US3040426A - Method of fabricating miniature bellows by electroless chemical deposition - Google Patents

Method of fabricating miniature bellows by electroless chemical deposition Download PDF

Info

Publication number
US3040426A
US3040426A US770771A US77077158A US3040426A US 3040426 A US3040426 A US 3040426A US 770771 A US770771 A US 770771A US 77077158 A US77077158 A US 77077158A US 3040426 A US3040426 A US 3040426A
Authority
US
United States
Prior art keywords
shell
bellows
range
shape
inch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US770771A
Inventor
Victor E Hamren
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PHILIP K HORRIGAN
Original Assignee
PHILIP K HORRIGAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PHILIP K HORRIGAN filed Critical PHILIP K HORRIGAN
Priority to US770771A priority Critical patent/US3040426A/en
Application granted granted Critical
Publication of US3040426A publication Critical patent/US3040426A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
    • G01L7/02Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
    • G01L7/06Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the bellows type
    • G01L7/061Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the bellows type construction or mounting of bellows
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4981Utilizing transitory attached element or associated separate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49877Assembling or joining of flexible wall, expansible chamber devices [e.g., bellows]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49988Metal casting

Definitions

  • the invention further relates to an improved process of fabricating such miniature pressure sensing elements having wall structure of such thinness as to be Within the range of film thickness (e.g. roughly in a range which may include the range of .0002. inch up to .005 inch) and wherein the physical dimension such as diameter and/or length may be in a range extending down to as small as inch or less for axial length dimension and inch or less for outer diameter.
  • film thickness e.g. roughly in a range which may include the range of .0002. inch up to .005 inch
  • the physical dimension such as diameter and/or length may be in a range extending down to as small as inch or less for axial length dimension and inch or less for outer diameter.
  • a particular object of the invention is to provide such a miniature pressure sensing element which is highly resilient and provides a very low spring rate, approaching a Zero value, whereby to provide maximum accuracy in response to pressure changes over a satisfactory range of deflection of the element.
  • a further object of the invention is to provide such a miniature pressure sensing element having a uniform wall thickness throughout all areas whether fiat or curved or sharply bent. Another object is to provide the characteristics derived from this uniform wall thickness, namely an extremely low spring rate combined with relatively high strength.
  • Another object is to provide such a pressure sensing element embodying a combination of low spring rate, high ratio of deflection range to free length, and low hysteresis, i.e. the ability to faithfully return to a normal configuration after having been deflected therefrom.
  • the invention contemplates a method of fabricating a miniature pressure sensing element such as a bellows by chemical deposition of a metal such as nickel upon a pattern or form in a manner to produce a coating thereon of uniform thickness, then removing the form by etching or chemical dissolution or by melting, leaving the film in the form of a hollow body of the desired configuration.
  • bellows and similar pressure sensitive flexible devices have generally been fabricated by rolling and hydraulically forming from tubes into convoluted shapes, from material such as brass, beryllium copper, stainless steel etc; or by assembling and joining the margins of stamped sheet metal washers, or by the molding of plas tics.
  • Such earlier processes have the following disadvantages which are particularly acute where miniature bellows are concerned: rolling or hydraulic forming may be used only with materials having sufficient stretch to avoid break-down when stretched. Even then, intermittent annealing is required between stages of rolling or stretching. Cross sectional configuration is limited to those designs which provide access for the tooling. Such methods cannot be used for fabricating miniature parts.
  • Electro-plated parts are objectionable in that very uneven wall thicknesses result from the variable distance between the electrodes. Such parts are low in yield, ultimate strength is also low, and they are not sufliciently flexible. Undesirable magnetic properties are encountered in such parts.
  • Molded plastic bellows are not satisfactory for most purposes because of low strength, porosity, high hysteresis, and temperature limitations (they break down at high temperatures and become stifl at low temperatures) and they engender attachment problems.
  • the single FIGURE discloses a cross sectional view through a bellows embodying the invention.
  • a bellows which, though shown on enlarged scale, may be of quite small proportions, e.g. in the neighborhood of a quarter inch outer diameter, and having an extremely thin wall which may be as small as a range between .0002 inch and .005 inch, and the invention is also useful throughout the full range from this minimum range up to .005 inch thickness.
  • Such a bellows may be called for in any one of a number of lightweight sensitive instruments such as are used in missiles, and it will be immediately apparent that the ordinary bellows fabricating techniques will not be satisfactory for fabricating such a small part.
  • the bellows is of a nickel-phosphorous alloy and has a substantially zero spring rate combined with relatively high strength, a low hysteresis, and a high ratio of deflection range to free length. Its wall thickness is uniform throughout all areas, whether flat or curved and regardless of the radius of curvature. The bellows has no inherent stresses, and has a maximum fidelity of linear response to pressure changes acting thereon.
  • the bellows wall is exceedingly tough and flexible and resistant to failure throughout repeated flexings.
