US3064653A - Catheter for an administration set - Google Patents

Catheter for an administration set Download PDF

Info

Publication number
US3064653A
US3064653A US81808059A US3064653A US 3064653 A US3064653 A US 3064653A US 81808059 A US81808059 A US 81808059A US 3064653 A US3064653 A US 3064653A
Authority
US
United States
Prior art keywords
catheter
inch
holes
administration set
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Coanda George
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Don Baxter Inc
Original Assignee
Don Baxter Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Don Baxter Inc filed Critical Don Baxter Inc
Priority to US81808059 priority Critical patent/US3064653A/en
Priority to US18368562 priority patent/US3149186A/en
Application granted granted Critical
Publication of US3064653A publication Critical patent/US3064653A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0009Making of catheters or other medical or surgical tubes
    • A61M25/0015Making lateral openings in a catheter tube, e.g. holes, slits, ports, piercings of guidewire ports; Methods for processing the holes, e.g. smoothing the edges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/28Peritoneal dialysis ; Other peritoneal treatment, e.g. oxygenation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/28Peritoneal dialysis ; Other peritoneal treatment, e.g. oxygenation
    • A61M1/285Catheters therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0068Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
    • A61M25/007Side holes, e.g. their profiles or arrangements; Provisions to keep side holes unblocked
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/04Processes
    • Y10T83/0481Puncturing

