US3069042A - Method and apparatus for storing liquefied gases - Google Patents

Method and apparatus for storing liquefied gases Download PDF

Info

Publication number
US3069042A
US3069042A US122332A US12233261A US3069042A US 3069042 A US3069042 A US 3069042A US 122332 A US122332 A US 122332A US 12233261 A US12233261 A US 12233261A US 3069042 A US3069042 A US 3069042A
Authority
US
United States
Prior art keywords
liquid
container
screens
chamber
radiation shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US122332A
Inventor
Herrick L Johnston
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Herrick L Johnston Inc
Original Assignee
Herrick L Johnston Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Herrick L Johnston Inc filed Critical Herrick L Johnston Inc
Priority to US122332A priority Critical patent/US3069042A/en
Application granted granted Critical
Publication of US3069042A publication Critical patent/US3069042A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/12Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures
    • F17C13/123Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures for gas bottles, cylinders or reservoirs for tank vehicles or for railway tank wagons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/014Suspension means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/014Suspension means
    • F17C2203/015Bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0308Radiation shield
    • F17C2203/0312Radiation shield cooled by external means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0631Three or more walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0332Safety valves or pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/041Stratification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/904Radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S220/00Receptacles
    • Y10S220/901Liquified gas content, cryogenic

Definitions

  • the present invention relates to storing volatile cryogenic liquids and particularly to a novel method and apparatus whereby the rate of boil off is substantially reduced. While the invention is of particular utility in the storage of helium it is not limited thereto.
  • the invention is based on my discovery that the rate of pressure rise of stored helium is greater when the liquid is quiescent than when it is agitated, as during transportation. In one demonstration I found that under typical service conditions the vapor pressure rise during transportation was only one-third of the comparable rise under static conditions, 5.5 pounds per square inch as compared to 16.8 pounds per square inch in twenty-four hours.
  • cryogenic liquids as helium or the like, which are effective to prevent vertical stratification: i.e., the presence of warm liquid (of low density) on the evaporating surface, while the colder liquid remains at the bottom.
  • a container for the storage of cryogenic liquids including conductors of high thermal conductivity for providing heat transfer paths between the upper and lower portions of the container.
  • This means may take various forms.
  • the heat is distributed throughout the body of the liquid as by the introduction of aluminum or copper mesh screening through the liquid space.
  • This mesh network in the preferred embodiment is illustrative of one mode of practicing the invention; such alternative structures as loosely crumbled wire mesh or vertically positioned heat conductive rods can be used and are within the teachings of the present invention.
  • FIG. 1 is a schematic view of a storage means with anti Stratification means in accordance with the invention, FIG. 1 being a sectional view taken on line 1-1 of FIG. 2;
  • FIG. 2 is a sectional view taken on line 2-2 of FIG. 1, again looking in the direction of the arrows;
  • FIG. 3 is a perspective View showing a detail of the Way in which the screen elements of the anti-stratification means articulate with each other;
  • FIG. 4 is a perspective view of the anti-Stratification screening means per se.
  • each of the elements 8 and 9 is a meshed screen made of electrolytic copper, for example, or aluminum, or a suitable metal having high heat conductivity at temperatures involved in cryogenic liquids.
  • the screens, 8, 9, etc. are generally of rectangular outline.
  • circular screens 5, 6, "I, etc. are vertically arranged parallel to the ends of the container.
  • the screens 8, 9, etc. are spaced from each other and the screens 5, 6, 7, etc. are spaced from each other so that heat is distributed throughout the body of liquid disposed in that container, the screens providing a ready path for the transfer of heat between the upper and lower portions of the stored liquid, thus preventing the undesired vertical stratification discussed above.
  • the screen elements 7 and 8, for example, are notched as indicated at and 91, respectively, to provide for ,articulation or interdigitation.
