US3028915A - Method and apparatus for lining wells - Google Patents

Method and apparatus for lining wells Download PDF

Info

Publication number
US3028915A
US3028915A US769941A US76994158A US3028915A US 3028915 A US3028915 A US 3028915A US 769941 A US769941 A US 769941A US 76994158 A US76994158 A US 76994158A US 3028915 A US3028915 A US 3028915A
Authority
US
United States
Prior art keywords
resin
well
tube
liner
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US769941A
Inventor
Earl R Jennings
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pan American Petroleum Corp
Original Assignee
Pan American Petroleum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pan American Petroleum Corp filed Critical Pan American Petroleum Corp
Priority to US769941A priority Critical patent/US3028915A/en
Priority to US117257A priority patent/US3134442A/en
Application granted granted Critical
Publication of US3028915A publication Critical patent/US3028915A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B29/00Cutting or destroying pipes, packers, plugs, or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground
    • E21B29/10Reconditioning of well casings, e.g. straightening

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Moulding By Coating Moulds (AREA)

Description

April 10, 1962 E. R. JENNINGS METHOD AND APPARATUS FOR LINING WELLS Filed Oct. 27, 1958 EARL R. JENNINGS INVENTOR.
or to the casing already in the well.
United States Patent 3,028,915 METHSD AND APPARATUS FUR LHQING WELLS Earl R. Jennings, Tulsa, Okla, assignor to Pan American Petroleum Corporation, Tulsa, Okla, a corporation of Delaware Filed Oct. 27, 1958, Ser. No. 769,941 9 Claims. (Cl. 166-46) This invention relates to producing a liner in a well. More particularly, this invention is directed to an improved well liner and a method and apparatus for placing it in a well and especially in a well casing to plug holes or perforations in the casing. This application is a continuation-in-part of my application Serial Number 702,466,
led December 12, 1957, and now abandoned.
Liners have been placed in wells for many purposes including the recovery of circulation in a drilling well, shutting off the flow of undesirable fluids into a well, plugging casing leaks or perforations, and the like. A liner is typically shorter than the depth of the well and small enough to pass through the well and any casing therein. It is lowered to the proper elevation in the well where the liner is sealed at one or both ends to the well wall Such liners have generally been difficult to install and seal in a well, have reduced the diameter of the well and accordingly the producing efficiency of the well, and have generally been too expensive to be widely acceptable in the art.
It is, therefore, an object of this invention to provide a liner for a well which will not materially decrease the diameter of the well, which can be set in the well with a minimum of expense, and which will make a fluid-tight seal with the well Wall or with the casing therein. It is another object of this invention to provide an improved method and apparatus for setting such a liner in a well. Other objects of this invention will become apparent from the following description. In this description reference will be made to the accompanying drawings in which:
FIGURE 1 shows partially in vertically cross section, an apparatus suitable for setting my improved liner in a well;
FIGURE 2 is a cross-sectional view taken on the line 2-2 of FIGURE 1; and
FIGURE 3 is a cross-sectional view similar to FIGURE 2 showing the improved liner and liner-setting apparatus in an expanded position in a conduit.
This invention may be described in brief as a fiber reinforced plastic well liner. It includes an improved proceedure and apparatus for setting and curing a plastic liner in place in a well. An important element of this invention is an expandable setting tool for placing such liners in wells.
Reference will now be made to the drawings for a more detailed description of the procedure for making up a fiber reinforced plastic well liner and an apparatus suitable for running and setting the liner. The liner setting tool includes primarily an expandable mandrel which is made up at the surface and attached to the lower end of a tubing string 11. This mandrel includes a resilient expansion member such as a rubber tube 12. This tube may be expanded diametrically by compressing it axially but preferably the expandable element is expanded by inflating it with a gas or liquid under pressure. Longitudinal or spiral reinforcing cords may be molded in the tube to increase its strength. This tube may be of any length, typically between about one and about 50 feet or more, depending upon the length of the liner which is to be placed in a well. The wall thickness of the tube may also be varied over a substantial range depending upon the diameter and particularly upon the pressure used to inflate the tube. A thickness of from about inch to about one inch, typically about /2-% inch for an inflation pressure of about -500 pounds has been found satisfactory. The external diameter of the tube unstressed is desirably about 1-2 inches less than the diameter of the casing or well in which the liner is to be placed or through which the liner is to be run so that the resin-impregnated fiber or fabric sleeve 13, which is built up around this tube and which eventually will become the liner can be lowered easily through the well to the position at which the liner is to be set.
This elastic or expansible tube is connected to a tubular body 14 by upper and lower clamps 15 and 16, respectively, which hermetically seal the tube to the body so that fluid pressure applied internally will expand or inflate the tube. The body has a central perforated section 17 threaded to the upper head 18 and to the lower head 19. This section has one or more fluid passages or perforations 21 which provide fluid communication between the inside of the tubular body and the inside of the tube 12 so that the tube may be inflated by the application of fluid pressure via the tubing string and the body. A fluid bypass conduit 22, connected as by welding, rolling, or the like at the upper end to upper head 18 and at the lower end to lower head 19, extends through the body and terminates outside the body above and below the ends of the tube 12 so that fluid pressure in the annular space outside the mandrel above and below the tube will be equalized at all times, particularly when the tube is expanded and while the resin in the liner is curing as hereinafter described. A knockout or shear plug 23 is threaded into the body 14 above the by-pass conduit 22. This tubular plug has a closed end 24 protruding a substantial distance inside the body. This shear plug, as will be described in greater detail hereinafter, provides a means for equalizing the pressure inside the tube with the pressure outside the tube so that at the proper time the tube will contract to its normal or unstressed diameter and can be removed from the inside of the liner.
A combination standing and relief valve unit 25 is located at the lower end of the body 14. A standing valve seat 26 is threaded into the lower end of lower head 19. A tubular standing valve member 27 or tubing loading valve, comprising a part of the combination valve unit 25, in cooperation with this seat, permits the Well fluids to enter the body 14 through the annular opening 28 as the mandrel is lowered into the well thereby fillingthetubing with well liquids and equalizing the pressure in the man: drel with the external or well pressure. The lower end of the tubular standing valve member 27 is threaded into a movable relief valve cage 29. A ball valve member 31 together with the lower end of the tubular valve member form a relief valve. This'ball valve member is seated in and held against the lower end of the tubular standing valve member 27 by spring 32.. This ball valve member prevents well fluids from entering the lower end of the tubular standing valve member 27 but permits fluids tobe released from inside the body when the differential pressure across the relief valve is greater than the pressure at which this relief valve is set to open by the adjustment of spring tension adjusting screw 33. screw is set at the surface to maintain sufficient differential pressure. typically 100400 p.s.i., to inflate the rubber tube but to open before the differential pressure is great enough to rupture the tube. This screw is held in a fixed position in the relief valve cage 29 by a lock nut 34. Fins 35 on the upper end of the cage 29 provide a fluid passage between the standing valve seat 26 and the relief valve cage when the standing valve member is in its extreme upper position.
A relief valve housing in the form-of a collar 36 is connected at the upper end to the lower body head 19 and at the lower end to a lower tubing string extension 37.
The adjusting A centraiizer 38 may be mounted on the lower tubing string extension near the mandrel, on the tubing string above the mandrel, or centralizers may be placed both above and below the mandrel to protect the sleeve 13 from rubbing against the casing or the well wall as the sleeve and mandrel are lowered into the well. In some cases for the protection of the sleeve as it is run in the well, the lower centralizer may take the form of a solid gauge or a junk pusher larger than the assembled mandrel and sleeve.
