Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS2975860 A
Publication typeGrant
Publication date21 Mar 1961
Filing date15 Dec 1958
Priority date3 May 1957
Publication numberUS 2975860 A, US 2975860A, US-A-2975860, US2975860 A, US2975860A
InventorsHerbert W Westeren
Original AssigneeHayes Inc C I
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Atmosphere drying apparatus
US 2975860 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

March 21, 1961 H- W- WESTEREN 2,975,860

ATMOSPHERE DRYING APPARATUS Original Filed May 3, 1957 2 Sheets-Sheet 1 FER : Mr j )faire ff'! Qze# I @/,z .az i@ wf M1@ 34 $4/ @D /52 j 3.2/ C@ j l@ 1 W *h l: ff/@"1 1 IMI 1f @u 4g 4 Q@ 2% A 4 M1/6 ,im if 25% 7 //'y. 3 /E Z 4Z 46 4a INVENTOR.

March 21, 1961 H W' WESTEREN 2,975,860

ATMOSPHERE DRYING APPARATUS Original Filed May 3, 1957 2 Sheets-Sheet 2 Unite rates Patent O ATMOSPHERE DRYING APPARATUS Herbert W. Westeren, arn'ngton, RJ., assigner to C. I. Hayes, Inc., a corporation of Rhode Island Original application May 3, 1957, Ser. No. 656,840. Divided and this application Dec. 15, 1958, Ser. No. 789,220

. 1 Claim. (Cl. 183--4.7)

This application is a division of applicants co-pending application, Serial No. 656,840, filed May 3, 1957.

The present invention pertains generally to the provision of novel and improved apparatus for properly conditioning heat treatment atmospheres and the like, and more particularly, is concerned with problem of removing moisture therefrom.

A primary object of the instant invention is the provision of atmosphere drying apparatus specifically constructed so as to enable reactivation to take place in a reasonable length of time and without the use of expensive and complicated equipment, such as blowers, heat exchangers., and the like.

Another important object of my invention is the provision of an atmosphere drier having novel and improved means for rapidly and uniformly heating the desiccant utilized in order to aid in el-licient reactivation of the latter.

Another object of this invention is the provision of atmosphere drying appartus wherein the desiccant chamber is so constructed as to enable it to be more readily cooled after it has been heated during the reactivation cycle.

A further object of the instant invention is the provision of atmosphere drying apparatus having novel and improved means for controlling the ilow of purge gas through the desiccant chamber `during reactivation of the latter.

Still another object of my invention is the provision of apparatus of the character described which is simple and economically feasible to manufacture, easy to operate, and highly eflicient in operation.

Other objects, features and advantages of the invention will become apparent as the description thereof proceeds when Iconsidered in connection with the accompanying illustrative drawings.

In the drawings which illustrate the best mode presently contemplated by me for carrying out my invention:

lFig. l is a diagrammatic View showing the general layout of my novel and improved atmosphere drying apparatus;

Fig. 2 is a front elevation of one of the desiccant or drying chambers per se;

'Fig 3 is a side elevation thereof;

Fig. 4 is an elevational view taken from the other side thereof;

Fig. 5 is a longitudinal, vertical section, on an enlarged scale, of one of the desiccant chambers;

Fig. 6 is a transverse, vertical section thereof;

Fig. 7 is a perspective detail, on an enlarged scale, of one of the conducting pipes which forms a part of my construction;

Fig. 8 is a perspective detail, on an enlarged scale, of one of the radiation iins which forms a part of my construction; and

Fig. 9 is a perspective view, on an enlarged scale, partly in section and partly broken away, showing the swing check valve which forms a part of my invention.

This invention is concerned with the treatment of atmospheres and gases where specialized uses require that they be either completely dry or free from certain reacting chemicals. For example, where hydrogen bearing atmospheres lare to be used in connection with the heat treatment of high-speed steels and the like, it is absolutely essential that the atmosphere be rid of any appreciable moisture since otherwise vaporization would take place at vthe high heat treatment temperatures., and oxygen content of the vapors would result in contamination of the work load being heat treated.