  • Storage means 10 includes an outer jacket 12 which surrounds an insulating space 13.
  • Insulating space may be in the form of a vacuum chamber or it may be formed as a vacuum chamber containing insulating material such as fine particles of low conductivity and high reflectivity.
  • a vacuum can be maintained in the insulating space 13 by connecting such space with a source of vacuum 20 by means of the lines 16 and 17.
  • a valve 18 is located along line 17 to control and maintain the vacuum in insulating space 13.
  • a radiation shield structure is indicated generally at 22.
  • Radiation shield 22 is supported within the outer jacket 12 by a plurality of structural members 24, 25, 26 and 27, which extend between the inner wall of the outer jacket 12 and an outer wall 30 of the radiation shield.
  • structural member 24 has one end thereof secured to the outer jacket 12 at 28, and the other end thereof secured to the radiation shield 22 at 29.
  • Radiation shield 22 further includes an inner wall 32 and end walls 33 and 34 which form a sealed chamber 36.
  • Chamber 36 of the radiation shield substantially surrounds a second insulating means indicated generally at 38 and provided with an outer shell 42.
  • Insulating means 38 in turn surrounds a container 40 which directly contains the liquid being stored.
  • structural member 44 has one end thereof secured to the inner side of wall 32 at 49, and the other end thereof secured to the outer side of wall 41 at 50.
  • the inner container 40 is supported by the radiation shield structure 22, and since the radiation shield structure is suspended within the outer shell 12 it will be understood that the inner container 40 is maintained in substantially rigid suspension relative to the surrounding structure of the storage means.
  • the inner container can be filled and drained of the liquid to be stored by means of a line 60 and valve 61.
  • the inner container is further provided with a safety pressure release valve 63 which is connected to the inner container by means of a line 64.
  • a fluid having a boiling point lower than the boiling point of the stored liquid such as nitrogen, is utilized to provide a radiation shield which is maintained colder than the liquid being stored.
  • a line 66 and valve 67 serve to fill and drain the colder liquid carried in chamber 36, and a safety pressure relief control valve 7 is connected with the chamber 36 by means of a line 71.
  • the inner insulating means 38 which includes a chamber 75 in surrounding relationship with the inner container 40.
  • Chamber 75 is connected to the source of vacuum 20 by means of a line 77 which extends from chamber 75 to the vacuum line 16.
  • a valve 78 is interposed along the line so that the chamber 75 can be selectively isolated from the vacuum source 20.
  • a pressurization source 80 is connected to chamber 75 by lines 81 and 77, and a valve 83 is provided for controlling the rate of gas fiow from the pressurization source 80, or for isolating such source from the chamber 75.
  • a variable pressurization means schematically illustrated at 85, can be connected to the line 71 by means of a line 87 and a valve 88.
  • the invention is of particular utility when used in conjunction with large storage containers.
  • the observations discussed above were made from measurements taken with a helium storage vessel of 750 liters capacity, with a liquid shield having a volume of 900 liters of nitrogen. While there has been shown and described what is at present considered to be the preferred embodiment of the invention, it will be understood by those skilled in the art that various changes and modifications may be made therein without departing from the true scope of the invention, as defined in the appended claims.
  • Apparatus for the storage of liquid helium comprising a double-walled insulated closed storage container and two groups of spaced vertically oriented thermally conductive bafile screens perforated throughout and extending from the bottom of the container toward the top to minimize density stratification, said groups of screens being formed to be interdigitally secured, one of said groups extending axially of the container and including a plurality of parallel screens, the other group extending transversely of the container and including a plurality of parallel screens.
  • Apparatus for the storage of liquid helium comprising a double walled insulated closed container and two groups of vertically oriented thermally conductive meshed screens extending from the bottom of the container to the top thereof to minimize density stratification throughout the stored helium, each of said groups of screens including a plurality of spaced parallel members, one of said groups extending axially of said container and the other of said groups extending transversely of said container.

