US3028427A - Germicidal iodine-quaternary ammonium compound complexes - Google Patents

Germicidal iodine-quaternary ammonium compound complexes Download PDF

Info

Publication number
US3028427A
US3028427A US699436A US69943657A US3028427A US 3028427 A US3028427 A US 3028427A US 699436 A US699436 A US 699436A US 69943657 A US69943657 A US 69943657A US 3028427 A US3028427 A US 3028427A
Authority
US
United States
Prior art keywords
iodine
quaternary ammonium
ammonium compound
germicidal
quaternary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US699436A
Inventor
Murray W Winicov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WEST LABORATORIES Inc
Original Assignee
WEST LABORATORIES Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WEST LABORATORIES Inc filed Critical WEST LABORATORIES Inc
Priority to US699436A priority Critical patent/US3028427A/en
Priority to CH5449458A priority patent/CH362420A/en
Priority to US836909A priority patent/US3028301A/en
Application granted granted Critical
Publication of US3028427A publication Critical patent/US3028427A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/12Iodine, e.g. iodophors; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent

Definitions

  • This invention relates to new germicidal compositions wherein iodine, as an active germicidal agent, is bound to or complexed with certain surface active agents or carriers of the quaternary ammonium type having characteristic polyethoxy and fatty alkyl substituents, in a manner to both stabilize the iodine and to solubilize the iodine in aqueous media.
  • iodine-quarternary ammonium complexes having unique and advantageous properties can be prepared by employing as the complexing agent certain quaternary ammonium compounds which for the most part have little germicidal activity, but which have the capacity to bind or complex elemental iodine in a manner to markedly enhance the binding and therefore prolong the germicidal activity of the bound iodine.
  • the complexing agents forming these unique iodinequaternary ammonium complexes are quaternary ammonium compounds having as characteristic substituents one to two C to C fatty alkyl groups and one to two oxyethylene radicals providing a total of 2 to 200 oxyethylene units.
  • Such compounds can be represented by the formula:
  • substituents R and R is a C to C fatty alkyl group
  • at least one of the substituents R and R is a (CH CH O) 'H group wherein the cumulative value for y in the substituents R and R is an integer within the range of 2 to 200
  • R when not otherwise provided for is selected from the group consisting of lower alkyl, phenyl and benzyl radicals
  • R is selected from the group consisting of lower alkyl, benzyl, and substituted benzyl radicals including lower alkyl benzyl, lower alkoxy benzyl, nitro-benzyl and halo-benzyl radicals
  • X is a salt forming anionic radical.
  • a number of compounds according to the above formula are quaternary compounds based on commercially available corresponding tertiary amines which can be readily quaternized by reaction with a compound of the formula R X where R, and X have the significance above noted.
  • quaternary compounds embraced by the above formula have little germicidal activity.
  • the basic advantages of the new iodine-quaternary ammonium complexes stem not from the germicidal activity of the quaternary compound per se, but from the superior iodine binding or carrying capacity of the herein disclosed quaternary ammonium compounds.
  • a modified test for germicidal capacity (advantageous in view of the very firm binding of iodine in the new compositions) which involves a preliminary trcatment with adsorbent carbon as in (b) above followed by germicidal capacity testing as in (0) above of the residual iodine-carrier solution after carbon treatment.
  • the iodine although much more firmly bound than in other surface active agentiodine complexes heretofore available, remains releasable in the presence of microorganisms (viruses, bacteria, fungi, and'the like) to effect its germicidal or fungicidal action.
  • This firmer binding of the iodine has the practical significance of providing in the new compositions a much prolonged germicidal and fungicidal action, even under adverse conditions, as when exposed on large surfaces to the atmosphere.
  • Typical uses and applications of these new compositions include preparations for environmental sanitation, either alone, or in combination with synthetic detergents, for the prolonged disinfection of enclosed areas, special equipment such as food handling and hospital equipment, and the like.
  • the new compositions the proportions of iodine to quaternary ammonium compound can be varied between wide limits, depending in part upon the intended use of the composition. Highly advantageous results are obtained when 5 to 800% of iodine, based on the weight of the quaternary compound, is present in the complex. In some instances, however, an amount of iodine somewhat lower than 5% may provide the desired germicidal properties in the composition.
  • Preparation of the new complexes of iodine and quaternary ammonium compound isaccomplished by effecting dissolution of elemental iodine in the quarternary am monium compound.
  • Simple mechanical mixing or grinding will frequently cause the desired amount of iodine to dissolve in and become complexed with the quaternary ammonium compound.
  • the iodine can be dissolved in a volatile solvent such as ethanol, or isopropyl alcohol and the solvent solution then mixed with the quaternary ammonium compound.
