US3090733A - Composite nickel electroplate - Google Patents

Composite nickel electroplate Download PDF

Info

Publication number
US3090733A
US3090733A US103296A US10329661A US3090733A US 3090733 A US3090733 A US 3090733A US 103296 A US103296 A US 103296A US 10329661 A US10329661 A US 10329661A US 3090733 A US3090733 A US 3090733A
Authority
US
United States
Prior art keywords
nickel
layer
electroplate
sulfur
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US103296A
Inventor
Brown Henry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Occidental Chemical Corp
Udylite Research Corp
Original Assignee
Udylite Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Udylite Research Corp filed Critical Udylite Research Corp
Priority to US103296A priority Critical patent/US3090733A/en
Priority to GB14650/62A priority patent/GB1006608A/en
Priority to DEU8862A priority patent/DE1283634B/en
Priority to FR894559A priority patent/FR1319829A/en
Application granted granted Critical
Publication of US3090733A publication Critical patent/US3090733A/en
Anticipated expiration legal-status Critical
Assigned to HOOKER CHEMICALS & PLASTICS CORP. reassignment HOOKER CHEMICALS & PLASTICS CORP. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: OXY METAL INDUSTRIES CORPORATION
Assigned to OCCIDENTAL CHEMICAL CORPORATION reassignment OCCIDENTAL CHEMICAL CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE MARCH 30, 1982. Assignors: HOOKER CHEMICAS & PLASTICS CORP.
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/623Porosity of the layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/625Discontinuous layers, e.g. microcracked layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • Y10S428/924Composite
    • Y10S428/926Thickness of individual layer specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9265Special properties
    • Y10S428/933Sacrificial component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/934Electrical process
    • Y10S428/935Electroplating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/1266O, S, or organic compound in metal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12729Group IIA metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12778Alternative base metals from diverse categories
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component