Definitions

  • Acute renal failure may be caused by infection, transfusion reactions, sulfonamide hypersensitivity, or poisoning. Excessive quantities of bromides, salicylates, or barbiturates are among the common causes. Although the renal failure may be reversible, it is often difficult to keep the patient alive until renal function can recover.
  • Peritoneal dialysis has been used instead of the artificial kidney to remove toxic materials from the blood.
  • the peritoneal cavity is filled with a dialyzing solution and the peritoneum serves as a living, semi-permeable membrane.
  • Peritoneal dialysis has not been widely used however, because of certain problems. For example, continuous peritoneal dialysis may cause pooling and channeling of fluid in the abdomen or excessive losses of blood proteins. It also uses relatively large volumes of dialysis fluid and requires a somewhat complicated apparatus. Intermittent peritoneal dialysis has not been widely used because of the difiiculty in draining dialysis fluid from the abdominal cavity.
  • Another object of this invention is to provide an administration set having a catheter which will facilitate withdrawal of the dialysis fluid.
  • Another object of the invention is to provide an administration set having a catheter which can be easily worked into the desired position without using a stylet.
  • a further object of the invention is to provide a peritoneal dialysis catheter having a small outside diameter and a smooth outer surface.
  • a still further object of the invention is to provide a method of making the improved administration set for peritoneal dialysis.
  • FIGURE 1 shows the administration set of this invention assembled and ready for use
  • FIGURE 2 is a sectional view of the stopper 15 which connects the set to a solution bottle;
  • FIGURE 3 is a sectional view of the Y connector 13
  • FIGURE 4 is a perspective view of the clamp 17
  • FIGURE 5 is a plan view of the catheter 23 partially cut away at the tip
  • FIGURE 6 is a sectional view on the line 66 of FIG- URE 5;
  • FIGURE 7 is a partial enlargement of FIGURE 6;
  • FIGURE 8 is a front elevation, partly in section, of a device for punching the holes in catheter 23.
  • the administration set 10 has two stoppers 15, 16.
  • An inlet tub 11 or 12 is attached to each stopper and is connected, by means of a Y shaped connector 13, to the flexible administration tube 14.
  • the tube 14 has a metal clamp 17 which, when bent, adjusts or shuts off flow by squeezing the tube 14.
  • the distal end of tube 14 is attached by sleeve 18 to the connecting tube 19, the latter also having a metal clamp 20.
  • a second sleeve 21 connects the distal end of the tube 19 to the proximal end 22 of catheter 23.
  • the catheter 23 is made of an inert, semi-rigid thermoplastic material which will not soften unduly at body temperature.
  • a semirigid tube is defined as a tube which cannot be collapsed by direct hand pressure, which is relatively rigid longitudinally for lengths of one half inch or so, but which is easily bent by hand in lengths of three inches or more. Catheters made from such tubes will not kink or collapse in normal use, but they will bend along their length when necessary so as to minimize trauma.
  • the catheter 23 can be made of nylon, high density polyethylene, Teflon, or Kel-F. Catheter 23 is usually eight to fourteen inches long, has an outside diameter of about 0.1 to 0.2 inch and has a sufiicient wall thickness to make it semi-rigid as defined above.
  • an excellent catheter has been made from a nylon tube having an outside diameter of 0.136 inch.
  • a catheter of this size fits easily within the bore of a l7-French, Duke trocar so that only a small incision is necessary.
  • a wall thickness of approximately 0.015 inch makes the catheter semi-rigid, while at the same time providing a relatively large inner passage or bore. Such a catheter will bend when it meets an obstruction, but returns to its original shape.
  • the distal end of catheter 23 has a smooth rounded tip 24.
  • a passage or bore 26 passes axially through the catheter 23. 4
  • the distal portion of catheter 23 is provided with seventy to one hundred fifty small holes indicated as 27 which extend for a distance of about two to four inches inwardly from tip 24.
  • the holes 27 should have diameters of 0.010 inch to 0.025 inch, and for best results are preferably between 0.015 inch and 0.020 inch. If the holes are smaller than 0.010 inch, they will be difiicult to make and they will limit the rate of fluid flow too much. If the holes are larger than 0.025 inch, portions of the omentum can pass through the holes into the bore 26. Swelling of the omentum can then plug the bore 26.
  • catheter 23 is provided with a smooth, cylindrical outer surface without projecting bosses or flanges which can irritate abdominal tissues.
  • stopper has a top 42 having a center section 43.
  • An annular boss 34 extends from the end of sleeve 33' towards its axis. Beyond boss 34 the surface of sleeve 33 tapers out to provide a lead-in section 35.
  • Center section 43 has a restricted air inlet 36 sealed by a removable plug 37 and a solution outlet.
  • the solution outlet On the outer surface of top section 43, the solution outlet has an annular boss 39, the bore of which is adapted to receive the end of tube 11.
  • the solution outlet On the inner surface of top section 43, the solution outlet has an outlet tube 38, the axis of which is parallel to the axes of sleeves 30 and 33.
  • the outlet tube 38 projects beyond the inner end of sleeve 30 and has a beveled tip 41 facing away from the extended axis of air inlet 36.
  • each tube 11 and 12 is cemented to stopper 15 or 16.
  • the other ends of tubes 11 and 12 and tube 14 are cemented to the Y'shaped connector 13.
