US2980617A - Ferrite compositions and method of making same - Google Patents

Ferrite compositions and method of making same Download PDF

Info

Publication number
US2980617A
US2980617A US571210A US57121056A US2980617A US 2980617 A US2980617 A US 2980617A US 571210 A US571210 A US 571210A US 57121056 A US57121056 A US 57121056A US 2980617 A US2980617 A US 2980617A
Authority
US
United States
Prior art keywords
oxide
silica
titania
mixture
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US571210A
Inventor
James R Ireland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Indiana General Corp
Original Assignee
Indiana General Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Indiana General Corp filed Critical Indiana General Corp
Priority to US571210A priority Critical patent/US2980617A/en
Application granted granted Critical
Publication of US2980617A publication Critical patent/US2980617A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2683Other ferrites containing alkaline earth metals or lead

Definitions

  • the invention deals specifically with methods for improving the coercive forceY and the maximum energy product of permanent magnets of the ferrite type represented by the formula MO.xFe2O3 wherein M is a ,energy product of such materials can be improved by including during their manufacture a step which might be called an orienting process.
  • the ⁇ oxide .powder has to be brought into- ⁇ a state where .every powder particle' rep- Vresents a single crystal.V ThisV is usually accomplished by thorough milling of thepowdered materials, sinter- Ying, and then milling to the desired particle size. When Vsuch a powder.
  • the -maximum netic eld its particles orient themselves with a certain crystallographic axis more or lessparallel to the applied field This preferred orientation persists after sintering the sample, giving it a high value of residual inducenergy product can ,be brought toa value approximating BXlOS'gauss oersteds by the orientation procedure.
  • apreferable solution l would be to provide ⁇ some means of .increasing the coercive force r whichv automatically would increase the maximum energy product, provided, the ,residufal induction-was keptu more ⁇ or 1es sconstant 'during the process.
  • the linvention is. to provide an'firn#V Y Ythe' coercivel force and residual induction ofthe material...
  • tor- provide improved magnetic corn'posltionsrv of the ferrite. type having a '701small; amounts ⁇ 4 ofother'metallic oxides. and compounds.
  • n The beneficial; effects ofthe refractory a'ldi'tionare v 4:evidentjeven whe're.as .little' ⁇ @190.10% :byweiglit ofthe'-
  • Another object of the invention is toprovide an improved composition for the manufacture of permanent magnet materials in which the sintering conditions are not so critical as they are presently in lthe manufacture of ferrite magnets.
  • the present invention provides a magnetic material of increased maximum energy product comprising a fer rite composition containing a minor amount of a refractory ceramic composition distributed through the ferrite composition.
  • a magnetic material of increased maximum energy product comprising a fer rite composition containing a minor amount of a refractory ceramic composition distributed through the ferrite composition.
  • the ferrite compositions usable in the practiceof the Vpresent invention V may be any of ia wide variety of ferrites, and preferably consist of those ferrites which Ihave maximum energy products on the o-rder of l 106 gauss oersteds or more.
  • a particularly preferred ferrite composition for use in the present invention consists of noncubic crystals of ferrites in which theferric oxide lattice is substituted by a metal such as barium, strontium, or lead.
  • a compositionv of this type is one prepared by combining one molecular proportion of bariumoxide with six molecular proportionsof ferrie oxide to produce materials having high coercive forcevvalues and high maximumenergy products.
  • the preparation of crystals of this type usually Vconsists in mixing thoroughly a powdery mixture of Aferrie oxide and an oxide or carbonate of ⁇ one or more of the other metals, sintering at an elevated temperature and lmilling the sintered material -to the desired particle size. The resulting particles will then repre- ,seut substantially single crystals. This powder is then -compacted while under the inuence Vof a magnetic field and the resulting compactY is heated to atemperature in the range from about 2000 to about 2500 Erin a non-reducing atmosphere so that the ferrie oxide is not reduced to a lower state'of oxidation.
  • the powders are combined with a refractory ceramic powder. All of the following materials have been found to produce the desired eife'ct in varying degrees of effectiveness:
  • the preferred materiall is an alumina-silicacombinaa silica-alumina porcelain,