  • the solvent can be left in the product or, if desired, removed as by distillation.
  • the particular manner of complexing, whether by mechanical mixing or with the aid of a solvent does not appear to affect the properties of the resulting complex.
  • iodine-quaternary ammonium complexes as disclosed and claimed herein embrace complexes containing iodine either alone or as iodine halide in combination with chlorine or bromine.
  • Newiodine compositions in accordance with the present invention can be prepared and distributed as the full strength complex of iodine and quaternary ammonium compound, as a solid or liquid concentrate adapted for dilution with water to forma use solution, or as a preparation in use form in which the complex may be associated with very substantial amounts of liquid or solid diluent.
  • Such diluent should generally include acomponent providing an acid reaction in aqueous media
  • the complexes of iodine with the various quaternary ammonium compounds tabulated above were prepared by mechanically mixing 5 parts by weight of the quaternary to 1 part by weight of iodine (20% iodine based on the Weight of quaternary) until the iodine was all taken up or dissolved in the quaternary.
  • a quantity of each complex was dissolved in Water in a concentration to provide ppm. of titratable iodine (using at titrating agent .01 N sodium thiosulfate).
  • a 100 ppm. iodine solution was also prepared using for comparison purposes the preferred iodine-carrier compo-' sition as disclosed in Darragh Patent No. 2,679,533, do decyl benzyl trimethyl ammonium chloride-iodine complex, hereinafter identified in tables and text as Darragh.
  • 200 ml. of each 100 ppm. solution was placed in a 250 ml. beaker and 0.1 gm.
  • adsorbent carbon (Darco C-60) was added to each beaker.
  • the carbon suspensions were agitated uniformly for 60 minutes and then allowed to settle.
  • the supernatent liquid was used for determination of iodine loss due to'carbon adsorption and in certain instances for germicidal capacity test.
  • Lugols solution 5% iodine and 10% potassium iodide in water
  • Solutions of each quaternary compound were prepared of the same concentration as the quaternary in the respective 100 ppm. (iodine) complex solutions above mentioned and 200 ml. of each solution was treated with 0.1 gm. of adsorbent carbon (Darco G-60) for one minute as above described.
  • Lugols solu tion was diluted to a concentration providing 100 ppm. of titratable iodine and similarly treated with carbon.
  • the continued activity in the second increment is due to the quaternary compound itself as indicated by the substantial equivalence in the two figures (73 and 77), and as verified by the absence of titratable iodine after the addition of the second increment.
  • This germicidal capacity testing (a slight modification of the Cantor-Shelanski method) is carried out as follows: In separate 1 liter flasks equipped with magnetic stirrers are placed 450 ml. of sterile hard (200 ppm.) water buflered to pH 4.2 with 5% NaH PO To each flask or" this sterile solution is added ml. of a supernatent carbon treated quaternary iodine solution above referred to. The flasks are then ready for the addition of increments of 24 hr. cultures of S. lyphosa grown on AOAC nutrient broth. The increment size used in each case was 1.0 ml. containing 6x10 organisms. (Thus the count per ml.
  • Another meaningful test of performance is the determination of stability to loss of iodine due to vaporization. Such determination is conducted by preparing solutions of the various quaternary-iodine complexes containing approximately 1000 ppm. of iodine, as titratable with 0.01 normal sodium thiosulfate solution, placing 30 ml. of each test solution in a 250 ml. beaker and 10 cc. of the same solution in a glass stoppered flask (as a control). The beakers are then weighed, placed on a water bath at 40 C. (water in the bath being /2 in. above the liquid level in the beakersland the control flasks are similarly placed on the water bath.
  • iodinequaternary complexes were prepared using the various quaternaries identified in Table I but containing in each instance 1 part of iodine to 10 parts of quaternary (10% iodine based on the weight of quaternary).
  • the letters identifying various samples have the significance in identifying the quaternary as set forth in Table I.
  • EXAMPLE III Fifteen gm. of elemental iodine is dissolved in 150 gm. of the quaternary ammonium compound identified as (c) .in Table I, by stirring at 45 C. for 15 minutes. One hundred fifty-five (155) grams of this quaternary arnrnonium-iodine complex is mixed with 465 gm. of powdered urea and intimately ground together to form a homogeneous powder, which readily dissolves in water to form germicidal solutions containing 100 to 1000 p.p.m., or other required amounts, of titratable iodine. A sample of the powdered formulation after a one yearstorage period in a closed container showedno loss of titratable iodine.
  • Elemental iodine 0.1 gm. is complexed with 1.0 gm. of the quaternary ammonium compound identified as (c) in Table I by stirring together at 50 C. for one hour.
  • This complex is dissolved in 1000 ml. of distilled water giving a solution containing 98.4 p.p.m. of titratable iodine.
  • 1.851 gm. of a-cellulosic material is agitated at room temperature for 20 min.
  • the resulting slurry is then filtered on a sintered glass plate and washed with 50 ml. of distilled water.
  • the residual a-cellulosic material paper pulp
  • the residual a-cellulosic material paper pulp
  • the residual a-cellulosic material paper pulp