In operation, the mandrel is assembled preferably in substantially the form described above. With the mandrel assembled at the surface, the sleeve 13 which will eventually form the well liner is made up on the expandable tube 12 in substantially the following manner. The tube is first treated on the external surface with a parting compound to prevent the base resins from adhering to the tube surface. A heavy coating of wax such as a high-softening-point carnauba wax is first applied to the complete surface to be covered by the sleeve, allowed to harden, and then buffed smooth. Various silicone moldreleasing agents may additionally or alternatively be applied to the surface of the tube so that the cured resin will not adhere and the setting tool may be released from the liner and withdrawn from the well. A first layer of natural or synthetic fabric 39, preferably a piece of relatively coarse woven nylon or glass cloth such as woven roving as long as the desired l ner and as wide as the periphery of the well, is first impregnated with a resin, desirably a thermosetting resin, and then wrapped around the expansible tube. It may be wound around the tube spirally, i.e., with the edges overlapping, or it may be formed into a tube with a diameter equal to the casing or well diameter and folded or pleated around the tube with the pleats or corrugations running longitudinally of the tube. in some cases, it is desirabie in addition to or in lieu of impregnating this fabric with the thermosettiug resin to brush, trowel, or butter a viscous resin, containing sufficient finely divided fillers such as fullers earth to make it of trowel consistency and a small amount (25%) of a thickening or thixotroping agent such as a porous silica aerogel, on the fabric either before or after the fabric is placed on the expansible tube. This additional resin is desirably more viscous than the resin with which the cloth is initially impregnated. The resin may be made viscous by the use of fillers such as silica flour as is well known in this art. In some cases, a second and even a third layer of this impregnated and/or coated fabric is placed on the expansible tube in the same manner. The number of layers depends generally upon the thickness and strength of the liner desired, upon the conditions or" the casing surface or well wall, and the amount of resin which is to be used. The greater the number of layers the more resin that can be applied and the stronger the liner. The number of layers is. however, limited in some cases by the permissible thickness of the liner. Each of these laminae may be held in place by lightly tacking the lapped ends or by a binding which is wrapped around the tube and the fabric. After the resin-saturated fabric 39 has thus been placed on the tube, it is covered and surrounded by a more rigid but permeable woven fabric or screen 4-3 such as a coarse woven glass or metal screen like hardware cloth. Four to 50 mesh, typically about 20 mesh, hardware or glass cloth is preferred. Owens-Corning Fiberglas Corporations square-woven fabric No. 162 is an example of a preferred glass fabric. Like the inner layers of plastic impregnated fabric, this outer screen is usually first saturated with the resin and then wrapped around the mandrel and the inner layer or layers of fabric thereon. it is also lightly tacked to hold it in position. This screen, also like the fabric underneath, is desirably as long as the ultimate liner and is as wide as the circumference of the pipe to be patched. It may be wrapped around the tube and underlying fabric spirally, i.e., with the edges overlapping, or it may be formed into a tube with a diameter equal to the casing or well diameter and folded or pleated around the tube with the pleats or corrugations running longitudinally of the tube as shown in FiGURE 2. In some cases, the screen may be wide enough to provide more than one thickness when expanded and thus increase the strength of the liner. This screen serves a number of functions including holding the resin-impregnated fabric in place and protecting it from injury by contact with the well wall as the sleeve is lowered into the well. Additionally, it provides a longitudinally permeable member around the fabric as the sleeve and liner are being expanded out into contact with the well wall or the casing. Such permeability has been found r particularly desirable since it permits well fluids to escape from underneath the patch and the surplus unset resin carried in the sleeve to flow under pressure in any dircc tion, particularly vertically to the end of the patch or into holes, perforations, or voids in the casing or well wall. This surplus resin is extruded into voids such as the pores of a formation or into holes behind the casing. One particular advantage of the permeable sleeve and especially the outer lamina or screen is that the surplus resin is squeezed through one or more holes 43 or perforations in a casing 44- and forms on the outside of the casing buttons 45 which appear when set to plug the holes so that any reasonable amount of pressure can. be applied externally and the casing liner will not leak or collapse.
Any resin which will cure or set hard, either naturally or artificaliy, in the well may be empioyed. Typically. these resins are thermosetting resins, i.e., resins which are capable of undergoing a permanent physical change under the influence of well temperature or an artificially induced higher temperature. Polyester or epoxy resins are examples. Other suitable resins include urea. resorcinol, and phenol formaldchydes, and the like. Epon 828, an epoxy resin manufactured by Shell Chemical Company, is an example of a preferred epoxy resin. As is well known in this art, thcsc resins may be combined and various catalysts or curing agents employed in various concentrations so that the setting or curing time or pot life for various well depths or various temperatures may be controlled. Versamid resin 140, a polynmide manufactured by General Mills, Inc, is an example of a preferred catalyst which, in the ratio of about 30 parts by volume to 70 parts of the Epon 828 epoxy resin, has a pot life at room temperature of about 34 /2 hours. Such resins when set, i.e., when they are cured suiliciently to be self-supporting and relatively rigid, are referred to herein as plastics.
After the sleeve or patch has thus been made up on the expansible tube and mandrel and the shear plug 23 has been installed and after the relief valve opening pressure has been set as previously described, the mandrel is ready to be lowered into the well. In most cases, however, before the apparatus is lowered into the well, it is desirable to locate accurately or otherwise know the elevation of a hole in the casing, of the casing perforations, or of a lost circulation zone to be sealed so that the liner can be placed at the proper elevation. Once the proper elevation is determined, it is also sometimes desirable to clean the surface where the liner is to be placed as by the use of chemicals or by abrasive means such as a steel brush, or both. The mandrel and sleeve are then lowered into position either on a wire line or a tubing string. As the mandrel is lowered into the liquids in the well, the standing valve member 27 is raised to permit the well fluids to enter the mandrel and the tubing string and thus substantially equalize the pressures inside and outside the tube and prevent it from being collapsed. When the mandrel has been lowered to the proper depth so that the sleeve is located at a position opposite the zone to be lined, fluid is injected into the tubing string and sufficient pressure applied to expand the tube 12, break the fiber binding or tacking, and expand the sleeve 13 out against the surface of the casing or the well wall. Typically, sufiicient pressure is applied to this fluid to produce a bearing pressure of 50-100 or more pounds per square inch between the tube and the wall and to thereby squeeze the unset plastic or resin within the fibers into any voids or holes 43 in the well wall or in casing 44. The amount of pressure applied at the surface will, of course, depend upon the pop-off pressure of the relief valve, the static liquid level within the well, the density of the fluid in the tubing, the depth of the sleeve in the well, etc.
After fluid is injected into the mandrel to expand the tube and the laminated sleeve out against the Wall of the casing or the well, pressure is maintained on the mandrel for several hours, typically from about to about 24 hours, or more, while the resin is cured or set and produces a hard immobile liner. During the time that the tube is thus expanded the liquid level in the well may tend to vary, especially in wells which are not initially at static equilibrium. During this time the pressures above and below the mandrel are equalized by fluid flow through bypass conduit 22 so that the well fluids will not unseat the expanded tube and flush away the unset resin. Where heat is desired to accelerate curing of the resin, a heat source may be lowered through the tubing string to heat the mandrel and adjacent areas,
After the resin has cured sufficiently to produce a selfsupporting strong liner, typically from several hours to a day or more, the setting tool is released by deflating the expanded tube. This may be accomplished by any of a number of means such as by iniecting gas into the tubing string to displace liquid through the relief valve and then releasing the pressure on the tubing string at the surface so that the internal and external pressure on the expansible tube is balanced or otherwise sufiiciently equalized through the standing valve to collapse the rubber tube. In the preferred embodiment, the pressure within the mandrel may be equalized with the external pressure by dropping a go-devil down the tubing. When it strikes the shear plug 23, the plug is broken and a port 42 through the wall of the upper head 18 is opened to permit liquid within the mandrel to flow to the annular space outside the tubing and equalize the pressures inside and outside the resilient tube so that the tube 12 is con tracted by its own resiliency.
With the expansible tube contracted away from the set liner, the tubing string and mandrel are pulled from the well. As they are removed from the well, the liquid within the tubing string discharges through the open port 42 maintaining only a small diiferential pressure between the inside and outside of the mandrel. The resilient tube can, therefore, normally be withdrawn from the well without difliculty and reused as many times as desired.
