US2975860A - Atmosphere drying apparatus - Google Patents

Atmosphere drying apparatus Download PDF

Info

Publication number
US2975860A
US2975860A US789220A US78922058A US2975860A US 2975860 A US2975860 A US 2975860A US 789220 A US789220 A US 789220A US 78922058 A US78922058 A US 78922058A US 2975860 A US2975860 A US 2975860A
Authority
US
United States
Prior art keywords
chamber
desiccant
atmosphere
moisture
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US789220A
Inventor
Herbert W Westeren
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C I HAYES Inc
Original Assignee
C I HAYES Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US656840A external-priority patent/US2979828A/en
Application filed by C I HAYES Inc filed Critical C I HAYES Inc
Priority to US789220A priority Critical patent/US2975860A/en
Application granted granted Critical
Publication of US2975860A publication Critical patent/US2975860A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1429Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/1458Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification using regenerators

Definitions

  • the present invention pertains generally to the provision of novel and improved apparatus for properly conditioning heat treatment atmospheres and the like, and more particularly, is concerned with problem of removing moisture therefrom.
  • a primary object of the instant invention is the provision of atmosphere drying apparatus specifically constructed so as to enable reactivation to take place in a reasonable length of time and without the use of expensive and complicated equipment, such as blowers, heat exchangers., and the like.
  • Another important object of my invention is the provision of an atmosphere drier having novel and improved means for rapidly and uniformly heating the desiccant utilized in order to aid in el-licient reactivation of the latter.
  • Another object of this invention is the provision of atmosphere drying appartus wherein the desiccant chamber is so constructed as to enable it to be more readily cooled after it has been heated during the reactivation cycle.
  • a further object of the instant invention is the provision of atmosphere drying apparatus having novel and improved means for controlling the ilow of purge gas through the desiccant chamber ⁇ during reactivation of the latter.
  • Still another object of my invention is the provision of apparatus of the character described which is simple and economically feasible to manufacture, easy to operate, and highly eflicient in operation.
  • FIG. l is a diagrammatic View showing the general layout of my novel and improved atmosphere drying apparatus
  • Fig. 2 is a front elevation of one of the desiccant or drying chambers per se;
  • FIG. 1 is a side elevation thereof
  • Fig. 4 is an elevational view taken from the other side thereof;
  • Fig. 5 is a longitudinal, vertical section, on an enlarged scale, of one of the desiccant chambers
  • Fig. 6 is a transverse, vertical section thereof
  • Fig. 7 is a perspective detail, on an enlarged scale, of one of the conducting pipes which forms a part of my construction;
  • Fig. 8 is a perspective detail, on an enlarged scale, of one of the radiation iins which forms a part of my construction.
  • Fig. 9 is a perspective view, on an enlarged scale, partly in section and partly broken away, showing the swing check valve which forms a part of my invention.
  • This invention is concerned with the treatment of atmospheres and gases where specialized uses require that they be either completely dry or free from certain reacting chemicals.
  • atmospheres and gases where specialized uses require that they be either completely dry or free from certain reacting chemicals.
  • hydrogen bearing atmospheres lare to be used in connection with the heat treatment of high-speed steels and the like it is absolutely essential that the atmosphere be rid of any appreciable moisture since otherwise vaporization would take place at vthe high heat treatment temperatures., and oxygen content of the vapors would result in contamination of the work load being heat treated.
  • reactivation may be accomplished -by heating the desiccant chamber in order to release the absorbed moisture and then purging the moisture therefrom by a regulated gas flow. Once this has been done and the chamber has again been cooled, the desiccant may resume its absorbing function.
  • the problem which presents itself in connection with the above described reactivation operation resides in the fact that desiccants are notoriously poor conductor-s of heat, and hence, it has proven extremely diicult to effectively and uniformly heat the desiccant in a reasonable period of time. Furthermore, once the desiccant has' become uniformly heated and purged of its moisture, it must be cooled before being used again, and here again, its poor conductive qualities are a deterrent to rapid and efficient cooling.
  • the instant invention has overcome this problem by the provision of novel and improved heat exchange means in the desiccant chamber, which mean, While extremely effective in use and operation, nevertheless ⁇ do not require any expensive or complicated apparatus, such as blowers, heat exchangers, and the like. Furthermore, my construction enables the desiccant chamber to be heated, purged, and cooled in a relatively short period of time,
  • CO2 and H2O can be removed from nitrogen in -through which the line or conduit 12 extends.
  • conduit to line 12 which in turn connects at its opposite ends to drying or desiccant chambers 14 and 16,.hereinafter to be described in detail.
  • the chambers 14 and 16 are of identical construction, and a double acting valve 18 is associated with line 12 to insure that the ow of atmosphere will always be directed to one or the other of the chambers 14 and 16. Inl other words, when the valve 18 is in its full-line position, the ow will be to chamber 14, and the line to chamber 16 will be blocked. Conversely, when the valve is in its dotted-line position, the flow will be solely to chamber 16. Vent means 20 and 22 are provided adjacent the lower extremities of chambers 14 and 16, respectively, for reasons hereinafter to be made apparent.
  • valves 30 After passing through chamber 14 or 16, the atmosphere tiow egresses through line 24 and then outwardly through conduit 26, the latter being provided with a relief valve 28. Specially designed swing check valves 341 are provided in line 24 adjacent each of the chambers'. The construction and function of the valves 30 will hereinafter be made apparent.
  • the chamber 14 basically comprises a rectangular 'housing having front and rear walls 32, 34, side walls 36, 38, and top and bottom walls 40, 42, respectively.
  • top wall 46 is provided with a pair of necked, openable closures 44. Any desirable means, such as brackets 46, may be utilized for insuring that the chamber will remain in its proper, upright position during use.