  • the residual a-cellulosic material paper pulp
  • iodine carrier in place of the quaternary ammonium compound
  • a nonionic surface active agent nonyl phenol ethylene oxide condensate containing 9-1() mols of ethylene oxide per mole of nonyl phenol.
  • iodine chloride and iodine bromide complexes disclosed in Examples V and VI are readily dissolved in water to form germicidal concentrates or use dilutions containing to 1000 p.p.m., or other desired amount, of titratable iodine equivalent.
  • a herein disclosed quaternary ammonium compound in an amount in excess of about 12% based on a total amount of iodine in the formulation will act to substantially reduce the rate at which iodine is lost by vaporization from aqueous dilutions of such formulation.
  • a practical complexing can be achieved with even smaller amounts thereof, i.c., as little as about 10% of thetotal iodine present in the formulation.
  • the degree of vapor pressure lowering in these formulations increases with the increase in the amount or proportion of quaternary ammonium compound with respect to the total of iodine present and, in some instances, where quick germicidal action rather than prolonged germicidal or germistatic action is desired, care must be taken to avoid inclusion of too much of the quaternary ammonium compound or the degree of complexing may act to prevent sufficiently rapid release of iodine for the particular germicidal purpose.
  • iodine complexed with a herein disclosed quarternary ammonium compound is normally within the range of about to 50% based on the weight of quaternary ammonium compound, it will be evident from the foregoing that, in the general role of iodine complexing in aqueous formulations, including those having other iodine complexing agents present, the proportion of iodine to quaternary ammonium compound may fall within the broad range earlier referred to herein of about 5 to 800%, and in exceptional cases, as high as about 1000%.
  • quaternary ammonium compounds in iodine formulations can be realized either by adding in the formulation process a preformed complex of iodine and quaternary ammonium compound, or alternatively, by adding the free quaternary ammonium compound to a formulation containing iodine. Accordingly, an important modification or adaptation of the present invention is understood to constitute the control of iodine complexing in an iodine formulation by incorporation in such formulation of an amount of quaterary ammonium compound of the type herein disclosed in excess of about 12% based on the total weight of iodine in such formulation.
  • the novelty in this regard is considered to comprise both the method and the new type of complexed iodine formulations containing such minimum amount of quaternary ammonium compound.
  • EXAMPLE VII A germicidal formulation is prepared containing iodine complexed with nonionic surface active agents and having the following composition:
  • test solution (D) is prepared by dissolving iodine in distilled water to a concentration of 100 ppm.
  • EXAMPLE VH1 An iodine formulation is prepared by dissolving 2.1 g. of NaI of 1.8 gm. of iodine in a total of 10 m1. of water. Quaternary ammonium compound a inTable I (0.3 gm.) is dissolved in ethanol to provide ml. of alcoholic solution which is combined with said aqueous iodine solution.
  • This provides a proportion of iodine to quaternary ammonium compound of 6 to 1 (600% iodine based on the weight of quaternary ammonium compound), and this small amount of quaternary ammonium compound greatly reduces the iodine loss due to vaporization both in the concentrate and in aqueous dilutions thereof.
  • the new iodine-quaternary ammonium complexes in accordance with the present invention have many diverse uses and that the special type of virucidal, germicidal, germistatic, fungicidal or fungistatic action desired (Whether mild or strong, rapid or prolonged) will vary considerably in It is believed, however, that from the foregoing disclosure it will be readily apparent to those versed in the art how the iodine-quaternary ammonium complexes as herein disclosed can be incorporated in iodine formulations for particular uses.
  • a germicidal composition consisting of a complex of a germicidally effective amount of a germicide selected from the group consisting of iodine, iodine chloride, and iodine bromide with a quaternary ammonium compound of the formula:
  • a germicidal composition consisting of a complex of a germicidally effective amount of iodine with a quaternary ammonium compound of the formula CH5 I oI ,o1-no) H wherein the total of y+y equals 15, said quaternary ammonium compound acting both to stabilize and solubilize the iodine in aqueous media.
  • a germicidal composition consisting of a complex of a germicidally eifective amount of iodine with a quaternary ammonium compound of the formula a gennicidallyefiective amount of iodine with a quaternary ammonium compound of the formula O nCHaOH Lauryl-N Benzyl Cl CH2CH1OH said quaternary ammonium compound acting both to stabilize and solubilize the iodine in aqueous media.
  • a germicidal composition consisting of a complex of a germicidally effective amount of iodine with a quaternary ammonium compound of the formula (CH2CHaO) H LaurylN ⁇ c (CHzOHaOhy-H Methosulfate wherein the total of y+y' equals 15, said quaternary ammonium compound acting both to stabilize and solubilize the iodine in aqueous media.
  • a germicidal composition consisting of a complex of a gerrnicidally effective amount of iodine bromide with a quaternary ammonium compound of the formula (cH,orI,o), H