  • the sleeves 18 and 21 are then cemented to connecting tube 19.
  • Polyvinyl chloride is a particularly suitable material.
  • the catheter 23 is formed by cutting a section of extrude nylon tubing about eight to fourteen inches long, punching holes 27, forming the curved section 25, washing the tubing, and finally molding the tip 24.
  • the holes 27 are punched by pins 50 mounted in pin block 51.
  • the pin should be 0.013 inch to 0.028 inch in diameter and mounted so as to extend through the insulation 52 and the catheter holding jig 53 and to pierce the wall of the catheter tubing, without touching the opposite wall of the tubing.
  • heating unit 54 is located between pin block 51 and pressplaten 55. Heating unit 54 preferably has a thermostatic control (not shown) by means of which the temperature of pins 50 may be adjusted.
  • Excellent results may be obtained in the hole-punching operation by using a one-half inch steel pin of the ordinary straight-pin or map-pin type.
  • a one-half inch steel pin of the ordinary straight-pin or map-pin type usually has a diameter of approximately 0.020 inch and, after some recovery of the plastic wall, forms a hole about 0.016 to 0.018 inch in diameter.
  • the temperature of the pins 50 is adjusted to a point where they soften, but do not melt, the wall of the thermoplastic tubing. In this way the plastic material displaced by the pin, is pushed inwardly, forming an indented outer surface 28 and an inner collar or flange 29.
  • a silicone coating applied to the surface of pins 50 prevents the flange 29 from adhering to the pins as they are withdrawn.
  • the curved section 25 is then formed by placing a stiff, curved, metal mandrel inside the tubing, and heating the tubing and mandrel in an oven for five minutes at about 275 F.
  • the tubing and mandrel are then cooled to room temperature, the mandrel removed, and the tubing washed, rinsed and dried.
  • the rounded tip 24 is then formed by heating and forming the end of the tubing.
  • the dialysis solution is warmed to body temperature and medication, such as heparin and tetracycline, added.
  • medication such as heparin and tetracycline
  • the administration set 10 is attached to two bottles 31 and 32 of dialysis solution. Due to the tapered lead-in section 35, the annular boss 34. of stopper 15 can 4 be pushed over threads or rings on the neck of bottle 31 without turning stopper 15.
  • the bottles are then suspended by hangers 56 and 57 from the stand 58, the plug 37 removed from the air inlet 36, the clamp 17 opened and the set filled with solution.
  • the abdomen is prepared and an incision is made through the linea alba of the anterior abdominal wall.
  • a straight, 17-French, Duke trocar with stylet is inserted through the incision into the peritoneal cavity, until only the proximal hub of the trocar protrudes above the skin.
  • the stylet is then removed and the plastic catheter 23 passed through the trocar.
  • the stiffness of the catheter permits the curved portion 25 to be manipulated by. rotation or angling of the exposed proximal end and also prevents the catheter from kinking or floating.
  • the longitudinal flexibility of the eight to fourteen inch catheter allows it to bend if the tip 24 meets an obstruction. It is sometimes necessary to rotate the catheter in various directions trying to insert it each time, before the omentum is pushed aside and a natural passageway found.
  • the trocar When the catheter is in place, the trocar is withdrawn and connecting tube 19 attached to catheter 23 by sleeve 21 and to tube 14 by sleeve 18. If leakage or bleeding occurs around the catheter, it can usually be stopped with a purse-string suture which leaves the catheter free for manipulation. Clamps 17 and 20 are then opened and the solution in bottles 31, 32 is permitted to flow by gravity into the abdominal cavity. This usually requires about five to ten minutes. If a longer time is required, catheter 23 should be repositioned. Air bubbles entering the bottle through inlet 36 give the operator a continuous indication of the solution flow rate. The extended outlet tube 38 with the beveled end 41 facing away from the air inlet 36, prevents air bubbles from being drawn into the administration set 10.
  • a catheter comprising: an elongated tubular member having a wall, a proximal end, and a distal end, said wall defining an axial passage through the tubular member and an opening at the proximal end thereof communicating with said passage, the distal end having a smooth, rounded, closed tip, and holes defined by the wall of the tubular member and opening into the axial passage, said holes having a diameter of 0.010 to 0.025 inch.
  • a catheter as set forth in claim 1 wherein the portions of the wall surrounding the holes curve inwardly to form a smooth, rounded outer surface and an inwardly extending flange.
  • a catheter comprising: an elongated, semi-rigid, tubular member having a length of eight to fourteen inches, a diameter of about 0.136 inch, a nylon wall approximately 0.015 inch thick, a curved section on the distal portion thereof, an axial passage therethrough, an opening into spegesa said passage at the proximal end thereof, a smooth rounded tip at the distal end thereof, and holes through said wall opening into the axial passage, said holes having a diameter of 0.010 to 0.025 inch.
  • a catheter comprising: an elongated tubular member having a wall, a proximal end, and a distal end, said wall defining an axial passage through the tubular member and an opening at the proximal end thereof communicating with said passage, the distal end having a smooth, rounded, closed tip, and transverse holes defined by the wall of the tubular member and opening into the axial passage, said holes having a diameter of 0.015 to 0.020 inch.