  • inlet opening 48 is preferably disposed on inner side wall 36, while outer side wall 38 is provided with the venting valve 2t) in substantial alignment with line 12, said venting valve being operable to aid in the purging of the chamber, as will hereinafter become apparent.
  • the line or conduit 12 is closed at its inner end and has a downwardly disposed iiow opening 52 so ⁇ that the flow of atmosphere to be dried will be directed downwardly against bottom wall 42, and upon making contact therewith, it will be deflected upwardly through the desiccant. This aids in accomplishing better diffusion of the atmosphere or gas.
  • a screenlike partition 54 Spaced slightly above line or conduit 12 and in substantially parallel relation to bottom wall 42 is a screenlike partition 54 mounted by any suitable means, such as brackets S6.
  • the partition 54 functions to maintain the desiccant 58, with which the chamber is lled, spaced 4from the bottom of the cha l-- ber while at the same time enabling the atmosphere to pass upwardly therethrough.
  • desiccant 58 is a material having the ability to absorb certain constituents, such as moisture, from a gas or atmosphere stream passing therethrough.
  • Some examples of desiccants in common use are activated alumina, silica gel, and molecular sieve, although I prefer to utilize the latter since it has a greater absorbent capacity and also is capable of performing its absorbing function at higher temperatures.
  • Molecular sieve as utilized in this invention is characterized by a mass of small, chalklike pellets consisting of crystalline sodium and calcium alumino-silicates. It might be pointed out that while use of molecular sieve is desirable due to its greater absorbent capacity and its capability of absorbing effectively at higher temperatures, these very factors prove '4. disadvantageous during the reactivation cycle. In fact, the extreme ditliculty in reactivating molecular sieve has made this otherwise desirable absorbent impractical for use 1n apparatus of the general type under consideration, but this difficulty has now been overcome by the instant construction.
  • this particular arrangement enables the entire desiccant mass to be rapidly, uniformly, and eiiiciently heated, and since the pipes 60 are open ended, circulation of air therethrough will enable the mass to be more readily cooled after the heating operation is completed.
  • the open-ended pipes 60 in themselves provide a relatively inefficient heating arrangement, it has been found that by supplying sufficient energy to the coil 62, enough heat may be generated to reactivate the desiccant mass 53, particularly in view of the eiiicient dissemination of the heat which is accomplished by the iins 64 and their particular arrangement.
  • the inefficiency of the heating system becomes a decided advantage during the cooling of the chamber, and this is an important point since, as afore indicated, the desiccant is not capable of performing its drying function after reactivation until it has once again become cool, a time interval normally of considerable length due to the poor heat conductive qualities of the desiccant.
  • the V upper level of desiccant 5S is somewhat lower than the upper edges of the top series of radiation tins 64. The reason for this is to insure that purge gas flowing downwardly through the chamber will be somewhat preheated before actually contacting the desiccant.
  • Swing check 3i) is shown in detail in Fig. 9 and comprises a swingable element 70 which will swing open to allow free ow in one direction but which will restrict the tlow in the opposite direction, all in a well-known and conventional manner. In the instant construction, however, the swingable plate 70 is provided with a small aperture or chorus 72 for enabling a regulated ilow to take place in said opposite direction.
  • the swing check valves Bit are positioned in line 24 so as to enable 4free and unhindered tlow of dried atmosphere from the chambers 14 and 16, and at the same time, so as to enable a small regulated flow of atmosphere into saidy chambers through line 24 during the reactivation cycle.
  • valve 18 is moved toits full-line position (Fig. l) whereupon the ow of atmos-y phere to be ⁇ dried will be completely directed into chamber 14 through line 12 and opening 52.
  • the atmosphere will then be deflected upwardly ⁇ through the screen-like partition 54 and then through the desiccant mass 58. As the atmosphere passes upwardly, its moisture content will be absorbed therefrom by the desiccant whereupon, by ⁇
  • valve le When the desiccant 5S in chamber lli has become saturated, valve le is moved to its dotted-line position, Whereupon the ow of incorm'ng atmosphere will be directed solely to chamber i6. At the same time, venting valve 2t) in chamber 14 is opened, and heating coils 62 in said latter chamber are energized. As will be obvious, energization of the coils 62 will heat the pipes 6d and their respective radiation tins 64, which in turn rapidly and uniformly heat the desiccant mass 5S.
  • the heating circuit is turned oft, and venting valve 29 is closed.
  • the heating circuit and venting valves could be tied in with each other so that said valves will automatically open when their respective coils 62 are energized and, conversely, Yclosed when the latter are deenergized. This could very simply be done by effecting the opening and closing of these Valves by means of solenoids controlled by the heating circuit, but it will be understood that it is immaterial to the successful operation of the instant invention whether such be the case or whether said venting valves be manually operated.
  • the ilow of purge gas passing through a given chamber during its reactivation is always in a direction opposite to that of the flow of atmosphere being dried. This is important since it insures that the upper portion of the desiccant bed will be better purged and dried, whereupon atmosphere passing upwardly through said chamber is less liable to contain any moisture as it passes from the desiocant bed. It will also be noted that the back purging operation of the instant invention utilizes gas or atmosphere which has already been dried thereby resulting in better purging and more effective reactivation.
  • the fact that the purge gas is preheated by the uppermost tin 64 before contacting the desiccant bed also aids in the accomplishment of more eifective reactivation.
  • Atmosphere drying apparatus comprising a pair of chambers each substantially filled with a desiccant, inlet and outlet openings adjacent opposite extremities thereof, vent means adjacent said inlet openings, rst Valve means or diverting the flow of atmosphere to be dried to one or the other of said inlet openings, second valve means adjacent each of said outlet openings for enabling a regulated ilow of dried atmosphere to pass into and through the other chamber when the vent means of the latter is operated, said second valve means comprising swing check valves having a relatively small aperture extending through the swinging element of each check valve, and means for heating said chambers.