  • sis'tin'g 1 essentially of aluminum silicates andk Irelatively ytionfof the type-represented by angaluminumsilicate such -V l K. K kaolin ('Al2O3.2SiO2.-2H2O),* mu1li'te.:(3&l203.2SiO2) or other-clays vor.inineralsfconi.jisilia-anminaporcelain'constituig 7% by Wfl-bibi t oxide, mixture, or compound is included in the composi tion. Amounts of the additive in excess of about 2% by weight appear to provide no additional effect insofar as raising the maximum energy product is concerned.
  • the process of the present invention has been used successfully to produce permanent magnet materials havingmaximum energy products in excess of V3 l0s gauss oersteds. This improvement is obtained by achieving an increased coercive force at a given residual induction.
  • the increase in coercive force- is of a considerable importance not only because it is accompanied by an in'- crease in maximum energy product but also because it makes the magnet less susceptible to the demagnetizing influences of stray fields, changes.
  • the attached sheet of drawing illustrates a graph in which the coercive force, remanence, and maximum energy product of two identical materials are compared, the difference being thatthecurve drawn with the dashed vlines represent a bariumoxide-ferricoxide (l to 6 mole vratio) ferrite composition without the addition of the refractory material, while vthe solid line curve represents the Values obtained with the same composition'combined with 0.5% of powdered kaolin. As evidenced'from these curves, an increase of.
  • .t w-ill also be lnoted that the, coercive force .values for the materialwith the additiveare higher y in all instances at the various .psintering temperaturesfand vthat the remanence characteristics are substantially', A higherat the lower sinteringtemperatures for the improved material of the preseptinvention, and substantially the same at thehighersintering temperatures.
  • Example VIl The same starting material as in Example I was combined with of kaolin and ball-milled to produce a very linely divided powder. This material after sintering had a remanence of 3900, a coercive force of 1860 oersteds, and a maximum energy product 0f 3.47)(106.
  • Example III A barium ferrite sample rof thetype used in the preceding examples was made with the addition of 1/2% silica. The materials had a remanence of 3940, a coercive force of 1700 oersteds and a maximum energy product of 339x106.
  • Example 1V modications canjbe madey to the described embodiment without departing from the scope of the ⁇ present iu- ⁇ Vention.
  • a permanent magnet of the mixed ferrite type having a non-cubic crystalline lattice and an empirical formula MO.6Fe2O3 where M is a metal kselected from the grouppconsisting of barium, strontium, and lead wherein said magnet is prepared by mixing iron oxide with a source of the oxideMQfollowed by sintering the mixture at a temperature in the range from 2,000 to2,500 F.
  • the improvement whereby the maximum energy product is increased which comprises adding to said ⁇ mixture prior t0 said compacting from 0.1 to 2.0% by weightrof a refracsilica, boric oxide and titania, chromic oxide andsilica, and 'chromic oxideV and titania, the alumina t0 s1lica molar ratio, beingfgcnerally between l to 24 to3 to2, andthe other oxides ,of the remaining mixtures being substantially in ,equal proportionsby weight.
  • saidmagnet' is prepared by Vmixing iron oxide with 'a source of the oxidewMOfollowed i byk sintering themixture ata temp 'eratuiiefof A2,000 to 2,500?V fand vcompacting the,mixtnr'efwhiley under the intiuence of faA magnetic ⁇ field," the' ⁇ imprbvemenewliereby 'the maximum energyproduct'is increased wh1chfcorn fprises adding to said'mixturefpriorto'compactingfrom l -,0.1 to -2.0%,by Weightof a mixture ofalumin'aiandfsilica Y Vhaving ka molar rattio'of from about lgto. 2 to -.3 -Ato Y2'.
  • a permanent'magnet material comprising-famon- "'cubiomixed ferrite composition havingthe empirical for ⁇ mula MOiGezOa where Mfis'a ⁇ metalselected from' a groupconsisting offbarium, strontium,v and lead in comv
  • This material had a remaalumina and silica, calcium oxide and silica, calcium oxide and titania, alumina and titania, boric oxide and silica, -boric oxide and titania, chromic oxide and silica, and chromic oxide and titania, the alumina and silica being in relative molar proportions of between about 1 to 2 to 3 to 2, and the other oxides of the remaining mixtures being substantially in equal proportions by weight.
  • a permanent magnet material comprising a barium Iferrite having the empirical formula BaO.6Fe2O3 in cornbination with from 0.1 to 2.0% by Weight of a mixture of silica and alumina having a molar ratio of from about 1 to 2 to 3 to 2, said material having a maximum energy product in excess of 3 X 10a gauss oersteds.