Generally speaking, it is standard practice to dehumidify atmospheres `and gases of this type by passing them through a drying chamber comprising a desiccant therein, the desiccant functioning the absorb the moisture from the gas stream, whereupon the latter is substantially dried before passing to its point of use, such as a heat treatment furnace. Depending on certain factors, such as the rate of ow of the atmosphere, the moisture content thereof, and the size and temperature of the desiccant chamber, the desiccant will eventually become saturated, at which point it becomes necessary to reactivate same by removing the moisture therefrom. Quite obviously, if this is not done, the desiccant will be incapable of drawing oil `further moisture from the gases passing therethrough and hence will Ibecome completely ineficient for its intended purpose.

Since 4it is a well-known fact that desiccants will not absorb or retain moisture at relatively high temperatures, reactivation may be accomplished -by heating the desiccant chamber in order to release the absorbed moisture and then purging the moisture therefrom by a regulated gas flow. Once this has been done and the chamber has again been cooled, the desiccant may resume its absorbing function.

The problem which presents itself in connection with the above described reactivation operation resides in the fact that desiccants are notoriously poor conductor-s of heat, and hence, it has proven extremely diicult to effectively and uniformly heat the desiccant in a reasonable period of time. Furthermore, once the desiccant has' become uniformly heated and purged of its moisture, it must be cooled before being used again, and here again, its poor conductive qualities are a deterrent to rapid and efficient cooling. The instant invention has overcome this problem by the provision of novel and improved heat exchange means in the desiccant chamber, which mean, While extremely effective in use and operation, nevertheless `do not require any expensive or complicated apparatus, such as blowers, heat exchangers, and the like. Furthermore, my construction enables the desiccant chamber to be heated, purged, and cooled in a relatively short period of time,

It should be pointed out that even though my invention is primarily concerned with the removal of moisture from hydrogen bearing heat treatment atmospheres, the construction now to be described is equally applicable where moisture removal is not the primary concern. For example, desiccant-type driers can be utilized in connection with dissociated ammonia and will function to absorb any residual ammonia in the dissociated stream.

` Also, CO2 and H2O can be removed from nitrogen in -through which the line or conduit 12 extends.

inwardly through conduit to line 12, which in turn connects at its opposite ends to drying or desiccant chambers 14 and 16,.hereinafter to be described in detail. It will be understood that the chambers 14 and 16 are of identical construction, and a double acting valve 18 is associated with line 12 to insure that the ow of atmosphere will always be directed to one or the other of the chambers 14 and 16. Inl other words, when the valve 18 is in its full-line position, the ow will be to chamber 14, and the line to chamber 16 will be blocked. Conversely, when the valve is in its dotted-line position, the flow will be solely to chamber 16. Vent means 20 and 22 are provided adjacent the lower extremities of chambers 14 and 16, respectively, for reasons hereinafter to be made apparent.

After passing through chamber 14 or 16, the atmosphere tiow egresses through line 24 and then outwardly through conduit 26, the latter being provided with a relief valve 28. Specially designed swing check valves 341 are provided in line 24 adjacent each of the chambers'. The construction and function of the valves 30 will hereinafter be made apparent.

Referring now to Figs. 2 through 6, the construction of chamber 14 will be described; and since, as afore stated, the chambers 14 and 16 are of identical construction, it will be understood that the ensuing description is equally applicable to chamber 16. As will be seen most clearly in Figs. 2 through 4, the chamber 14 basically comprises a rectangular 'housing having front and rear walls 32, 34, side walls 36, 38, and top and bottom walls 40, 42, respectively. In order that the chamber may be readily lled with and emptied of the desiccant utilized in connection therewith, top wall 46 is provided with a pair of necked, openable closures 44. Any desirable means, such as brackets 46, may be utilized for insuring that the chamber will remain in its proper, upright position during use.