Description

March 21, 1961 H- W- WESTEREN 2,975,860
ATMOSPHERE DRYING APPARATUS Original Filed May 3, 1957 2 Sheets-Sheet 1 FER : Mr j )faire ff'! Qze# I @/,z .az i@ wf M1@ 34 $4/ @D /52 j 3.2/ C@ j l@ 1 W *h l: ff/@"1 1 IMI 1f @u 4g 4 Q@ 2% A 4 M1/6 ,im if 25% 7 //'y. 3 /E Z 4Z 46 4a INVENTOR.
March 21, 1961 H W' WESTEREN 2,975,860
ATMOSPHERE DRYING APPARATUS Original Filed May 3, 1957 2 Sheets-Sheet 2 Unite rates Patent O ATMOSPHERE DRYING APPARATUS Herbert W. Westeren, arn'ngton, RJ., assigner to C. I. Hayes, Inc., a corporation of Rhode Island Original application May 3, 1957, Ser. No. 656,840. Divided and this application Dec. 15, 1958, Ser. No. 789,220
. 1 Claim. (Cl. 183--4.7)
This application is a division of applicants co-pending application, Serial No. 656,840, filed May 3, 1957.
The present invention pertains generally to the provision of novel and improved apparatus for properly conditioning heat treatment atmospheres and the like, and more particularly, is concerned with problem of removing moisture therefrom.
A primary object of the instant invention is the provision of atmosphere drying apparatus specifically constructed so as to enable reactivation to take place in a reasonable length of time and without the use of expensive and complicated equipment, such as blowers, heat exchangers., and the like.
Another important object of my invention is the provision of an atmosphere drier having novel and improved means for rapidly and uniformly heating the desiccant utilized in order to aid in el-licient reactivation of the latter.
Another object of this invention is the provision of atmosphere drying appartus wherein the desiccant chamber is so constructed as to enable it to be more readily cooled after it has been heated during the reactivation cycle.
A further object of the instant invention is the provision of atmosphere drying apparatus having novel and improved means for controlling the ilow of purge gas through the desiccant chamber `during reactivation of the latter.
Still another object of my invention is the provision of apparatus of the character described which is simple and economically feasible to manufacture, easy to operate, and highly eflicient in operation.
Other objects, features and advantages of the invention will become apparent as the description thereof proceeds when Iconsidered in connection with the accompanying illustrative drawings.
In the drawings which illustrate the best mode presently contemplated by me for carrying out my invention:
lFig. l is a diagrammatic View showing the general layout of my novel and improved atmosphere drying apparatus;
Fig. 2 is a front elevation of one of the desiccant or drying chambers per se;
'Fig 3 is a side elevation thereof;
Fig. 4 is an elevational view taken from the other side thereof;
Fig. 5 is a longitudinal, vertical section, on an enlarged scale, of one of the desiccant chambers;
Fig. 6 is a transverse, vertical section thereof;
Fig. 7 is a perspective detail, on an enlarged scale, of one of the conducting pipes which forms a part of my construction;
Fig. 8 is a perspective detail, on an enlarged scale, of one of the radiation iins which forms a part of my construction; and
Fig. 9 is a perspective view, on an enlarged scale, partly in section and partly broken away, showing the swing check valve which forms a part of my invention.
This invention is concerned with the treatment of atmospheres and gases where specialized uses require that they be either completely dry or free from certain reacting chemicals. For example, where hydrogen bearing atmospheres lare to be used in connection with the heat treatment of high-speed steels and the like, it is absolutely essential that the atmosphere be rid of any appreciable moisture since otherwise vaporization would take place at vthe high heat treatment temperatures., and oxygen content of the vapors would result in contamination of the work load being heat treated.
Generally speaking, it is standard practice to dehumidify atmospheres `and gases of this type by passing them through a drying chamber comprising a desiccant therein, the desiccant functioning the absorb the moisture from the gas stream, whereupon the latter is substantially dried before passing to its point of use, such as a heat treatment furnace. Depending on certain factors, such as the rate of ow of the atmosphere, the moisture content thereof, and the size and temperature of the desiccant chamber, the desiccant will eventually become saturated, at which point it becomes necessary to reactivate same by removing the moisture therefrom. Quite obviously, if this is not done, the desiccant will be incapable of drawing oil `further moisture from the gases passing therethrough and hence will Ibecome completely ineficient for its intended purpose.
Since 4it is a well-known fact that desiccants will not absorb or retain moisture at relatively high temperatures, reactivation may be accomplished -by heating the desiccant chamber in order to release the absorbed moisture and then purging the moisture therefrom by a regulated gas flow. Once this has been done and the chamber has again been cooled, the desiccant may resume its absorbing function.