Description

April 18, 1961 Hc -OERSTEDS OR Br GAUSS J. R. IRELAND Filed March 15, 1956 4200 l zooo ,/1
W saoo By/ f 3600 /I MAGNETS uns w TH No Aool t ns s200 (l Br// sooo Q g/ nene sans /I w TM Ammon or.5 KAoL n zeoo asco ,K/
)if H\ zooo w 5 laoo 4.o
55 8 lsoo ERG NM. :1 1 |400 5-0 D n Q Ir O tu' 36E" 5 .I o |200 5\ "5g 2. 0- I e* /x/ n *E* o u, looo we# 24o n: D.
HI I (D uJ soo |.5 o D w 600 |.o z
x 40o .5 E E zoo 0 2|oo also 2200 2250 esoo SINTERING TEMPERATURE- DEGREES F .ra/E27 2271-' 5y@ QW @wf MME/2,75.
atent l FERRITE COMPOSITIONS AND METHOD F MAKING SAME James R. Ireland, Valparaiso, Ind., assignor to Indiana General Corporation, a corporation of Indiana Filed Mar. 13, 1956, Ser. No. 571,210
Y I 4 Claims. (Cl. 252-625) I' The'present invention is concerned with a method for `improving the magnetic properties of certain magnetic compositions, and to compositions thus produced.
The invention deals specifically with methods for improving the coercive forceY and the maximum energy product of permanent magnets of the ferrite type represented by the formula MO.xFe2O3 wherein M is a ,energy product of such materials can be improved by including during their manufacture a step which might be called an orienting process. In order to make this :process fullyeifective, the `oxide .powder has to be brought into- `a state where .every powder particle' rep- Vresents a single crystal.V ThisV is usually accomplished by thorough milling of thepowdered materials, sinter- Ying, and then milling to the desired particle size. When Vsuch a powder. is oriented and compacted `in a magtion.` Y, In some cases, the -maximum netic eld, its particles orient themselves with a certain crystallographic axis more or lessparallel to the applied field This preferred orientation persists after sintering the sample, giving it a high value of residual inducenergy product can ,be brought toa value approximating BXlOS'gauss oersteds by the orientation procedure.
1 One of the difliculties vaccompanying suchrincreasel in maximum energy product, however, isV the fact that as the residual induction VisY increased, itfis usually accomplished -by a decrease in the coercive force of thema- -teriaL Thus,
raising the sintering temperature of ferrite mixtures Yusually, increases the residual induction while lower-ingr the coercive force due to the increase ,inA apparenpdensity of the specimen due to grain growth. .For
.-manyapplications, apreferable solution lwould be to provide` some means of .increasing the coercive force r whichv automatically would increase the maximum energy product, provided, the ,residufal induction-was keptu more` or 1es sconstant 'during the process.
' Accordingly, an1 Pobject, vof the present invention to ,provider Ian improved method for increasing .the..maxi
z'provedf,method; forl increasingl v vthe maximum energylproduct offerrite typel permanent' magnet compositione without substantially affecting the ,y y
f A further object of 'theinvention 1s tions.'
.,.ffnothe'r-objeet of-V the linvention is. to provide an'firn#V Y Ythe' coercivel force and residual induction ofthe material...
maximum energy products'at lea'stgashighgas, and ,igenvferall'y .higher thanr comparable materials" presentlyavailr.
. tor-provide improved magnetic corn'posltionsrv of the ferrite. type having a '701small; amounts`4 ofother'metallic oxides. and compounds. n `The beneficial; effects ofthe refractory a'ldi'tionare v 4:evidentjeven whe're.as .little'` @190.10% :byweiglit ofthe'- Another object of the invention is toprovide an improved composition for the manufacture of permanent magnet materials in which the sintering conditions are not so critical as they are presently in lthe manufacture of ferrite magnets.
The present invention provides a magnetic material of increased maximum energy product comprising a fer rite composition containing a minor amount of a refractory ceramic composition distributed through the ferrite composition. The addition of relatively small amounts of such refractory ceramic materials, particularly combinations of alumina and silica, has been found to increase rather substantially the maximum energy product and the coercive force values of ferrite compositions and, as another advantage, has been found to render the condi-tions of sinteringA less criticalthan previously.v
