltaic battery
US20110298071A9 (en) * 2009-08-06 2011-12-08 Michael Spencer High power density betavoltaic battery
US10106416B2 (en) 2012-04-16 2018-10-23 Seerstone Llc Methods for treating an offgas containing carbon oxides
US9090472B2 (en) 2012-04-16 2015-07-28 Seerstone Llc Methods for producing solid carbon by reducing carbon dioxide
US9475699B2 (en) 2012-04-16 2016-10-25 Seerstone Llc. Methods for treating an offgas containing carbon oxides
US9221685B2 (en) 2012-04-16 2015-12-29 Seerstone Llc Methods of capturing and sequestering carbon
US9796591B2 (en) 2012-04-16 2017-10-24 Seerstone Llc Methods for reducing carbon oxides with non ferrous catalysts and forming solid carbon products
US9731970B2 (en) 2012-04-16 2017-08-15 Seerstone Llc Methods and systems for thermal energy recovery from production of solid carbon materials by reducing carbon oxides
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
US9604848B2 (en) 2012-07-12 2017-03-28 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
US10815124B2 (en) 2012-07-12 2020-10-27 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
US9598286B2 (en) 2012-07-13 2017-03-21 Seerstone Llc Methods and systems for forming ammonia and solid carbon products
US9779845B2 (en) 2012-07-18 2017-10-03 Seerstone Llc Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same
US9650251B2 (en) 2012-11-29 2017-05-16 Seerstone Llc Reactors and methods for producing solid carbon materials
US9993791B2 (en) 2012-11-29 2018-06-12 Seerstone Llc Reactors and methods for producing solid carbon materials
US9783421B2 (en) 2013-03-15 2017-10-10 Seerstone Llc Carbon oxide reduction with intermetallic and carbide catalysts
US10322832B2 (en) 2013-03-15 2019-06-18 Seerstone, Llc Systems for producing solid carbon by reducing carbon oxides
US11752459B2 (en) 2016-07-28 2023-09-12 Seerstone Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
US11951428B2 (en) 2016-07-28 2024-04-09 Seerstone, Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
US11749419B2 (en) 2021-11-11 2023-09-05 Stargena, Inc. High performance power sources integrating an ion media and radiation

Similar Documents

Publication Publication Date Title
US3094634A (en) Radioactive batteries
US2745973A (en) Radioactive battery employing intrinsic semiconductor
US2976433A (en) Radioactive battery employing semiconductors
US5260621A (en) High energy density nuclide-emitter, voltaic-junction battery
US2847585A (en) Radiation responsive voltage sources
US2998550A (en) Apparatus for powering a plurality of semi-conducting units from a single radioactive battery
US2819414A (en) Radioactive battery employing stacked semi-conducting devices
US4024420A (en) Deep diode atomic battery
US8073097B2 (en) Nuclear voltaic cell
Card Photovoltaic properties of MIS-Schottky barriers
US2938938A (en) Photo-voltaic semiconductor apparatus or the like
US3015762A (en) Semiconductor devices
US3706893A (en) Nuclear battery
US20110298071A9 (en) High power density betavoltaic battery
US2976426A (en) Self-powered semiconductive device
WO1995005667A1 (en) High energy density nuclide-emitter, voltaic-junction battery
US4010534A (en) Process for making a deep diode atomic battery
Manasse et al. Schottky barrier betavoltaic battery
US3790829A (en) Thermoelectromagnetic energy conversion system
RU90612U1 (en) SOURCE OF ELECTRIC CURRENT
US2844640A (en) Cadmium sulfide barrier layer cell
US3257570A (en) Semiconductor device
US2898743A (en) Electronic cooling device and method for the fabrication thereof
US3255050A (en) Fabrication of semiconductor devices by transmutation doping
GB761404A (en) Improved methods of and means for converting the energy of nuclear radiations into useful electrical energy