Definitions

  • This invention relates to an improved composite electroplate on a lmetal base comprising three types of nickel electroplates which are adjacent ⁇ or contiguous to each other, and to the method of preparing this composite coating.
  • Such a composite coating provides greatly improved outdoor corrosion protection to underlying basis metals which are susceptible to atmospheric corrosion such as steel, ⁇ copper and its alloys, Zinc and its alloys, aluminum and its alloys, magnesium and its alloys, etc.
  • the composite electropl-ate of this invention comprises three adjacent, bonded layers of nickel having certain thicknesses and in which the intermediate layer of nickel has a higher sulfur content than the nickel layers ywhich sandwich it. Moreover, the upper layer, for optimum results, should have an appreciably higher ⁇ sulfur content than the lower layer of nickel underneath the intermediate layer.
  • the lower nickel layer should contain from zero to -a maximum of 0.03% sulfur, and have a thickness of about 0.15 to 1.5 mils, and this thickness would include any nickel or cobalt or nickel alloy strike plates such as nickel-cobalt, nickel-iron or 'nickel-cobalt-iron.
  • the intermediate nickel layer should contain more than about 0.05% sulfur and must contain more sulfur than the top nickel layer.
  • In gener-al it should contain from about 0.05% to about 0.3% sulfur.
  • the thickness of the intermediate layer should be from about 0.005 to about 0.2 mil.
  • the upper nickel layer should contain about 0.02% to about 0.15% sulfur and have a thickness of about 0.15 to 1.5 mils.
  • the intermediate layer may have as low as 0.05% sulfur, but when the upper nickel layer contains 0.04% to 0.07% sulfur then the intermediate nickel layer should ⁇ contain at least 0.08% sulfur.
  • the intermediate nickel layer contain about 0.02% to about 0.1% more sulfur than the upper nickel when the upper layer is a bright nickel containing 0.02 to 0.08% sulfur, and the lower nickel is ya semibright sulfur-free (less than about 0.005% sulfur) nickel.
  • this essentially three layered nickel deposit with an overlying thin bright chromium plate provides considerably improved ⁇ outdoor corrosion protection to the basis metal especially in a marine or saline atmosphere (Where salt is used to de-ice streets in winter) than does an equal total thickness of nickel of either the lower layer nickel or the upper layer nickel or a double layer of these two nickels, with the same iinal thin chromium plate.
  • FIGURES 1-3 are diagrams which illustrate the mechanism rby which the Itri-nickel plate of this invention diverts the corrosion from the basis metal.
  • 'Iihese diagrams show the progression of a vcorrosion pit in a preferred example or" a bright chromium plated composite of the three-layered nickel coating Iwhen exposed to sali-ne or Vacidic ysaline atmospheres or to the CASS or Corrodkote :corrosion tests.
  • FIG. 1 the usual type of hemispherical corrosion pit Istarting from a pore (a) in the uppermost bright chromium plate is shown penetrating down into the upper bright nickel plate.
  • a pore
  • the corrosion pit has 'become a dat bottom pit practically stopping at the lower nickel layer of low sulfur content, ⁇ and going laterally in the upper and intermediate nickel layers. Also a certain degree of preferential lateral corrosion is proceeding in the intermediate nickel layer B which has a higher sulfur content than the upper nickel layer A and an even lmore appreciably higher sulfur content than the lower nickel layer C. In FIG. 3, the corrosion pit has widened further without penetrating appreciably into the lower nickel layer C. This is the important consequence of the progression of corrosion with this tri-nickel plate under continued severe exposure conditions.
  • the three-layered nickel composite may be made With dull Watts nickel as the lower layer, and lbright nickel or even a semi-blight nickel or dull nickel as the upper layer providing the upper nickel lay erhas, as already specified, higher sulfur content than the bottom layer.
  • the methods of obtaining the higher sulfur content will be described hereinafter. Improved corrosion protection is obtained even in the absence of a final chromium plate.
  • a preferred form of this invention includes the three-layered nickel plate in which the upper nickel is a bright nickel finish with a final overlying bright chromiuml plate of about 0.005 mil to 0.2 mil thick, and in this form is excellently suited for use on the exterior hardware and trim of automobiles and boats.
  • the basis metal such as steel, copper, brass, aluminum or zinc die castings after rst plating with copper, brass or chromium, or nickel strikes can then be plated with the three-layered nickel composite las follows: A semi-bright sulfur-free nickel plate in a thickness of about 0.7 to 1.5 mils is first applied and then covered with an intermediate plate of about 0.005 to 0.1 mil nickel having a sulfur content of about 0.08 to about 0.18%, which is then overlaid with a bright nickel plate of about 0.5 to 1 mil thickness from a bright nickel bath that produces about 0.02 to 0.07% sulfur in the deposit, and this upper nickel layer is then covered with a nal thin bright chromium plate (or even a dual micro-cracked chromium plate) of about 0.005 to 0.2 mil thickness.
  • the upper layer of nickel should o be thinner than the lower layer (the preferred ratio is from 50:50 to 80:20 for obtaining the highest ductility of the composite as needed, for example on bumpers) and the intermediate layer should 'be the thinnest of the three plates. If ductility is not of great importance, then the lower layer may be thinner than the upper layer, for example a 46:60 ratio, 'and still obtain excellent Ycorrosion protection of the basis metal. For less severe exposure, the lower and upper layers may be'only 0.15 mils thick, and still obtain improved corrosion protection.
  • the plates Small percentages of other impurities besides sulfur may be present in the plates, for example, carbon, selenium, tellurium, zinc, cadmium and iron, and very appreciable quantities of cobalt, up to 50% cobalt, may be presentin the intermediate and upper layers of nickel'.
  • the lower plate should, however, be as pure nickel as possible.
  • the lower nickel plate should be from a Wattstype nickel, as shown in Example l, or a fluoborate, high chloride, or sulfamate nickel plating bath, or a sulfurfrree semi-bright nickel plating bath, as shown in Example 2.
  • the intermediate nickel plate can be from these same types of baths or even an -alkaline nickel bath, or a high content sodium, ammonium, lithium or magnesium type nickel bath, land should preferably have dissolved in the bath, sodium benzene sulnate, or sodium p-toluene sullinate in a concentration of about 0.1 to l gram/liter.
  • sulfur containing compounds in concentrations of about 0.004 to about 0.1 gram/liter can be employed: Sodium thiosulfate, sodium bisulite or suliite, sodium 'hyposultite or hydrosullite, sodium formaldehyde sulfoxylate, though sodium benzene suliinate, sodium toluene sulnates, Vsodium naphthalene sulinates, sodium chlorobenzene sullinate, sodium bromobenzene sulinate are Vthe best to use.
  • the potassium, lithium, zinc, magnesium, etc., salts may be used. Copper or lead salts should not be used because copper ⁇ and lead ions are known to be harmful impurities, even in traces, in nickel baths.
  • other types can also be used, including sodium thiocyanate, phenyl sulfoxide, methyl sulfoxide, mercaptobenzoic acid, mercaptobenzenesulfonic acid, Vmercaptosuccinic acid, mer- Acaptobenzenealkane sulfonic acids, mercaptobenzene-oxyalkane sulfonic acids, thioureas, isothioureas, thiohydantoms, and especially their alkane sulfonic derivatives such as isothiourea-S-propane sulfonic acid
  • concentrations which range from-0.005 to about 0.05 gram/liter, though when sulfonic groups 'are also present in the molecule, even 0.5 to l gram/liter concentrations may be used.
  • concentrations which range from-0.005 to about 0.05 gram/liter, though when sulfonic groups 'are also present in the molecule, even 0.5 to l gram/liter concentrations may be used.
  • thiourea only 0.005 to 0.04 gram/liter lshould be used as this is one of the most critical materials to use since an excess produces very brittle, poorly adherent plate, whereas the alkane sulfonic derivatives of the .isothiourea form are not very critical and can be used in concentrations as high as 1 gram/liter.
  • the 'sulnatea however, such as sodium benzene sulfinate or toluene sulfinate are the least critical with variations in concentration and the best of all to use and can be employed as already mentioned in concentrations of 0.1 to l gram/liter and even higher, and even though bright Yplate is obtained, the adhesion and ductility are excellent.
  • organic sulfon-compounds such as sulfonc acids, sulfonamides, sulfonimides, sulfonyl iluorides, sulfones.
  • the maximum sulfur content obtained for the intermediate nickel layer is about 0.06 or 0.07%. This is true if a wetting agent such as sodium octyl or lauryl sulfate is also present in the bath.
  • the sulfur content of the nickel plate is about 0.064%.
  • the sulfur content is about 0.044%, and with 1 gram/liter of p-toluene sulfonamide, it is just about the same value, 0.045% sulfur.
  • the sulfur content is about 0.17%.
  • the sulfur content is about 0.8% or about 2.3% as nickel sulde.
  • the sulfur content of the intermediate plate should range from about 0.05% to about 0.3%, with the optimum range at about 0.06% to about 0.2% sulfur.
  • a Watts bath at a pH of about 2.5 to 4.5 with ⁇ one of the best materials, sodium benzene suliinate or sodium p-toluene sulnate present in a concentration of 0.1 to about 0.3 gram/liter is about the best and simplest baths to use for plating the intermediate layer of nickel, and actually only a 0.005 to about 0.05 mil thick plate is needed in this case.
  • sodium thiosulfate instead of the sulfinates, a low concentration of 0.01 to 0.03 gram/liter in the Watts bath must be maintained in the intermediate nickel plating bath to give comparable results, that is, sulfur contents in this case of about 0.08 to about 0.1%.
  • the drag-out tank or tanks following a semi-bright nickel tank may be used for the intermediate layer plating by merely adding about 0.1
  • the upper nickel may be from a bath similar -to the yones used for plating the intermediate layer except lower concentrations of the sulfur containing compounds would -be used.
  • the top nickel should be from a bright nickel plating bath that employs one of the organic sulfo-oxygen compounds illustrated in Table II -of U.S. 2,513,280 (July 4, 1950) and Table H of UB.
  • Wetting agents may be present in the baths to prevent pitting, or air agitation may be used. Besides boric acid,
  • .buffers may be used such as formic, citric, acetic,Y
  • the temperature of the baths may be from room to at least F. and the pH valuesrfrom at least 1 to 6 for the acidic baths.
  • the following examples illustrate plating baths which can be used for Plate thickess 1 to about 1.5 mils.
  • Intermediate plate Lower plate bath modified to include sodium thiosulfate concentration of 0.01 to 0.03 gram/ liter, temperature 30-60 C., pH 2.5, thickness of plate 0.005 to 0.2 mil.
  • Upper plate Same ybath as for lower plate except that 2 grams/liter of one or more of the following are dissolved in the bath: p-toluene sulfonamide, o-benzoyl sulmide, benzene sulfonamide, naphthalene sulfonic acids, benzene sulfonic acids; thickness of plate 0.5 to 1.5 mils.
  • Example 111 (Tri-nickel plate) Lower plate: Same as upper plate in Example II.
  • Upper plate Same inorganic bath composition as given for upper plate in Example II and same organic sulfoncomposition, but containing 0.003 to 0.01 gram/liter of -N-allyl quinaldininm bromide; thickness of plate, 0.15 to 1.5 mils; a nal bright chromium plate of 0.005 to 0.2 mil thickness.
  • Example IV (Tri-nickel plate) Lower plate: Same as lower plate in Example II.
  • Intermediate plate Watts nickel bath with 0.02 to 0.1 gram per liter of sodium bisulte with 0.005 to 0.3 gram/liter of sodium p-chlorobenzene sullinate, or sodium p-toluene suliinite, or sodium benzene sulnate. Thickness of plate 0.005 to 0.2 mil.
  • Example I The most ductile tri-nickel plate composites are those illustrated in Examples I, II and IV.
  • Examples II, III and IV give very excellent results on copper plated steel and copper plated zinc die castings.
  • Example I is primarily for non-decorative use where protection of the basis metal against marine or saline ty-pe exposure is practically the entire purpose. It could also be chromium plated.
  • a firmly bonded laminated corrosion-protective composite coating on a metal base susceptible to atmospheric corrosion comprising as its essential layers three adjacently bonded layers of electrodeposits, the lower layer of which ⁇ consists essentially of nickel electroplate having a thickness of about 0.15 mil to about 1.5 mils and an average sulfur content less than about 0.03%, the intermediate layer of which consists essentially of an electroplate selected from the group consisting of nickel electoplate and nickel-cobalt alloy electroplate containing at least about 50% nickel, said intermediate layer having a thickness of about 0.005 mil to about 0.2 mil and an average sulfure content -of about 0.05% to about 0.3%, and the upper layer of which consists essentially of an electroplate selected from the group consisting of nickel electroplate and nickel-cobalt alloy electroplate containing at least about 50% nickel, said upper layer having a thickness of about 0.15 mil to about 1.5 mils and an average sulfur content of about 0.02% to about 0.15%, said upper nickel plate containing a lower percentage of sulfur than ⁇ said intermediate nickel layer, and
  • a method for electroplating from aqueous solutions ya corrosion-protective composite nickel coating comp-rising .as its essential layers three adjacently bonded layers of electrodeposits on a metal surface susceptible to atmospheric corrosion which comprises the steps of electroplating on said surface an adherent layer consisting essentially of nickel having a thickness of about 0.15 mil to 1.5 mils and an average sulfur content of less than about 0.03%, electroplating on said lower layer an adherent intermediate layer consisting essentially of an electroplate selected from the group consisting of nickel electroplate and nickelcobalt alloy electroplate containing at least about 50% nickel, said intermediate -layer having a thickness of about 0.005 to about 0.2 mill and anaverage sulfur content of about 0.05 to about 0.3 electroplating on -said inter-V mediate nickel layer an adherent upper layer consisting essentially of an electroplate selected from the group consisting of nickel electroplate and nickel-cobalt electroplate containing at least about 50% nickel, said upper layer having a thickness of about 0.2 to about 1.5 mils and an
  • a method for electroplating from aqueous solutions a corrosion-protective composite three layered nickel vcoating on an industrial metal base of the group consisting of iron, steel, copper and its alloys, zinc and its alloys, aluminum and its alloys, and magnesium and its alloys comprisin-g the steps of electroplatin-g on said surface an adherent lower layer of nickel having a thickness of about 0.15 mil to 1.5 mils and an average sulfur content less than about 0.03%, electroplating Von said *lower layer of nickel an adherent intermediate layer of nickel having a thickness of about 0.005 to about 0.2 mil and an'average sulfur content of 0.05% to 0.3%, electroplating on said intermediate nickel layer an upper nickel plate having a thickness of 0.15 to 1.5 mils and an average sulfur content of labout 0.02% to about 0.15%, said upper nickel plate containing a lower percentage of sulfur than said lintermediate nickel layer, an a higher percentage of sulfur than said lower layer.
  • a method in accordance with claim 9' wherein said lower layer of nickel is plated from an aqueous acidic semibright sulfur-free nickel plating bath, said intermediate nickel layer is plated from an laqueous, acidic nickel bath containing from about-0.01m about 1 gram per liter of a compound selected from the :group ⁇ consisting of benzene suliinic lacid and substituted benzene sulnic acids, and said upper nickel layer is plated from a bright nickel plating bath containin-g yat Vleast one organic sulfon-compound.
  • a laminated corrosion protective composite coating on a metal base susceptible to atmospheric corrosion comprising as its essential layers three adjacently bonded layers of electrodeposits, the lowery layer thereof consisting essentially of nickel electroplate having a thickness of about 0.15 mil to about 1.5 mils and an average sulphur content less-than about 0.005%, the intermediate layer of said three layers consisting essentially of an electroplate selected from the group consisting of nickel electroplate and nickel-cobalt alloy electroplate containing at least about 50% nickel, said intermediate layer having a thickness of about 0.005 mil to about 0.2 mil and an average sulphur content of about 0.04% to about 0.18%, and the upper layer of said three layers consisting essentially of an electroplate selected from the group consisting of nickel electroplate and nickel-cobalt alloy electroplate containing at least about 50% nickel, said upper layer having -a thickness of ,about 0.15 mil to about 1.5 mils and an average sulphur content of about 0.02% to about 0.08%, said upper nickel plate containing a lower percent-age of sulph
  • a method ffor electroplating fromvaqueous solutions a corrosion protective composite coating on a metal surface susceptible to atmospheric corrosion which comprises the steps of (1) electroplating on said surface in at least one electroplating step an adherent layer consisting essentially of nickel having Ia thickness of about 0.15 mil to about 1.5 mils and an average sulphur content of less than about 0.03%, to thus dorm an adherent lower layer, (2) electroplating directly on said lower layer in at least one electroplating step an adherent intermediate layer consisting essentially of an electroplate selected from the group consisting of nickel electroplate and nickel-cobalt alloy electroplate containing at least about 50% nickel, said intermediate layer having a thickness of about 0.005 to about 0.2 mil and an average sulphur content of about 0.05 to about 0.3%, (3) electroplating directly on said intermediate nickel layer an adherent upper layer in at least one electroplating'step consisting essentially of an electroplate selected from the group consisting of nickel electroplate and nickel-cobalt alloy electroplate containing at least about 50% nickel, said
  • said intermediate nickel layer is plated from an aqueous acidic nickel bath containing from about 0.004 to about 0.1 gram per liter of -a bath soluble sulphur compound selected ⁇ from the vgroup consisting of bath soluble thiosulphates, sulphites, bisulphites and hyposulphites.