Description

1962 G. COANDA 3,064,653
CATHETER FOR AN ADMINISTRATION SET Filed June 4, 1959 FIG. I.
IN VEN TOR HI 55 26 v z 28 27 26 54 J Eli-rite rates atc l Fice 3,064,653 CATHETER FQR AN ADMINESTRATION SET George Coanda, North Hollywood, (Salli. assignor to Don Baxter, Inc, Glendale, Califi, a corporation of Nevada Filed June 4, 1959, Ser. No. 818,030 4 Claims. (Cl. 128-348) This invention relates to an improved administration set for peritoneal dialysis.
Acute renal failure may be caused by infection, transfusion reactions, sulfonamide hypersensitivity, or poisoning. Excessive quantities of bromides, salicylates, or barbiturates are among the common causes. Although the renal failure may be reversible, it is often difficult to keep the patient alive until renal function can recover.
Patients having acute renal failure are frequently treated with an artificial kidney. Proper use of an artificial kidney is an expensive and formidable procedure. It requires an active, permanent, trained team of personnel. The equipment is expensive and is seldom available in small hospitals, so that the patient must usually be transported to one of the large medical centers for treatment. Usually at least four to five bottles of expensive blood are needed to prime the machine. In addition to the cost involved there are the usual risks associated with transfusions, such as hemolytic reactions, allergic reactions, transmission of infections hepatitis or other diseases, and over-heparinization.
Peritoneal dialysis has been used instead of the artificial kidney to remove toxic materials from the blood. In this procedure, the peritoneal cavity is filled with a dialyzing solution and the peritoneum serves as a living, semi-permeable membrane. Peritoneal dialysis has not been widely used however, because of certain problems. For example, continuous peritoneal dialysis may cause pooling and channeling of fluid in the abdomen or excessive losses of blood proteins. It also uses relatively large volumes of dialysis fluid and requires a somewhat complicated aparatus. Intermittent peritoneal dialysis has not been widely used because of the difiiculty in draining dialysis fluid from the abdominal cavity. Attempts to improve drainage of the fluid by providing the dialysis catheter with larger holes have merely aggravated the problem. Flutes, spiral grooves, and other external catheter shapes designed to shield the catheter holes, increase irritation of the abdominal tissues and require use of a larger trocar than is desirable.
it is therefore an object of this invention to provide an improved administration set for intermittent peritoneal dialysis.
Another object of this invention is to provide an administration set having a catheter which will facilitate withdrawal of the dialysis fluid.
Another object of the invention is to provide an administration set having a catheter which can be easily worked into the desired position without using a stylet.
A further object of the invention is to provide a peritoneal dialysis catheter having a small outside diameter and a smooth outer surface.
A still further object of the invention is to provide a method of making the improved administration set for peritoneal dialysis.
Other objects and advantages of my invention will be apparent from the following description of the preferred embodiment of the invention in which:
FIGURE 1 shows the administration set of this invention assembled and ready for use;
FIGURE 2 is a sectional view of the stopper 15 which connects the set to a solution bottle;
FIGURE 3 is a sectional view of the Y connector 13;
FIGURE 4 is a perspective view of the clamp 17;
FIGURE 5 is a plan view of the catheter 23 partially cut away at the tip;
FIGURE 6 is a sectional view on the line 66 of FIG- URE 5;
FIGURE 7 is a partial enlargement of FIGURE 6;
FIGURE 8 is a front elevation, partly in section, of a device for punching the holes in catheter 23.
As shown in the drawings, the administration set 10 has two stoppers 15, 16. An inlet tub 11 or 12 is attached to each stopper and is connected, by means of a Y shaped connector 13, to the flexible administration tube 14. The tube 14 has a metal clamp 17 which, when bent, adjusts or shuts off flow by squeezing the tube 14. The distal end of tube 14 is attached by sleeve 18 to the connecting tube 19, the latter also having a metal clamp 20. A second sleeve 21 connects the distal end of the tube 19 to the proximal end 22 of catheter 23.
The catheter 23 is made of an inert, semi-rigid thermoplastic material which will not soften unduly at body temperature. For the purpose of this application, a semirigid tube is defined as a tube which cannot be collapsed by direct hand pressure, which is relatively rigid longitudinally for lengths of one half inch or so, but which is easily bent by hand in lengths of three inches or more. Catheters made from such tubes will not kink or collapse in normal use, but they will bend along their length when necessary so as to minimize trauma. For example, the catheter 23 can be made of nylon, high density polyethylene, Teflon, or Kel-F. Catheter 23 is usually eight to fourteen inches long, has an outside diameter of about 0.1 to 0.2 inch and has a sufiicient wall thickness to make it semi-rigid as defined above.