Description

rates This invention relates to new germicidal compositions wherein iodine, as an active germicidal agent, is bound to or complexed with certain surface active agents or carriers of the quaternary ammonium type having characteristic polyethoxy and fatty alkyl substituents, in a manner to both stabilize the iodine and to solubilize the iodine in aqueous media. This application is a continuation-in-part of my pending application Serial No. 633,386 filed January it), 1957, and now abandoned.
The capacity of surface active agents of the quaternary ammonium type to complex with or bind elemental iodine has been disclosed in United States Patent to Darragh et al. No. 2,679,533 issued May 25, 1954. The emphasis in the Darragh et al. is placed on the use of certain germicidally active quaternary ammonium compounds as the complexing agent.
l have discovered that iodine-quarternary ammonium complexes having unique and advantageous properties can be prepared by employing as the complexing agent certain quaternary ammonium compounds which for the most part have little germicidal activity, but which have the capacity to bind or complex elemental iodine in a manner to markedly enhance the binding and therefore prolong the germicidal activity of the bound iodine.
The complexing agents forming these unique iodinequaternary ammonium complexes are quaternary ammonium compounds having as characteristic substituents one to two C to C fatty alkyl groups and one to two oxyethylene radicals providing a total of 2 to 200 oxyethylene units. Such compounds can be represented by the formula:
wherein at least one of the substituents R and R is a C to C fatty alkyl group, at least one of the substituents R and R is a (CH CH O) 'H group wherein the cumulative value for y in the substituents R and R is an integer within the range of 2 to 200, R when not otherwise provided for is selected from the group consisting of lower alkyl, phenyl and benzyl radicals, R is selected from the group consisting of lower alkyl, benzyl, and substituted benzyl radicals including lower alkyl benzyl, lower alkoxy benzyl, nitro-benzyl and halo-benzyl radicals, and X is a salt forming anionic radical.
A number of compounds according to the above formula are quaternary compounds based on commercially available corresponding tertiary amines which can be readily quaternized by reaction with a compound of the formula R X where R, and X have the significance above noted.
For the most part, quaternary compounds embraced by the above formula have little germicidal activity. The basic advantages of the new iodine-quaternary ammonium complexes, however, stem not from the germicidal activity of the quaternary compound per se, but from the superior iodine binding or carrying capacity of the herein disclosed quaternary ammonium compounds.
These advantages can be demonstrated by one or more of the following types of performance tests:
atent 3 ,028,427 Patented Apr. 3, 1962 by Cantor and Shelanski in an article entitled A Capacity Test for Germicidal Action appearing in Soap and Sanitary Chemicals vol. 27, page 133 (1951), such procedure having been republished and endorsed in the most up-to-date and authorative text and reference book on evaluation procedures entitled Anti'septics, Disinfectants, Fungicides and Sterilization edited by C. F. Reddish and published by Lee & Febiger in 1954 (the pertinent section being by L. S. Stuart and commencing on page d. A modified test for germicidal capacity (advantageous in view of the very firm binding of iodine in the new compositions) which involves a preliminary trcatment with adsorbent carbon as in (b) above followed by germicidal capacity testing as in (0) above of the residual iodine-carrier solution after carbon treatment.
in the new compositions the iodine, although much more firmly bound than in other surface active agentiodine complexes heretofore available, remains releasable in the presence of microorganisms (viruses, bacteria, fungi, and'the like) to effect its germicidal or fungicidal action. This firmer binding of the iodine has the practical significance of providing in the new compositions a much prolonged germicidal and fungicidal action, even under adverse conditions, as when exposed on large surfaces to the atmosphere.
Typical uses and applications of these new compositions include preparations for environmental sanitation, either alone, or in combination with synthetic detergents, for the prolonged disinfection of enclosed areas, special equipment such as food handling and hospital equipment, and the like.
Another of the practical uses of these new compositions is in the treatment of various types of papers, fabrics and the like, to enable their subsequent use as sterilizing and disinfecting agents. For example, a treated paper towel when moistened becomes a sterilizing or disinfecting agent, as when drying objects or the hands. In such uses the new compositions have the further advantage of firm bonding to the treated article due to the substantivity of the quaternary ammonium component with respect to papers and many fabrics. Likewise the substantivity makes these compositions desirable for use in germacidal and fungicidal preparations for application to human and animal hair.
1n the new compositions the proportions of iodine to quaternary ammonium compound can be varied between wide limits, depending in part upon the intended use of the composition. Highly advantageous results are obtained when 5 to 800% of iodine, based on the weight of the quaternary compound, is present in the complex. In some instances, however, an amount of iodine somewhat lower than 5% may provide the desired germicidal properties in the composition.
It should be pointed out that throughout the range of 5 to 800% the herein disclosed quaternary ammoniumcornpounds exert a beneficial iodine vapor pressure lowering effect, and with some quaternary ammonium compounds the effect may be found with preparations as high as 1000% iodine (or 10% quaternary ammoniumcompound based on total weight of iodine). When the amount of iodine exceeds about 50% based on the weight of quaternary ammonium compound the presence of either another iodophor or some simple iodine solubilizing agent is essential as hereinafter described, in order to provide physically stable formulations. Within the spasm? rangeof 5 to-% iodine based on the weight of quaternary ammonium compound, however, stable formulations can readily be prepared containing as an iodophor only the quaternary ammonium compound. The following portion of the specification will be directed primarily to this latter type of formulation containing 5 to, 50% of iodine based on the Weight of quaternary ammonium compound.
Preparation of the new complexes of iodine and quaternary ammonium compound isaccomplished by effecting dissolution of elemental iodine in the quarternary am monium compound. Simple mechanical mixing or grinding will frequently cause the desired amount of iodine to dissolve in and become complexed with the quaternary ammonium compound. Alternatively the iodine can be dissolved in a volatile solvent such as ethanol, or isopropyl alcohol and the solvent solution then mixed with the quaternary ammonium compound. The solvent can be left in the product or, if desired, removed as by distillation. The particular manner of complexing, whether by mechanical mixing or with the aid of a solvent does not appear to affect the properties of the resulting complex.