The problem which presents itself in connection with the above described reactivation operation resides in the fact that desiccants are notoriously poor conductor-s of heat, and hence, it has proven extremely diicult to effectively and uniformly heat the desiccant in a reasonable period of time. Furthermore, once the desiccant has' become uniformly heated and purged of its moisture, it must be cooled before being used again, and here again, its poor conductive qualities are a deterrent to rapid and efficient cooling. The instant invention has overcome this problem by the provision of novel and improved heat exchange means in the desiccant chamber, which mean, While extremely effective in use and operation, nevertheless `do not require any expensive or complicated apparatus, such as blowers, heat exchangers, and the like. Furthermore, my construction enables the desiccant chamber to be heated, purged, and cooled in a relatively short period of time,
It should be pointed out that even though my invention is primarily concerned with the removal of moisture from hydrogen bearing heat treatment atmospheres, the construction now to be described is equally applicable where moisture removal is not the primary concern. For example, desiccant-type driers can be utilized in connection with dissociated ammonia and will function to absorb any residual ammonia in the dissociated stream.
` Also, CO2 and H2O can be removed from nitrogen in -through which the line or conduit 12 extends.
inwardly through conduit to line 12, which in turn connects at its opposite ends to drying or desiccant chambers 14 and 16,.hereinafter to be described in detail. It will be understood that the chambers 14 and 16 are of identical construction, and a double acting valve 18 is associated with line 12 to insure that the ow of atmosphere will always be directed to one or the other of the chambers 14 and 16. Inl other words, when the valve 18 is in its full-line position, the ow will be to chamber 14, and the line to chamber 16 will be blocked. Conversely, when the valve is in its dotted-line position, the flow will be solely to chamber 16. Vent means 20 and 22 are provided adjacent the lower extremities of chambers 14 and 16, respectively, for reasons hereinafter to be made apparent.
After passing through chamber 14 or 16, the atmosphere tiow egresses through line 24 and then outwardly through conduit 26, the latter being provided with a relief valve 28. Specially designed swing check valves 341 are provided in line 24 adjacent each of the chambers'. The construction and function of the valves 30 will hereinafter be made apparent.
Referring now to Figs. 2 through 6, the construction of chamber 14 will be described; and since, as afore stated, the chambers 14 and 16 are of identical construction, it will be understood that the ensuing description is equally applicable to chamber 16. As will be seen most clearly in Figs. 2 through 4, the chamber 14 basically comprises a rectangular 'housing having front and rear walls 32, 34, side walls 36, 38, and top and bottom walls 40, 42, respectively. In order that the chamber may be readily lled with and emptied of the desiccant utilized in connection therewith, top wall 46 is provided with a pair of necked, openable closures 44. Any desirable means, such as brackets 46, may be utilized for insuring that the chamber will remain in its proper, upright position during use.
Referring now to Figs. 5 and 6, it will be noted that the chamber 14 is provided with an inlet opening 48, When the chamber is set up as a part of the system shown in Fig. l, inlet opening 48 is preferably disposed on inner side wall 36, while outer side wall 38 is provided with the venting valve 2t) in substantial alignment with line 12, said venting valve being operable to aid in the purging of the chamber, as will hereinafter become apparent. Preferably, the line or conduit 12 is closed at its inner end and has a downwardly disposed iiow opening 52 so` that the flow of atmosphere to be dried will be directed downwardly against bottom wall 42, and upon making contact therewith, it will be deflected upwardly through the desiccant. This aids in accomplishing better diffusion of the atmosphere or gas.
Spaced slightly above line or conduit 12 and in substantially parallel relation to bottom wall 42 is a screenlike partition 54 mounted by any suitable means, such as brackets S6. As will be apparent, the partition 54 functions to maintain the desiccant 58, with which the chamber is lled, spaced 4from the bottom of the cha l-- ber while at the same time enabling the atmosphere to pass upwardly therethrough. As hereinbefore indicated, desiccant 58 is a material having the ability to absorb certain constituents, such as moisture, from a gas or atmosphere stream passing therethrough. Some examples of desiccants in common use are activated alumina, silica gel, and molecular sieve, although I prefer to utilize the latter since it has a greater absorbent capacity and also is capable of performing its absorbing function at higher temperatures. Molecular sieve as utilized in this invention is characterized by a mass of small, chalklike pellets consisting of crystalline sodium and calcium alumino-silicates. It might be pointed out that while use of molecular sieve is desirable due to its greater absorbent capacity and its capability of absorbing effectively at higher temperatures, these very factors prove '4. disadvantageous during the reactivation cycle. In fact, the extreme ditliculty in reactivating molecular sieve has made this otherwise desirable absorbent impractical for use 1n apparatus of the general type under consideration, but this difficulty has now been overcome by the instant construction.