As a specific example, an excellent catheter has been made from a nylon tube having an outside diameter of 0.136 inch. A catheter of this size fits easily within the bore of a l7-French, Duke trocar so that only a small incision is necessary. A wall thickness of approximately 0.015 inch makes the catheter semi-rigid, while at the same time providing a relatively large inner passage or bore. Such a catheter will bend when it meets an obstruction, but returns to its original shape.
The distal end of catheter 23 has a smooth rounded tip 24. A curved section 25, having a radius of about ten to fourteen inches, extends inwardly from tip 24 for a distance of about three to four inches. A passage or bore 26 passes axially through the catheter 23. 4
The distal portion of catheter 23 is provided with seventy to one hundred fifty small holes indicated as 27 which extend for a distance of about two to four inches inwardly from tip 24. The holes 27 should have diameters of 0.010 inch to 0.025 inch, and for best results are preferably between 0.015 inch and 0.020 inch. If the holes are smaller than 0.010 inch, they will be difiicult to make and they will limit the rate of fluid flow too much. If the holes are larger than 0.025 inch, portions of the omentum can pass through the holes into the bore 26. Swelling of the omentum can then plug the bore 26.
The outer edges of the holes 27 curve inwardly forming indented, rounded surfaces 28 and inwardly extending collars of flanges 29. In this manner, catheter 23 is provided with a smooth, cylindrical outer surface without projecting bosses or flanges which can irritate abdominal tissues.
As shown in FIGURE 2, stopper has a top 42 having a center section 43. A sleeve 30, adapted to fit in the neck of bottle 31, extends from the center section 43. An outer sleeve 33 adapted to fit around the bottle neck extends from top 42. An annular boss 34 extends from the end of sleeve 33' towards its axis. Beyond boss 34 the surface of sleeve 33 tapers out to provide a lead-in section 35.
Center section 43 has a restricted air inlet 36 sealed by a removable plug 37 and a solution outlet. On the outer surface of top section 43, the solution outlet has an annular boss 39, the bore of which is adapted to receive the end of tube 11. On the inner surface of top section 43, the solution outlet has an outlet tube 38, the axis of which is parallel to the axes of sleeves 30 and 33. The outlet tube 38 projects beyond the inner end of sleeve 30 and has a beveled tip 41 facing away from the extended axis of air inlet 36.
In the manufacture of this adminstration set, one end of each tube 11 and 12 is cemented to stopper 15 or 16. The other ends of tubes 11 and 12 and tube 14 are cemented to the Y'shaped connector 13. The sleeves 18 and 21 are then cemented to connecting tube 19. For convenience in attaching the tubes, the connector, and the sleeves together, they are preferably made of the same plastic. Polyvinyl chloride is a particularly suitable material.
The catheter 23 is formed by cutting a section of extrude nylon tubing about eight to fourteen inches long, punching holes 27, forming the curved section 25, washing the tubing, and finally molding the tip 24.
As shown in FIGURE 8, the holes 27 are punched by pins 50 mounted in pin block 51. The pin should be 0.013 inch to 0.028 inch in diameter and mounted so as to extend through the insulation 52 and the catheter holding jig 53 and to pierce the wall of the catheter tubing, without touching the opposite wall of the tubing. A
. heating unit 54 is located between pin block 51 and pressplaten 55. Heating unit 54 preferably has a thermostatic control (not shown) by means of which the temperature of pins 50 may be adjusted.
Excellent results may be obtained in the hole-punching operation by using a one-half inch steel pin of the ordinary straight-pin or map-pin type. Such a pin usually has a diameter of approximately 0.020 inch and, after some recovery of the plastic wall, forms a hole about 0.016 to 0.018 inch in diameter.
In punching the holes 27, the temperature of the pins 50 is adjusted to a point where they soften, but do not melt, the wall of the thermoplastic tubing. In this way the plastic material displaced by the pin, is pushed inwardly, forming an indented outer surface 28 and an inner collar or flange 29. A silicone coating applied to the surface of pins 50 prevents the flange 29 from adhering to the pins as they are withdrawn.
The curved section 25 is then formed by placing a stiff, curved, metal mandrel inside the tubing, and heating the tubing and mandrel in an oven for five minutes at about 275 F. The tubing and mandrel are then cooled to room temperature, the mandrel removed, and the tubing washed, rinsed and dried. The rounded tip 24 is then formed by heating and forming the end of the tubing.
In use, the dialysis solution is warmed to body temperature and medication, such as heparin and tetracycline, added. The administration set 10 is attached to two bottles 31 and 32 of dialysis solution. Due to the tapered lead-in section 35, the annular boss 34. of stopper 15 can 4 be pushed over threads or rings on the neck of bottle 31 without turning stopper 15. The bottles are then suspended by hangers 56 and 57 from the stand 58, the plug 37 removed from the air inlet 36, the clamp 17 opened and the set filled with solution.