Referring now to Figs. 5 and 6, it will be noted that the chamber 14 is provided with an inlet opening 48, When the chamber is set up as a part of the system shown in Fig. l, inlet opening 48 is preferably disposed on inner side wall 36, while outer side wall 38 is provided with the venting valve 2t) in substantial alignment with line 12, said venting valve being operable to aid in the purging of the chamber, as will hereinafter become apparent. Preferably, the line or conduit 12 is closed at its inner end and has a downwardly disposed iiow opening 52 so` that the flow of atmosphere to be dried will be directed downwardly against bottom wall 42, and upon making contact therewith, it will be deflected upwardly through the desiccant. This aids in accomplishing better diffusion of the atmosphere or gas.

Spaced slightly above line or conduit 12 and in substantially parallel relation to bottom wall 42 is a screenlike partition 54 mounted by any suitable means, such as brackets S6. As will be apparent, the partition 54 functions to maintain the desiccant 58, with which the chamber is lled, spaced 4from the bottom of the cha l-- ber while at the same time enabling the atmosphere to pass upwardly therethrough. As hereinbefore indicated, desiccant 58 is a material having the ability to absorb certain constituents, such as moisture, from a gas or atmosphere stream passing therethrough. Some examples of desiccants in common use are activated alumina, silica gel, and molecular sieve, although I prefer to utilize the latter since it has a greater absorbent capacity and also is capable of performing its absorbing function at higher temperatures. Molecular sieve as utilized in this invention is characterized by a mass of small, chalklike pellets consisting of crystalline sodium and calcium alumino-silicates. It might be pointed out that while use of molecular sieve is desirable due to its greater absorbent capacity and its capability of absorbing effectively at higher temperatures, these very factors prove '4. disadvantageous during the reactivation cycle. In fact, the extreme ditliculty in reactivating molecular sieve has made this otherwise desirable absorbent impractical for use 1n apparatus of the general type under consideration, but this difficulty has now been overcome by the instant construction.

Extending transversely of chamber 14, from side wall 36 to side wall 38, are a plurality of vertically spaced and aligned open-ended pipes 69, said pipes having extending therethrough heating coils 62, which may be energized by any suitable means (not shown). Mounted on each of the pipes 60, by any desirable means, are a plurality of radiation iins 64, said tins being mounted in closely spaced relation and being of a width so as to substantially span the chamber 14 as shown most clearly in Fig. 6. As will be apparent, this particular arrangement enables the entire desiccant mass to be rapidly, uniformly, and eiiiciently heated, and since the pipes 60 are open ended, circulation of air therethrough will enable the mass to be more readily cooled after the heating operation is completed. Thus, while the open-ended pipes 60 in themselves provide a relatively inefficient heating arrangement, it has been found that by supplying sufficient energy to the coil 62, enough heat may be generated to reactivate the desiccant mass 53, particularly in view of the eiiicient dissemination of the heat which is accomplished by the iins 64 and their particular arrangement. At the same time, the inefficiency of the heating system becomes a decided advantage during the cooling of the chamber, and this is an important point since, as afore indicated, the desiccant is not capable of performing its drying function after reactivation until it has once again become cool, a time interval normally of considerable length due to the poor heat conductive qualities of the desiccant. By speeding up this cooling operation, a more eiiicient and economically feasible unit is provided. As will be noted in Fig. 5, theV upper level of desiccant 5S is somewhat lower than the upper edges of the top series of radiation tins 64. The reason for this is to insure that purge gas flowing downwardly through the chamber will be somewhat preheated before actually contacting the desiccant.

Adjacent the upper extremity of chamber 14, and preferably at inner side wall 36, there is provided an outlet opening 66 for receiving line 24. As will be noted, line 24 is provided with a downwardly disposed opening 68 at its inner end for receiving the now dried atmosphere and passing it outwardly through swing check valve 34B and conduit 26. Swing check 3i) is shown in detail in Fig. 9 and comprises a swingable element 70 which will swing open to allow free ow in one direction but which will restrict the tlow in the opposite direction, all in a well-known and conventional manner. In the instant construction, however, the swingable plate 70 is provided with a small aperture or orice 72 for enabling a regulated ilow to take place in said opposite direction. Thus, the swing check valves Bit are positioned in line 24 so as to enable 4free and unhindered tlow of dried atmosphere from the chambers 14 and 16, and at the same time, so as to enable a small regulated flow of atmosphere into saidy chambers through line 24 during the reactivation cycle.