Description

H. BROWN 3,090,733
May 21, 1963 COMPOSITE NICKEL ELECTROPLATE Filed April 17, 1961 Cogf'jza (d) 6.7 77.7427@ {aaai-0.2 mi?) l /'e/ cz!l H7, irai?, 277, ffy, efe.)
LM \j /v/ 72.42% c INVENTOR. /Vewr ,Efzaw United States Patent O 3,090,733 COMPOSITE NICKEL ELECTRGPLATE Henry Brown, Huntington Woods, Mich., assignor to The Udylite Research Corporation, Detroit, Mich., a corporation of Michigan Filed Apr. 17, 1961, Ser. No. 103,296 19 Claims. (Cl. 20d-40) This invention relates to an improved composite electroplate on a lmetal base comprising three types of nickel electroplates which are adjacent `or contiguous to each other, and to the method of preparing this composite coating. Such a composite coating provides greatly improved outdoor corrosion protection to underlying basis metals which are susceptible to atmospheric corrosion such as steel, `copper and its alloys, Zinc and its alloys, aluminum and its alloys, magnesium and its alloys, etc.
The composite electropl-ate of this invention comprises three adjacent, bonded layers of nickel having certain thicknesses and in which the intermediate layer of nickel has a higher sulfur content than the nickel layers ywhich sandwich it. Moreover, the upper layer, for optimum results, should have an appreciably higher `sulfur content than the lower layer of nickel underneath the intermediate layer. The lower nickel layer should contain from zero to -a maximum of 0.03% sulfur, and have a thickness of about 0.15 to 1.5 mils, and this thickness would include any nickel or cobalt or nickel alloy strike plates such as nickel-cobalt, nickel-iron or 'nickel-cobalt-iron. The intermediate nickel layer should contain more than about 0.05% sulfur and must contain more sulfur than the top nickel layer. In gener-al it should contain from about 0.05% to about 0.3% sulfur. The thickness of the intermediate layer should be from about 0.005 to about 0.2 mil. The upper nickel layer should contain about 0.02% to about 0.15% sulfur and have a thickness of about 0.15 to 1.5 mils. When the upper nickel layer has only 0.02% or 0.03% sulfur ythen the intermediate layer may have as low as 0.05% sulfur, but when the upper nickel layer contains 0.04% to 0.07% sulfur then the intermediate nickel layer should `contain at least 0.08% sulfur. In general it is preferred that the intermediate nickel layer contain about 0.02% to about 0.1% more sulfur than the upper nickel when the upper layer is a bright nickel containing 0.02 to 0.08% sulfur, and the lower nickel is ya semibright sulfur-free (less than about 0.005% sulfur) nickel. Under such conditions this essentially three layered nickel deposit with an overlying thin bright chromium plate provides considerably improved `outdoor corrosion protection to the basis metal especially in a marine or saline atmosphere (Where salt is used to de-ice streets in winter) than does an equal total thickness of nickel of either the lower layer nickel or the upper layer nickel or a double layer of these two nickels, with the same iinal thin chromium plate. This marked increase in corrosion protection is clearly shown in the now Well established accelerated corrosion tests, the `CASS ,and Corrodkote tests, Iwhich tests are described in Plating vol. 44, p. 763, 1957, Where the improvements obtained in corrosion protection of for example steel `or `copper plated zinc die-castings are usually at least double, when the thin intermediate plate of this invention is used.
It was further found that the luse of the above described intermediate layer of nickel having a relative-ly higher sulfur content than the layers of nickel which sandwich it, made possible tar better corrosion protection to 'the basis metal, for example, steel, and copper plated zinc die-castings than when other intermediate layers were used such as cobalt or tin. With cobalt 'as the intermediate layer, blisters resulted when the corrosion pit reached the cobalt layer and proceeded laterally at a very rapid rate thus Ice lifting the top nickel deposit around the corrosion pit to yform an 4objectionably large blister. With the use of an intermediate layer of tin, the 'adhesion between the two nickel layers was greatly decreased. Other intermediate coatings such as zine or copper have already been proved to be detrimental, with the zinc causing excessive blistering and with copper causing staining and also decreased corrosion resistance.
FIGURES 1-3 are diagrams which illustrate the mechanism rby which the Itri-nickel plate of this invention diverts the corrosion from the basis metal. 'Iihese diagrams show the progression of a vcorrosion pit in a preferred example or" a bright chromium plated composite of the three-layered nickel coating Iwhen exposed to sali-ne or Vacidic ysaline atmospheres or to the CASS or Corrodkote :corrosion tests. In FIG. 1, the usual type of hemispherical corrosion pit Istarting from a pore (a) in the uppermost bright chromium plate is shown penetrating down into the upper bright nickel plate. In FIG. 2, the corrosion pit has 'become a dat bottom pit practically stopping at the lower nickel layer of low sulfur content, `and going laterally in the upper and intermediate nickel layers. Also a certain degree of preferential lateral corrosion is proceeding in the intermediate nickel layer B which has a higher sulfur content than the upper nickel layer A and an even lmore appreciably higher sulfur content than the lower nickel layer C. In FIG. 3, the corrosion pit has widened further without penetrating appreciably into the lower nickel layer C. This is the important consequence of the progression of corrosion with this tri-nickel plate under continued severe exposure conditions. That is, unsightly r-ust spots do not readily occur when the base metal is steel, nor white corrosion ibl-isters when the bas-e metal is copper or bass plated `zinc alloy die castings, or when the base rnetal is aluminumm `or magnesium or alloys thereof. The important fact is that lboth nickel layers A and B continue to corrode, with intermediate layer B corroding somewhat faster than A, but not in complete preference to A, and thus the maximum protection to nickel layer C is obtained, which in turn .protects the more vulnerable -basis metal.
The three-layered nickel composite may be made With dull Watts nickel as the lower layer, and lbright nickel or even a semi-blight nickel or dull nickel as the upper layer providing the upper nickel lay erhas, as already specified, higher sulfur content than the bottom layer. The methods of obtaining the higher sulfur content will be described hereinafter. Improved corrosion protection is obtained even in the absence of a final chromium plate. A preferred form of this invention includes the three-layered nickel plate in which the upper nickel is a bright nickel finish with a final overlying bright chromiuml plate of about 0.005 mil to 0.2 mil thick, and in this form is excellently suited for use on the exterior hardware and trim of automobiles and boats. For these applications, for example, 'bumpers of automobiles, door handles, housing for lights, etc., the basis metal, such as steel, copper, brass, aluminum or zinc die castings after rst plating with copper, brass or chromium, or nickel strikes can then be plated with the three-layered nickel composite las follows: A semi-bright sulfur-free nickel plate in a thickness of about 0.7 to 1.5 mils is first applied and then covered with an intermediate plate of about 0.005 to 0.1 mil nickel having a sulfur content of about 0.08 to about 0.18%, which is then overlaid with a bright nickel plate of about 0.5 to 1 mil thickness from a bright nickel bath that produces about 0.02 to 0.07% sulfur in the deposit, and this upper nickel layer is then covered with a nal thin bright chromium plate (or even a dual micro-cracked chromium plate) of about 0.005 to 0.2 mil thickness. In general the upper layer of nickel should o be thinner than the lower layer (the preferred ratio is from 50:50 to 80:20 for obtaining the highest ductility of the composite as needed, for example on bumpers) and the intermediate layer should 'be the thinnest of the three plates. If ductility is not of great importance, then the lower layer may be thinner than the upper layer, for example a 46:60 ratio, 'and still obtain excellent Ycorrosion protection of the basis metal. For less severe exposure, the lower and upper layers may be'only 0.15 mils thick, and still obtain improved corrosion protection. Small percentages of other impurities besides sulfur may be present in the plates, for example, carbon, selenium, tellurium, zinc, cadmium and iron, and very appreciable quantities of cobalt, up to 50% cobalt, may be presentin the intermediate and upper layers of nickel'. The lower plate should, however, be as pure nickel as possible.