With the patient in a supine or semi-supine position, the abdomen is prepared and an incision is made through the linea alba of the anterior abdominal wall. A straight, 17-French, Duke trocar with stylet is inserted through the incision into the peritoneal cavity, until only the proximal hub of the trocar protrudes above the skin.
The stylet is then removed and the plastic catheter 23 passed through the trocar. The stiffness of the catheter permits the curved portion 25 to be manipulated by. rotation or angling of the exposed proximal end and also prevents the catheter from kinking or floating. On the other hand, the longitudinal flexibility of the eight to fourteen inch catheter allows it to bend if the tip 24 meets an obstruction. It is sometimes necessary to rotate the catheter in various directions trying to insert it each time, before the omentum is pushed aside and a natural passageway found.
When the catheter is in place, the trocar is withdrawn and connecting tube 19 attached to catheter 23 by sleeve 21 and to tube 14 by sleeve 18. If leakage or bleeding occurs around the catheter, it can usually be stopped with a purse-string suture which leaves the catheter free for manipulation. Clamps 17 and 20 are then opened and the solution in bottles 31, 32 is permitted to flow by gravity into the abdominal cavity. This usually requires about five to ten minutes. If a longer time is required, catheter 23 should be repositioned. Air bubbles entering the bottle through inlet 36 give the operator a continuous indication of the solution flow rate. The extended outlet tube 38 with the beveled end 41 facing away from the air inlet 36, prevents air bubbles from being drawn into the administration set 10.
When bottles 31, 32 are empty, but while the set 10 is still filled with solution, clamps 17 and 20 are closed off and the bottles placed on the floor below the patient. The solution is left in the abdominal cavity for approximately one to two hours, after which the clamps are opened and the abdomen drained by siphoning the solu tion back into the original bottles. In the administration set described above, drainage should require no more than ten minutes. Continuity of flow and approximate rate can be determined by watching solution entering bottle 31 through outlet tube 38. When drainage is completed, the amount of dialyzate recovered is checked against the amount administered, the clamps 17 and 20 are closed off, and the used bottles of solution disconnected at sleeve 18. New bottles of solution may then be attached to the connecting tube 19, and the dialysis repeated.
I claim:
1. In an administration set for peritoneal dialysis, a catheter comprising: an elongated tubular member having a wall, a proximal end, and a distal end, said wall defining an axial passage through the tubular member and an opening at the proximal end thereof communicating with said passage, the distal end having a smooth, rounded, closed tip, and holes defined by the wall of the tubular member and opening into the axial passage, said holes having a diameter of 0.010 to 0.025 inch.
2. In an administration set for peritoneal dialysis, a catheter as set forth in claim 1 wherein the portions of the wall surrounding the holes curve inwardly to form a smooth, rounded outer surface and an inwardly extending flange.
3. In an administration set for peritoneal dialysis, a catheter comprising: an elongated, semi-rigid, tubular member having a length of eight to fourteen inches, a diameter of about 0.136 inch, a nylon wall approximately 0.015 inch thick, a curved section on the distal portion thereof, an axial passage therethrough, an opening into spegesa said passage at the proximal end thereof, a smooth rounded tip at the distal end thereof, and holes through said wall opening into the axial passage, said holes having a diameter of 0.010 to 0.025 inch.
4. In an administration set for peritoneal dialysis, a catheter comprising: an elongated tubular member having a wall, a proximal end, and a distal end, said wall defining an axial passage through the tubular member and an opening at the proximal end thereof communicating with said passage, the distal end having a smooth, rounded, closed tip, and transverse holes defined by the wall of the tubular member and opening into the axial passage, said holes having a diameter of 0.015 to 0.020 inch.
References (Jited in the file of this patent UNITED STATES PATENTS Ketchum Nov. 8, Ferguson June 7, Kowan Aug. 25, Nelson Aug. 9, Auzin Sept. 13, Raiche Oct. 5, Nesset et a1 Nov. 13, Sollmann Feb. 11, Shaw May 5, Harrington May 19,
Buyers Mar. 29,
US81808059 1959-06-04 1959-06-04 Catheter for an administration set Expired - Lifetime US3064653A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US81808059 US3064653A (en) 1959-06-04 1959-06-04 Catheter for an administration set
US18368562 US3149186A (en) 1959-06-04 1962-02-09 Method for making a catheter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US81808059 US3064653A (en) 1959-06-04 1959-06-04 Catheter for an administration set