  • the bellows is formed by a process wherein a highly accurate pattern is first produced (as by die casting or molding).
  • the patterns are of aluminum or other etchable or thermo disintegrating material capable of being treated for satisfactorily receiving chemical nickel plating on the surfaces thereof.
  • the forms are fabricated and then treated for plating receptivity, and are then chemically cleaned, using methods customary in the plating industry.
  • the form is then dipped into a plating solution including an aqueous solution of a nickel salt and a hypophosphite, such as for example, a mixture of nickel sulfate and sodium hypo-phosphite, maintained at a temperature of to degrees centigrade and a pH of 4.0-6.0.
  • the wall thickness is controlled by the length of time the form is maintained in the solution.
  • the pattern with the film adhering thereto is removed from the plating solution and washed, and is then subjected to heat treating at approximately 350 F. for normalizing and developing maximum properties therein.
  • the form is removed from the plated shell by an etching process (or by heating in the event the form material is one that can be melted at a temperature below the critical temperature at which the film would be melted or damaged).
  • Access to the form may be provided by the opening formed by the stem upon which the form is suspended in the solution.
  • the shell is chemically cleaned both internally and externally and in some instances is covered by a light coating of gold plating. Trimming operations may then be performed, and headers may then be attached to the bellows over the open ends thereof after heat forming, if this is desired.
  • the shell is then subjected to a heat forming step including heat treatment at approximately 425' F. for a time which may be approximately one hour.
  • This is a heat forming operation during which the bellows is axially stressed, either in compression or extension, to the axial dimension desired.
  • the pressure sensing element e.g. including a Bourdon tube
  • the pressure sensing element is stressed along the path of its pressureresponsive motion in its subsequent operation.
  • the invention may provide a bellows which has been longitudinally deformed (either by compressing it or by extending it axially) to a limit position at one end or the other at the range of deflection of the bellows, and then setting the bellows in this limit position by heat treating it for an hour at approximately 425 F.
  • the heat treatment will eliminate all residual strains and stresses in the wall of the bellows, leaving it in the deformed condition either at the beginning or end of its range of deflection, and thus the bellows may be adapted for a full range of deflecting movement entirely on one side of its normal free (unstressed) position.
  • the bellows may be fully compressed in its normal unstressed state and be adapted to extend through a full range of deflection to a maximum length, with all of such deflection being on one side of the free position of the bellows.
  • the bellows may be pre-forrned in a position of maximum extension and from that position its entire range of movement may be toward the position of maximum compression.
  • bellows having a wall as thin as two ten thousandths of an inch without damaging the bellows, and that bellows with improved properties (e.g. greatly increased magnitude of deflection in one direction, in proportion to free length) may be attained.
  • a method of fabricating a miniature fluid pressure sensitive convoluted bellows throughout a range of sizes extending downwardly to a lower limit of less than inch diameter comprising: preparing a form in the approximate shape of the internal wall of the bellows; thoroughly cleaning the form; treating the surface of the form for acceptance of chemical plating; immersing the form in a solution of nickel and phosphorous salts and chemically depositing on the form a shell having the full diameter of the finished article and consisting of a film of uniform thickness in the range of .0002 and .005 inch and continuing said immersion until the shell attains self-sustaining condition; etching the form out of the shell after the shell has attained said self-sustaining condition; heat treating the shell at approximately 350 to relieve all internal stresses in the shell; chemically cleaning the shell; trimming the shell; and then subjecting the shell to a second heat treatment at approximately 425 F. while deforming the shell along its deflection axis to a selected shape to be established as its free shape, and continuing said second heat treatment until the
  • a method of fabricating miniature fluid pressuresensitive convoluted bellows throughout a range of sizes extending downwardly to a lower limit of less than 4; inch diameter comprising: preparing a form having substantially the shape of the internal wall of the bellows and being of the full diameter of the finished bellows; treating the surface of the form for acceptance of chemical plating; immersing the form in a solution of nickel and phosphorus salts and thereby chemically depositing thereon a shell consisting of a film of uniform thickness in the range between .0002 and .005 inch and continuing said immersion until the shell attains self-sustaining condition; subsequently heat-treating the shell for stress relief; etching the form out of the shell after the shell attained said self-sustaining condition; and then preparing the shell for use without any substantial change in diameter thereof.
  • a method of fabricating miniature fluid pressuresensitive convoluted bellows throughout a range of sizes extending downwardly to a lower limit of less than Ms" diameter comprising: preparing a form having substantially the shape of the internal wall of the bellows and being of the full diameter of the finished bellows; treating the surface of the form for acceptance of chemical plating; immersing the form in a solution of nickel and phosphorus salts and thereby chemically depositing thereon a shell consisting of a film of uniform thickness in the range between .0002 and .005 inch and continuing said immersion until the shell attains self-sustaining condition; etching the form out of the shell after the shell has attained said self-sustaining condition; and then subjecting the shell to finish-processing without any substantial change in its diameter.