Extending transversely of chamber 14, from side wall 36 to side wall 38, are a plurality of vertically spaced and aligned open-ended pipes 69, said pipes having extending therethrough heating coils 62, which may be energized by any suitable means (not shown). Mounted on each of the pipes 60, by any desirable means, are a plurality of radiation iins 64, said tins being mounted in closely spaced relation and being of a width so as to substantially span the chamber 14 as shown most clearly in Fig. 6. As will be apparent, this particular arrangement enables the entire desiccant mass to be rapidly, uniformly, and eiiiciently heated, and since the pipes 60 are open ended, circulation of air therethrough will enable the mass to be more readily cooled after the heating operation is completed. Thus, while the open-ended pipes 60 in themselves provide a relatively inefficient heating arrangement, it has been found that by supplying sufficient energy to the coil 62, enough heat may be generated to reactivate the desiccant mass 53, particularly in view of the eiiicient dissemination of the heat which is accomplished by the iins 64 and their particular arrangement. At the same time, the inefficiency of the heating system becomes a decided advantage during the cooling of the chamber, and this is an important point since, as afore indicated, the desiccant is not capable of performing its drying function after reactivation until it has once again become cool, a time interval normally of considerable length due to the poor heat conductive qualities of the desiccant. By speeding up this cooling operation, a more eiiicient and economically feasible unit is provided. As will be noted in Fig. 5, theV upper level of desiccant 5S is somewhat lower than the upper edges of the top series of radiation tins 64. The reason for this is to insure that purge gas flowing downwardly through the chamber will be somewhat preheated before actually contacting the desiccant.
Adjacent the upper extremity of chamber 14, and preferably at inner side wall 36, there is provided an outlet opening 66 for receiving line 24. As will be noted, line 24 is provided with a downwardly disposed opening 68 at its inner end for receiving the now dried atmosphere and passing it outwardly through swing check valve 34B and conduit 26. Swing check 3i) is shown in detail in Fig. 9 and comprises a swingable element 70 which will swing open to allow free ow in one direction but which will restrict the tlow in the opposite direction, all in a well-known and conventional manner. In the instant construction, however, the swingable plate 70 is provided with a small aperture or orice 72 for enabling a regulated ilow to take place in said opposite direction. Thus, the swing check valves Bit are positioned in line 24 so as to enable 4free and unhindered tlow of dried atmosphere from the chambers 14 and 16, and at the same time, so as to enable a small regulated flow of atmosphere into saidy chambers through line 24 during the reactivation cycle.
Assuming that the chambers 14 and 16 are both reactivated, the cycle of operation is as follows. With the venting valves Ztl both closed, valve 18 is moved toits full-line position (Fig. l) whereupon the ow of atmos-y phere to be `dried will be completely directed into chamber 14 through line 12 and opening 52. The atmosphere will then be deflected upwardly` through the screen-like partition 54 and then through the desiccant mass 58. As the atmosphere passes upwardly, its moisture content will be absorbed therefrom by the desiccant whereupon, by`
the time the atmosphere reaches outlet 6i; and conduit 24, it will be substantially moisture free. The atmosphere then ows outwardly through line 24, swing check valve 3i?, and conduit 26, and then to its point of use. It will be understood that during this phase of the operation the chamber i4 is cooled, or at least at substantially room temperature.