Thus, the lower nickel plate should be from a Wattstype nickel, as shown in Example l, or a fluoborate, high chloride, or sulfamate nickel plating bath, or a sulfurfrree semi-bright nickel plating bath, as shown in Example 2. The intermediate nickel plate can be from these same types of baths or even an -alkaline nickel bath, or a high content sodium, ammonium, lithium or magnesium type nickel bath, land should preferably have dissolved in the bath, sodium benzene sulnate, or sodium p-toluene sullinate in a concentration of about 0.1 to l gram/liter. Other compounds with a sulfur atom of valence less than plus six can be used to give a sulfur content to the intermediate nickel plate of about 0.05 to about 0.3% preferably about 0.08 to about 0.2%. For example, the following sulfur containing compounds in concentrations of about 0.004 to about 0.1 gram/liter can be employed: Sodium thiosulfate, sodium bisulite or suliite, sodium 'hyposultite or hydrosullite, sodium formaldehyde sulfoxylate, though sodium benzene suliinate, sodium toluene sulnates, Vsodium naphthalene sulinates, sodium chlorobenzene sullinate, sodium bromobenzene sulinate are Vthe best to use. In lien of the sodium salts, the potassium, lithium, zinc, magnesium, etc., salts may be used. Copper or lead salts should not be used because copper `and lead ions are known to be harmful impurities, even in traces, in nickel baths. Besides the above-mentioned inorganic and organic sulfur compounds containing a sulfur atom with less than plus six valence, other types can also be used, including sodium thiocyanate, phenyl sulfoxide, methyl sulfoxide, mercaptobenzoic acid, mercaptobenzenesulfonic acid, Vmercaptosuccinic acid, mer- Acaptobenzenealkane sulfonic acids, mercaptobenzene-oxyalkane sulfonic acids, thioureas, isothioureas, thiohydantoms, and especially their alkane sulfonic derivatives such as isothiourea-S-propane sulfonic acid. With this latter list of compounds, it is best to use concentrations which range from-0.005 to about 0.05 gram/liter, though when sulfonic groups 'are also present in the molecule, even 0.5 to l gram/liter concentrations may be used. For example, with thiourea only 0.005 to 0.04 gram/liter lshould be used as this is one of the most critical materials to use since an excess produces very brittle, poorly adherent plate, whereas the alkane sulfonic derivatives of the .isothiourea form are not very critical and can be used in concentrations as high as 1 gram/liter. The 'sulnatea however, such as sodium benzene sulfinate or toluene sulfinate are the least critical with variations in concentration and the best of all to use and can be employed as already mentioned in concentrations of 0.1 to l gram/liter and even higher, and even though bright Yplate is obtained, the adhesion and ductility are excellent.
In conjunction with the above-mentioned sulfur compounds there may also be present in the bath for plating the intermediate layer, organic sulfon-compounds such as sulfonc acids, sulfonamides, sulfonimides, sulfonyl iluorides, sulfones. If just the organic sulfon-compounds such as o-benzyl sulmide, p-toluene sulfonamide, napthalene sulfonic acid (mono, di, and tri), benzene sulfonic acid (mono, di, Iand tri) etc., are present in the nickel bath used for plating the intermediate layer, then the maximum sulfur content obtained for the intermediate nickel layer is about 0.06 or 0.07%. This is true if a wetting agent such as sodium octyl or lauryl sulfate is also present in the bath. For example, With l5 grams/ liter of nickel benzene disulfonate present in a Watts bath, the sulfur content of the nickel plate is about 0.064%. With 8 grams/liter of naphthalene 1,5 disulfouic acid present in a Watts bath, the sulfur content is about 0.044%, and with 1 gram/liter of p-toluene sulfonamide, it is just about the same value, 0.045% sulfur. However, with 1 gram/liter of sodium benzene sulfinate, the sulfur content is about 0.17%. With 1 to 10 grams/liter of sodium thiosulfate present, the sulfur content is about 0.8% or about 2.3% as nickel sulde. This is too much sulfur, andthe plate is very brittle, and the lateral corrosion of the intermediate plate is too rapid. It is preferred that the sulfur content of the intermediate plate should range from about 0.05% to about 0.3%, with the optimum range at about 0.06% to about 0.2% sulfur. In general,
for the intermediate plate a Watts bath at a pH of about 2.5 to 4.5 with `one of the best materials, sodium benzene suliinate or sodium p-toluene sulnate present in a concentration of 0.1 to about 0.3 gram/liter is about the best and simplest baths to use for plating the intermediate layer of nickel, and actually only a 0.005 to about 0.05 mil thick plate is needed in this case. With sodium thiosulfate instead of the sulfinates, a low concentration of 0.01 to 0.03 gram/liter in the Watts bath must be maintained in the intermediate nickel plating bath to give comparable results, that is, sulfur contents in this case of about 0.08 to about 0.1%. The drag-out tank or tanks following a semi-bright nickel tank may be used for the intermediate layer plating by merely adding about 0.1
to 0.3 gram/liter of sodium benzene suliinate or 0.01 to 0.03 gram/liter of sodium thiosulfate and maintaining this concentration during continued plating, and using only about .one-half to about three minutes plating time at 30 to 40 amps/sq. ft.
The upper nickel may be from a bath similar -to the yones used for plating the intermediate layer except lower concentrations of the sulfur containing compounds would -be used. For decorative plate, the top nickel should be from a bright nickel plating bath that employs one of the organic sulfo-oxygen compounds illustrated in Table II -of U.S. 2,513,280 (July 4, 1950) and Table H of UB.
2,800,440 (July 23, 1957) and preferably used together with unsaturated compounds or amines to give leveling and brilliance. The unsaturated compounds such as those carrying oleiinic type bonds or yacetylenic bonds without 0.14% sulfur, but when oleinic or acetylenic compounds not containing amine groups are present with the same sulfo-oxygen organic compounds, then the sulfur in the plate is usually `around 0.03 to 0.06%. With the latter 'type of bright nickel, the intermediate plate need have only about 0.06% to about 0.1% sulfur to obtain excellent corrosion protection results.
Wetting agents may be present in the baths to prevent pitting, or air agitation may be used. Besides boric acid,
other .buffers may be used such as formic, citric, acetic,Y
iluoboric, etc. The temperature of the baths may be from room to at least F. and the pH valuesrfrom at least 1 to 6 for the acidic baths. The following examples illustrate plating baths which can be used for Plate thickess 1 to about 1.5 mils.
Intermediate plate: Lower plate bath modified to include sodium thiosulfate concentration of 0.01 to 0.03 gram/ liter, temperature 30-60 C., pH 2.5, thickness of plate 0.005 to 0.2 mil.
Upper plate: Same ybath as for lower plate except that 2 grams/liter of one or more of the following are dissolved in the bath: p-toluene sulfonamide, o-benzoyl sulmide, benzene sulfonamide, naphthalene sulfonic acids, benzene sulfonic acids; thickness of plate 0.5 to 1.5 mils.
Example II (Tri-nickel plate) Lower plate:
NiSO4.6H2O grams/liter-- 200-400 INiCl2.6H2O do 30-60 H3BO3 -..dO
0.05 to 0.2 gram/liter of one or more of the following: bromal hydrate, chloral hydrate, formaldehyde, S-methoxy coumarin, coumarin, 3-chloro- Icoumarin. pH 3.0 to 5.5; temperature 3065 C. Plate thickness 0.15 to 1.5 mils.
Intermediate plate: Same bath as for lower plate or Watts bath of pH 2.5 to 4.2 with 0.1 to 0.3 gram/liter of sodium .benzene sulfinate or sodium thiosulfate in a concentration of 0.02 gram/liter; thickness of plate 0.005 to 0.1 mil.
Upper plate:
NiSO4.6H2O grams/liter 50-300 NiCl2.6I-I2O do 200-30 H3BO3 do 30-45 1 to 3 grams per liter of one or more of the following: o-benzoyl sulmide, p-toluene sulfonamide, benzene sulfonamide, naphthalene sulfonic acids, 2-hutyne 1,4-disulfonic acid, allyl sulfonic acid together with 0.1 to 0.3 gram/liter of 2-butyne 1,4- dioxyethanesulfo-nic acid. Thickness of plate `0.15 -to 1.5 mils. A ynal `bright chromium plate of 0.005 to 0.2 mil thickness.
Example 111 (Tri-nickel plate) Lower plate: Same as upper plate in Example II.
Intermediate plate: Same bath as for lower plate (or a Watts bath) with 0.1 to l gram/liter of sodium p-toluene sulnate or benzene sullinate (Na, K, Li, Mg or Zn salt); thickness of plate, 0.005 to 0.2 mil.
Upper plate: Same inorganic bath composition as given for upper plate in Example II and same organic sulfoncomposition, but containing 0.003 to 0.01 gram/liter of -N-allyl quinaldininm bromide; thickness of plate, 0.15 to 1.5 mils; a nal bright chromium plate of 0.005 to 0.2 mil thickness.
Example IV (Tri-nickel plate) Lower plate: Same as lower plate in Example II.
Intermediate plate: Watts nickel bath with 0.02 to 0.1 gram per liter of sodium bisulte with 0.005 to 0.3 gram/liter of sodium p-chlorobenzene sullinate, or sodium p-toluene suliinite, or sodium benzene sulnate. Thickness of plate 0.005 to 0.2 mil.
Upper plate: Same upper plate as in Example III.
The most ductile tri-nickel plate composites are those illustrated in Examples I, II and IV. Examples II, III and IV give very excellent results on copper plated steel and copper plated zinc die castings. Example I is primarily for non-decorative use where protection of the basis metal against marine or saline ty-pe exposure is practically the entire purpose. It could also be chromium plated. Example II illustrates the most ductile tri-nickel plate combination for decorative =use in servere outdoor exposure, and is very well suited for plating automobile bumpers.
What is claimed is:
1. A firmly bonded laminated corrosion-protective composite coating on a metal base susceptible to atmospheric corrosion comprising as its essential layers three adjacently bonded layers of electrodeposits, the lower layer of which `consists essentially of nickel electroplate having a thickness of about 0.15 mil to about 1.5 mils and an average sulfur content less than about 0.03%, the intermediate layer of which consists essentially of an electroplate selected from the group consisting of nickel electoplate and nickel-cobalt alloy electroplate containing at least about 50% nickel, said intermediate layer having a thickness of about 0.005 mil to about 0.2 mil and an average sulfure content -of about 0.05% to about 0.3%, and the upper layer of which consists essentially of an electroplate selected from the group consisting of nickel electroplate and nickel-cobalt alloy electroplate containing at least about 50% nickel, said upper layer having a thickness of about 0.15 mil to about 1.5 mils and an average sulfur content of about 0.02% to about 0.15%, said upper nickel plate containing a lower percentage of sulfur than `said intermediate nickel layer, and a higher percentage of sulfur than said lower layer.