Description

June 26, 1962 v. E. HAMREN 3,040,426
METHOD OF FABRICATING MINIATURE BELLOWS BY ELECTROLESS CHEMICAL DEPOSITION Filed Oct. so, 1958 CHEM/64L L Y DEPDJ/ TED ,4/1/0 .Sl/BSEQUE/VTLY HEAT- TREA TED NICKEL INVENTOR. 1 /6 rm 5 AQMRE/V ATTORNEY 3,040,426 METHOD OF FABRICATING MINIATURE BEL- BY ELECTROLESS CHEMICAL DEPOSI- This invention relates to miniature pressure sensing elements such as bellows, capsules, diaphragms, Bourdon tubes, functioning to provide mechanical movement in response to pressure changes. The invention further relates to an improved process of fabricating such miniature pressure sensing elements having wall structure of such thinness as to be Within the range of film thickness (e.g. roughly in a range which may include the range of .0002. inch up to .005 inch) and wherein the physical dimension such as diameter and/or length may be in a range extending down to as small as inch or less for axial length dimension and inch or less for outer diameter. It will be obvious that with such exceedingly small proportions, unusual problems of fabrication will arise, and a basic object of this invention is to provide an improved process of fabricating such miniature pressure sensing elements satisfactorily to attain a product of satisfactory durability, long life, resistance to temperature change, vibration and shock, and having a good spring rate.
A particular object of the invention is to provide such a miniature pressure sensing element which is highly resilient and provides a very low spring rate, approaching a Zero value, whereby to provide maximum accuracy in response to pressure changes over a satisfactory range of deflection of the element.
A further object of the invention is to provide such a miniature pressure sensing element having a uniform wall thickness throughout all areas whether fiat or curved or sharply bent. Another object is to provide the characteristics derived from this uniform wall thickness, namely an extremely low spring rate combined with relatively high strength. i
- Another object is to provide such a pressure sensing element embodying a combination of low spring rate, high ratio of deflection range to free length, and low hysteresis, i.e. the ability to faithfully return to a normal configuration after having been deflected therefrom.
In general, the invention contemplates a method of fabricating a miniature pressure sensing element such as a bellows by chemical deposition of a metal such as nickel upon a pattern or form in a manner to produce a coating thereon of uniform thickness, then removing the form by etching or chemical dissolution or by melting, leaving the film in the form of a hollow body of the desired configuration.
Hitherto, bellows and similar pressure sensitive flexible devices have generally been fabricated by rolling and hydraulically forming from tubes into convoluted shapes, from material such as brass, beryllium copper, stainless steel etc; or by assembling and joining the margins of stamped sheet metal washers, or by the molding of plas tics. Such earlier processes have the following disadvantages which are particularly acute where miniature bellows are concerned: rolling or hydraulic forming may be used only with materials having sufficient stretch to avoid break-down when stretched. Even then, intermittent annealing is required between stages of rolling or stretching. Cross sectional configuration is limited to those designs which provide access for the tooling. Such methods cannot be used for fabricating miniature parts. Very uneven wall thicknesses result from the stretching 3,040,426 Patented June 26, 1962 and bending operations, and engineering is thereby greatly complicated. Very light spring rates are not possible in such devices. Hysteresis is high and therefore the range of deflection is limited.
In the welded seam type, high cost of fabrication is entailed. Miniaturization is limited. Initial tooling cost is very high. The multiple joint between the parts complicates the hysteresis problem. Deflection is limited because of the over-stressing of the joints in any attempted high deflection operation.
Electro-plated parts are objectionable in that very uneven wall thicknesses result from the variable distance between the electrodes. Such parts are low in yield, ultimate strength is also low, and they are not sufliciently flexible. Undesirable magnetic properties are encountered in such parts.