The ferrite compositions usable in the practiceof the Vpresent invention Vmay be any of ia wide variety of ferrites, and preferably consist of those ferrites which Ihave maximum energy products on the o-rder of l 106 gauss oersteds or more. A particularly preferred ferrite composition for use in the present invention consists of noncubic crystals of ferrites in which theferric oxide lattice is substituted by a metal such as barium, strontium, or lead. PerhapsY the best example of a compositionv of this type is one prepared by combining one molecular proportion of bariumoxide with six molecular proportionsof ferrie oxide to produce materials having high coercive forcevvalues and high maximumenergy products. The preparation of crystals of this type usually Vconsists in mixing thoroughly a powdery mixture of Aferrie oxide and an oxide or carbonate of` one or more of the other metals, sintering at an elevated temperature and lmilling the sintered material -to the desired particle size. The resulting particles will then repre- ,seut substantially single crystals. This powder is then -compacted while under the inuence Vof a magnetic field and the resulting compactY is heated to atemperature in the range from about 2000 to about 2500 Erin a non-reducing atmosphere so that the ferrie oxide is not reduced to a lower state'of oxidation.
During the mixing or milling operation, the powders are combined with a refractory ceramic powder. All of the following materials have been found to produce the desired eife'ct in varying degrees of effectiveness:
(2) Alumina (3) Titania" '(4) Boric oxide ,Y A,
M The following vmixtures have also beenV found effec- ,tive the .mixtures being employed in any proportions,
either 'as a physical mixture or as a chemical combination:,,-
"(5) Alumina-silica (6) Calcium oxide-silica '1(7) Calcium oxide-ftitania ,I (8) .Alumina-titania I (9)Boric oxide-silica v (l 0) lBoric oxidetitania ,1(,1 1') Chromic oxidesilica f ('12). C hromic oxide-ftitaniai l Where physicavlmixtures Aarejemploye'd,the two vcompounds Yare preferably combined in equal parts-by weight. .The preferred materiallis an alumina-silicacombinaa silica-alumina porcelain,
sis'tin'g 1 essentially of aluminum silicates andk Irelatively ytionfof the type-represented by angaluminumsilicate such -V l K. K kaolin ('Al2O3.2SiO2.-2H2O),* mu1li'te.:(3&l203.2SiO2) or other-clays vor.inineralsfconi.jisilia-anminaporcelain'constituig 7% by Wfl-bibi t oxide, mixture, or compound is included in the composi tion. Amounts of the additive in excess of about 2% by weight appear to provide no additional effect insofar as raising the maximum energy product is concerned.
The mechanism by which the refractoryY additions operate to improve the magnetic properties is not cornpletely understood. It is possible that some form of nonsmagnetic` material is formed karound each crystal, thereby causing some slight separation between the crystals and reducing the possibility of domain walls crossing from one crystal to another. The effect of this factor would be to increase the coercive force. It seems clear that the improvement is not a simple mechanical phenomenon because magnets made without the additions have resistivities on the order of a few hundred thousand to a few million ohm-cm, whereas magnets using such additions havefresistivities on the order of a few hundred to a few thousand ohm-cm.
The process of the present invention has been used successfully to produce permanent magnet materials havingmaximum energy products in excess of V3 l0s gauss oersteds. This improvement is obtained by achieving an increased coercive force at a given residual induction. The increase in coercive force-is of a considerable importance not only because it is accompanied by an in'- crease in maximum energy product but also because it makes the magnet less susceptible to the demagnetizing influences of stray fields, changes.
In the past, some magnet compositions have been prepared with energy products on the order of 3.5 million gauss oersteds, but these were achieved by grinding away the misoriented material on the surfaces of such 'magnets Evenwiththis process, entirely inconsistent results were obtained, whereas with the process of the present invention, it is possible to produce consistently magnets with energy products of 3.5 million gauss oersteds without resorting to any grinding Whatever.
The attached sheet of drawing illustrates a graph in which the coercive force, remanence, and maximum energy product of two identical materials are compared, the difference being thatthecurve drawn with the dashed vlines representa bariumoxide-ferricoxide (l to 6 mole vratio) ferrite composition without the addition of the refractory material, while vthe solid line curve represents the Values obtained with the same composition'combined with 0.5% of powdered kaolin. As evidenced'from these curves, an increase of. theisintering temperature shocks, and temperature very substantially reducesV the coerciv'eforceof the materialwitho'ut the kaoli'n addition, While the reduction of coercive force` in` the preferred sample isfmuchmore gradual. It will also be noted that the maximum energy product of the sample with the kaolin addition increasesy despitejan increase in the sintering temperature, whereas thevfmaxifmumenergy product of the material without V tliefadrlitionl decreases after sinteringmtemperature of about 2250 F.