2. A firmly bonded laminated corrosion-protective composite coating on a metal base of the group consisting of iron, steel, copper and its alloys, Zinc and its alloys, aluminum and its alloys, and magnesium and its alloys, comprising a three-layered nickel electrodeposit, the lower layer of which is a nickel electroplate having a thickness of about 0.15 mil to 1.5 mils and an average sulfur content less than about 0.03%, the intermediate layer of which is nickel electroplate having a thickness of about 0.005 mil to about 0.2 mil and an average sulfur content of about 0.05 to about 0.3%, and the upper layer of which is nickel electroplate having a thickness of about 0.2 to about 1.5 mils and an average sulfur content of about 0.02 to labout 0.15%, said upper nickel plate containing a lower percentage of sulfur than said intermediate nickel layer, and a higher percentage of sulfur than said lower layer.
3. A fmmly bonded ylaminated corrosion-protective composite coating on a metal base susceptible to atmospheric corrosion comprising essentially three adjacently bonded layers of clectrodeposits, the lower layer of which consists essentially of nickel electroplate having a thickness in the range of about 0.15 mil to about 1.5 mils and an average sulfur content less than about 0.03%, the intermediate layer of which consists essentially of an electroplate selected from the group consisting of nickel electroplate and a nickel-cobal alloy electroplate containing less than about 50% cobalt having a thickness of about 0.005 =mil to about 0.2 mil and an average sulfur content of about 0.05% to about 0.3%, and the upper layer of which consists essentially of an electroplate selected from the group consisting of nickel electroplate and nickelcobalt alloy electroplate containing less than about 50% cobalt having a thickness of about 0.15 mil to about 1.5 mils and an average sulfur content of -about 0.02% to about 0.15%, said upper nickel plate containing a lower percentage of sul-fur than said intermediate electroplate Aand a higher percentage of sulfur than said lower electroplate.
4. A coating in accordance with claim 1 wherein said lower layer of nickel is a semi-bright nickel electroplate which contains less than about 0.005% sulfur, said intermediate nickel layer is an electroplate which contains 0.06 4to about 0.2% sulfur, and said upper nickel layer is a bright nickel electroplate which contains 0.02 to -about 0.06% sulfur, said upper nickel plate containing a lower percentage of sulfur than said intermediate plate.
5. A coating in accordance with claim 1 wherein said upper nickel layer is electroplated with a chromium deposit of 0.005 to 0.2 mil thickness.
6. A coating in accordance with claim 2 wherein said upper nickel layer is electroplated with a chromium electrodeposit of 0.005 to 0.2 mil thickness.
7. A coating in accordance with clairn 3 wherein said upper bright nickel layer is electroplated with a bright chromium deposit of 0.005 to 0.2 mil thickness.
8. A coating in accordance with claim 2 "wherein said netal base is steel.
9. A method for electroplating from aqueous solutions ya corrosion-protective composite nickel coating comp-rising .as its essential layers three adjacently bonded layers of electrodeposits on a metal surface susceptible to atmospheric corrosion which comprises the steps of electroplating on said surface an adherent layer consisting essentially of nickel having a thickness of about 0.15 mil to 1.5 mils and an average sulfur content of less than about 0.03%, electroplating on said lower layer an adherent intermediate layer consisting essentially of an electroplate selected from the group consisting of nickel electroplate and nickelcobalt alloy electroplate containing at least about 50% nickel, said intermediate -layer having a thickness of about 0.005 to about 0.2 mill and anaverage sulfur content of about 0.05 to about 0.3 electroplating on -said inter-V mediate nickel layer an adherent upper layer consisting essentially of an electroplate selected from the group consisting of nickel electroplate and nickel-cobalt electroplate containing at least about 50% nickel, said upper layer having a thickness of about 0.2 to about 1.5 mils and an average sulfur content of 0.02 to 0.15%, said upper nickel layer containing a lower percentage of sulfur than said intermediate nickel layer, and a higher percentage of sulfur than said lower layer, each of said layers being electrodeposited in at least one electroplating step.
10. A method for electroplating from aqueous solutions a corrosion-protective composite three layered nickel vcoating on an industrial metal base of the group consisting of iron, steel, copper and its alloys, zinc and its alloys, aluminum and its alloys, and magnesium and its alloys, comprisin-g the steps of electroplatin-g on said surface an adherent lower layer of nickel having a thickness of about 0.15 mil to 1.5 mils and an average sulfur content less than about 0.03%, electroplating Von said *lower layer of nickel an adherent intermediate layer of nickel having a thickness of about 0.005 to about 0.2 mil and an'average sulfur content of 0.05% to 0.3%, electroplating on said intermediate nickel layer an upper nickel plate having a thickness of 0.15 to 1.5 mils and an average sulfur content of labout 0.02% to about 0.15%, said upper nickel plate containing a lower percentage of sulfur than said lintermediate nickel layer, an a higher percentage of sulfur than said lower layer.
l1. A method in accordance with claim 9 wherein said lower layer of nickel is plated `from an aqueous acidic semibright sulfur-free nickel plating bath, said intermediate nickel layer is plated from an aqueous acidic nickel bath containing I:from 0.004 to about 0.1 gram per liter sullites,V `and said upper nickel layer is plated from a bright nickel plating bath containing at least one organic sulfoncompound.
12. A method in accordance with claim 9' wherein said lower layer of nickel is plated from an aqueous acidic semibright sulfur-free nickel plating bath, said intermediate nickel layer is plated from an laqueous, acidic nickel bath containing from about-0.01m about 1 gram per liter of a compound selected from the :group `consisting of benzene suliinic lacid and substituted benzene sulnic acids, and said upper nickel layer is plated from a bright nickel plating bath containin-g yat Vleast one organic sulfon-compound.
13. A method in accordance with claim 11 wherein 4said upper bright nickel layer is electroplated with a Ibright chromium deposit of 0.005 to 0.2 mil thickness.
14. A method in accordance with claim 12 wherein said upper bright nickel layer is electroplated with a bright chromium deposit of 0.005 to 0.2 mil thickness.
15. A laminated corrosion protective composite coating on a metal base susceptible to atmospheric corrosion comprising as its essential layers three adjacently bonded layers of electrodeposits, the lowery layer thereof consisting essentially of nickel electroplate having a thickness of about 0.15 mil to about 1.5 mils and an average sulphur content less-than about 0.005%, the intermediate layer of said three layers consisting essentially of an electroplate selected from the group consisting of nickel electroplate and nickel-cobalt alloy electroplate containing at least about 50% nickel, said intermediate layer having a thickness of about 0.005 mil to about 0.2 mil and an average sulphur content of about 0.04% to about 0.18%, and the upper layer of said three layers consisting essentially of an electroplate selected from the group consisting of nickel electroplate and nickel-cobalt alloy electroplate containing at least about 50% nickel, said upper layer having -a thickness of ,about 0.15 mil to about 1.5 mils and an average sulphur content of about 0.02% to about 0.08%, said upper nickel plate containing a lower percent-age of sulphur than said intermediate nickel plate, and a higher percentage of sulphur than said lower nickel plate.
16. A laminated coating on a metal base in accordance with claim 15 wherein said upper nickel plate is electroplated with a chromium electrodeposit of 0.005 to 0.2 mil thickness.
17. A method ffor electroplating fromvaqueous solutions a corrosion protective composite coating on a metal surface susceptible to atmospheric corrosion which comprises the steps of (1) electroplating on said surface in at least one electroplating step an adherent layer consisting essentially of nickel having Ia thickness of about 0.15 mil to about 1.5 mils and an average sulphur content of less than about 0.03%, to thus dorm an adherent lower layer, (2) electroplating directly on said lower layer in at least one electroplating step an adherent intermediate layer consisting essentially of an electroplate selected from the group consisting of nickel electroplate and nickel-cobalt alloy electroplate containing at least about 50% nickel, said intermediate layer having a thickness of about 0.005 to about 0.2 mil and an average sulphur content of about 0.05 to about 0.3%, (3) electroplating directly on said intermediate nickel layer an adherent upper layer in at least one electroplating'step consisting essentially of an electroplate selected from the group consisting of nickel electroplate and nickel-cobalt alloy electroplate containing at least about 50% nickel, said upper layer having a thickness of about 0.2 to about 1.5 mils and an average sulphur content of 0.02% to 0.15%, said upper nickel layer containing a lower percentage of sulphur that said intermediate nickel layer, and a higher percentage of sulphur than said lower layer, said intermediate layer being plated from an aqueous acidic nickel bath containing 9 from about 0.004 to about 1 gram per liter of a bath soluble sulphur compound.
18. A method in accordance with claim 17 wherein said intermediate nickel layer is plated from an aqueous acidic nickel bath containing from about 0.004 to about 0.1 gram per liter of -a bath soluble sulphur compound selected `from the vgroup consisting of bath soluble thiosulphates, sulphites, bisulphites and hyposulphites.
19. A method in accordance with claim 17 wherein said intermediate nickel layer is plated from an aqueous acidic nickel bath containing about 0.01 to about l `gram/liter of Ia compound selected from the group consisting of benzene sulinic acid and substituted ybenzene sulnic acids.
References Cited in the le of this patent UNITED STATES PATENTS