Publications (1)

Publication Number Publication Date
US3064653A true US3064653A (en) 1962-11-20

Family

ID=25224617

Family Applications (1)

Application Number Title Priority Date Filing Date
US81808059 Expired - Lifetime US3064653A (en) 1959-06-04 1959-06-04 Catheter for an administration set

Country Status (1)

Country Link
US (1) US3064653A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3135586A (en) * 1961-01-23 1964-06-02 Smith H Brown Perforation method and apparatus
US3219036A (en) * 1963-03-25 1965-11-23 Baxter Don Inc Intravenous catheter apparatus
US3230954A (en) * 1963-10-08 1966-01-25 Mcgaw Lab Inc Venoclysis equipment and method of administering two different parenteral liquids therefrom
US3312220A (en) * 1963-04-02 1967-04-04 Eisenberg Myron Michael Disposable indwelling plastic cannula assembly
US3348544A (en) * 1961-07-29 1967-10-24 Braun Bernhard Polypropylene canula for continuous intravenous infusion
US3459188A (en) * 1965-07-26 1969-08-05 American Hospital Supply Corp Paracentesis stylet catheter
US3520298A (en) * 1967-08-10 1970-07-14 Kurt Lange Peritoneal dialysis apparatus
US3854477A (en) * 1973-04-06 1974-12-17 S Smith Apparatus and method for the application of a continuous somatic nerve block
US4209013A (en) * 1979-04-05 1980-06-24 Baxter Travenol Laboratories, Inc. Sterile connection system using flexible container
US4574173A (en) * 1984-05-04 1986-03-04 Warner-Lambert Company Device for RF welding an IV tube to a catheter lumen
US4639246A (en) * 1985-09-09 1987-01-27 Animal Healthcare Products Catheter
US4838881A (en) * 1984-05-04 1989-06-13 Deseret Medical, Inc. Multilumen catheter and associated IV tubing
US5458582A (en) * 1992-06-15 1995-10-17 Nakao; Naomi L. Postoperative anesthetic delivery device and associated method for the postoperative treatment of pain
US5797869A (en) * 1987-12-22 1998-08-25 Vas-Cath Incorporated Multiple lumen catheter
US6042561A (en) * 1997-10-22 2000-03-28 Ash Medical Systems, Inc. Non-intravascular infusion access device
US6524302B2 (en) 2001-04-26 2003-02-25 Scimed Life Systems, Inc. Multi-lumen catheter
US20030158538A1 (en) * 1999-07-19 2003-08-21 Deniega Jose Castillo Catheter for uniform delivery of medication
US20160228271A1 (en) * 2013-09-20 2016-08-11 Rainbow Medical Engineering Limited Implantable Medical Devices
US9717882B2 (en) 2014-02-05 2017-08-01 Boston Scientific Scimed, Inc. Multi-lumen catheters and related methods of manufacture

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US485698A (en) * 1892-11-08 Frank s
US605178A (en) * 1898-06-07 ferguson
US1820076A (en) * 1928-10-08 1931-08-25 Maurice H Kowan Irrigator
US2478876A (en) * 1948-05-10 1949-08-09 Ole A Nelson Automatic intermittent bladder irrigator
US2481488A (en) * 1946-10-19 1949-09-13 Davol Rubber Co Method of making inflatable catheters having preformed balloon sacs
US2690595A (en) * 1951-06-22 1954-10-05 Davol Rubber Co Manufacture of low-pressure inflation catheters
US2770235A (en) * 1953-06-29 1956-11-13 Baxter Laboratories Inc Parenteral administration of liquids
US2822809A (en) * 1952-09-30 1958-02-11 Kidde Mfg Co Inc Tip for uterine cannula
US2884924A (en) * 1956-07-25 1959-05-05 American Sterllizer Company Drip meter
US2887109A (en) * 1956-06-04 1959-05-19 Wayland D Keith Single use, disposable douche apparatus
US2930378A (en) * 1957-09-09 1960-03-29 Davol Rubber Co Abdominal drainage tube

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US485698A (en) * 1892-11-08 Frank s
US605178A (en) * 1898-06-07 ferguson
US1820076A (en) * 1928-10-08 1931-08-25 Maurice H Kowan Irrigator
US2481488A (en) * 1946-10-19 1949-09-13 Davol Rubber Co Method of making inflatable catheters having preformed balloon sacs
US2478876A (en) * 1948-05-10 1949-08-09 Ole A Nelson Automatic intermittent bladder irrigator
US2690595A (en) * 1951-06-22 1954-10-05 Davol Rubber Co Manufacture of low-pressure inflation catheters
US2822809A (en) * 1952-09-30 1958-02-11 Kidde Mfg Co Inc Tip for uterine cannula
US2770235A (en) * 1953-06-29 1956-11-13 Baxter Laboratories Inc Parenteral administration of liquids
US2887109A (en) * 1956-06-04 1959-05-19 Wayland D Keith Single use, disposable douche apparatus
US2884924A (en) * 1956-07-25 1959-05-05 American Sterllizer Company Drip meter
US2930378A (en) * 1957-09-09 1960-03-29 Davol Rubber Co Abdominal drainage tube