.t w-ill also be lnoted that the, coercive force .values for the materialwith the additiveare higher y in all instances at the various .psintering temperaturesfand vthat the remanence characteristics are substantially', A higherat the lower sinteringtemperatures for the improved material of the preseptinvention, and substantially the same at thehighersintering temperatures.
- The following-specitic examples illustratev the results? achieved in tlietcompositicmsV of .thepreSent inyention. 'Y
one molecular proportion. of barium oxide and six molecitypical'example of `aY barium oxide ferrite containing Y the mixture, the remanence observed n the iinal product was 4010, the coercive force was 1900 oersteds and the maximum energy product was 355x106. Thus, the addition of even a small amount of the refractory material was effective to raise the maximum energy product by about 25%.
Example VIl The same starting material as in Example I was combined with of kaolin and ball-milled to produce a very linely divided powder. This material after sintering had a remanence of 3900, a coercive force of 1860 oersteds, and a maximum energy product 0f 3.47)(106.
Example III A barium ferrite sample rof thetype used in the preceding examples was made with the addition of 1/2% silica. The materials had a remanence of 3940, a coercive force of 1700 oersteds and a maximum energy product of 339x106.
Example 1V modications canjbe madey to the described embodiment without departing from the scope of the `present iu- `Vention.
I claim as my invention:
1. In a method of producing a permanent magnet of the mixed ferrite type having a non-cubic crystalline lattice and an empirical formula MO.6Fe2O3 where M is a metal kselected from the grouppconsisting of barium, strontium, and lead wherein said magnet is prepared by mixing iron oxide with a source of the oxideMQfollowed by sintering the mixture at a temperature in the range from 2,000 to2,500 F. and compacting the mixture while under the inuence of a magnetic eld, the improvement whereby the maximum energy product is increasedwhich comprises adding to said `mixture prior t0 said compacting from 0.1 to 2.0% by weightrof a refracsilica, boric oxide and titania, chromic oxide andsilica, and 'chromic oxideV and titania, the alumina t0 s1lica molar ratio, beingfgcnerally between l to 24 to3 to2, andthe other oxides ,of the remaining mixtures being substantially in ,equal proportionsby weight. t
2. In amethod of producing apermanentrnagnet of` -the mixed'ferrite type having anon-cubic crystalline latf tice 'andan empirical formulaiMO-6Fe2O3 vwhere M is a metal selected from thejgroup vconsisting yofgharium,
' strontium, aiidleadwher'e'nv saidmagnet' is prepared by Vmixing iron oxide with 'a source of the oxidewMOfollowed i byk sintering themixture ata temp 'eratuiiefof A2,000 to 2,500?V fand vcompacting the,mixtnr'efwhiley under the intiuence of faA magnetic `field," the'` imprbvemenewliereby 'the maximum energyproduct'is increased wh1chfcorn fprises adding to said'mixturefpriorto'compactingfrom l -,0.1 to -2.0%,by Weightof a mixture ofalumin'aiandfsilica Y Vhaving ka molar rattio'of from about lgto. 2 to -.3 -Ato Y2'.
Y3. "A permanent'magnet material comprising-famon- "'cubiomixed ferrite composition havingthe empirical for` mula MOiGezOa where Mfis'a `metalselected from' a groupconsisting offbarium, strontium,v and lead in comv This material had a remaalumina and silica, calcium oxide and silica, calcium oxide and titania, alumina and titania, boric oxide and silica, -boric oxide and titania, chromic oxide and silica, and chromic oxide and titania, the alumina and silica being in relative molar proportions of between about 1 to 2 to 3 to 2, and the other oxides of the remaining mixtures being substantially in equal proportions by weight.
4. A permanent magnet material comprising a barium Iferrite having the empirical formula BaO.6Fe2O3 in cornbination with from 0.1 to 2.0% by Weight of a mixture of silica and alumina having a molar ratio of from about 1 to 2 to 3 to 2, said material having a maximum energy product in excess of 3 X 10a gauss oersteds.
References Cited in the file of this patent UNITED STATES PATENTS 2,551,711 Snoek et al. May 8, 1951 2,565,111 Albers-Schoenberg Aug. 21, 1951 2,565,861 Leverenz et al Aug. 28, 1951 6 2,677,663 Jonker -l May 4, 1954 2,762,778 Gorter et al Sept. l1, 1956 2,828,264 Medvedietr Mar. 25, 1958 2,837,483 Hakker et al. June 3, 1958 2,900,344 Stuyts et al. Aug. 18, 1959 FOREIGN PATENTS 513,734 Canada June 14, 1955 515,205 Belgium Nov. 14, 1952 521,244 Belgium --.Q Jan. 6, 1954 683,722 Great Britain Dec. 3, 1952 A697,219 Great Britain Sept. 16, 1953 OTHER REFERENCES R.C.A. Review, September 1950, vol. XI, No. 3, page 346.
Electrical Engineering, July 1952, page 646.
Phillips Technical Review, Vol. 13, No. 7, page 201 (1951).