Assuming that the chambers 14 and 16 are both reactivated, the cycle of operation is as follows. With the venting valves Ztl both closed, valve 18 is moved toits full-line position (Fig. l) whereupon the ow of atmos-y phere to be `dried will be completely directed into chamber 14 through line 12 and opening 52. The atmosphere will then be deflected upwardly` through the screen-like partition 54 and then through the desiccant mass 58. As the atmosphere passes upwardly, its moisture content will be absorbed therefrom by the desiccant whereupon, by`

the time the atmosphere reaches outlet 6i; and conduit 24, it will be substantially moisture free. The atmosphere then ows outwardly through line 24, swing check valve 3i?, and conduit 26, and then to its point of use. It will be understood that during this phase of the operation the chamber i4 is cooled, or at least at substantially room temperature.

When the desiccant 5S in chamber lli has become saturated, valve le is moved to its dotted-line position, Whereupon the ow of incorm'ng atmosphere will be directed solely to chamber i6. At the same time, venting valve 2t) in chamber 14 is opened, and heating coils 62 in said latter chamber are energized. As will be obvious, energization of the coils 62 will heat the pipes 6d and their respective radiation tins 64, which in turn rapidly and uniformly heat the desiccant mass 5S. ln the meantime, the opening fof vent 2i) in chamber i4 results in a pressure reduction, which causes a ycertain amount of the dried atmosphere flow passing from chamber 16 to circulate back through the chamber 1x4 in order to purge same of the moisture which has been released from its desiccant by the afore mentioned heating operation. Since this ilow of purge gas into chamber 14 is made possible by the fact that the latters swing check valve 30 has o-ritice 72 therein, it -follows that the rate of this back ilow may be readily regulated by Varying the size of said orifice. rThus, use of my particular modified swing check valve provides a simple and eitective way of controlling the back dow of purge gas and eliminates the necessity of using complicated throttling valves and the like which would otherwise be necessitated.

After the chamber 14 has been completely reactivated, or in other words, removed of its moisture content, the heating circuit is turned oft, and venting valve 29 is closed. lf desired, the heating circuit and venting valves could be tied in with each other so that said valves will automatically open when their respective coils 62 are energized and, conversely, Yclosed when the latter are deenergized. This could very simply be done by effecting the opening and closing of these Valves by means of solenoids controlled by the heating circuit, but it will be understood that it is immaterial to the successful operation of the instant invention whether such be the case or whether said venting valves be manually operated.

As soon as the chamber 14 has been reactivated in the i manner above set forth and its vent valve 20 closed, the flow of `dried atmosphere passing from chamber 16 through line 24 will exit completely through conduit 26. Then, when the desiccant in chamber 16 has become saturated, the valve 18 is swung back to its full-line position, whereupon the flow of atmosphere to be dried will once again be through the now reactivated chamber 14, while at the same time, reactivation of chamber 16 takes place in the manner described supra. Thus, a complete cycle of operation is provided wherein a constant and continuous flow of dried atmosphere is emitted, since the reactivation process is substantially shorter in point of time than that required for one of the chambers to become saturated, under normal operating conditions at least.

As will be noted, the ilow of purge gas passing through a given chamber during its reactivation is always in a direction opposite to that of the flow of atmosphere being dried. This is important since it insures that the upper portion of the desiccant bed will be better purged and dried, whereupon atmosphere passing upwardly through said chamber is less liable to contain any moisture as it passes from the desiocant bed. It will also be noted that the back purging operation of the instant invention utilizes gas or atmosphere which has already been dried thereby resulting in better purging and more effective reactivation. As hereinbefore indicated, the fact that the purge gas is preheated by the uppermost tin 64 before contacting the desiccant bed also aids in the accomplishment of more eifective reactivation. These factors, when taken in account with my improved heating and cooling means, have :resulted in the provision of highly eicient and yet economical drying apparatus.