Molded plastic bellows are not satisfactory for most purposes because of low strength, porosity, high hysteresis, and temperature limitations (they break down at high temperatures and become stifl at low temperatures) and they engender attachment problems.
Other objects and advatages will become apparent in the ensuing specification and appended drawing in which:
The single FIGURE discloses a cross sectional view through a bellows embodying the invention.
Referring now to the drawing in detail, I have shown therein, as an example of one form of pressure sensing element in which the invention may be embodied, a bellows which, though shown on enlarged scale, may be of quite small proportions, e.g. in the neighborhood of a quarter inch outer diameter, and having an extremely thin wall which may be as small as a range between .0002 inch and .005 inch, and the invention is also useful throughout the full range from this minimum range up to .005 inch thickness. Such a bellows may be called for in any one of a number of lightweight sensitive instruments such as are used in missiles, and it will be immediately apparent that the ordinary bellows fabricating techniques will not be satisfactory for fabricating such a small part.
The bellows is of a nickel-phosphorous alloy and has a substantially zero spring rate combined with relatively high strength, a low hysteresis, and a high ratio of deflection range to free length. Its wall thickness is uniform throughout all areas, whether flat or curved and regardless of the radius of curvature. The bellows has no inherent stresses, and has a maximum fidelity of linear response to pressure changes acting thereon.
Notwithstanding the fact that the film is a deposited film, which tends to exhibit a high yield with respect to ultimate strength, the bellows wall is exceedingly tough and flexible and resistant to failure throughout repeated flexings.
The bellows is formed by a process wherein a highly accurate pattern is first produced (as by die casting or molding).
The patterns are of aluminum or other etchable or thermo disintegrating material capable of being treated for satisfactorily receiving chemical nickel plating on the surfaces thereof. The forms are fabricated and then treated for plating receptivity, and are then chemically cleaned, using methods customary in the plating industry. The form is then dipped into a plating solution including an aqueous solution of a nickel salt and a hypophosphite, such as for example, a mixture of nickel sulfate and sodium hypo-phosphite, maintained at a temperature of to degrees centigrade and a pH of 4.0-6.0. The wall thickness is controlled by the length of time the form is maintained in the solution. After the determined thickness of film has been deposited, the pattern with the film adhering thereto is removed from the plating solution and washed, and is then subjected to heat treating at approximately 350 F. for normalizing and developing maximum properties therein.
Subsequently, the form is removed from the plated shell by an etching process (or by heating in the event the form material is one that can be melted at a temperature below the critical temperature at which the film would be melted or damaged). Access to the form may be provided by the opening formed by the stem upon which the form is suspended in the solution.
After the form has been removed, the shell is chemically cleaned both internally and externally and in some instances is covered by a light coating of gold plating. Trimming operations may then be performed, and headers may then be attached to the bellows over the open ends thereof after heat forming, if this is desired.
For special applications, the shell is then subjected to a heat forming step including heat treatment at approximately 425' F. for a time which may be approximately one hour. This is a heat forming operation during which the bellows is axially stressed, either in compression or extension, to the axial dimension desired. More broadly stated, the pressure sensing element (e.g. including a Bourdon tube) is stressed along the path of its pressureresponsive motion in its subsequent operation.