Claims (1)

1. IN A METHOD OF PRODUCING A PERMANENT MAGNET OF THE MIXED FERRITE TYPE HAVING A NON-CUBIC CRYSTALLINE LATTICE AND AN EMPERICAL FORMULA MO.6FE2O3 WHERE M IS A METAL SELECTED FROM THE GROUP CONSISTING OF BARIUM, STRONTIUM, AND LEAD WHEREIN SAID MAGNET IS PREPARED BY MIXING IRON OXIDE WITH A SOURCE OF THE OXIDE MO FOLLOWED BY SINTERING THE MIXTURE AT A TEMPERATURE IN THE RANGE FROM 2,000 TO 2,500*F. AND COMPACTING THE MIXTURE WHILE UNDER THE INFLUENCE OF A MAGNETIC FIELD, THE IMPROVEMENT WHEREBY THE MAXIMUM ENERGY PRODUCT IS INCREASED WHICH COMPRISES ADDING TO SAID MIXTURE PRIOR TO SAID COMPACTING FROM 0.1 TO 2.0% BY WEIGHT OF A REFRACTORY OXIDE MIXTURE SELECTED FROM THE GROUP CONSISTING OF ALUMINA AND SILICA, CALCIUM OXIDE AND SILICA, CALCIUM OXIDE AND TITANIA, ALUMINA AND TITANIA, BORIC OXIDE AND SILICA, BORIC OXIDE AND TITANIA, CHROMIC OXIDE AND SILICA, AND CHROMIC OXIDE AND TITANIA, THE ALUMINA TO SILICA MOLAR RATIO BEING GENERALLY BETWEEN 1 TO 2 TO 3 TO 2, AND THE OTHER OXIDES OF THE REMAINING MIXTURES BEING SUBSTANTIALLY IN EQUAL PROPORTIONS BY WEIGHT.
US571210A 1956-03-13 1956-03-13 Ferrite compositions and method of making same Expired - Lifetime US2980617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US571210A US2980617A (en) 1956-03-13 1956-03-13 Ferrite compositions and method of making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US571210A US2980617A (en) 1956-03-13 1956-03-13 Ferrite compositions and method of making same