When the desiccant 5S in chamber lli has become saturated, valve le is moved to its dotted-line position, Whereupon the ow of incorm'ng atmosphere will be directed solely to chamber i6. At the same time, venting valve 2t) in chamber 14 is opened, and heating coils 62 in said latter chamber are energized. As will be obvious, energization of the coils 62 will heat the pipes 6d and their respective radiation tins 64, which in turn rapidly and uniformly heat the desiccant mass 5S. ln the meantime, the opening fof vent 2i) in chamber i4 results in a pressure reduction, which causes a ycertain amount of the dried atmosphere flow passing from chamber 16 to circulate back through the chamber 1x4 in order to purge same of the moisture which has been released from its desiccant by the afore mentioned heating operation. Since this ilow of purge gas into chamber 14 is made possible by the fact that the latters swing check valve 30 has o-ritice 72 therein, it -follows that the rate of this back ilow may be readily regulated by Varying the size of said orifice. rThus, use of my particular modified swing check valve provides a simple and eitective way of controlling the back dow of purge gas and eliminates the necessity of using complicated throttling valves and the like which would otherwise be necessitated.
After the chamber 14 has been completely reactivated, or in other words, removed of its moisture content, the heating circuit is turned oft, and venting valve 29 is closed. lf desired, the heating circuit and venting valves could be tied in with each other so that said valves will automatically open when their respective coils 62 are energized and, conversely, Yclosed when the latter are deenergized. This could very simply be done by effecting the opening and closing of these Valves by means of solenoids controlled by the heating circuit, but it will be understood that it is immaterial to the successful operation of the instant invention whether such be the case or whether said venting valves be manually operated.
As soon as the chamber 14 has been reactivated in the i manner above set forth and its vent valve 20 closed, the flow of `dried atmosphere passing from chamber 16 through line 24 will exit completely through conduit 26. Then, when the desiccant in chamber 16 has become saturated, the valve 18 is swung back to its full-line position, whereupon the flow of atmosphere to be dried will once again be through the now reactivated chamber 14, while at the same time, reactivation of chamber 16 takes place in the manner described supra. Thus, a complete cycle of operation is provided wherein a constant and continuous flow of dried atmosphere is emitted, since the reactivation process is substantially shorter in point of time than that required for one of the chambers to become saturated, under normal operating conditions at least.
As will be noted, the ilow of purge gas passing through a given chamber during its reactivation is always in a direction opposite to that of the flow of atmosphere being dried. This is important since it insures that the upper portion of the desiccant bed will be better purged and dried, whereupon atmosphere passing upwardly through said chamber is less liable to contain any moisture as it passes from the desiocant bed. It will also be noted that the back purging operation of the instant invention utilizes gas or atmosphere which has already been dried thereby resulting in better purging and more effective reactivation. As hereinbefore indicated, the fact that the purge gas is preheated by the uppermost tin 64 before contacting the desiccant bed also aids in the accomplishment of more eifective reactivation. These factors, when taken in account with my improved heating and cooling means, have :resulted in the provision of highly eicient and yet economical drying apparatus.
While there is shown and described herein certain speciiic structure embodying the invention, it will be manifest to those skilled in the art that various modications and rearrangements of the parts may be made without departing from the spirit and scope of the underlying inventive concept and that the same is not limited to the particular forms herein shown and described except in so far as indicated by the scope of the appended claim.
I claim:
Atmosphere drying apparatus comprising a pair of chambers each substantially filled with a desiccant, inlet and outlet openings adjacent opposite extremities thereof, vent means adjacent said inlet openings, rst Valve means or diverting the flow of atmosphere to be dried to one or the other of said inlet openings, second valve means adjacent each of said outlet openings for enabling a regulated ilow of dried atmosphere to pass into and through the other chamber when the vent means of the latter is operated, said second valve means comprising swing check valves having a relatively small aperture extending through the swinging element of each check valve, and means for heating said chambers.
References Cited in the le of this patent UNITED STATES PATENTS 2,075,036 Hollis Mar. 30, 1937 2,257,478 Newton Sept. 30, 1941 2,699,837 Van Note Jan. 18, 1955 2,747,681 Schuftan et al. May 29, 1956 2,765,868 Parks Oct. 9, 1956 2,815,089 Turner Dec. 3, 1957
US789220A 1957-05-03 1958-12-15 Atmosphere drying apparatus Expired - Lifetime US2975860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US789220A US2975860A (en) 1957-05-03 1958-12-15 Atmosphere drying apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US656840A US2979828A (en) 1957-05-03 1957-05-03 Atmosphere drying chamber
US789220A US2975860A (en) 1957-05-03 1958-12-15 Atmosphere drying apparatus