Description

Dec. 18, 1962 JOHNSTON METHOD AND APPARATUS FOR STORING LIQUEFIED GASES Original Filed May 4, 1959 INVENTOR. HERRICK L. JOHNSTON 2210 D24 JAE 22x0 024 J zu wOmDOw 2DDO w 0 QmNEDwwwmm m0 uumDow 4 mm rl lL mm .III 4 1050] omfimammwmm o momnow ATTORNEY.
United States Patent ()fifice 3,069,042 Patented Dec. 18, 1962 3,069,042 7 METHOD AND APPARATUS FOR STORING Ll'QUEFIED GASES Herrick L. Johnston, Columbus, Ohio, assiguor to The Herrick L. Johnston, Inc, Columbus, Ohio, a corporation of Ohio Continuation of abandoned application Ser. No. 810,796, May 4, 1959. This application July 6, 19 61, Ser. No. 122,332
2 Claims. (Cl. 220-) This is a continuation of United States patent application Serial No. 810,796, filed May 4, 1959, and now abandoned.
The present invention relates to storing volatile cryogenic liquids and particularly to a novel method and apparatus whereby the rate of boil off is substantially reduced. While the invention is of particular utility in the storage of helium it is not limited thereto.
The invention is based on my discovery that the rate of pressure rise of stored helium is greater when the liquid is quiescent than when it is agitated, as during transportation. In one demonstration I found that under typical service conditions the vapor pressure rise during transportation was only one-third of the comparable rise under static conditions, 5.5 pounds per square inch as compared to 16.8 pounds per square inch in twenty-four hours.
' The three times smaller rate of pressure increase during transport, as compared to static conditions, is contrary to the usual experience in the transport of cryogenic liquids, such as oxygen. In the usual case, transport is characterized by a greater rate of pressure rise, attributable to conversion of the kinetic energy of the splashing liquid into the thermal energy.
My experiments led to the conclusion that the high rate of pressure rise of quiescent liquid is due to the large volume coefficient of thermal expansion for liquid helium, which results in stratification of the liquid, the warm liquid being at the surface. The rate of boil off is a function of the temperature of this warm liquid. The prevention of this condition, in accordance with the invention, accomplishes the result of increasing the period of time during which the liquid can be stored without ventmg.
Accordingly, it is an object of the invention to provide a means and method for storing such cryogenic liquids as helium or the like, which are effective to prevent vertical stratification: i.e., the presence of warm liquid (of low density) on the evaporating surface, while the colder liquid remains at the bottom.
My experiments have further established that undesired vertical stratification is a stable condition, due to the fact that the liquid is per se not a good heat conductor. Accordingly, it is an object of the invention to provide an apparatus and method for eliminating such undesired stability and for preventing vertical Stratification by causing the distribution of heat throughout the body of the stored liquid or by preventing the occurrence of the conditions which cause stratification.
In accordance with the invention there is provided a container for the storage of cryogenic liquids, including conductors of high thermal conductivity for providing heat transfer paths between the upper and lower portions of the container. This means may take various forms. For example, in the preferred embodiment of the invention, the heat is distributed throughout the body of the liquid as by the introduction of aluminum or copper mesh screening through the liquid space. This mesh network in the preferred embodiment is illustrative of one mode of practicing the invention; such alternative structures as loosely crumbled wire mesh or vertically positioned heat conductive rods can be used and are within the teachings of the present invention.
For a better understanding of the present invention, together with other and further objects, advantages and capabilities thereof, reference is made to the following description of the appended drawings, in which:
FIG. 1 is a schematic view of a storage means with anti Stratification means in accordance with the invention, FIG. 1 being a sectional view taken on line 1-1 of FIG. 2;
FIG. 2 is a sectional view taken on line 2-2 of FIG. 1, again looking in the direction of the arrows;
FIG. 3 is a perspective View showing a detail of the Way in which the screen elements of the anti-stratification means articulate with each other; and
FIG. 4 is a perspective view of the anti-Stratification screening means per se.
In accordance with a particular embodiment of the invention, vertically extending screens 8 and 9, etc. are disposed lengthwise or axially of the container 40. Each of the elements 8 and 9 is a meshed screen made of electrolytic copper, for example, or aluminum, or a suitable metal having high heat conductivity at temperatures involved in cryogenic liquids. Similarly, the screens, 8, 9, etc. are generally of rectangular outline. Similarly, circular screens 5, 6, "I, etc. are vertically arranged parallel to the ends of the container. The screens 8, 9, etc. are spaced from each other and the screens 5, 6, 7, etc. are spaced from each other so that heat is distributed throughout the body of liquid disposed in that container, the screens providing a ready path for the transfer of heat between the upper and lower portions of the stored liquid, thus preventing the undesired vertical stratification discussed above.
The screen elements 7 and 8, for example, are notched as indicated at and 91, respectively, to provide for ,articulation or interdigitation.