Claims (1)

1. A FIRMLY BONDED LAMINATED CORROSION-PROTECTIVE COMPOSITE COATING ON A METAL BASE SUSCEPTIBLE TO ATMOSPHERIC CORROSION COMPRISING AS ITS ESSENTIAL LAYERS THEREE ADJACENTLY BONDED LAYERS OF ELECTRODEPOSITS, THE LOWER LAYER OF WHICH CONSISTS ESSENTIALLY OF NICKEL ELECTROPLATE HAVING A THICKNESS OF ABOUT 0.15 MIL TO ABOUT 1.5 MILS AND AN AVERAGE SULFUR CONTENT LESS THAN ABOUT 0.03%, THE INTERMEDIATE LAYER OF WHICH CONSISTS ESSENTIALLY OF AN ELECTROPLATE SELECTED FROM THE GROUP CONSISTING OF NICKEL ELECTOPLATE AND NICKEL-COBALT ALLOY ELECTROPLATE CONTAINING AT LEAST ABOUT 50% NICKEL, SAID INTERMEDIATE LAYER HAVING A THICKNESS OF ABOUT 0.005 MIL TO ABOUT 0.2 MIL AND AN AVERAGE SULFURE CONTENT OF ABOUT 0.05% TO ABOUT 0,3%, AND THE UPPER LAYER OF WHICH CONSISTS ESSENTIALLY OF AN ELECTROPLATE SELECTED FROM THE GROUP CONSISTING OF NICKEL ELECTROPLATE AND NICKEL-COBALT ALLOY ELECTROPLATE CONTAINING AT LEAST ABOUT 50% NICKEL, SAID UPPER LAYER HAVING A THICKNESS OF ABOUT 0.15 MIL TO ABOUT 1.5 MILS AND AN AVERAGE SULFUR CONTENT OF ABOUT 0.025% TO ABOUT 0.15%, SAID UPPER NICKEL PLATE CONTAINING A LOWER PERCENTAGE OF SULFUR THAN SAID INTERMEDIATE NCIKEL LAYER, AND A HIGHER PERCENTAGE OF SULFUR THAN SAID LOWER LAYER.
US103296A 1961-04-17 1961-04-17 Composite nickel electroplate Expired - Lifetime US3090733A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US103296A US3090733A (en) 1961-04-17 1961-04-17 Composite nickel electroplate
GB14650/62A GB1006608A (en) 1961-04-17 1962-04-16 Improvements in or relating to the electro-deposition of nickel
DEU8862A DE1283634B (en) 1961-04-17 1962-04-16 Process for the production of corrosion-resistant coatings on metallic surfaces by electroplating
FR894559A FR1319829A (en) 1961-04-17 1962-04-16 Improvements to electrolytic nickel coatings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US103296A US3090733A (en) 1961-04-17 1961-04-17 Composite nickel electroplate

Publications (1)

Publication Number Publication Date
US3090733A true US3090733A (en) 1963-05-21

Family

ID=22294437

Family Applications (1)

Application Number Title Priority Date Filing Date
US103296A Expired - Lifetime US3090733A (en) 1961-04-17 1961-04-17 Composite nickel electroplate

Country Status (4)

Country Link
US (1) US3090733A (en)
DE (1) DE1283634B (en)
FR (1) FR1319829A (en)
GB (1) GB1006608A (en)