Publications (1)

Publication Number Publication Date
US2975860A true US2975860A (en) 1961-03-21

Family

ID=27097280

Family Applications (1)

Application Number Title Priority Date Filing Date
US789220A Expired - Lifetime US2975860A (en) 1957-05-03 1958-12-15 Atmosphere drying apparatus

Country Status (1)

Country Link
US (1) US2975860A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3192686A (en) * 1961-04-10 1965-07-06 Lear Siegler Inc Dehydrator method
US3197944A (en) * 1961-08-07 1965-08-03 Hayes Inc C I Rotary adsorber having intermittent movement
US3200569A (en) * 1962-01-31 1965-08-17 Varian Associates Sorption gas and vapor trap apparatus
US3224168A (en) * 1960-08-24 1965-12-21 Ass Elect Ind Adsorption apparatus
US3397511A (en) * 1965-03-31 1968-08-20 Gen Electric Desiccant-type air dryer employing heat for reactivation
US3498024A (en) * 1968-03-26 1970-03-03 Willard R Calvert Sr Method and apparatus for gas decontamination
US3827218A (en) * 1972-08-31 1974-08-06 Ajax Magnethermic Corp Valveless low pressure air dehumidifier
US4008058A (en) * 1975-03-18 1977-02-15 Wischer K Apparatus for regenerating a drying agent in driers for gases or air under positive pressure
US4269611A (en) * 1977-01-10 1981-05-26 Anderberg Erling L Apparatus for drying or dehumidifying gases
US4371384A (en) * 1979-10-12 1983-02-01 Green & Kellogg, Inc. Bed vessels for a compact oxygen concentrator
US4738692A (en) * 1986-02-14 1988-04-19 Fresch Vincent P Gas drying apparatus
DE4000297A1 (en) * 1990-01-08 1991-08-08 Rolf Backhauss Alternately operating regeneratable air-drying filters - for bleed pipe in large propellant fuel storage tank
US5213593A (en) * 1989-01-06 1993-05-25 Pall Corporation Pressure swing sorption system and method
US20090020014A1 (en) * 2005-01-12 2009-01-22 H2Gen Innovations, Inc. Methods and apparatus for imrpoved control of psa flow variations