The anti-stratification means in accordance with the invention is shown as incorporated in storage means of the type disclosed and claimed in my United States Patent No. 2,863,297, issued December 9, 1958, and assigned to the same assignee as the present application and invention. -This apparatus includes a storage means indicated generally at 10. Storage means 10 includes an outer jacket 12 which surrounds an insulating space 13. Insulating space may be in the form of a vacuum chamber or it may be formed as a vacuum chamber containing insulating material such as fine particles of low conductivity and high reflectivity. A vacuum can be maintained in the insulating space 13 by connecting such space with a source of vacuum 20 by means of the lines 16 and 17. A valve 18 is located along line 17 to control and maintain the vacuum in insulating space 13.
A radiation shield structure is indicated generally at 22. Radiation shield 22 is supported within the outer jacket 12 by a plurality of structural members 24, 25, 26 and 27, which extend between the inner wall of the outer jacket 12 and an outer wall 30 of the radiation shield. For example, structural member 24 has one end thereof secured to the outer jacket 12 at 28, and the other end thereof secured to the radiation shield 22 at 29.
Radiation shield 22 further includes an inner wall 32 and end walls 33 and 34 which form a sealed chamber 36. Chamber 36 of the radiation shield substantially surrounds a second insulating means indicated generally at 38 and provided with an outer shell 42. Insulating means 38 in turn surrounds a container 40 which directly contains the liquid being stored.
Referring further to the inner container 40, such container is supported in spaced relationship with the radiation shield 22 and wall means 42. by means of a plurality of structural members such as are exemplified by the 3 members indicated at 44, 45, 46 and 47. For example, structural member 44 has one end thereof secured to the inner side of wall 32 at 49, and the other end thereof secured to the outer side of wall 41 at 50.
Since the inner container 40 is supported by the radiation shield structure 22, and since the radiation shield structure is suspended within the outer shell 12 it will be understood that the inner container 40 is maintained in substantially rigid suspension relative to the surrounding structure of the storage means.
The inner container can be filled and drained of the liquid to be stored by means of a line 60 and valve 61. The inner container is further provided with a safety pressure release valve 63 which is connected to the inner container by means of a line 64.
Reference is again made to the radiation shield 22 and particularly to chamber 36 thereof which is adapted to receive and store a fluid in the liquid state. A fluid having a boiling point lower than the boiling point of the stored liquid, such as nitrogen, is utilized to provide a radiation shield which is maintained colder than the liquid being stored. A line 66 and valve 67 serve to fill and drain the colder liquid carried in chamber 36, and a safety pressure relief control valve 7 is connected with the chamber 36 by means of a line 71.
Reference is next made to the inner insulating means 38 which includes a chamber 75 in surrounding relationship with the inner container 40. Chamber 75 is connected to the source of vacuum 20 by means of a line 77 which extends from chamber 75 to the vacuum line 16. A valve 78 is interposed along the line so that the chamber 75 can be selectively isolated from the vacuum source 20. A pressurization source 80 is connected to chamber 75 by lines 81 and 77, and a valve 83 is provided for controlling the rate of gas fiow from the pressurization source 80, or for isolating such source from the chamber 75. To elfect control of the pressure of the radiation shield liquid, such as nitrogen, a variable pressurization means, schematically illustrated at 85, can be connected to the line 71 by means of a line 87 and a valve 88.
The invention is of particular utility when used in conjunction with large storage containers. The observations discussed above were made from measurements taken with a helium storage vessel of 750 liters capacity, with a liquid shield having a volume of 900 liters of nitrogen. While there has been shown and described what is at present considered to be the preferred embodiment of the invention, it will be understood by those skilled in the art that various changes and modifications may be made therein without departing from the true scope of the invention, as defined in the appended claims.
I claim:
1. Apparatus for the storage of liquid helium comprising a double-walled insulated closed storage container and two groups of spaced vertically oriented thermally conductive bafile screens perforated throughout and extending from the bottom of the container toward the top to minimize density stratification, said groups of screens being formed to be interdigitally secured, one of said groups extending axially of the container and including a plurality of parallel screens, the other group extending transversely of the container and including a plurality of parallel screens.
2. Apparatus for the storage of liquid helium comprising a double walled insulated closed container and two groups of vertically oriented thermally conductive meshed screens extending from the bottom of the container to the top thereof to minimize density stratification throughout the stored helium, each of said groups of screens including a plurality of spaced parallel members, one of said groups extending axially of said container and the other of said groups extending transversely of said container.
References Cited in the file of this patent UNITED STATES PATENTS