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3180808A (en) * 1963-05-28 1965-04-27 Sture Granberger Fa Nickel plating bath
US3183067A (en) * 1961-12-06 1965-05-11 Harshaw Chemcial Company Metal having two coats of sulfurcontaining nickel and method of making same
US3223598A (en) * 1962-11-23 1965-12-14 Germaine F Jacky Method for determining the adhesion of metal plating
US3245885A (en) * 1964-10-05 1966-04-12 Yawata Iron & Steel Co Method of manufacturing nickel-plated steel plate
US3268307A (en) * 1963-03-01 1966-08-23 Udylite Corp Process of electrodepositing a corrosion resistant nickel-chromium coating and products thereof
US3288574A (en) * 1964-04-10 1966-11-29 Harshaw Chem Corp Metal laminates and method of forming by electroplating
US3295936A (en) * 1965-11-29 1967-01-03 Yawata Iron & Steel Co Thinly nickel-plated steel plate
US3298802A (en) * 1962-02-23 1967-01-17 Res Holland S Hertogenbosch Nv Method for covering objects with a decorative bright-nickel/chromium coating, as well as objects covered by applying this method
US3355267A (en) * 1964-02-12 1967-11-28 Kewanee Oil Co Corrosion resistant coated articles and processes of production thereof
US3355268A (en) * 1964-07-22 1967-11-28 Kewanee Oil Co Corrosive protected composite having triplated nickel deposits and method of making
US3419744A (en) * 1964-08-17 1968-12-31 Sylvania Electric Prod Integral laminated cathode and support structure
US3437571A (en) * 1964-07-20 1969-04-08 Int Nickel Co Production of electrolytic nickel
US3615281A (en) * 1967-04-26 1971-10-26 Electro Chem Eng Corrosion-resistant chromium-plated articles
US3866289A (en) * 1969-10-06 1975-02-18 Oxy Metal Finishing Corp Micro-porous chromium on nickel-cobalt duplex composite plates
WO1980000716A1 (en) * 1978-10-05 1980-04-17 Uemura Kogyo Kk Method of corrosion-resistant plating
US4384929A (en) * 1981-07-06 1983-05-24 Occidental Chemical Corporation Process for electro-depositing composite nickel layers
US4411961A (en) * 1981-09-28 1983-10-25 Occidental Chemical Corporation Composite electroplated article and process
US4418125A (en) * 1982-12-06 1983-11-29 Henricks John A Multi-layer multi-metal electroplated protective coating
US4421626A (en) * 1979-12-17 1983-12-20 Occidental Chemical Corporation Binding layer for low overvoltage hydrogen cathodes
US4549942A (en) * 1981-07-06 1985-10-29 Omi International Corporation Process for electrodepositing composite nickel layers
US5286366A (en) * 1991-11-05 1994-02-15 Hitachi Magnetic Corp. Surface treatment for iron-based permanent magnet including rare-earth element
US5348639A (en) * 1991-08-06 1994-09-20 Hitachi Magnetics Corporation Surface treatment for iron-based permanent magnet including rare-earth element
US5413874A (en) * 1994-06-02 1995-05-09 Baldwin Hardware Corporation Article having a decorative and protective multilayer coating simulating brass
US5478660A (en) * 1994-11-30 1995-12-26 Baldwin Hardware Corporation Article having a decorative and protective coating simulating brass
US5478659A (en) * 1994-11-30 1995-12-26 Baldwin Hardware Corporation Article having a decorative and protective coating simulating brass
US5482788A (en) * 1994-11-30 1996-01-09 Baldwin Hardware Corporation Article having a protective coating simulating brass
US5484663A (en) * 1994-11-30 1996-01-16 Baldwin Hardware Corporation Article having a coating simulating brass
US5552233A (en) * 1995-05-22 1996-09-03 Baldwin Hardware Corporation Article having a decorative and protective multilayer coating simulating brass
US5626972A (en) * 1994-06-02 1997-05-06 Baldwin Hardware Corporation Article having a decorative and protective multilayer coating simulating brass
US5648179A (en) * 1995-05-22 1997-07-15 Baldwin Hardware Corporation Article having a decorative and protective coating simulating brass
US5654108A (en) * 1995-05-22 1997-08-05 Baldwin Hardware Corporation Article having a protective coating simulating brass
US5667904A (en) * 1995-05-22 1997-09-16 Baldwin Hardware Corporation Article having a decorative and protective coating simulating brass
US5693427A (en) * 1995-12-22 1997-12-02 Baldwin Hardware Corporation Article with protective coating thereon
US5783313A (en) * 1995-12-22 1998-07-21 Baldwin Hardware Corporation Coated Article
US5879532A (en) * 1997-07-09 1999-03-09 Masco Corporation Of Indiana Process for applying protective and decorative coating on an article
US5948548A (en) * 1997-04-30 1999-09-07 Masco Corporation Coated article
US5952111A (en) * 1997-04-30 1999-09-14 Masco Corporation Article having a coating thereon
US5985468A (en) * 1997-04-30 1999-11-16 Masco Corporation Article having a multilayer protective and decorative coating
US5989730A (en) * 1997-04-30 1999-11-23 Masco Corporation Article having a decorative and protective multi-layer coating
US6004684A (en) * 1997-04-30 1999-12-21 Masco Corporation Article having a protective and decorative multilayer coating
US6033790A (en) * 1997-04-30 2000-03-07 Masco Corporation Article having a coating
US6045682A (en) * 1998-03-24 2000-04-04 Enthone-Omi, Inc. Ductility agents for nickel-tungsten alloys
US6106958A (en) * 1997-04-30 2000-08-22 Masco Corporation Article having a coating
US6268060B1 (en) 1997-08-01 2001-07-31 Mascotech Coatings, Inc. Chrome coating having a silicone top layer thereon
US20040232211A1 (en) * 2003-05-19 2004-11-25 Kayser Gregory F. Diffusion bonded composite material and method therefor
US20060005390A1 (en) * 2004-07-09 2006-01-12 Chin-Tong Wang Method of coating hub and electroplating a portion thereof
US20080060945A1 (en) * 2004-04-21 2008-03-13 Rudolf Linde Production of a Structured Hard Chromium Layer and Production of a Coating
US20090211913A1 (en) * 2005-10-20 2009-08-27 Wolf-Dieter Franz Production of Silky Material of metal surfaces
US20130084760A1 (en) * 2011-09-30 2013-04-04 Apple Inc. Connector with multi-layer ni underplated contacts
US20130093199A1 (en) * 2011-10-14 2013-04-18 GM Global Technology Operations LLC Corrosion-resistant plating system
CN103160868A (en) * 2011-12-17 2013-06-19 鞍钢重型机械有限责任公司 Electrolyte for producing active nickel with sulfur and use method thereof
US9004960B2 (en) 2012-08-10 2015-04-14 Apple Inc. Connector with gold-palladium plated contacts
US10190231B2 (en) * 2013-04-30 2019-01-29 Nippon Steel & Sumitomo Metal Corporation Ni-plated steel sheet, and method for producing Ni-plated steel sheet
US10513791B2 (en) 2013-03-15 2019-12-24 Modumental, Inc. Nanolaminate coatings
US10544510B2 (en) 2009-06-08 2020-01-28 Modumetal, Inc. Electrodeposited, nanolaminate coatings and claddings for corrosion protection
US10781524B2 (en) 2014-09-18 2020-09-22 Modumetal, Inc. Methods of preparing articles by electrodeposition and additive manufacturing processes
US10808322B2 (en) 2013-03-15 2020-10-20 Modumetal, Inc. Electrodeposited compositions and nanolaminated alloys for articles prepared by additive manufacturing processes
US10844504B2 (en) 2013-03-15 2020-11-24 Modumetal, Inc. Nickel-chromium nanolaminate coating having high hardness
US10961635B2 (en) 2005-08-12 2021-03-30 Modumetal, Inc. Compositionally modulated composite materials and methods for making the same
US11180864B2 (en) 2013-03-15 2021-11-23 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US11286575B2 (en) 2017-04-21 2022-03-29 Modumetal, Inc. Tubular articles with electrodeposited coatings, and systems and methods for producing the same
US11293272B2 (en) 2017-03-24 2022-04-05 Modumetal, Inc. Lift plungers with electrodeposited coatings, and systems and methods for producing the same
US11365488B2 (en) 2016-09-08 2022-06-21 Modumetal, Inc. Processes for providing laminated coatings on workpieces, and articles made therefrom
US11519093B2 (en) 2018-04-27 2022-12-06 Modumetal, Inc. Apparatuses, systems, and methods for producing a plurality of articles with nanolaminated coatings using rotation
US11692281B2 (en) 2014-09-18 2023-07-04 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2658266A (en) * 1952-08-07 1953-11-10 Harshaw Chem Corp Laminated coating
US2871550A (en) * 1958-01-10 1959-02-03 Udylite Res Corp Composite chromium electroplate and method of making same
US2879211A (en) * 1956-11-16 1959-03-24 Hanson Van Winkle Munning Co Electroplating duplex nickel coatings
US2900707A (en) * 1954-08-06 1959-08-25 Udylite Corp Metallic protective coating

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE957615C (en) * 1954-02-04 1957-01-17 The Harshaw Chemical Company, Cleveland, Ohio (V. St. A.) Multi-stage galvanic bright nickel plating
NL111001C (en) * 1957-12-03

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2658266A (en) * 1952-08-07 1953-11-10 Harshaw Chem Corp Laminated coating
US2900707A (en) * 1954-08-06 1959-08-25 Udylite Corp Metallic protective coating
US2879211A (en) * 1956-11-16 1959-03-24 Hanson Van Winkle Munning Co Electroplating duplex nickel coatings
US2871550A (en) * 1958-01-10 1959-02-03 Udylite Res Corp Composite chromium electroplate and method of making same