The thickness of the plastic liner left in the well depends generally upon the number of fabric and screen laminae used in the sleeve. It may vary from about inch to about /2 inch or more but the liner is typically about %-%1 inch thick. The liner thus leaves sufiicient space to permit the mandrel with another sleeve mounted thereon to be run through the well and the liner to a greater depth so that deeper holes or perforations can subsequently be plugged.
From the foregoing, it can be seen that various modifications of the apparatus and procedure can be made without departing from. the spirit of this invention. For example, whereas in the preferred embodiment an apparatus and procedure for placing a plastic patch in a well have been particularly described, I have found that gen erally the same procedure can be employed not only to place a strong plastic patch over a hole or opening in any container, pressure vessel, or the like, but to place a liner in a vessel regardless of whether there is or is not a hole in the wall of the vessel. And whereas in the above description reference has been made to running the mandrel on a tubing string and expanding it by injecting a fluid into the tube through the tubing string, the mandrel can be run on a wire line and in such instance the tube can be expanded either mechanically as by manipulation of the wire line or by an electric motor, or pneumatically as by the use of gas generating chemicals, or the like. 1
Examples of this type of equipment are illustrated in US. Patent 2,781,854, Boer et al; US. Patent 2,842,212, Lebourg; and US. Patent 2,843,052, Andrus. This invention should, therefore, be construed not to be limited by the description which has been given by way of example. vIt should instead be construed to be limited only by the scope of appended claims.
I claim:
1. A method of patching an opening in a container comprising impregnating multiple layers of fabric larger than said opening witha resin adapted to set and form a plastic, placing at least one layer of a woven screen larger than said opening over said opening to provide a permeable path for resin to flow from said fabric through said opening, superimposing at least one layer of said resin-impregnated fabric on said screen, pressing said resin-impregnated fabric and said screen against said opening before said resin has set to displace part of said resin through said screen and thence through said opening so that said resin forms a button on the end of said opening opposite said fabric and said screen, and holding pressure against said resin-impregnated fabric until said resin is set to form a plastic patch over said opening.
2'. A method of lining a cylindrical vessel comprising building up on an expansible tube an expansible sleeve having multiple layers of thermosetting resin-impregnated fabric and an outer layer of woven screen, said resin being adapted to set and form a plastic, inserting said tube and said sleeve into said vessel, injecting fluid into said tube before said resin has set to expand said tube and said sleeve against the wall of said vessel and squeeze said resin through said screen, maintaining said tube under an internal pressure substantially greater than the pressure in said vessel but outside said tube so that said tube and said sleeve will remain in an expanded position until said resin is set sufficiently to form a self-supporting rigid liner in said vessel, equalizing the pressure in said tube with the pressure in said vessel to contract said tube and release it from said liner, and then withdrawing said tube from said vessel.
3. A method of patching a hole in a pressure vessel comprising building up on a resilient tube an expansible sleeve having multiple layers of fabric impregnated with thermosetting resin and an outer layer of woven screen permeable to said resin, said resin containing sufficient catalyst to set to a rigid plastic, inserting said tube and said sleeve into said pressure vessel, injecting fluid into said tube before said resin has set to expand said tube and said sleeve and press said resin-impregnated fabric and said screen against said opening to displace part of said resin through said screen and thence through said hole so that said resin forms a button on the end of said hole opposite said sleeve, maintaining said tube under an internal fluid pressure substantially greater than the pressure in said vessel so that said tube will remain in an expanded position until said resin is set sufldciently to form a selfsupporting rigid liner in said vessel, releasing the pressure within said tube to equalize the pressure therein with the pressure in said vessel and thereby contract said tube and release it from said liner, and then withdrawing said tube from said pressure vessel.
4. A method of setting a plastic liner in a well comprising lowering into said well an expansible mandrel having a resin-impregnated expansible sleeve mounted on a portion of the length thereof, expanding said mandrel into contact with all of said sleeve before said resin has set, to expel some of the resin therefrom into contact with the well here, maintaining all of said sleeve in an expanded position until said resin is set, contracting said mandrel to release it from said sleeve and then withdrawing all of saidmandrel from said well, whereby the sleeve remains bonded to the well bore to form a liner therefor.
5. A method of setting a plastic liner in a well comprising building up on a portion of the length of an expansible mandrel a resin-impregnated expansible sleeve of laminated fiber, said resin being adapted to be cured in said well, lowering said mandrel and said sleeve into said well, expanding said mandrel into contact with all of said sleeve before said resin has set to expel some of the resin therefrom into contact with the well bore, maintaining all of said sleeve in an expanded position until said resin is cured sufficiently to form a self-supporting liner, contracting said mandrel to release it from said sleeve, and then withdrawing all of said mandrel from said well, whereby the sleeve remains bonded to the well bore to form a liner therefor.
6. A method of setting a plastic liner in a well comprising building up on a portion of the length of an expansible tube of a mandrel a thermosetting, resin-impregnating expansible sleeve by applying an inner layer of fabric over said tube and an outer layer of Woven screen over said fabric, said resin being adapted to be cured at the temperaure of said well, lowering said mandrel and said sleeve into said well before said resin has set, expanding said tube into contact with all of said sleeve to expel some of the resin therefrom into contact with the well bore, maintaining said tube and all of said sleeve in an expanded position until said resin is cured sufliciently to form a self-supporting rigid liner, contracting said tube to release it from said sleeve and then withdrawing all of said mandrel from said well, whereby the sleeve remains bonded to the well bore to form a liner therefor.
7. A method of setting a pastie liner in a well comprising buiiding up on a portion of the length of an expansible tube of a mandrel a laminated sleeve of glass cloth and woven screen by applying said glass cloth to said tube and surrounding said glass cloth by said woven screen, impregnating said sleeve with a viscous resin which contains sufiicient catalyst to cure at the temperature of said well and produce a plastic, lowering said mandrel and said sleeve into said well before said resin is cured, injecting fluid into said mandrel to expand said tube into contact with all of said sleeve to expel some of the resin therefrom into contact with the well bore, maintaining said tube under an internal pressure substantially greater than the well pressure at the elevation of said mandrel so that said tube will be in an expanded position until said resin is cured sufliciently to form a selfsupporting rigid liner, releasing the pressure within said mandrel to contact said tube and release it from said sleeve and then withdrawing all of said mandrel from said well, whereby the sleeve remains bonded to the well bore to form a liner therefor.
8. A method of patching a hole in a well casing comprising impregnating multiple layers of fabric larger than said hole with a resin adapted to set and form a plastic, placing at least one layer of a woven screen larger than said hole over said hole to provide a permeable path for resin to fiow from said fabric through said hole, superimposing at least one layer of said resin-impregnated fabric on said screen, pressing said resin-impregnated fabric and said screen against said hole before said resin has set to displace part of said resin through said screen and thence through said hole so that said resin forms a botton on the end of said hole opposite said fabric and said screen, and holding pressure against said resin-impregnated fabric until said resin is set to form a plastic path over said hole.
9. A method of setting a plastic liner in a well casing comprising lowering into said well an cxpansible mandrel having a resin-impregnated expansible sleeve mounted on a portion of the length thereof, expanding said mandrel into contact with all of said sleeve before said resin has set, to expel some of the resin therefrom into contact with the casing bore, maintaining all of said sleeve in an expanded position until said resin is set, contracting said mandrel to release it from said sleeve and then withdrawing all of 'saidmandrel from said Well, whereby the sleeve remains bonded to the casing to form a liner therefor.
References Cited in the file of this patent UNITED STATES PATENTS Limit i UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,028,915 April 10, 1962 Earl R. Jennings It is hereby certified that error appears in the above numbered patent requiring correction and that the said Letters Patent should read as corrected below.
Column 1, line 39, for "vertically" read vertical column 8, line 19 for "botton" rea I? d button Signed and sealed this 28th day of August 1962.
(SEAL) Attest:
ESTON G. JOHNSON DAVID L. LADD Attesting Officer Commissioner of Patents