Claims (1)

  1. 2. APPARATUS FOR THE STORAGE OF LIQUID HELIUM COMPRISING A DOUBLE WALLED INSULATED CLOSED CONTAINER AND TWO GROUPS OF VERTICALLY ORIENTED THERMALLY CONDUCTIVE MESHED SCREENS EXTENDING FROM THE BOTTOM OF THE CONTAINER TO THE TOP THEREOF TO MINIMIZE DENSITY STRATIFICATION THROUGHOUT
US122332A 1961-07-06 1961-07-06 Method and apparatus for storing liquefied gases Expired - Lifetime US3069042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US122332A US3069042A (en) 1961-07-06 1961-07-06 Method and apparatus for storing liquefied gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US122332A US3069042A (en) 1961-07-06 1961-07-06 Method and apparatus for storing liquefied gases

Publications (1)

Publication Number Publication Date
US3069042A true US3069042A (en) 1962-12-18

Family

ID=22402095

Family Applications (1)

Application Number Title Priority Date Filing Date
US122332A Expired - Lifetime US3069042A (en) 1961-07-06 1961-07-06 Method and apparatus for storing liquefied gases

Country Status (1)

Country Link
US (1) US3069042A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3142159A (en) * 1961-06-05 1964-07-28 Gen Dynamics Corp Apparatus for the safe storage and handling of normally explosive materials
US3338238A (en) * 1962-12-24 1967-08-29 Drager Otto H Pressure gas storage container and safety breathing apparatus
US3349953A (en) * 1965-09-17 1967-10-31 Goodyear Tire & Rubber Anti-slosh media for fuel tanks
US3356256A (en) * 1965-10-23 1967-12-05 Szego Joseph Safety container for explosive fluids
US3365897A (en) * 1966-06-17 1968-01-30 Nasa Usa Cryogenic thermal insulation
JPS4927012U (en) * 1972-06-08 1974-03-08
US3854905A (en) * 1972-04-24 1974-12-17 Rca Corp Storage system for two phase fluids
EP0003657A1 (en) * 1978-02-07 1979-08-22 The Expanded Metal Company Limited Container for pressurized gases
US4291541A (en) * 1978-02-21 1981-09-29 Varian Associates, Inc. Cryostat with external refrigerator for super-conducting NMR spectrometer
US4300354A (en) * 1979-02-01 1981-11-17 Messerschmitt-Boelkow-Blohm Gesellschaft Mit Beschraenkter Haftung Suspension system for a low temperature tank
EP0090334A2 (en) * 1982-03-29 1983-10-05 Union Carbide Corporation Improved fiberglass insulation for mobile cryogenic tankage
US4481778A (en) * 1983-03-21 1984-11-13 Ball Corporation Thermally disconnecting passive parallel orbital supports
US4750631A (en) * 1986-07-21 1988-06-14 Sperry Corporation Anti-slosh apparatus for liquid containers
US4821907A (en) * 1988-06-13 1989-04-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Surface tension confined liquid cryogen cooler
US4927045A (en) * 1983-06-27 1990-05-22 Technolizenz Establishment System of safety tank elements preventing explosions