In some of its forms, the invention may provide a bellows which has been longitudinally deformed (either by compressing it or by extending it axially) to a limit position at one end or the other at the range of deflection of the bellows, and then setting the bellows in this limit position by heat treating it for an hour at approximately 425 F. The heat treatment will eliminate all residual strains and stresses in the wall of the bellows, leaving it in the deformed condition either at the beginning or end of its range of deflection, and thus the bellows may be adapted for a full range of deflecting movement entirely on one side of its normal free (unstressed) position. For example, the bellows may be fully compressed in its normal unstressed state and be adapted to extend through a full range of deflection to a maximum length, with all of such deflection being on one side of the free position of the bellows. Vice versa, the bellows may be pre-forrned in a position of maximum extension and from that position its entire range of movement may be toward the position of maximum compression.
I have discovered that it is fully feasible to perform this step on a bellows having a wall as thin as two ten thousandths of an inch, without damaging the bellows, and that bellows with improved properties (e.g. greatly increased magnitude of deflection in one direction, in proportion to free length) may be attained.
' I claim:
1. A method of fabricating a miniature fluid pressure sensitive convoluted bellows throughout a range of sizes extending downwardly to a lower limit of less than inch diameter, the steps of said method comprising: preparing a form in the approximate shape of the internal wall of the bellows; thoroughly cleaning the form; treating the surface of the form for acceptance of chemical plating; immersing the form in a solution of nickel and phosphorous salts and chemically depositing on the form a shell having the full diameter of the finished article and consisting of a film of uniform thickness in the range of .0002 and .005 inch and continuing said immersion until the shell attains self-sustaining condition; etching the form out of the shell after the shell has attained said self-sustaining condition; heat treating the shell at approximately 350 to relieve all internal stresses in the shell; chemically cleaning the shell; trimming the shell; and then subjecting the shell to a second heat treatment at approximately 425 F. while deforming the shell along its deflection axis to a selected shape to be established as its free shape, and continuing said second heat treatment until the shell assumes said deformed shape as its free shape.
2. The method defined in claim 1, wherein the second heat treatment and deforming step is carried on for approximately one hour.
3. A method of fabricating miniature fluid pressuresensitive convoluted bellows throughout a range of sizes extending downwardly to a lower limit of less than 4; inch diameter, the steps of said method comprising: preparing a form having substantially the shape of the internal wall of the bellows and being of the full diameter of the finished bellows; treating the surface of the form for acceptance of chemical plating; immersing the form in a solution of nickel and phosphorus salts and thereby chemically depositing thereon a shell consisting of a film of uniform thickness in the range between .0002 and .005 inch and continuing said immersion until the shell attains self-sustaining condition; subsequently heat-treating the shell for stress relief; etching the form out of the shell after the shell attained said self-sustaining condition; and then preparing the shell for use without any substantial change in diameter thereof.
4. A method of fabricating miniature fluid pressuresensitive convoluted bellows throughout a range of sizes extending downwardly to a lower limit of less than Ms" diameter, the steps of said method comprising: preparing a form having substantially the shape of the internal wall of the bellows and being of the full diameter of the finished bellows; treating the surface of the form for acceptance of chemical plating; immersing the form in a solution of nickel and phosphorus salts and thereby chemically depositing thereon a shell consisting of a film of uniform thickness in the range between .0002 and .005 inch and continuing said immersion until the shell attains self-sustaining condition; etching the form out of the shell after the shell has attained said self-sustaining condition; and then subjecting the shell to finish-processing without any substantial change in its diameter.
References Cited in the file of this patent UNITED STATES PATENTS 1,368,253 Fulton Feb. 15, 1921 1,648,046 Fulton Nov. '8, 1927 1,886,803 Giesler Nov. 8, 1932 2,534,124 Hasselhorn Dec. 12, 1950 2,833,029 Kearns May 6, 1958 2,841,866 Schilling July 8, 1958 2,865,375 Banks et al. Dec. 23, 1958