Claims (1)

1. A METHOD OF PATCHING AN OPENING IN A CONTAINER COMPRISING IMPREGNATING MULTIPLE LAYERS OF FABRIC LARGER THAN SAID OPENING WITH A RESIN ADAPTED TO SET AND FORM A PLASTIC, PLACING AT LEAST ONE LAYER OF A WOVEN SCREEN LARGER THAN SAID OPENING OVER SAID OPENING TO PROVIDE A PERMEABLE PATH FOR RESIN TO FLOW FROM SAID FABRIC THROUGH SAID OPENING SUPERIMPOSING AT LEAST ONE LAYER OF SAID RESIN-IMPREGNATED FABRIC ON SAID SCREEN PRESSING SAID RESIN-IMPREGNATED FABRIC AND SAID SCREEN AGAINST SAID OPENING BEFORE SAID RESIN HAS SET TO DISPLACE PART OF SAID RESIN THROUGH SAID SCREEN AND THENCE THROUGH SAID OPENING SO THAT RESIN FORMS A BUTTON ON THE END OF SAID OPENING OPPOSITE SAID FABRIC AND SAID SCREEN, AND HOLDING PRESSURE AGAINST SAID RESIN-IMPREGNATED FABRIC UNTIL SAID RESIN IS SET TO FORM A PLASTIC PATCH OVER SAID OPENING.
US769941A 1958-10-27 1958-10-27 Method and apparatus for lining wells Expired - Lifetime US3028915A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US769941A US3028915A (en) 1958-10-27 1958-10-27 Method and apparatus for lining wells
US117257A US3134442A (en) 1958-10-27 1961-05-05 Apparatus for lining wells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US769941A US3028915A (en) 1958-10-27 1958-10-27 Method and apparatus for lining wells

Publications (1)

Publication Number Publication Date
US3028915A true US3028915A (en) 1962-04-10

Family

ID=25086985

Family Applications (1)

Application Number Title Priority Date Filing Date
US769941A Expired - Lifetime US3028915A (en) 1958-10-27 1958-10-27 Method and apparatus for lining wells

Country Status (1)

Country Link
US (1) US3028915A (en)