While the new products have been described as quaternary-iodine complexes, it is to be understood that iodine can be employed as iodine halide such as iodine EXAMPLE I As illustrative of the preparation and performance of complexes of iodine and quaternary ammonium compounds in accordance with the present invention, such complexes have been prepared in which the structure of the quaternary ammonium compound of the foregoing formula R4 R i |lRr Ra has been varied in accordance with the following tabulation:
Table I Total y" Stoaryl 0 oxybenzyl. Cal-ls LauryL.
chloride or iodine bromide having a composition ranging from iodine monohalideto iodine trihalide. When iodine halide is employed in place of iodine alone a saving can be effected in the amount of iodine needed for a particular germicidal performance due to an apparent regenerative action making part of the spent iodine again available for germicidal action. Even in amounts less than required to form the monohalide the presence of chlorine or bromine enhances germicidal activity and also assists in preparing complexes by dissolving and liquefying elemental iodine. It is to be understood that iodine-quaternary ammonium complexes as disclosed and claimed herein embrace complexes containing iodine either alone or as iodine halide in combination with chlorine or bromine.
Newiodine compositions in accordance with the present invention can be prepared and distributed as the full strength complex of iodine and quaternary ammonium compound, as a solid or liquid concentrate adapted for dilution with water to forma use solution, or as a preparation in use form in which the complex may be associated with very substantial amounts of liquid or solid diluent. Such diluent should generally include acomponent providing an acid reaction in aqueous media The complexes of iodine with the various quaternary ammonium compounds tabulated above were prepared by mechanically mixing 5 parts by weight of the quaternary to 1 part by weight of iodine (20% iodine based on the Weight of quaternary) until the iodine was all taken up or dissolved in the quaternary.
A quantity of each complex was dissolved in Water in a concentration to provide ppm. of titratable iodine (using at titrating agent .01 N sodium thiosulfate). A 100 ppm. iodine solution was also prepared using for comparison purposes the preferred iodine-carrier compo-' sition as disclosed in Darragh Patent No. 2,679,533, do decyl benzyl trimethyl ammonium chloride-iodine complex, hereinafter identified in tables and text as Darragh. Then 200 ml. of each 100 ppm. solution was placed in a 250 ml. beaker and 0.1 gm. of adsorbent carbon (Darco C-60) was added to each beaker. The carbon suspensions were agitated uniformly for 60 minutes and then allowed to settle. The supernatent liquid was used for determination of iodine loss due to'carbon adsorption and in certain instances for germicidal capacity test.
The determination of iodine loss due to adsorption on carbon is made by titrating an aliquot of supernatant liquid with the titrating agent abovementioned, and the Table 11 ppm. orIodine After Complex of Iodine with Quaternary Carbon Adsorption The carbon adsorption test above mentioned is significant since it is indicative of performance in the presence of adsorbent substances associated with various types of soil (or contamination) in an environment being treated. For end uses where substantial amounts of soil are to be encountered, it is preferable to use complexes showing a lower loss due to carbon adsorption, as for example, those identified as a, b, and i above.
In testing germicidal capacity the germicidal activity of iodine in a 100 ppm. solution of complex is so prolonged as to make the conventional testing by the Cantor- Shelanski method earlier mentioned, unduly cumbersome and time-consuming. For this reason, and since the carbon treatment adsorption treatment is comparable to the soil encountered in many types of sanitation, a number increment of test culture was added and the above de scribed procedure repeated.
For purposes of comparison parallel tests were made using iodine alone in the form of Lugols solution (5% iodine and 10% potassium iodide in water) and the respective quaternary compounds. Solutions of each quaternary compound were prepared of the same concentration as the quaternary in the respective 100 ppm. (iodine) complex solutions above mentioned and 200 ml. of each solution was treated with 0.1 gm. of adsorbent carbon (Darco G-60) for one minute as above described. Lugols solu tion was diluted to a concentration providing 100 ppm. of titratable iodine and similarly treated with carbon.
The results of these germicidal capacity tests are tabulated below with pertinent data being given for the first and second incremental addition of test culture. In the tabulation the percent kill due to synergism is obtained by subtracting from the percent kill due to the quaternaryiodine complex, the total of the percentages of kill due to quaternary alone and iodine (Lugol solution) alone (after carbon treatment). It should be noted that carbon treatment of a 100 p.p.m. (iodine) solution of the Darragh-iodine complex reduced the residual iodine to 5 p.p.m., whereas carbon treatment of 100 ppm. (iodine) Lugol solution reduced the titratable iodine to less than 2 ppm.
In the following tabulation the sum of the percentages of kill due to synergism in the two increments of test culture is entered as Total percent synergism. This figure is indicative of the extent of prolonged activity due to the firmness of binding of iodine by the quaternary.
Table III GERMICIDAL CAPACITY TESTINGPERCENTAGE KILL [1 minute] Increment I Increment II Total Q i percent Quai; 1.2 Quat Lugols Percent Quat I: Quat Lugols Percent Syner- O O C Syner- C O C Synerglsm gism gism 99. 8 46 43 10. S 83 0 (i 77 87. 8 69 18 43 8 43 7 (i 38 98 42 43 13 42 O 6 36 49 92 2? 43 22 37 0 6 31 53 99. 1 67 43 7O 14 6 50 50 92 33 43 16 42 0 6 36 52 98 19 43 36 33 18 6 9 86 24 43 19 29 0 6 23 42 99. 9 38 43 18. 9 71 O 6 65 83. 9 99. 9 1O 43 46. 9 97 0 6 91 135. 9 Dar-ragh- 95. 7 73 43 73 77 6 quaternary by itself.
over into the second increment; whereas, in the case the high germicidal activity of the particular that the germicidal activity of iodine carries of Darragh, the continued activity in the second increment is due to the quaternary compound itself as indicated by the substantial equivalence in the two figures (73 and 77), and as verified by the absence of titratable iodine after the addition of the second increment.
of the complexes have been tested for germicidal capacity after carbon treatment.
This germicidal capacity testing (a slight modification of the Cantor-Shelanski method) is carried out as follows: In separate 1 liter flasks equipped with magnetic stirrers are placed 450 ml. of sterile hard (200 ppm.) water buflered to pH 4.2 with 5% NaH PO To each flask or" this sterile solution is added ml. of a supernatent carbon treated quaternary iodine solution above referred to. The flasks are then ready for the addition of increments of 24 hr. cultures of S. lyphosa grown on AOAC nutrient broth. The increment size used in each case was 1.0 ml. containing 6x10 organisms. (Thus the count per ml. in the 500 ml. volume under test is 1.2 l0 organisms for each increment added.) With each incremental addition of test culture the flasks are continuously agitated by the magnetic stirrers, and exactly one minute after each addition of test culture 1 ml. samples were removed aseptically into 100 ml. of (Difco) neutralizers for both halogens and q'uaternaries. The solutions so prepared were then plated in 1 ml. and 0.1 ml. volumes using nutrient agar. Ten minutes after the addi-v tion of the first increment to each flask a second 1 ml.