Claims (1)

1. A METHOD OF FABRICATING A MINIATURE FLUID PRESSURE SENSITIVE CONVOLUTED BELLOWS THROUGHOUT A RANGE OF SIZES EXTENDING DOWNWARDLY TO A LOWER LIMIT OF LESS THAN 1/8 INCH DIAMETER, THE STEPS OF SAID METHOD COMPRISING: PREPARING A FORM IN THE APPROXIMATE SHAPE OF THE INTERNAL WALL OF THE BELLOWS; THOROUGHLY CLEANING THE FORM; TREATING THE SURFACES OF THE FORM IN A SOLUTION OF NICKEL AND PLATING; IMMERSING THE FORM IN A SOLUTION OF NICKEL AND PHOSPHOROUS SALTS AND CHEMICALLY DEPOSITING ON THE FORM A SHELL HAVING THE FULL DIAMETER OF THE FINISHED ARTICLE AND CONSISTING OF A FILM OF UNIFORM THICKNESS IN THE RANGE OF .0002 AND .005 INCH AND CONTINUING SAID IMMERSION UNTIL THE SHELL ATTAINS SELF-SUSTAINING CONDITION; ETCHING THE FORM OUT OF THE SHELL AFTER THE SHELL HAS ATTAINED SAID SELF-SUSTAINING CONDITION; HEAT TREATING THE SHELL AT APPROXIMATELY 350* TO RELIEVE ALL INTERNAL STRESSES IN THE SHELL; CHEMICALLY CLEANING THE SHELL; TRIMMING THE SHELL; AND THEN SUBJECTING THE SHELL TO A SECOND HEAT TREATMENT AT APPROXIMATELY 425*F. WHILE DEFORMING THE SHELL ALONG ITS DEFLECTION AXIS TO A SELECTED SHAPE TO BE ESTABLISHED AS ITS FREE SHAPE, AND CONTINUING SAID SECOND HEAT TREATMENT UNTIL THE SHELL ASSUMES SAID DEFORMED SHAPE AS ITS FREE SHAPE.
US770771A 1958-10-30 1958-10-30 Method of fabricating miniature bellows by electroless chemical deposition Expired - Lifetime US3040426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US770771A US3040426A (en) 1958-10-30 1958-10-30 Method of fabricating miniature bellows by electroless chemical deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US770771A US3040426A (en) 1958-10-30 1958-10-30 Method of fabricating miniature bellows by electroless chemical deposition

Publications (1)

Publication Number Publication Date
US3040426A true US3040426A (en) 1962-06-26

Family

ID=25089627

Family Applications (1)

Application Number Title Priority Date Filing Date
US770771A Expired - Lifetime US3040426A (en) 1958-10-30 1958-10-30 Method of fabricating miniature bellows by electroless chemical deposition

Country Status (1)

Country Link
US (1) US3040426A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3191285A (en) * 1963-02-27 1965-06-29 Metal Bellows Co Method of making plated construction shaft coupling
US3326091A (en) * 1964-08-10 1967-06-20 Carmen S Allen Bellows
US3339271A (en) * 1964-07-01 1967-09-05 Wyman Gordon Co Method of hot working titanium and titanium base alloys
US3396459A (en) * 1964-11-25 1968-08-13 Gen Dynamics Corp Method of fabricating electrical connectors
US3407476A (en) * 1966-03-18 1968-10-29 Mechanized Science Seals Inc Fabrication method for a rotary seal assembly
US3429038A (en) * 1966-08-01 1969-02-25 Gen Dynamics Corp Method of manufacturing electrical intraconnectors
US3429036A (en) * 1965-04-08 1969-02-25 Gen Dynamics Corp Method of manufacturing electrical connectors
US3429037A (en) * 1966-08-01 1969-02-25 Gen Dynamics Corp Method of making tubular solder connectors
US3431641A (en) * 1966-08-01 1969-03-11 Gen Dynamics Corp Method of manufacturing electrical connectors
US3512244A (en) * 1968-05-31 1970-05-19 Bell Aerospace Corp Method of manufacturing bellows
US3613766A (en) * 1969-01-15 1971-10-19 Fansteel Inc Method of manufacturing weld tip guide
DE3017515A1 (en) * 1980-05-07 1981-11-12 Rudolf Ing. Mutters Zlotek sen. Heat exchanger matrix made with meltable pattern - on which metal is deposited electrolytically or chemically
US20010052253A1 (en) * 2000-06-16 2001-12-20 Nhk Spring Co., Ltd. Manufacturing method and manufacturing apparatus for metallic bellows

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1368253A (en) * 1918-06-25 1921-02-15 Fulton Co Flexible wall
US1648046A (en) * 1921-05-26 1927-11-08 Fulton Sylphon Co Tubular corrugated wall and method of making the same
US1886803A (en) * 1929-02-04 1932-11-08 Fulton Sylphon Co Tubular vessel and method of manufacture
US2534124A (en) * 1945-03-22 1950-12-12 Cook Electric Co Method of fabricating bellows
US2833029A (en) * 1954-07-07 1958-05-06 Thomas F Kearns Process of making high pressure fluid containers
US2841866A (en) * 1954-02-10 1958-07-08 Daystrom Inc Method of forming thin-walled tubing into a desired shape
US2865375A (en) * 1956-03-27 1958-12-23 American Cyanamid Co Plating surgical needles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1368253A (en) * 1918-06-25 1921-02-15 Fulton Co Flexible wall
US1648046A (en) * 1921-05-26 1927-11-08 Fulton Sylphon Co Tubular corrugated wall and method of making the same
US1886803A (en) * 1929-02-04 1932-11-08 Fulton Sylphon Co Tubular vessel and method of manufacture
US2534124A (en) * 1945-03-22 1950-12-12 Cook Electric Co Method of fabricating bellows
US2841866A (en) * 1954-02-10 1958-07-08 Daystrom Inc Method of forming thin-walled tubing into a desired shape
US2833029A (en) * 1954-07-07 1958-05-06 Thomas F Kearns Process of making high pressure fluid containers
US2865375A (en) * 1956-03-27 1958-12-23 American Cyanamid Co Plating surgical needles