Cited By (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3104703A (en) * 1960-08-31 1963-09-24 Jersey Prod Res Co Borehole lining or casing
US3111991A (en) * 1961-05-12 1963-11-26 Pan American Petroleum Corp Apparatus for repairing well casing
US3167122A (en) * 1962-05-04 1965-01-26 Pan American Petroleum Corp Method and apparatus for repairing casing
US3179168A (en) * 1962-08-09 1965-04-20 Pan American Petroleum Corp Metallic casing liner
US3191680A (en) * 1962-03-14 1965-06-29 Pan American Petroleum Corp Method of setting metallic liners in wells
US3194310A (en) * 1962-07-02 1965-07-13 Loomis Jean Doyle Method of locating leaks and repairing well tubing in situ
US3203483A (en) * 1962-08-09 1965-08-31 Pan American Petroleum Corp Apparatus for forming metallic casing liner
US3203451A (en) * 1962-08-09 1965-08-31 Pan American Petroleum Corp Corrugated tube for lining wells
US3236302A (en) * 1962-11-05 1966-02-22 Chevron Res Apparatus for attaching and detaching a working base to an underwater well base
US3245471A (en) * 1963-04-15 1966-04-12 Pan American Petroleum Corp Setting casing in wells
US3297092A (en) * 1964-07-15 1967-01-10 Pan American Petroleum Corp Casing patch
US3316969A (en) * 1964-07-16 1967-05-02 Big Three Welding Equipment Co Method of setting hydraulic packers
US3347567A (en) * 1963-11-29 1967-10-17 Regan Forge & Eng Co Double tapered guidance apparatus
EP0089146A2 (en) * 1982-03-12 1983-09-21 The Gates Rubber Company Inflatable packer element
US4971152A (en) * 1989-08-10 1990-11-20 Nu-Bore Systems Method and apparatus for repairing well casings and the like
US5236201A (en) * 1991-10-29 1993-08-17 Vance Sr James C Reinforcement structure for inflatable downhole packers
US5327962A (en) * 1991-08-16 1994-07-12 Head Philip F Well packer
US5664628A (en) * 1993-05-25 1997-09-09 Pall Corporation Filter for subterranean wells
US5785120A (en) * 1996-11-14 1998-07-28 Weatherford/Lamb, Inc. Tubular patch
US5957195A (en) * 1996-11-14 1999-09-28 Weatherford/Lamb, Inc. Wellbore tool stroke indicator system and tubular patch
US6007067A (en) * 1994-03-21 1999-12-28 Hiorth; Espen Multi-operational expansion gasket
US6073692A (en) * 1998-03-27 2000-06-13 Baker Hughes Incorporated Expanding mandrel inflatable packer
US6142230A (en) * 1996-11-14 2000-11-07 Weatherford/Lamb, Inc. Wellbore tubular patch system
US6263966B1 (en) * 1998-11-16 2001-07-24 Halliburton Energy Services, Inc. Expandable well screen
US6325148B1 (en) 1999-12-22 2001-12-04 Weatherford/Lamb, Inc. Tools and methods for use with expandable tubulars
US6354373B1 (en) * 1997-11-26 2002-03-12 Schlumberger Technology Corporation Expandable tubing for a well bore hole and method of expanding
US6425444B1 (en) 1998-12-22 2002-07-30 Weatherford/Lamb, Inc. Method and apparatus for downhole sealing
US6446323B1 (en) 1998-12-22 2002-09-10 Weatherford/Lamb, Inc. Profile formation
US6454013B1 (en) 1997-11-01 2002-09-24 Weatherford/Lamb, Inc. Expandable downhole tubing
US6457533B1 (en) 1997-07-12 2002-10-01 Weatherford/Lamb, Inc. Downhole tubing
US6457518B1 (en) 2000-05-05 2002-10-01 Halliburton Energy Services, Inc. Expandable well screen
US6478091B1 (en) 2000-05-04 2002-11-12 Halliburton Energy Services, Inc. Expandable liner and associated methods of regulating fluid flow in a well
US6513588B1 (en) 1999-09-14 2003-02-04 Weatherford/Lamb, Inc. Downhole apparatus
US6598678B1 (en) 1999-12-22 2003-07-29 Weatherford/Lamb, Inc. Apparatus and methods for separating and joining tubulars in a wellbore
US6675901B2 (en) 2000-06-01 2004-01-13 Schlumberger Technology Corp. Use of helically wound tubular structure in the downhole environment
US6679334B2 (en) 2001-05-30 2004-01-20 Schlumberger Technology Corporation Use of helically wound tubular structure in the downhole environment
US6708769B2 (en) 2000-05-05 2004-03-23 Weatherford/Lamb, Inc. Apparatus and methods for forming a lateral wellbore
US20040065445A1 (en) * 2001-05-15 2004-04-08 Abercrombie Simpson Neil Andrew Expanding tubing
US6732806B2 (en) * 2002-01-29 2004-05-11 Weatherford/Lamb, Inc. One trip expansion method and apparatus for use in a wellbore
US20040131812A1 (en) * 2002-10-25 2004-07-08 Metcalfe Paul David Downhole filter
US6823943B2 (en) 2003-04-15 2004-11-30 Bemton F. Baugh Strippable collapsed well liner
US20050023002A1 (en) * 2003-07-30 2005-02-03 Frank Zamora System and methods for placing a braided tubular sleeve in a well bore
US20050072569A1 (en) * 2003-10-07 2005-04-07 Gary Johnston Expander tool for use in a wellbore
US20060021210A1 (en) * 2002-09-18 2006-02-02 Zifferer L R Corrugated conduit and method of expanding to form a lined tubular member
US20060076147A1 (en) * 2004-10-12 2006-04-13 Lev Ring Methods and apparatus for manufacturing of expandable tubular
US7048050B2 (en) 1994-10-14 2006-05-23 Weatherford/Lamb, Inc. Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US20060219400A1 (en) * 2005-03-30 2006-10-05 Xu Zheng R Inflatable packers
US20070029082A1 (en) * 2005-08-05 2007-02-08 Giroux Richard L Apparatus and methods for creation of down hole annular barrier
US7188687B2 (en) 1998-12-22 2007-03-13 Weatherford/Lamb, Inc. Downhole filter
US20070062694A1 (en) * 2005-07-22 2007-03-22 Lev Ring Apparatus and methods for creation of down hole annular barrier
US20070144734A1 (en) * 2005-03-30 2007-06-28 Xu Zheng R Inflatable packers
US20090126436A1 (en) * 2006-12-12 2009-05-21 Expansion Technologies Tubular expansion device and method of fabrication
US20100229996A1 (en) * 2005-08-01 2010-09-16 Packless Metal Hose, Inc. Method and apparatus for forming a lined conduit
US20130180734A1 (en) * 2012-01-18 2013-07-18 Baker Hughes Incorporated Packing Element with Full Mechanical Circumferential Support
US8800669B2 (en) 2009-04-24 2014-08-12 Weatherford/Lamb, Inc. System and method to expand tubulars below restrictions
US11073004B2 (en) 2013-04-01 2021-07-27 Halliburton Energy Services, Inc. Well screen assembly with extending screen
US11125075B1 (en) 2020-03-25 2021-09-21 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11125046B2 (en) 2019-12-10 2021-09-21 Saudi Arabian Oil Company Deploying wellbore patch for mitigating lost circulation
US11149510B1 (en) 2020-06-03 2021-10-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11255130B2 (en) 2020-07-22 2022-02-22 Saudi Arabian Oil Company Sensing drill bit wear under downhole conditions
US11261678B2 (en) 2019-12-10 2022-03-01 Saudi Arabian Oil Company Deploying wellbore patch for mitigating lost circulation
US11280178B2 (en) 2020-03-25 2022-03-22 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11286733B2 (en) 2020-03-26 2022-03-29 Saudi Arabian Oil Company Deploying material to limit losses of drilling fluid in a wellbore
US11391104B2 (en) 2020-06-03 2022-07-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11414985B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11414963B2 (en) 2020-03-25 2022-08-16 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11414984B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11434707B2 (en) 2020-06-10 2022-09-06 Saudi Arabian Oil Company Lost circulation fabric, method, and deployment systems
US11434714B2 (en) 2021-01-04 2022-09-06 Saudi Arabian Oil Company Adjustable seal for sealing a fluid flow at a wellhead
US11434708B2 (en) 2020-06-10 2022-09-06 Saudi Arabian Oil Company Lost circulation fabric, method, and deployment systems
US11454071B2 (en) 2020-03-26 2022-09-27 Saudi Arabian Oil Company Deploying material to limit losses of drilling fluid in a wellbore
US11459838B2 (en) 2020-06-10 2022-10-04 Saudi Arabian Oil Company Lost circulation fabric, method, and deployment systems
US11506044B2 (en) 2020-07-23 2022-11-22 Saudi Arabian Oil Company Automatic analysis of drill string dynamics
US11572752B2 (en) 2021-02-24 2023-02-07 Saudi Arabian Oil Company Downhole cable deployment
US11585479B2 (en) * 2018-11-16 2023-02-21 Turnbull Infrastructure & Utilities Limited Pipe repair
US11624265B1 (en) 2021-11-12 2023-04-11 Saudi Arabian Oil Company Cutting pipes in wellbores using downhole autonomous jet cutting tools
US11631884B2 (en) 2020-06-02 2023-04-18 Saudi Arabian Oil Company Electrolyte structure for a high-temperature, high-pressure lithium battery
US11643878B2 (en) 2020-03-26 2023-05-09 Saudi Arabian Oil Company Deploying material to limit losses of drilling fluid in a wellbore
US11668143B2 (en) 2019-12-10 2023-06-06 Saudi Arabian Oil Company Deploying wellbore patch for mitigating lost circulation
US11697991B2 (en) 2021-01-13 2023-07-11 Saudi Arabian Oil Company Rig sensor testing and calibration
US11719089B2 (en) 2020-07-15 2023-08-08 Saudi Arabian Oil Company Analysis of drilling slurry solids by image processing
US11727555B2 (en) 2021-02-25 2023-08-15 Saudi Arabian Oil Company Rig power system efficiency optimization through image processing
US11846151B2 (en) 2021-03-09 2023-12-19 Saudi Arabian Oil Company Repairing a cased wellbore
US11867008B2 (en) 2020-11-05 2024-01-09 Saudi Arabian Oil Company System and methods for the measurement of drilling mud flow in real-time
US11867012B2 (en) 2021-12-06 2024-01-09 Saudi Arabian Oil Company Gauge cutter and sampler apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1094532A (en) * 1913-01-21 1914-04-28 Arthur Lee Collins Well.
US1449672A (en) * 1922-05-17 1923-03-27 Hallvarson Peter William Tool for making and repairing casings for wells, boreholes, or the like
US1981525A (en) * 1933-12-05 1934-11-20 Bailey E Price Method of and apparatus for drilling oil wells
US2051713A (en) * 1934-10-05 1936-08-18 J H Mcevoy & Company Set shoe seal and setting tool
US2111196A (en) * 1935-02-26 1938-03-15 Nat Supply Co Well casing joint
US2220773A (en) * 1938-11-14 1940-11-05 Ralph O Moore Method of welding oil well casings
US2419313A (en) * 1943-12-02 1947-04-22 Standard Oil Dev Co Apparatus for preventing contamination of well liners
US2672162A (en) * 1949-06-24 1954-03-16 Brauer Morris Apparatus for plugging holes in pipe lines
US2804148A (en) * 1953-05-14 1957-08-27 California Research Corp Method and apparatus for providing a rigid tube in a well bore
US2934806A (en) * 1954-03-15 1960-05-03 Wood Steel Co Alan Apparatus for inserting a dam in a tube