Another meaningful test of performance is the determination of stability to loss of iodine due to vaporization. Such determination is conducted by preparing solutions of the various quaternary-iodine complexes containing approximately 1000 ppm. of iodine, as titratable with 0.01 normal sodium thiosulfate solution, placing 30 ml. of each test solution in a 250 ml. beaker and 10 cc. of the same solution in a glass stoppered flask (as a control). The beakers are then weighed, placed on a water bath at 40 C. (water in the bath being /2 in. above the liquid level in the beakersland the control flasks are similarly placed on the water bath. At the end of each 2 hour period, the beakers were weighed and the evaporated water replaced. After 10 hours 2 ml. samples are withdrawn from the beakers (after adjusting for water loss) and from the control flasks and titrated for iodine content.
The loss of iodine (p.p.m.) in the controls, a non-vaporization loss, is subtracted from ppm. of iodine in the starting solution and with this figure as the denominator and the ppm. of titratable iodine in the beakers after 10 hours as the numerator, the percentage of iodine remaining is calculated.
For the purpose of the test tabulated below iodinequaternary complexes were prepared using the various quaternaries identified in Table I but containing in each instance 1 part of iodine to 10 parts of quaternary (10% iodine based on the weight of quaternary). The letters identifying various samples have the significance in identifying the quaternary as set forth in Table I.
In comparing the data in Table IV with Table I, it will he noted that as the total number of (CHQCI'IQO) groups is increased to 50 and to 93 there is a progressive increase in loss of iod ne due to vaporization under the test condition. Even a. reduction in iodine content to 39% during the 1 hour test (as in the case of complex p) represents an iodine stability to vaporization far exceeding that obtained with anionic and nonionic type carrier.
As the number of (CI-I CH O) groups is progressively increased, the toxicity, particularly oral toxicity, of the quaternary iodine complex becomes progressively lower. The advantages of reduced toxicity can for many intended uses of the quaternary iodine complexes, off-set any possible disadvantage resulting from reduced stability to vaporization. In this connection, it should also be noted that for some uses of the quaternary iodine complexes too firm a binding of iodine, i.e. too high a retention of iodine in the 10 hour test reported in Table IV, may be objectionable, in which event a lower retention of iodine under the test conditions could actually constitute an advantageous property in the quaternary iodine complex.
The following examples Will serve to illustrate typical formulations including the new quaternary-iodine complexes and certain performance characteristics thereof.
EXAMPLE II Ten (10) parts by weight of elemental iodine is dissolved (by mechanical mixing) in 50 parts by weight of the quaternary ammonium compound identified as (a) in Table I. This quaternary ammonium-iodine complex is dissolved in 30 parts by weight of water containing 10 parts by weight of phosphoric acid, thereby forming a liquid germicidal concentrate adapted to be further diluted with water in forming use solutions. Such a use dilution containing approximately 1000 ppm. of titratable iodine retains in excess of 90% of its titratable iodine when subjected to the 10 hour vaporization rate test above described.
EXAMPLE III Fifteen gm. of elemental iodine is dissolved in 150 gm. of the quaternary ammonium compound identified as (c) .in Table I, by stirring at 45 C. for 15 minutes. One hundred fifty-five (155) grams of this quaternary arnrnonium-iodine complex is mixed with 465 gm. of powdered urea and intimately ground together to form a homogeneous powder, which readily dissolves in water to form germicidal solutions containing 100 to 1000 p.p.m., or other required amounts, of titratable iodine. A sample of the powdered formulation after a one yearstorage period in a closed container showedno loss of titratable iodine.
EXAMPLE IV Elemental iodine 0.1 gm. is complexed with 1.0 gm. of the quaternary ammonium compound identified as (c) in Table I by stirring together at 50 C. for one hour. This complex is dissolved in 1000 ml. of distilled water giving a solution containing 98.4 p.p.m. of titratable iodine. In 250 ml. of the above solution 1.851 gm. of a-cellulosic material is agitated at room temperature for 20 min. The resulting slurry is then filtered on a sintered glass plate and washed with 50 ml. of distilled water. The residual a-cellulosic material (paper pulp) is deep yellow in color and contains 10.5 mg. of titratable iodine.
For comparison purposes, the foregoing procedure is repeated using as iodine carrier (in place of the quaternary ammonium compound) 1.0 gm. of a nonionic surface active agent, nonyl phenol ethylene oxide condensate containing 9-1() mols of ethylene oxide per mole of nonyl phenol. When complexed with 0.1 gm. of iodine, diluted with water and applied to OL-CellUlOSlC material, there is no evidence of retention of iodine either by titration or by color in the tx-cellulosic material.
The substantivity thus demonstrated is characteristic of the new quaternary ammoniumiodine complexes herein disclosed when applied to various cellulosic fibers, kerati- -nous materials including human and animal hair, and
other fibers derived from natural sources.
EXAMPLE V Iodine monochloride (1.065 gm.) is dissolved in 6.120 gm. of the quaternary ammonium compound identified as (d) in Table I to give a complex which on titration with .01 N sodium thiosulfate gives an effective iodine percentage of 18.9% (compared with theory-23.2%). After six months storage at room temperature, this preparation titrates 13.3% iodine equivalent.
EXAMPLE VI Iodine monobromide v(1.411 lgm.) is mixed and complexed with 11.321 gm. of the quaternary ammonium compound identified as (a) in Table I to give a complex which on titration with .01 N sodium thiosulfate gives an effective iodine percentage of 11.7% (theory- 13.6%).
The iodine chloride and iodine bromide complexes disclosed in Examples V and VI are readily dissolved in water to form germicidal concentrates or use dilutions containing to 1000 p.p.m., or other desired amount, of titratable iodine equivalent.
In addition to formulations of the type above described in which a herein disclosed quaternary ammonium compound is the only iodine solubilizing agent present, it is to beunderstood that the advantages of the vapor pressure lowering-effect of the quaternary ammonium compounds herein disclosed extends as well to formulations in which some other iodine solubilizing agent is present and in which the total amount of titratable iodine in the formulation exceeds the amount of quaternary ammonium compound. Thus, for example, in a. preparation containing a nonionic or anionic surface active agent which is an iodophor, the addition of a herein disclosed quaternary ammonium compound in an amount in excess of about 12% based on a total amount of iodine in the formulation will act to substantially reduce the rate at which iodine is lost by vaporization from aqueous dilutions of such formulation. With some quarternary ammonium compounds a practical complexing can be achieved with even smaller amounts thereof, i.c., as little as about 10% of thetotal iodine present in the formulation.