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3183067A (en) * 1961-12-06 1965-05-11 Harshaw Chemcial Company Metal having two coats of sulfurcontaining nickel and method of making same
US3298802A (en) * 1962-02-23 1967-01-17 Res Holland S Hertogenbosch Nv Method for covering objects with a decorative bright-nickel/chromium coating, as well as objects covered by applying this method
US3223598A (en) * 1962-11-23 1965-12-14 Germaine F Jacky Method for determining the adhesion of metal plating
US3268307A (en) * 1963-03-01 1966-08-23 Udylite Corp Process of electrodepositing a corrosion resistant nickel-chromium coating and products thereof
US3268423A (en) * 1963-03-01 1966-08-23 Udylite Corp Process of electrodepositing a corrosion resistant nickel-chromium coating
US3180808A (en) * 1963-05-28 1965-04-27 Sture Granberger Fa Nickel plating bath
US3355267A (en) * 1964-02-12 1967-11-28 Kewanee Oil Co Corrosion resistant coated articles and processes of production thereof
US3288574A (en) * 1964-04-10 1966-11-29 Harshaw Chem Corp Metal laminates and method of forming by electroplating
US3437571A (en) * 1964-07-20 1969-04-08 Int Nickel Co Production of electrolytic nickel
US3355268A (en) * 1964-07-22 1967-11-28 Kewanee Oil Co Corrosive protected composite having triplated nickel deposits and method of making
US3419744A (en) * 1964-08-17 1968-12-31 Sylvania Electric Prod Integral laminated cathode and support structure
US3245885A (en) * 1964-10-05 1966-04-12 Yawata Iron & Steel Co Method of manufacturing nickel-plated steel plate
US3295936A (en) * 1965-11-29 1967-01-03 Yawata Iron & Steel Co Thinly nickel-plated steel plate
US3615281A (en) * 1967-04-26 1971-10-26 Electro Chem Eng Corrosion-resistant chromium-plated articles
US3866289A (en) * 1969-10-06 1975-02-18 Oxy Metal Finishing Corp Micro-porous chromium on nickel-cobalt duplex composite plates
WO1980000716A1 (en) * 1978-10-05 1980-04-17 Uemura Kogyo Kk Method of corrosion-resistant plating
US4421626A (en) * 1979-12-17 1983-12-20 Occidental Chemical Corporation Binding layer for low overvoltage hydrogen cathodes
US4549942A (en) * 1981-07-06 1985-10-29 Omi International Corporation Process for electrodepositing composite nickel layers
US4384929A (en) * 1981-07-06 1983-05-24 Occidental Chemical Corporation Process for electro-depositing composite nickel layers
US4411961A (en) * 1981-09-28 1983-10-25 Occidental Chemical Corporation Composite electroplated article and process
US4418125A (en) * 1982-12-06 1983-11-29 Henricks John A Multi-layer multi-metal electroplated protective coating
US5348639A (en) * 1991-08-06 1994-09-20 Hitachi Magnetics Corporation Surface treatment for iron-based permanent magnet including rare-earth element
US5286366A (en) * 1991-11-05 1994-02-15 Hitachi Magnetic Corp. Surface treatment for iron-based permanent magnet including rare-earth element
US5626972A (en) * 1994-06-02 1997-05-06 Baldwin Hardware Corporation Article having a decorative and protective multilayer coating simulating brass
US5476724A (en) * 1994-06-02 1995-12-19 Baldwin Hardware Corporation Article having a decorative and protective multilayer coating simulating brass
US5413874A (en) * 1994-06-02 1995-05-09 Baldwin Hardware Corporation Article having a decorative and protective multilayer coating simulating brass
US5478660A (en) * 1994-11-30 1995-12-26 Baldwin Hardware Corporation Article having a decorative and protective coating simulating brass
US5478659A (en) * 1994-11-30 1995-12-26 Baldwin Hardware Corporation Article having a decorative and protective coating simulating brass
US5482788A (en) * 1994-11-30 1996-01-09 Baldwin Hardware Corporation Article having a protective coating simulating brass
US5484663A (en) * 1994-11-30 1996-01-16 Baldwin Hardware Corporation Article having a coating simulating brass
US5552233A (en) * 1995-05-22 1996-09-03 Baldwin Hardware Corporation Article having a decorative and protective multilayer coating simulating brass
US5648179A (en) * 1995-05-22 1997-07-15 Baldwin Hardware Corporation Article having a decorative and protective coating simulating brass
US5654108A (en) * 1995-05-22 1997-08-05 Baldwin Hardware Corporation Article having a protective coating simulating brass
US5667904A (en) * 1995-05-22 1997-09-16 Baldwin Hardware Corporation Article having a decorative and protective coating simulating brass
US5693427A (en) * 1995-12-22 1997-12-02 Baldwin Hardware Corporation Article with protective coating thereon
US5783313A (en) * 1995-12-22 1998-07-21 Baldwin Hardware Corporation Coated Article
US5952111A (en) * 1997-04-30 1999-09-14 Masco Corporation Article having a coating thereon
US5948548A (en) * 1997-04-30 1999-09-07 Masco Corporation Coated article
US5985468A (en) * 1997-04-30 1999-11-16 Masco Corporation Article having a multilayer protective and decorative coating
US5989730A (en) * 1997-04-30 1999-11-23 Masco Corporation Article having a decorative and protective multi-layer coating
US6004684A (en) * 1997-04-30 1999-12-21 Masco Corporation Article having a protective and decorative multilayer coating
US6033790A (en) * 1997-04-30 2000-03-07 Masco Corporation Article having a coating
US6106958A (en) * 1997-04-30 2000-08-22 Masco Corporation Article having a coating
US5879532A (en) * 1997-07-09 1999-03-09 Masco Corporation Of Indiana Process for applying protective and decorative coating on an article
US6268060B1 (en) 1997-08-01 2001-07-31 Mascotech Coatings, Inc. Chrome coating having a silicone top layer thereon
US6045682A (en) * 1998-03-24 2000-04-04 Enthone-Omi, Inc. Ductility agents for nickel-tungsten alloys
US8225481B2 (en) * 2003-05-19 2012-07-24 Pratt & Whitney Rocketdyne, Inc. Diffusion bonded composite material and method therefor
US20040232211A1 (en) * 2003-05-19 2004-11-25 Kayser Gregory F. Diffusion bonded composite material and method therefor
US20080060945A1 (en) * 2004-04-21 2008-03-13 Rudolf Linde Production of a Structured Hard Chromium Layer and Production of a Coating
US8110087B2 (en) * 2004-04-21 2012-02-07 Federal-Mogul Burscheid Gmbh Production of a structured hard chromium layer and production of a coating
US20060005390A1 (en) * 2004-07-09 2006-01-12 Chin-Tong Wang Method of coating hub and electroplating a portion thereof
US10961635B2 (en) 2005-08-12 2021-03-30 Modumetal, Inc. Compositionally modulated composite materials and methods for making the same
US20090211913A1 (en) * 2005-10-20 2009-08-27 Wolf-Dieter Franz Production of Silky Material of metal surfaces
US8105473B2 (en) * 2005-10-20 2012-01-31 Wolf-Dieter Franz Production of satin metal surfaces
US10544510B2 (en) 2009-06-08 2020-01-28 Modumetal, Inc. Electrodeposited, nanolaminate coatings and claddings for corrosion protection
US11242613B2 (en) 2009-06-08 2022-02-08 Modumetal, Inc. Electrodeposited, nanolaminate coatings and claddings for corrosion protection
US20130084760A1 (en) * 2011-09-30 2013-04-04 Apple Inc. Connector with multi-layer ni underplated contacts
US8637165B2 (en) * 2011-09-30 2014-01-28 Apple Inc. Connector with multi-layer Ni underplated contacts
US8871077B2 (en) * 2011-10-14 2014-10-28 GM Global Technology Operations LLC Corrosion-resistant plating system
US20130093199A1 (en) * 2011-10-14 2013-04-18 GM Global Technology Operations LLC Corrosion-resistant plating system
CN103160868A (en) * 2011-12-17 2013-06-19 鞍钢重型机械有限责任公司 Electrolyte for producing active nickel with sulfur and use method thereof
US9004960B2 (en) 2012-08-10 2015-04-14 Apple Inc. Connector with gold-palladium plated contacts
US11168408B2 (en) 2013-03-15 2021-11-09 Modumetal, Inc. Nickel-chromium nanolaminate coating having high hardness
US10513791B2 (en) 2013-03-15 2019-12-24 Modumental, Inc. Nanolaminate coatings
US10844504B2 (en) 2013-03-15 2020-11-24 Modumetal, Inc. Nickel-chromium nanolaminate coating having high hardness
US11851781B2 (en) 2013-03-15 2023-12-26 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US11118280B2 (en) 2013-03-15 2021-09-14 Modumetal, Inc. Nanolaminate coatings
US10808322B2 (en) 2013-03-15 2020-10-20 Modumetal, Inc. Electrodeposited compositions and nanolaminated alloys for articles prepared by additive manufacturing processes
US11180864B2 (en) 2013-03-15 2021-11-23 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US10190231B2 (en) * 2013-04-30 2019-01-29 Nippon Steel & Sumitomo Metal Corporation Ni-plated steel sheet, and method for producing Ni-plated steel sheet
US11560629B2 (en) 2014-09-18 2023-01-24 Modumetal, Inc. Methods of preparing articles by electrodeposition and additive manufacturing processes
US11692281B2 (en) 2014-09-18 2023-07-04 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US10781524B2 (en) 2014-09-18 2020-09-22 Modumetal, Inc. Methods of preparing articles by electrodeposition and additive manufacturing processes
US11365488B2 (en) 2016-09-08 2022-06-21 Modumetal, Inc. Processes for providing laminated coatings on workpieces, and articles made therefrom
US11293272B2 (en) 2017-03-24 2022-04-05 Modumetal, Inc. Lift plungers with electrodeposited coatings, and systems and methods for producing the same
US11286575B2 (en) 2017-04-21 2022-03-29 Modumetal, Inc. Tubular articles with electrodeposited coatings, and systems and methods for producing the same
US11519093B2 (en) 2018-04-27 2022-12-06 Modumetal, Inc. Apparatuses, systems, and methods for producing a plurality of articles with nanolaminated coatings using rotation

Also Published As

Publication number Publication date
FR1319829A (en) 1963-03-01
GB1006608A (en) 1965-10-06
DE1283634B (en) 1968-11-21

Similar Documents

Publication Publication Date Title
US3090733A (en) Composite nickel electroplate
US2849351A (en) Electroplating process
US3152971A (en) Electrodeposition of fine-grained lustrous nickel
US3866289A (en) Micro-porous chromium on nickel-cobalt duplex composite plates
US3974044A (en) Bath and method for the electrodeposition of bright nickel-iron deposits
US3994694A (en) Composite nickel-iron electroplated article
US2871550A (en) Composite chromium electroplate and method of making same
US4384929A (en) Process for electro-depositing composite nickel layers
US2392456A (en) Thermally diffused copper and zinc plate on ferrous articles
US3471271A (en) Electrodeposition of a micro-cracked corrosion resistant nickel-chromium plate
US4411961A (en) Composite electroplated article and process
US2658266A (en) Laminated coating
US3970527A (en) Electroformation of the running track of a rotary internal combustion engine
US3615281A (en) Corrosion-resistant chromium-plated articles
US3703448A (en) Method of making composite nickel electroplate and electrolytes therefor
US3183067A (en) Metal having two coats of sulfurcontaining nickel and method of making same
US4491623A (en) Double-layer electroplated steel article with corrosion resistance after painting and wet adhesion of paint film
US3892638A (en) Electrolyte and method for electrodepositing rhodium-ruthenium alloys
JPH07111000B2 (en) High corrosion resistance nickel plating method
US3249409A (en) Chromium plated metal structures
US3355268A (en) Corrosive protected composite having triplated nickel deposits and method of making
US3288574A (en) Metal laminates and method of forming by electroplating
US3985784A (en) Thioether sulfonates for use in electroplating baths
US4435254A (en) Bright nickel electroplating
US3355263A (en) Three-layer nickel laminate

Legal Events

Date Code Title Description
AS Assignment

Owner name: HOOKER CHEMICALS & PLASTICS CORP.

Free format text: MERGER;ASSIGNOR:OXY METAL INDUSTRIES CORPORATION;REEL/FRAME:004075/0885

Effective date: 19801222

AS Assignment

Owner name: OCCIDENTAL CHEMICAL CORPORATION

Free format text: CHANGE OF NAME;ASSIGNOR:HOOKER CHEMICAS & PLASTICS CORP.;REEL/FRAME:004126/0054

Effective date: 19820330