While there is shown and described herein certain speciiic structure embodying the invention, it will be manifest to those skilled in the art that various modications and rearrangements of the parts may be made without departing from the spirit and scope of the underlying inventive concept and that the same is not limited to the particular forms herein shown and described except in so far as indicated by the scope of the appended claim.

I claim:

Atmosphere drying apparatus comprising a pair of chambers each substantially filled with a desiccant, inlet and outlet openings adjacent opposite extremities thereof, vent means adjacent said inlet openings, rst Valve means or diverting the flow of atmosphere to be dried to one or the other of said inlet openings, second valve means adjacent each of said outlet openings for enabling a regulated ilow of dried atmosphere to pass into and through the other chamber when the vent means of the latter is operated, said second valve means comprising swing check valves having a relatively small aperture extending through the swinging element of each check valve, and means for heating said chambers.

References Cited in the le of this patent UNITED STATES PATENTS 2,075,036 Hollis Mar. 30, 1937 2,257,478 Newton Sept. 30, 1941 2,699,837 Van Note Jan. 18, 1955 2,747,681 Schuftan et al. May 29, 1956 2,765,868 Parks Oct. 9, 1956 2,815,089 Turner Dec. 3, 1957

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2075036 *26 Aug 193530 Mar 1937Henry L HollisAir conditioning apparatus and process
US2257478 *22 Oct 193830 Sep 1941Honeywell Regulator CoAir conditioning system
US2699837 *11 Jul 195118 Jan 1955Selas Corp Of AmericaDehydrator
US2747681 *30 Aug 195229 May 1956British Oxygen Co LtdRegeneration of adsorbent units
US2765868 *31 Oct 19529 Oct 1956 Methods of and apparatus for removing liquid
US2815089 *27 Jun 19553 Dec 1957Hudson Engineering CorpGas dehydration apparatus and process
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3192686 *10 Apr 19616 Jul 1965Lear Siegler IncDehydrator method
US3197944 *7 Aug 19613 Aug 1965Hayes Inc C IRotary adsorber having intermittent movement
US3200569 *31 Jan 196217 Aug 1965Varian AssociatesSorption gas and vapor trap apparatus
US3224168 *21 Aug 196121 Dec 1965Ass Elect IndAdsorption apparatus
US3397511 *31 Mar 196520 Aug 1968Gen ElectricDesiccant-type air dryer employing heat for reactivation
US3498024 *26 Mar 19683 Mar 1970Calvert Willard R SrMethod and apparatus for gas decontamination
US3827218 *31 Aug 19726 Aug 1974Ajax Magnethermic CorpValveless low pressure air dehumidifier
US4008058 *17 Mar 197615 Feb 1977Wischer KApparatus for regenerating a drying agent in driers for gases or air under positive pressure
US4269611 *16 May 197926 May 1981Anderberg Erling LApparatus for drying or dehumidifying gases
US4371384 *26 May 19811 Feb 1983Green & Kellogg, Inc.Bed vessels for a compact oxygen concentrator
US4738692 *26 May 198719 Apr 1988Fresch Vincent PGas drying apparatus
US5213593 *28 Sep 199225 May 1993Pall CorporationPressure swing sorption system and method
US8034164 *26 Sep 200811 Oct 2011Lummus Technology Inc.Methods and apparatus for improved control of PSA flow variations
US20090020014 *26 Sep 200822 Jan 2009H2Gen Innovations, Inc.Methods and apparatus for imrpoved control of psa flow variations
DE4000297A1 *8 Jan 19908 Aug 1991Rolf BackhaussAlternately operating regeneratable air-drying filters - for bleed pipe in large propellant fuel storage tank
U.S. Classification96/126, 235/7.00A
International ClassificationF24F3/14
Cooperative ClassificationY02B30/16, F24F3/1411, F24F2003/1458
European ClassificationF24F3/14C