This advantage of vapor pressure lowering with the addition of small amounts of the herein disclosed quaternary ammonium compounds relative to the iodine content of a formulation also applies in conventional tinctures or alcoholic solutions of iodine either alone or in combinations with sodium or potassium iodide as solubilizing agents. The degree of vapor pressure lowering in these formulations increases with the increase in the amount or proportion of quaternary ammonium compound with respect to the total of iodine present and, in some instances, where quick germicidal action rather than prolonged germicidal or germistatic action is desired, care must be taken to avoid inclusion of too much of the quaternary ammonium compound or the degree of complexing may act to prevent sufficiently rapid release of iodine for the particular germicidal purpose.
While the amount of iodine complexed with a herein disclosed quarternary ammonium compound is normally within the range of about to 50% based on the weight of quaternary ammonium compound, it will be evident from the foregoing that, in the general role of iodine complexing in aqueous formulations, including those having other iodine complexing agents present, the proportion of iodine to quaternary ammonium compound may fall within the broad range earlier referred to herein of about 5 to 800%, and in exceptional cases, as high as about 1000%. In this connection, it has been established that the vapor pressure reducing action of the quaternary ammonium compound, even when present in the extremely small amounts indicated, is evidence of the existence of complexing within the formulations and aqueous dilutions thereof, and accordingly, the term complex as used throughout the specification and claims is understood to include this broader concept.
The advantages above mentioned of the herein disclosed quaternary ammonium compounds in iodine formulations can be realized either by adding in the formulation process a preformed complex of iodine and quaternary ammonium compound, or alternatively, by adding the free quaternary ammonium compound to a formulation containing iodine. Accordingly, an important modification or adaptation of the present invention is understood to constitute the control of iodine complexing in an iodine formulation by incorporation in such formulation of an amount of quaterary ammonium compound of the type herein disclosed in excess of about 12% based on the total weight of iodine in such formulation. The novelty in this regard is considered to comprise both the method and the new type of complexed iodine formulations containing such minimum amount of quaternary ammonium compound.
The following examples will serve to provide typical illustrations of iodine formulations in which iodine vapor pressure as a function of complexing is controlled by small amounts of quaternary ammonium compound.
EXAMPLE VII A germicidal formulation is prepared containing iodine complexed with nonionic surface active agents and having the following composition:
Noniorric of the formu a Parts HO- CeHiO) x 041E180) y (021340 x'-H where moleculrtr weight of (C3HeO)y is 1501 to 1800 and (at-l-zv) is 50-60% luronic L-65) 63.55 Nonyl phenol-ethylene oxide condensate containing -11 mols of ethylene oxide per mol of nonyl phenol 10.0 Iodine 13.41 HCl (28%) 1.87
Isopropyl alcoh l 11.17
these different uses.
- tent of 100 ppm. and a fourth test solution (D) is prepared by dissolving iodine in distilled water to a concentration of 100 ppm.
In separate 250 ml. beakers are placed 25 ml. portions of the 100 ppm. solutions A, B, C and D and the uncovered beakers are maintained at 40 C. for 5 hours to allow for vaporization of iodine. The solutions are then titrated with .01 N sodium thiosulfate to determine residual iodine with the following results:
sample A 2 It will be evident that while the nonioniciodine complexes of formulation A provide some stabilization of iodine to vaporization, the small amounts of quaternary ammonium compound present and complexed with iodine in formulations B and C have a marked depressing effect on vaporization, which effect increases with the amount of quaternary ammonium compound which is present.
EXAMPLE VH1 An iodine formulation is prepared by dissolving 2.1 g. of NaI of 1.8 gm. of iodine in a total of 10 m1. of water. Quaternary ammonium compound a inTable I (0.3 gm.) is dissolved in ethanol to provide ml. of alcoholic solution which is combined with said aqueous iodine solution. This provides a proportion of iodine to quaternary ammonium compound of 6 to 1 (600% iodine based on the weight of quaternary ammonium compound), and this small amount of quaternary ammonium compound greatly reduces the iodine loss due to vaporization both in the concentrate and in aqueous dilutions thereof.
It will be evident from the foregoing that the new iodine-quaternary ammonium complexes in accordance with the present invention have many diverse uses and that the special type of virucidal, germicidal, germistatic, fungicidal or fungistatic action desired (Whether mild or strong, rapid or prolonged) will vary considerably in It is believed, however, that from the foregoing disclosure it will be readily apparent to those versed in the art how the iodine-quaternary ammonium complexes as herein disclosed can be incorporated in iodine formulations for particular uses.
Various changes and modifications in the compositions and procedures herein disclosed will occur to those skilled in the art, and to the extent that such changes and modifications are embraced by the appended claims, they constitute part of my invention I claim:
1. A germicidal composition consisting of a complex of a germicidally effective amount of a germicide selected from the group consisting of iodine, iodine chloride, and iodine bromide with a quaternary ammonium compound of the formula:
aoaaaav 2. A germicidal composition as defined in claim 1 wherein the amount of iodine insaid composition is within the range of 5 to 50% based upon the weight of quaternary ammonium compound.
3. A germicidal composition consisting of a complex of a germicidally effective amount of iodine with a quaternary ammonium compound of the formula CH5 I oI ,o1-no) H wherein the total of y+y equals 15, said quaternary ammonium compound acting both to stabilize and solubilize the iodine in aqueous media.
4. A germicidal composition consisting of a complex of a germicidally eifective amount of iodine with a quaternary ammonium compound of the formula a gennicidallyefiective amount of iodine with a quaternary ammonium compound of the formula O nCHaOH Lauryl-N Benzyl Cl CH2CH1OH said quaternary ammonium compound acting both to stabilize and solubilize the iodine in aqueous media.
6. A germicidal composition consisting of a complex of a germicidally effective amount of iodine with a quaternary ammonium compound of the formula (CH2CHaO) H LaurylN\ c (CHzOHaOhy-H Methosulfate wherein the total of y+y' equals 15, said quaternary ammonium compound acting both to stabilize and solubilize the iodine in aqueous media.
7. A germicidal composition consisting of a complex of a gerrnicidally effective amount of iodine bromide with a quaternary ammonium compound of the formula (cH,orI,o), H
Stearyl-N CH3 I (CH2OHzO) 'H wherein y-l-y' equals 15, said quaternary ammonium compound acting both to stabilize and solubilize the iodine in aqueous media.
References Cited in the file of this patent UNITED STATES PATENTS 2,679,533 Darragh et-al. May 25, 1954 2,759,975 Chiddix et a1. 2. Aug. 21, 1956 2,775,604 Zech Dec. 25, 1956 2,860,084 Jackson Nov. 11, 1958 2,876,263 Mark Mar. 3, 1959