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1094532A (en) * 1913-01-21 1914-04-28 Arthur Lee Collins Well.
US1449672A (en) * 1922-05-17 1923-03-27 Hallvarson Peter William Tool for making and repairing casings for wells, boreholes, or the like
US1981525A (en) * 1933-12-05 1934-11-20 Bailey E Price Method of and apparatus for drilling oil wells
US2051713A (en) * 1934-10-05 1936-08-18 J H Mcevoy & Company Set shoe seal and setting tool
US2111196A (en) * 1935-02-26 1938-03-15 Nat Supply Co Well casing joint
US2220773A (en) * 1938-11-14 1940-11-05 Ralph O Moore Method of welding oil well casings
US2419313A (en) * 1943-12-02 1947-04-22 Standard Oil Dev Co Apparatus for preventing contamination of well liners
US2672162A (en) * 1949-06-24 1954-03-16 Brauer Morris Apparatus for plugging holes in pipe lines
US2804148A (en) * 1953-05-14 1957-08-27 California Research Corp Method and apparatus for providing a rigid tube in a well bore
US2934806A (en) * 1954-03-15 1960-05-03 Wood Steel Co Alan Apparatus for inserting a dam in a tube

Cited By (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3104703A (en) * 1960-08-31 1963-09-24 Jersey Prod Res Co Borehole lining or casing
US3111991A (en) * 1961-05-12 1963-11-26 Pan American Petroleum Corp Apparatus for repairing well casing
US3191680A (en) * 1962-03-14 1965-06-29 Pan American Petroleum Corp Method of setting metallic liners in wells
US3167122A (en) * 1962-05-04 1965-01-26 Pan American Petroleum Corp Method and apparatus for repairing casing
US3194310A (en) * 1962-07-02 1965-07-13 Loomis Jean Doyle Method of locating leaks and repairing well tubing in situ
US3203483A (en) * 1962-08-09 1965-08-31 Pan American Petroleum Corp Apparatus for forming metallic casing liner
US3179168A (en) * 1962-08-09 1965-04-20 Pan American Petroleum Corp Metallic casing liner
US3203451A (en) * 1962-08-09 1965-08-31 Pan American Petroleum Corp Corrugated tube for lining wells
US3236302A (en) * 1962-11-05 1966-02-22 Chevron Res Apparatus for attaching and detaching a working base to an underwater well base
US3245471A (en) * 1963-04-15 1966-04-12 Pan American Petroleum Corp Setting casing in wells
US3347567A (en) * 1963-11-29 1967-10-17 Regan Forge & Eng Co Double tapered guidance apparatus
US3297092A (en) * 1964-07-15 1967-01-10 Pan American Petroleum Corp Casing patch
US3316969A (en) * 1964-07-16 1967-05-02 Big Three Welding Equipment Co Method of setting hydraulic packers
EP0264973A3 (en) * 1982-03-12 1989-01-25 The Gates Rubber Company Inflatable packer element
EP0264973A2 (en) * 1982-03-12 1988-04-27 The Gates Rubber Company Inflatable packer element
EP0089146A2 (en) * 1982-03-12 1983-09-21 The Gates Rubber Company Inflatable packer element
EP0089146A3 (en) * 1982-03-12 1985-04-10 The Gates Rubber Company Inflatable packer element
US4971152A (en) * 1989-08-10 1990-11-20 Nu-Bore Systems Method and apparatus for repairing well casings and the like
US5327962A (en) * 1991-08-16 1994-07-12 Head Philip F Well packer
US5236201A (en) * 1991-10-29 1993-08-17 Vance Sr James C Reinforcement structure for inflatable downhole packers
US5909773A (en) * 1993-05-25 1999-06-08 Pall Corporation Method of repairing a damaged well
US5664628A (en) * 1993-05-25 1997-09-09 Pall Corporation Filter for subterranean wells
US6007067A (en) * 1994-03-21 1999-12-28 Hiorth; Espen Multi-operational expansion gasket
US7048050B2 (en) 1994-10-14 2006-05-23 Weatherford/Lamb, Inc. Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US5957195A (en) * 1996-11-14 1999-09-28 Weatherford/Lamb, Inc. Wellbore tool stroke indicator system and tubular patch
US5785120A (en) * 1996-11-14 1998-07-28 Weatherford/Lamb, Inc. Tubular patch
US6142230A (en) * 1996-11-14 2000-11-07 Weatherford/Lamb, Inc. Wellbore tubular patch system
US6457533B1 (en) 1997-07-12 2002-10-01 Weatherford/Lamb, Inc. Downhole tubing
US7124830B2 (en) 1997-11-01 2006-10-24 Weatherford/Lamb, Inc. Methods of placing expandable downhole tubing in a wellbore
US6920935B2 (en) 1997-11-01 2005-07-26 Weatherford/Lamb, Inc. Expandable downhole tubing
US6454013B1 (en) 1997-11-01 2002-09-24 Weatherford/Lamb, Inc. Expandable downhole tubing
US6354373B1 (en) * 1997-11-26 2002-03-12 Schlumberger Technology Corporation Expandable tubing for a well bore hole and method of expanding
US6073692A (en) * 1998-03-27 2000-06-13 Baker Hughes Incorporated Expanding mandrel inflatable packer
US6263966B1 (en) * 1998-11-16 2001-07-24 Halliburton Energy Services, Inc. Expandable well screen
US20050252662A1 (en) * 1998-12-22 2005-11-17 Weatherford/Lamb, Inc. Apparatus and method for expanding a tubular
US6688400B2 (en) 1998-12-22 2004-02-10 Weatherford/Lamb, Inc. Downhole sealing
US6446323B1 (en) 1998-12-22 2002-09-10 Weatherford/Lamb, Inc. Profile formation
US6527049B2 (en) 1998-12-22 2003-03-04 Weatherford/Lamb, Inc. Apparatus and method for isolating a section of tubing
US6543552B1 (en) 1998-12-22 2003-04-08 Weatherford/Lamb, Inc. Method and apparatus for drilling and lining a wellbore
US20030132032A1 (en) * 1998-12-22 2003-07-17 Weatherford/Lamb, Inc. Method and apparatus for drilling and lining a wellbore
US7188687B2 (en) 1998-12-22 2007-03-13 Weatherford/Lamb, Inc. Downhole filter
US7168497B2 (en) 1998-12-22 2007-01-30 Weatherford/Lamb, Inc. Downhole sealing
US7124821B2 (en) 1998-12-22 2006-10-24 Weatherford/Lamb, Inc. Apparatus and method for expanding a tubular
US20040149454A1 (en) * 1998-12-22 2004-08-05 Weatherford/Lamb, Inc. Downhole sealing
US6702029B2 (en) 1998-12-22 2004-03-09 Weatherford/Lamb, Inc. Tubing anchor
US7117957B2 (en) 1998-12-22 2006-10-10 Weatherford/Lamb, Inc. Methods for drilling and lining a wellbore
US6425444B1 (en) 1998-12-22 2002-07-30 Weatherford/Lamb, Inc. Method and apparatus for downhole sealing
US20040216878A1 (en) * 1998-12-22 2004-11-04 Weatherford/Lamb, Inc. Method and apparatus for drilling and lining a wellbore
US6923261B2 (en) 1998-12-22 2005-08-02 Weatherford/Lamb, Inc. Apparatus and method for expanding a tubular
US20040079528A1 (en) * 1998-12-22 2004-04-29 Weatherford/Lamb, Inc. Tubing anchor
US6976539B2 (en) 1998-12-22 2005-12-20 Weatherford/Lamb, Inc. Tubing anchor
US6742606B2 (en) * 1998-12-22 2004-06-01 Weatherford/Lamb, Inc. Method and apparatus for drilling and lining a wellbore
US6513588B1 (en) 1999-09-14 2003-02-04 Weatherford/Lamb, Inc. Downhole apparatus
US6325148B1 (en) 1999-12-22 2001-12-04 Weatherford/Lamb, Inc. Tools and methods for use with expandable tubulars
US7004257B2 (en) 1999-12-22 2006-02-28 Weatherford/Lamb, Inc Apparatus and methods for separating and joining tubulars in a wellbore
US6899181B2 (en) 1999-12-22 2005-05-31 Weatherford/Lamb, Inc. Methods and apparatus for expanding a tubular within another tubular
US20050077046A1 (en) * 1999-12-22 2005-04-14 Weatherford/Lamb, Inc. Apparatus and methods for separating and joining tubulars in a wellbore
US6851475B2 (en) 1999-12-22 2005-02-08 Weatherford/Lamb, Inc. Apparatus and methods for separating and joining tubulars in a wellbore
US6598678B1 (en) 1999-12-22 2003-07-29 Weatherford/Lamb, Inc. Apparatus and methods for separating and joining tubulars in a wellbore
US6725918B2 (en) 2000-05-04 2004-04-27 Halliburton Energy Services, Inc. Expandable liner and associated methods of regulating fluid flow in a well
US6478091B1 (en) 2000-05-04 2002-11-12 Halliburton Energy Services, Inc. Expandable liner and associated methods of regulating fluid flow in a well
US7267175B2 (en) 2000-05-05 2007-09-11 Weatherford/Lamb, Inc. Apparatus and methods for forming a lateral wellbore
US7108062B2 (en) 2000-05-05 2006-09-19 Halliburton Energy Services, Inc. Expandable well screen