Publications (1)

Publication Number Publication Date
US2980617A true US2980617A (en) 1961-04-18

Family

ID=24282763

Family Applications (1)

Application Number Title Priority Date Filing Date
US571210A Expired - Lifetime US2980617A (en) 1956-03-13 1956-03-13 Ferrite compositions and method of making same

Country Status (1)

Country Link
US (1) US2980617A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3155623A (en) * 1962-08-22 1964-11-03 Gen Magnetic Corp Method for making barium ferrite magnets
US3364545A (en) * 1965-09-16 1968-01-23 Gunter & Cooke Inc Magnetic roll structure
US3380920A (en) * 1963-05-30 1968-04-30 Westinghouse Electric Corp Permanent magnet material and process for manufacturing same
US3535245A (en) * 1963-02-21 1970-10-20 Chevron Res Metal-oxide coated ferrimagnetic particles
US3855374A (en) * 1970-07-02 1974-12-17 Gen Motors Corp Method of making magnetically-anisotropic permanent magnets
US4124735A (en) * 1976-12-02 1978-11-07 Xerox Corporation Magnetic glass carrier materials
US4124385A (en) * 1976-12-02 1978-11-07 Xerox Corporation Magnetic glass carrier materials
US4126437A (en) * 1976-12-02 1978-11-21 Xerox Corporation Magnetic glass carrier materials
US4221607A (en) * 1979-03-23 1980-09-09 Cities Service Company Calcining effect of synthetic iron oxide
US4222790A (en) * 1979-03-23 1980-09-16 Cities Service Company Calcination of ferrite tans
US4540500A (en) * 1982-03-02 1985-09-10 Fuji Electrochemical Co., Ltd. Low temperature sinterable oxide magnetic material
US4820592A (en) * 1986-02-24 1989-04-11 Hitachi Metals, Ltd. Permanent oxide magnet and method of coating same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE521244A (en) * 1952-07-07
BE515205A (en) * 1951-11-01
US2551711A (en) * 1943-07-01 1951-05-08 Hartford Nat Bank & Trust Co Manganese zinc ferrite core
US2565111A (en) * 1949-05-26 1951-08-21 Steatite Res Corp Ceramic magnetic material with a small temperature coefficient
US2565861A (en) * 1947-09-26 1951-08-28 Rca Corp Magnetic materials
GB683722A (en) * 1950-07-04 1952-12-03 Standard Telephones Cables Ltd Ferromagnetic materials
GB697219A (en) * 1951-10-30 1953-09-16 Steatite Res Ccrporation Ferromagnetic ceramic materials with hysteresis loops of rectangular shape
US2677663A (en) * 1949-02-05 1954-05-04 Hartford Nat Bank & Trust Co Manganite composition
CA513734A (en) * 1955-06-14 International Standard Electric Corporation Manufacture of magnetic bodies from compressed powdered materials
US2762778A (en) * 1951-12-21 1956-09-11 Hartford Nat Bank & Trust Co Method of making magneticallyanisotropic permanent magnets
US2828264A (en) * 1954-11-09 1958-03-25 Audax Manufacture process of permanent magnets from sintered mixtures of oxides
US2837483A (en) * 1954-04-20 1958-06-03 Philips Corp Method of making a permanent magnet
US2900344A (en) * 1953-07-29 1959-08-18 Philips Corp Making anisotropic permanent magnets