US4930651A (en) * 1978-03-20 1990-06-05 Explosafe North America Inc. Storage vessel for liquefied gas at ambient temperature
US4964531A (en) * 1989-11-16 1990-10-23 Caniglia Joseph E Bladder for fuel tank
US5012650A (en) * 1989-10-11 1991-05-07 Apd Cryogenics, Inc. Cryogen thermal storage matrix
US5505053A (en) * 1993-12-10 1996-04-09 Deutsche Aerospace Ag Cryosystem
US6176088B1 (en) * 1998-01-22 2001-01-23 Edax, Inc. Method and devices to reduce vibrations in a cryostat
US20040105522A1 (en) * 2001-03-26 2004-06-03 Kriel Willem Adriaan Odendaal Method of operating a nuclear power plant and a nuclear power plant
US20050092756A1 (en) * 2003-09-01 2005-05-05 Goggin Brian A. Storage vessel
DE102005014479A1 (en) * 2005-03-30 2006-10-05 Magna Steyr Fahrzeugtechnik Ag & Co. Kg Low-cold fluid e.g. clear liquid hydrogen, container for motor vehicle, has evacuated intermediate space with super isolation attached to outer part of evacuated space and empty intermediate space between isolation and inner container
JP2007532847A (en) * 2004-04-09 2007-11-15 フランツ シユトールバツヘル, How to fill a container with gas
AT504342B1 (en) * 2006-11-21 2008-05-15 Thomas K Stelzl BALL-SHAPED HOLLOW FILLING BODY FOR FILLING CONTAINERS
US20090255274A1 (en) * 2008-04-14 2009-10-15 Ungar Eugene K System and method for recharging a high pressure gas storage container by transport of a low pressure cryogenic fluid
US20100011782A1 (en) * 2006-09-27 2010-01-21 Rebernik Matthias Container for receiving media and/or devices to be stored at low temperatures
US9650195B2 (en) 2014-10-24 2017-05-16 H2Safe, Llc Fail-safe containment device for containing volatile fluids
CN105074317B (en) * 2012-12-21 2018-09-04 全耐塑料高级创新研究公司 Tank for storing gas stored by adsorption, comprising impact absorbing means
US20180340656A1 (en) * 2013-04-05 2018-11-29 Cryoshelter Gmbh Suspension System for an Inner Container Mounted for Thermal Insulation in an Outer Container and Container Arrangement
US20190162368A1 (en) * 2016-03-18 2019-05-30 Shanghai United Imaging Healthcare Co., Ltd. Cryostat for superconducting magnet system
US10414554B2 (en) 2016-06-22 2019-09-17 Matthew Scott Robinson Water bottle insert

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1084116A (en) * 1911-06-07 1914-01-13 Shenango Mfg Company Gas-container.
US1616008A (en) * 1925-02-20 1927-02-01 William B Stout Gasoline tank
US1630140A (en) * 1924-12-20 1927-05-24 Henrietta G Sibbald Baking receptacle
US2247107A (en) * 1938-09-30 1941-06-24 Buensod Stacey Air Conditionin Refrigerant evaporator
US2863297A (en) * 1955-03-29 1958-12-09 Herrick L Johnston Inc Method and apparatus for storing liquified gases
US2927437A (en) * 1954-09-20 1960-03-08 Garrett Corp Tank for storing low temperature liquids in ambient surroundings