US6457518B1 (en) 2000-05-05 2002-10-01 Halliburton Energy Services, Inc. Expandable well screen
US20050161222A1 (en) * 2000-05-05 2005-07-28 Haugen David M. Apparatus and methods for forming a lateral wellbore
US20040159466A1 (en) * 2000-05-05 2004-08-19 Weatherford/Lamb, Inc. Apparatus and methods for forming a lateral wellbore
US6708769B2 (en) 2000-05-05 2004-03-23 Weatherford/Lamb, Inc. Apparatus and methods for forming a lateral wellbore
US20040060695A1 (en) * 2000-05-05 2004-04-01 Halliburton Energy Services, Inc. Expandable well screen
US6675901B2 (en) 2000-06-01 2004-01-13 Schlumberger Technology Corp. Use of helically wound tubular structure in the downhole environment
US20040065445A1 (en) * 2001-05-15 2004-04-08 Abercrombie Simpson Neil Andrew Expanding tubing
US7172027B2 (en) 2001-05-15 2007-02-06 Weatherford/Lamb, Inc. Expanding tubing
US6679334B2 (en) 2001-05-30 2004-01-20 Schlumberger Technology Corporation Use of helically wound tubular structure in the downhole environment
US6732806B2 (en) * 2002-01-29 2004-05-11 Weatherford/Lamb, Inc. One trip expansion method and apparatus for use in a wellbore
US7926160B2 (en) 2002-09-18 2011-04-19 Packless Industries Method of forming a lined tubular member
US8434207B2 (en) 2002-09-18 2013-05-07 Packless Industries Corrugated conduit and method of expanding to form a lined tubular member
US20060021210A1 (en) * 2002-09-18 2006-02-02 Zifferer L R Corrugated conduit and method of expanding to form a lined tubular member
US7093653B2 (en) 2002-10-25 2006-08-22 Weatherford/Lamb Downhole filter
US20040131812A1 (en) * 2002-10-25 2004-07-08 Metcalfe Paul David Downhole filter
US6823943B2 (en) 2003-04-15 2004-11-30 Bemton F. Baugh Strippable collapsed well liner
WO2005012689A1 (en) * 2003-07-30 2005-02-10 Halliburton Energy Services, Inc. System and method for placing a braided, tubular sleeve in a well bore
US7082998B2 (en) 2003-07-30 2006-08-01 Halliburton Energy Services, Inc. Systems and methods for placing a braided, tubular sleeve in a well bore
US20050023002A1 (en) * 2003-07-30 2005-02-03 Frank Zamora System and methods for placing a braided tubular sleeve in a well bore
US20050072569A1 (en) * 2003-10-07 2005-04-07 Gary Johnston Expander tool for use in a wellbore
US7308944B2 (en) 2003-10-07 2007-12-18 Weatherford/Lamb, Inc. Expander tool for use in a wellbore
US20060076147A1 (en) * 2004-10-12 2006-04-13 Lev Ring Methods and apparatus for manufacturing of expandable tubular
US7757774B2 (en) 2004-10-12 2010-07-20 Weatherford/Lamb, Inc. Method of completing a well
US20070144734A1 (en) * 2005-03-30 2007-06-28 Xu Zheng R Inflatable packers
US20060219400A1 (en) * 2005-03-30 2006-10-05 Xu Zheng R Inflatable packers
US8894069B2 (en) * 2005-03-30 2014-11-25 Schlumberger Technology Corporation Inflatable packers
US7331581B2 (en) * 2005-03-30 2008-02-19 Schlumberger Technology Corporation Inflatable packers
US7475723B2 (en) 2005-07-22 2009-01-13 Weatherford/Lamb, Inc. Apparatus and methods for creation of down hole annular barrier
US20070062694A1 (en) * 2005-07-22 2007-03-22 Lev Ring Apparatus and methods for creation of down hole annular barrier
US20100229996A1 (en) * 2005-08-01 2010-09-16 Packless Metal Hose, Inc. Method and apparatus for forming a lined conduit
US7798225B2 (en) 2005-08-05 2010-09-21 Weatherford/Lamb, Inc. Apparatus and methods for creation of down hole annular barrier
US20070029082A1 (en) * 2005-08-05 2007-02-08 Giroux Richard L Apparatus and methods for creation of down hole annular barrier
US7861744B2 (en) * 2006-12-12 2011-01-04 Expansion Technologies Tubular expansion device and method of fabrication
US20090126436A1 (en) * 2006-12-12 2009-05-21 Expansion Technologies Tubular expansion device and method of fabrication
US8800669B2 (en) 2009-04-24 2014-08-12 Weatherford/Lamb, Inc. System and method to expand tubulars below restrictions
US20130180734A1 (en) * 2012-01-18 2013-07-18 Baker Hughes Incorporated Packing Element with Full Mechanical Circumferential Support
US8973667B2 (en) * 2012-01-18 2015-03-10 Baker Hughes Incorporated Packing element with full mechanical circumferential support
US11073004B2 (en) 2013-04-01 2021-07-27 Halliburton Energy Services, Inc. Well screen assembly with extending screen
US11585479B2 (en) * 2018-11-16 2023-02-21 Turnbull Infrastructure & Utilities Limited Pipe repair
US11898686B2 (en) 2018-11-16 2024-02-13 Turnbull Infrastructure & Utilities Limited Pipe repair
US11668143B2 (en) 2019-12-10 2023-06-06 Saudi Arabian Oil Company Deploying wellbore patch for mitigating lost circulation
US11261678B2 (en) 2019-12-10 2022-03-01 Saudi Arabian Oil Company Deploying wellbore patch for mitigating lost circulation
US11125046B2 (en) 2019-12-10 2021-09-21 Saudi Arabian Oil Company Deploying wellbore patch for mitigating lost circulation
US11414963B2 (en) 2020-03-25 2022-08-16 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11280178B2 (en) 2020-03-25 2022-03-22 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11125075B1 (en) 2020-03-25 2021-09-21 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11643878B2 (en) 2020-03-26 2023-05-09 Saudi Arabian Oil Company Deploying material to limit losses of drilling fluid in a wellbore
US11454071B2 (en) 2020-03-26 2022-09-27 Saudi Arabian Oil Company Deploying material to limit losses of drilling fluid in a wellbore
US11286733B2 (en) 2020-03-26 2022-03-29 Saudi Arabian Oil Company Deploying material to limit losses of drilling fluid in a wellbore
US11414984B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11414985B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11631884B2 (en) 2020-06-02 2023-04-18 Saudi Arabian Oil Company Electrolyte structure for a high-temperature, high-pressure lithium battery
US11391104B2 (en) 2020-06-03 2022-07-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11421497B2 (en) 2020-06-03 2022-08-23 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11149510B1 (en) 2020-06-03 2021-10-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11719063B2 (en) 2020-06-03 2023-08-08 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11434708B2 (en) 2020-06-10 2022-09-06 Saudi Arabian Oil Company Lost circulation fabric, method, and deployment systems
US11459838B2 (en) 2020-06-10 2022-10-04 Saudi Arabian Oil Company Lost circulation fabric, method, and deployment systems
US11434707B2 (en) 2020-06-10 2022-09-06 Saudi Arabian Oil Company Lost circulation fabric, method, and deployment systems
US11719089B2 (en) 2020-07-15 2023-08-08 Saudi Arabian Oil Company Analysis of drilling slurry solids by image processing
US11255130B2 (en) 2020-07-22 2022-02-22 Saudi Arabian Oil Company Sensing drill bit wear under downhole conditions
US11506044B2 (en) 2020-07-23 2022-11-22 Saudi Arabian Oil Company Automatic analysis of drill string dynamics
US11867008B2 (en) 2020-11-05 2024-01-09 Saudi Arabian Oil Company System and methods for the measurement of drilling mud flow in real-time
US11434714B2 (en) 2021-01-04 2022-09-06 Saudi Arabian Oil Company Adjustable seal for sealing a fluid flow at a wellhead
US11697991B2 (en) 2021-01-13 2023-07-11 Saudi Arabian Oil Company Rig sensor testing and calibration
US11572752B2 (en) 2021-02-24 2023-02-07 Saudi Arabian Oil Company Downhole cable deployment
US11727555B2 (en) 2021-02-25 2023-08-15 Saudi Arabian Oil Company Rig power system efficiency optimization through image processing
US11846151B2 (en) 2021-03-09 2023-12-19 Saudi Arabian Oil Company Repairing a cased wellbore
US11624265B1 (en) 2021-11-12 2023-04-11 Saudi Arabian Oil Company Cutting pipes in wellbores using downhole autonomous jet cutting tools
US11867012B2 (en) 2021-12-06 2024-01-09 Saudi Arabian Oil Company Gauge cutter and sampler apparatus