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3191285A (en) * 1963-02-27 1965-06-29 Metal Bellows Co Method of making plated construction shaft coupling
US3339271A (en) * 1964-07-01 1967-09-05 Wyman Gordon Co Method of hot working titanium and titanium base alloys
US3326091A (en) * 1964-08-10 1967-06-20 Carmen S Allen Bellows
US3396459A (en) * 1964-11-25 1968-08-13 Gen Dynamics Corp Method of fabricating electrical connectors
US3429036A (en) * 1965-04-08 1969-02-25 Gen Dynamics Corp Method of manufacturing electrical connectors
US3407476A (en) * 1966-03-18 1968-10-29 Mechanized Science Seals Inc Fabrication method for a rotary seal assembly
US3429038A (en) * 1966-08-01 1969-02-25 Gen Dynamics Corp Method of manufacturing electrical intraconnectors
US3429037A (en) * 1966-08-01 1969-02-25 Gen Dynamics Corp Method of making tubular solder connectors
US3431641A (en) * 1966-08-01 1969-03-11 Gen Dynamics Corp Method of manufacturing electrical connectors
US3512244A (en) * 1968-05-31 1970-05-19 Bell Aerospace Corp Method of manufacturing bellows
US3613766A (en) * 1969-01-15 1971-10-19 Fansteel Inc Method of manufacturing weld tip guide
DE3017515A1 (en) * 1980-05-07 1981-11-12 Rudolf Ing. Mutters Zlotek sen. Heat exchanger matrix made with meltable pattern - on which metal is deposited electrolytically or chemically
US20010052253A1 (en) * 2000-06-16 2001-12-20 Nhk Spring Co., Ltd. Manufacturing method and manufacturing apparatus for metallic bellows
US6564606B2 (en) * 2000-06-16 2003-05-20 Nhk Spring Co., Ltd. Manufacturing method and manufacturing apparatus for metallic bellows

Similar Documents

Publication Publication Date Title
US3040426A (en) Method of fabricating miniature bellows by electroless chemical deposition
US2534123A (en) Method of making metal bellows
US10214831B2 (en) One-piece electroformed metal component
US3512252A (en) Electroformed inner tube for tank unit
US2841866A (en) Method of forming thin-walled tubing into a desired shape
JPH0988804A (en) Double-oriented shape memory actuator, manufacture thereof, and three-dimention actuator
US3362061A (en) Method of making bourdon tubes
JP2851086B2 (en) Manufacturing method of two-way shape memory coil spring
JPS61165244A (en) Production of niti shape memory alloy coil spring
US2832676A (en) Method of making thin-walled reentrant structure
US3550991A (en) Flexible metallic stress free sealing member and attached rod
JPS6392702A (en) Core material for clothing
JP3647222B2 (en) Method for forming amorphous alloy block
JPS59116342A (en) Production of shape memory alloy
JPS6070153A (en) Shape memory spring
FI87308B (en) FOERFARANDE FOER FRAMSTAELLNING AV EN TRAOD AV TVAO METALLISKA AEMNEN.
JP2859269B2 (en) Manufacturing method of reflector
JPH0313551A (en) Production of bidirectional shape memory coil spring
JPH06340963A (en) Shape memory material
JPH09170071A (en) Shape memory alloy element and its production
JPS6237762B2 (en)
SU858971A1 (en) Method and apparatus for producing eccentric transitions
KR960012898B1 (en) Method for making the mass of an acceleration sensor and vibration sensor using preform
CN105840701B (en) A kind of two-way actuating power output marmem and preparation method thereof
KR101844959B1 (en) shape memory alloy spring comprising a resistance wire and manufacturing method thereof