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA513734A (en) * 1955-06-14 International Standard Electric Corporation Manufacture of magnetic bodies from compressed powdered materials
US2551711A (en) * 1943-07-01 1951-05-08 Hartford Nat Bank & Trust Co Manganese zinc ferrite core
US2565861A (en) * 1947-09-26 1951-08-28 Rca Corp Magnetic materials
US2677663A (en) * 1949-02-05 1954-05-04 Hartford Nat Bank & Trust Co Manganite composition
US2565111A (en) * 1949-05-26 1951-08-21 Steatite Res Corp Ceramic magnetic material with a small temperature coefficient
GB683722A (en) * 1950-07-04 1952-12-03 Standard Telephones Cables Ltd Ferromagnetic materials
GB697219A (en) * 1951-10-30 1953-09-16 Steatite Res Ccrporation Ferromagnetic ceramic materials with hysteresis loops of rectangular shape
BE515205A (en) * 1951-11-01
US2762778A (en) * 1951-12-21 1956-09-11 Hartford Nat Bank & Trust Co Method of making magneticallyanisotropic permanent magnets
BE521244A (en) * 1952-07-07
US2900344A (en) * 1953-07-29 1959-08-18 Philips Corp Making anisotropic permanent magnets
US2837483A (en) * 1954-04-20 1958-06-03 Philips Corp Method of making a permanent magnet
US2828264A (en) * 1954-11-09 1958-03-25 Audax Manufacture process of permanent magnets from sintered mixtures of oxides

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3155623A (en) * 1962-08-22 1964-11-03 Gen Magnetic Corp Method for making barium ferrite magnets
US3535245A (en) * 1963-02-21 1970-10-20 Chevron Res Metal-oxide coated ferrimagnetic particles
US3380920A (en) * 1963-05-30 1968-04-30 Westinghouse Electric Corp Permanent magnet material and process for manufacturing same
US3364545A (en) * 1965-09-16 1968-01-23 Gunter & Cooke Inc Magnetic roll structure
US3855374A (en) * 1970-07-02 1974-12-17 Gen Motors Corp Method of making magnetically-anisotropic permanent magnets
US4124735A (en) * 1976-12-02 1978-11-07 Xerox Corporation Magnetic glass carrier materials
US4124385A (en) * 1976-12-02 1978-11-07 Xerox Corporation Magnetic glass carrier materials
US4126437A (en) * 1976-12-02 1978-11-21 Xerox Corporation Magnetic glass carrier materials
US4221607A (en) * 1979-03-23 1980-09-09 Cities Service Company Calcining effect of synthetic iron oxide
US4222790A (en) * 1979-03-23 1980-09-16 Cities Service Company Calcination of ferrite tans
US4540500A (en) * 1982-03-02 1985-09-10 Fuji Electrochemical Co., Ltd. Low temperature sinterable oxide magnetic material
US4820592A (en) * 1986-02-24 1989-04-11 Hitachi Metals, Ltd. Permanent oxide magnet and method of coating same

Similar Documents

Publication Publication Date Title
US2980617A (en) Ferrite compositions and method of making same
GB747724A (en) Improvements in or relating to non-metallic permanent magnets
USRE26153E (en) Field strength
GB780278A (en) Improvements in or relating to methods of manufacturing non-metallic anisotropic permanent magnets
US3549315A (en) Complex oxidic compounds and process for their production
US2695240A (en) Method of preparing barium titanate ceramics with flattened temperature characteristics
Durst et al. Solid solubility study of barium, strontium, and calcium titanates
US3897355A (en) Method of making permanent ferrite magnets
US2744873A (en) Mixed nickel, zinc, vanadium ferrite
US3281363A (en) Bismuth-containing garnets and their preparation
US2685568A (en) Soft ferromagnetic mixed ferrite material
US2579267A (en) Material having improved magnetic property
US2854412A (en) Method of making a permanent magnet
US3003966A (en) Polycrystalline garnet materials
GB747737A (en) Improvements in or relating to methods of manufacturing non-metallic permanent magnets
US3563899A (en) Permanent magnet material having strontium ferrite base
US3380920A (en) Permanent magnet material and process for manufacturing same
US3884823A (en) Ceramic permanent magnet
US2927897A (en) Ferromagnetic material
US3300411A (en) Fluxes for sintering lithium ferrites
US3038861A (en) Polycrystalline garnet materials
US3036008A (en) Permanent magnet ferrite
US3337461A (en) Two-phase ferrite magnet composition and method for preparing same
US3117935A (en) Ferromagnetic material
JPH0927430A (en) Manufacture of ferrite magnet