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3135586A (en) * 1961-01-23 1964-06-02 Smith H Brown Perforation method and apparatus
US3348544A (en) * 1961-07-29 1967-10-24 Braun Bernhard Polypropylene canula for continuous intravenous infusion
US3219036A (en) * 1963-03-25 1965-11-23 Baxter Don Inc Intravenous catheter apparatus
US3312220A (en) * 1963-04-02 1967-04-04 Eisenberg Myron Michael Disposable indwelling plastic cannula assembly
US3230954A (en) * 1963-10-08 1966-01-25 Mcgaw Lab Inc Venoclysis equipment and method of administering two different parenteral liquids therefrom
US3459188A (en) * 1965-07-26 1969-08-05 American Hospital Supply Corp Paracentesis stylet catheter
US3520298A (en) * 1967-08-10 1970-07-14 Kurt Lange Peritoneal dialysis apparatus
US3854477A (en) * 1973-04-06 1974-12-17 S Smith Apparatus and method for the application of a continuous somatic nerve block
US4209013A (en) * 1979-04-05 1980-06-24 Baxter Travenol Laboratories, Inc. Sterile connection system using flexible container
US4574173A (en) * 1984-05-04 1986-03-04 Warner-Lambert Company Device for RF welding an IV tube to a catheter lumen
US4838881A (en) * 1984-05-04 1989-06-13 Deseret Medical, Inc. Multilumen catheter and associated IV tubing
US4639246A (en) * 1985-09-09 1987-01-27 Animal Healthcare Products Catheter
US20010044594A1 (en) * 1987-12-22 2001-11-22 Vas-Cath Incorporated Multiple lumen catheter
US5797869A (en) * 1987-12-22 1998-08-25 Vas-Cath Incorporated Multiple lumen catheter
US7229429B2 (en) 1987-12-22 2007-06-12 Vas-Cath Inc. Multiple lumen catheter
US6206849B1 (en) 1987-12-22 2001-03-27 Vas-Cath Incorporated Multiple lumen catheter
US5458582A (en) * 1992-06-15 1995-10-17 Nakao; Naomi L. Postoperative anesthetic delivery device and associated method for the postoperative treatment of pain
US6042561A (en) * 1997-10-22 2000-03-28 Ash Medical Systems, Inc. Non-intravascular infusion access device
US20030158538A1 (en) * 1999-07-19 2003-08-21 Deniega Jose Castillo Catheter for uniform delivery of medication
US8043465B2 (en) * 1999-07-19 2011-10-25 I-Flow Corporation Catheter for uniform delivery of medication
US9084870B2 (en) 1999-07-19 2015-07-21 Avent, Inc. Catheter for uniform delivery of medication
US6524302B2 (en) 2001-04-26 2003-02-25 Scimed Life Systems, Inc. Multi-lumen catheter
US20160228271A1 (en) * 2013-09-20 2016-08-11 Rainbow Medical Engineering Limited Implantable Medical Devices
US9717882B2 (en) 2014-02-05 2017-08-01 Boston Scientific Scimed, Inc. Multi-lumen catheters and related methods of manufacture

Similar Documents

Publication Publication Date Title
US3064653A (en) Catheter for an administration set
US4451252A (en) Cannula
US3149186A (en) Method for making a catheter
US3653388A (en) Catheter insertion trocar
US2935068A (en) Surgical procedure and apparatus for use in carrying out the same
US5279605A (en) Frangible spike connector for a solution bag
US4340049A (en) Breakaway valve
US4804365A (en) Vascular cannulae for transfemoral cardiopulmonary bypass and method of use
US4386622A (en) Breakaway valve
US4096860A (en) Dual flow encatheter
US5221267A (en) Breakable tubing coupling
US6752827B2 (en) Devices, systems, and methods for subcutaneously placing an article
US6206849B1 (en) Multiple lumen catheter
US5380276A (en) Dual lumen catheter and method of use
US5423768A (en) Tubing administration set for use in peritoneal dialysis
US6179806B1 (en) Self-occluding catheter
US4403983A (en) Dual lumen subclavian cannula
US4134402A (en) Double lumen hemodialysis catheter
US4944729A (en) Femoral arterial cannula
US20050261664A1 (en) Multifunction adaptor for an open-ended catheter
US4701160A (en) Catheter and method for infusing fluid into a patient
EP2872197A1 (en) Self-centering catheter with anti-occlusion features
JPH0441621B2 (en)
US20130150767A1 (en) Vascular access device for hemodialysis
US4655748A (en) Cannula for infusion of fluid