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1084116A (en) * 1911-06-07 1914-01-13 Shenango Mfg Company Gas-container.
US1630140A (en) * 1924-12-20 1927-05-24 Henrietta G Sibbald Baking receptacle
US1616008A (en) * 1925-02-20 1927-02-01 William B Stout Gasoline tank
US2247107A (en) * 1938-09-30 1941-06-24 Buensod Stacey Air Conditionin Refrigerant evaporator
US2927437A (en) * 1954-09-20 1960-03-08 Garrett Corp Tank for storing low temperature liquids in ambient surroundings
US2863297A (en) * 1955-03-29 1958-12-09 Herrick L Johnston Inc Method and apparatus for storing liquified gases

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3142159A (en) * 1961-06-05 1964-07-28 Gen Dynamics Corp Apparatus for the safe storage and handling of normally explosive materials
US3338238A (en) * 1962-12-24 1967-08-29 Drager Otto H Pressure gas storage container and safety breathing apparatus
US3349953A (en) * 1965-09-17 1967-10-31 Goodyear Tire & Rubber Anti-slosh media for fuel tanks
US3356256A (en) * 1965-10-23 1967-12-05 Szego Joseph Safety container for explosive fluids
US3365897A (en) * 1966-06-17 1968-01-30 Nasa Usa Cryogenic thermal insulation
US3854905A (en) * 1972-04-24 1974-12-17 Rca Corp Storage system for two phase fluids
JPS4927012U (en) * 1972-06-08 1974-03-08
EP0003657A1 (en) * 1978-02-07 1979-08-22 The Expanded Metal Company Limited Container for pressurized gases
US4291541A (en) * 1978-02-21 1981-09-29 Varian Associates, Inc. Cryostat with external refrigerator for super-conducting NMR spectrometer
US4930651A (en) * 1978-03-20 1990-06-05 Explosafe North America Inc. Storage vessel for liquefied gas at ambient temperature
US4300354A (en) * 1979-02-01 1981-11-17 Messerschmitt-Boelkow-Blohm Gesellschaft Mit Beschraenkter Haftung Suspension system for a low temperature tank
EP0090334A2 (en) * 1982-03-29 1983-10-05 Union Carbide Corporation Improved fiberglass insulation for mobile cryogenic tankage
EP0090334A3 (en) * 1982-03-29 1984-05-23 Union Carbide Corporation Improved fiberglass insulation for mobile cryogenic tankage
US4481778A (en) * 1983-03-21 1984-11-13 Ball Corporation Thermally disconnecting passive parallel orbital supports
US4927045A (en) * 1983-06-27 1990-05-22 Technolizenz Establishment System of safety tank elements preventing explosions
US4750631A (en) * 1986-07-21 1988-06-14 Sperry Corporation Anti-slosh apparatus for liquid containers
US4821907A (en) * 1988-06-13 1989-04-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Surface tension confined liquid cryogen cooler
US5012650A (en) * 1989-10-11 1991-05-07 Apd Cryogenics, Inc. Cryogen thermal storage matrix
US4964531A (en) * 1989-11-16 1990-10-23 Caniglia Joseph E Bladder for fuel tank
US5505053A (en) * 1993-12-10 1996-04-09 Deutsche Aerospace Ag Cryosystem
US6176088B1 (en) * 1998-01-22 2001-01-23 Edax, Inc. Method and devices to reduce vibrations in a cryostat
US20040105522A1 (en) * 2001-03-26 2004-06-03 Kriel Willem Adriaan Odendaal Method of operating a nuclear power plant and a nuclear power plant
US7694840B2 (en) * 2003-09-01 2010-04-13 H2Safe, Llc Storage vessel chamber for storing fuels such as hydrogen
US20050092756A1 (en) * 2003-09-01 2005-05-05 Goggin Brian A. Storage vessel
US8561827B2 (en) 2003-09-01 2013-10-22 H2Safe, Llc Storage vessel chamber for storing fuels such as hydrogen
JP2007532847A (en) * 2004-04-09 2007-11-15 フランツ シユトールバツヘル, How to fill a container with gas
DE102005014479A1 (en) * 2005-03-30 2006-10-05 Magna Steyr Fahrzeugtechnik Ag & Co. Kg Low-cold fluid e.g. clear liquid hydrogen, container for motor vehicle, has evacuated intermediate space with super isolation attached to outer part of evacuated space and empty intermediate space between isolation and inner container
US20100011782A1 (en) * 2006-09-27 2010-01-21 Rebernik Matthias Container for receiving media and/or devices to be stored at low temperatures
US8272530B2 (en) * 2006-09-27 2012-09-25 Matthias Rebernik Container for receiving media and/or devices to be stored at low temperatures
AT504342B1 (en) * 2006-11-21 2008-05-15 Thomas K Stelzl BALL-SHAPED HOLLOW FILLING BODY FOR FILLING CONTAINERS
US20090255274A1 (en) * 2008-04-14 2009-10-15 Ungar Eugene K System and method for recharging a high pressure gas storage container by transport of a low pressure cryogenic fluid
CN105074317B (en) * 2012-12-21 2018-09-04 全耐塑料高级创新研究公司 Tank for storing gas stored by adsorption, comprising impact absorbing means
US20180340656A1 (en) * 2013-04-05 2018-11-29 Cryoshelter Gmbh Suspension System for an Inner Container Mounted for Thermal Insulation in an Outer Container and Container Arrangement
US10774990B2 (en) * 2013-04-05 2020-09-15 Cryoshelter Gmbh Suspension system for an inner container mounted for thermal insulation in an outer container and container arrangement
US9650195B2 (en) 2014-10-24 2017-05-16 H2Safe, Llc Fail-safe containment device for containing volatile fluids
US20190162368A1 (en) * 2016-03-18 2019-05-30 Shanghai United Imaging Healthcare Co., Ltd. Cryostat for superconducting magnet system
US10962174B2 (en) * 2016-03-18 2021-03-30 Shanghai United Imaging Healthcare Co., Ltd. Cryostat for superconducting magnet system
US10414554B2 (en) 2016-06-22 2019-09-17 Matthew Scott Robinson Water bottle insert