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2075036A (en) * 1935-08-26 1937-03-30 Henry L Hollis Air conditioning apparatus and process
US2257478A (en) * 1938-10-22 1941-09-30 Honeywell Regulator Co Air conditioning system
US2699837A (en) * 1951-07-11 1955-01-18 Selas Corp Of America Dehydrator
US2747681A (en) * 1951-09-05 1956-05-29 British Oxygen Co Ltd Regeneration of adsorbent units
US2765868A (en) * 1956-10-09 Methods of and apparatus for removing liquid
US2815089A (en) * 1955-06-27 1957-12-03 Hudson Engineering Corp Gas dehydration apparatus and process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2765868A (en) * 1956-10-09 Methods of and apparatus for removing liquid
US2075036A (en) * 1935-08-26 1937-03-30 Henry L Hollis Air conditioning apparatus and process
US2257478A (en) * 1938-10-22 1941-09-30 Honeywell Regulator Co Air conditioning system
US2699837A (en) * 1951-07-11 1955-01-18 Selas Corp Of America Dehydrator
US2747681A (en) * 1951-09-05 1956-05-29 British Oxygen Co Ltd Regeneration of adsorbent units
US2815089A (en) * 1955-06-27 1957-12-03 Hudson Engineering Corp Gas dehydration apparatus and process

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3224168A (en) * 1960-08-24 1965-12-21 Ass Elect Ind Adsorption apparatus
US3192686A (en) * 1961-04-10 1965-07-06 Lear Siegler Inc Dehydrator method
US3197944A (en) * 1961-08-07 1965-08-03 Hayes Inc C I Rotary adsorber having intermittent movement
US3200569A (en) * 1962-01-31 1965-08-17 Varian Associates Sorption gas and vapor trap apparatus
US3397511A (en) * 1965-03-31 1968-08-20 Gen Electric Desiccant-type air dryer employing heat for reactivation
US3498024A (en) * 1968-03-26 1970-03-03 Willard R Calvert Sr Method and apparatus for gas decontamination
US3827218A (en) * 1972-08-31 1974-08-06 Ajax Magnethermic Corp Valveless low pressure air dehumidifier
US4008058A (en) * 1975-03-18 1977-02-15 Wischer K Apparatus for regenerating a drying agent in driers for gases or air under positive pressure
US4269611A (en) * 1977-01-10 1981-05-26 Anderberg Erling L Apparatus for drying or dehumidifying gases
US4371384A (en) * 1979-10-12 1983-02-01 Green & Kellogg, Inc. Bed vessels for a compact oxygen concentrator
US4738692A (en) * 1986-02-14 1988-04-19 Fresch Vincent P Gas drying apparatus
US5213593A (en) * 1989-01-06 1993-05-25 Pall Corporation Pressure swing sorption system and method
DE4000297A1 (en) * 1990-01-08 1991-08-08 Rolf Backhauss Alternately operating regeneratable air-drying filters - for bleed pipe in large propellant fuel storage tank
US20090020014A1 (en) * 2005-01-12 2009-01-22 H2Gen Innovations, Inc. Methods and apparatus for imrpoved control of psa flow variations
US8034164B2 (en) * 2005-01-12 2011-10-11 Lummus Technology Inc. Methods and apparatus for improved control of PSA flow variations

Similar Documents

Publication Publication Date Title
US2975860A (en) Atmosphere drying apparatus
US2699837A (en) Dehydrator
US2535902A (en) Gas drier
US2979828A (en) Atmosphere drying chamber
US3972129A (en) Apparaus for the adsorption treatment of a gaseous medium
KR850006156A (en) Dehumidification and heating method and device for drying air for drying synthetic plastic material
GB1305070A (en)
SE9101451L (en) dehumidifying device
US4054428A (en) Method and apparatus for removing carbon monoxide from compressed air
US3149932A (en) Drying kiln
US4919695A (en) Apparatus for drying gas
US3827218A (en) Valveless low pressure air dehumidifier
EP2764907B1 (en) Hybrid apparatus for drying a flow of compressed gas
US1550422A (en) Method and means for drying by air and other gaseous medium
US3231512A (en) Adsorption device
US3766660A (en) Adsorption gas drying method and apparatus
US6099620A (en) Heat regenerated desiccant gas dryer and method of use
US1670262A (en) Process of conditioning and cooling yarn
US2380518A (en) Kiln drying
US1415010A (en) Apparatus for drying fruits, vegetables, and other substances
JP2013072572A (en) Garbage drying device
US2884706A (en) Method for conditioning web-like materials in a closed chamber
US2459463A (en) Gas treating method and apparatus
US1943617A (en) Adsorber
US3591928A (en) Continuous fluidization-type powder drying plant and method of use