Similar Documents

Publication Publication Date Title
US3028915A (en) Method and apparatus for lining wells
US3111991A (en) Apparatus for repairing well casing
US3385367A (en) Sealing device for perforated well casing
US3134442A (en) Apparatus for lining wells
US7806193B2 (en) Swellable packer with back-up systems
US2804148A (en) Method and apparatus for providing a rigid tube in a well bore
US3203451A (en) Corrugated tube for lining wells
US3203483A (en) Apparatus for forming metallic casing liner
US3364993A (en) Method of well casing repair
US3179168A (en) Metallic casing liner
US3194310A (en) Method of locating leaks and repairing well tubing in situ
US3067819A (en) Casing interliner
CN113039344B (en) Liner installation with inflatable packer
US3099318A (en) Well screening device
US3389752A (en) Zone protection
US7478679B2 (en) Field assembled packer
US3167122A (en) Method and apparatus for repairing casing
US4191383A (en) Inflatable packer and method of constructing same
US5034180A (en) Method for installing a substantially rigid thermoplastic pipe in an existing pipeline
US4253676A (en) Inflatable packer element with integral support means
US7082998B2 (en) Systems and methods for placing a braided, tubular sleeve in a well bore
US8464800B2 (en) Expandable member for downhole tool
JPH05507331A (en) Preforms, apparatus and methods for casing and/or lining cylinders
US4967846A (en) Progressively inflated packers
JPS6220356B2 (en)