Claims (1)

1. A GERMICIDAL COMPOSITION CONSISTING OF A COMPLEX OF A GERMICIDALLY EFFECTIVE AMOUNT OF A GERMICIDE SELECTED FROM THE GROUP CONSISTING OF IODINE CHLORIDE, AND IODINE BROMIDE WITH A QUATERNARY AMMONIUM COMPOUND OF THE FORMULA:
US699436A 1957-01-10 1957-11-29 Germicidal iodine-quaternary ammonium compound complexes Expired - Lifetime US3028427A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US699436A US3028427A (en) 1957-11-29 1957-11-29 Germicidal iodine-quaternary ammonium compound complexes
CH5449458A CH362420A (en) 1957-01-10 1958-01-08 Process for manufacturing a germicidal, microbicidal and fungicidal product
US836909A US3028301A (en) 1957-11-29 1959-08-31 Germicidal iodine compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US699436A US3028427A (en) 1957-11-29 1957-11-29 Germicidal iodine-quaternary ammonium compound complexes

Publications (1)

Publication Number Publication Date
US3028427A true US3028427A (en) 1962-04-03

Family

ID=24809319

Family Applications (1)

Application Number Title Priority Date Filing Date
US699436A Expired - Lifetime US3028427A (en) 1957-01-10 1957-11-29 Germicidal iodine-quaternary ammonium compound complexes

Country Status (1)

Country Link
US (1) US3028427A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3102839A (en) * 1960-03-04 1963-09-03 West Laboratories Inc Germicidal compositions
US3295933A (en) * 1961-03-06 1967-01-03 Pennsalt Chemicals Corp Perchloramide compounds and process
US3538520A (en) * 1967-12-26 1970-11-10 Madison Chem Corp Lavatory sanitation bodies
USB530303I5 (en) * 1973-12-17 1976-03-23
US4017407A (en) * 1973-05-14 1977-04-12 West Laboratories, Inc. Methods for preparing solid iodine carrier mixtures and solid formulations of iodine with iodine carriers
US4077898A (en) * 1976-11-02 1978-03-07 Economics Laboratory, Inc. Iodine/phosphate ester compositions and methods of using them
US4994199A (en) * 1990-04-16 1991-02-19 Olin Corporation Antimicrobial composition containing quaternary aliphatic amine polyglycidol adducts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2679533A (en) * 1951-11-03 1954-05-25 California Research Corp Addition products of halogen and quaternary ammonium germicides and method for making the same
US2759975A (en) * 1952-05-28 1956-08-21 Gen Aniline & Film Corp Mixed alkyl-benzyl-alkylol quaternary ammonium salts
US2775604A (en) * 1953-02-09 1956-12-25 Atlas Powder Co Quaternary ammonium halides
US2860084A (en) * 1954-08-02 1958-11-11 Ruson Lab Inc Germicidal composition comprising iodine and a n-acyl colamino formyl methyl quaternary ammonium salt
US2876263A (en) * 1952-12-31 1959-03-03 Universal Oil Prod Co Polyoxyalkylene cyclic hydrocarbon substituted amines and their ammonium salt derivatives

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2679533A (en) * 1951-11-03 1954-05-25 California Research Corp Addition products of halogen and quaternary ammonium germicides and method for making the same
US2759975A (en) * 1952-05-28 1956-08-21 Gen Aniline & Film Corp Mixed alkyl-benzyl-alkylol quaternary ammonium salts
US2876263A (en) * 1952-12-31 1959-03-03 Universal Oil Prod Co Polyoxyalkylene cyclic hydrocarbon substituted amines and their ammonium salt derivatives
US2775604A (en) * 1953-02-09 1956-12-25 Atlas Powder Co Quaternary ammonium halides
US2860084A (en) * 1954-08-02 1958-11-11 Ruson Lab Inc Germicidal composition comprising iodine and a n-acyl colamino formyl methyl quaternary ammonium salt

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3102839A (en) * 1960-03-04 1963-09-03 West Laboratories Inc Germicidal compositions
US3295933A (en) * 1961-03-06 1967-01-03 Pennsalt Chemicals Corp Perchloramide compounds and process
US3538520A (en) * 1967-12-26 1970-11-10 Madison Chem Corp Lavatory sanitation bodies
US4017407A (en) * 1973-05-14 1977-04-12 West Laboratories, Inc. Methods for preparing solid iodine carrier mixtures and solid formulations of iodine with iodine carriers
USB530303I5 (en) * 1973-12-17 1976-03-23
US4006093A (en) * 1973-12-17 1977-02-01 Basf Aktiengesellschaft Surfactants containing iodine
US4077898A (en) * 1976-11-02 1978-03-07 Economics Laboratory, Inc. Iodine/phosphate ester compositions and methods of using them
US4994199A (en) * 1990-04-16 1991-02-19 Olin Corporation Antimicrobial composition containing quaternary aliphatic amine polyglycidol adducts

Similar Documents

Publication Publication Date Title
US2977315A (en) Water soluble iodine-phosphoric-acidsynthetic detergent composition
JP2590026B2 (en) Anticorrosive fungicide
US4597975A (en) Iodine surface active compositions
US3539520A (en) Compositions comprising quaternary ammonium germicides and nonionic surfactants
CN104013573B (en) Available iodine content is the liquid PVP-I of 5-12%
JPH078767B2 (en) Synergistic antibacterial composition
ZA200302473B (en) Disinfectant agent.
US2868686A (en) Iodine bromine preparations for controlling microorganisms
JPH0217125A (en) Treatment of ringworm of foot and related skin filamentary fungi infection
US3028427A (en) Germicidal iodine-quaternary ammonium compound complexes
WO1999065316A9 (en) Stabilized mixtures of an iodopropargyl compound and a formaldehyde donor
US3028301A (en) Germicidal iodine compositions
RU2315626C1 (en) Disinfecting detergent (variants)
US3932655A (en) Surgical skin scrub
US2666009A (en) Quaternary ammonium germicide compositions
JPH06183914A (en) Microbicidal composition for industrial use
US2997421A (en) Iodine-heavy metal halide germicidal compositions
EP0730407B1 (en) Anti-viral substances
US3102839A (en) Germicidal compositions
EP0799570A1 (en) Preparation and uses of microbicidal formulations
JPH045206A (en) Antibacterial disinfectant agent composition
US20040242702A1 (en) Glutaraldehyde composition
JP2592101B2 (en) Non-medical bactericidal composition
EP0361301A1 (en) Microbicidal compositions for the disinfection of dental impression materials
JP2001107082A (en) Antibacterial detergent composition