Similar Documents

Publication Publication Date Title
US3069042A (en) Method and apparatus for storing liquefied gases
US3782128A (en) Cryogenic storage vessel
US2863297A (en) Method and apparatus for storing liquified gases
US2396459A (en) Insulated container for liquefied gases and the like
US3069045A (en) Thermally insulated storage container
US4598836A (en) Pressure gas container
US2834187A (en) Refrigerated container for liquefied gases
US2994452A (en) Insulated tank for liquefied hydrocarbons and the like with loose membranous lining therefor
GB1374099A (en) Packaging for shipment of radioactive materials
US3514006A (en) Vacuum insulated vessels
US3147877A (en) Liquefied gas container
US11408561B2 (en) Container for storing and transporting liquefied gas
US1863958A (en) Container for compressed or liquefied gas
US3319433A (en) Rectangular dewar
US1976688A (en) Container for liquefied gases
US2810265A (en) Means for storing and transporting cold low boiling liquids
US3134237A (en) Container for low-boiling liquefied gases
US3101862A (en) Container construction using load carrying insulation
US3559835A (en) Insulated storage tank with insulation restrained against settling because of metal contraction
US2460355A (en) Container for liquefied gases
US2998708A (en) Container for low temperature liquids
US2677938A (en) Vacuum-insulated container and process for evacuating same
US2729357A (en) Vacuum jacketed container
US2528780A (en) Apparatus for dispensing liquefied gases
US2940631A (en) Storage vessels for liquefied gases