Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2906654 A
Publication typeGrant
Publication date29 Sep 1959
Filing date23 Sep 1954
Priority date23 Sep 1954
Publication numberUS 2906654 A, US 2906654A, US-A-2906654, US2906654 A, US2906654A
InventorsStanley Abkowitz
Original AssigneeStanley Abkowitz
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Heat treated titanium-aluminumvanadium alloy
US 2906654 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

S. ABKOWITZ Sept. 29, 1959 HEAT TREATED TITANIUM-ALUMINUM-VANADIUM ALLOY Filed Sept. 23, 1954 5 96 ALUMINUM owmM mmm

mwm

o v mommwwwwmmw 0.,m...o.m.o.o.o.o.0.m. wwmmmmmmmmm Fig. E.

O m 0 O 3 2 l /oALUMlNUM IN VEN TOR United States Patent HEAT TREATED TITANIUlVl-ALUMINUM- VANADIUM ALLOY Stanley Abkowitz, Warren, Ohio, assignor to the United States of America as represented by the Secretary of the Army 7 Application September 23, 1954, Serial No. 458,032

1 Claim. (Cl. 148-325) (Granted under Title as, US. Code 1952 sec. 266) .The invention described herein may be manufactured and used by or for the Government of the United States for governmental purposes without the payment of any royalty thereon.

This invention relates to titanium base alloys and more particularly to ternary alloys of titanium containing minor proportions of aluminum and vanadium.

Since titanium base alloys offer such desirable properties aslightness of weight and resistance to corrosion, the art is continually striving to utilize these alloys as an effective substitute for high-strength steels. However, it has been found that the addition of the alloying elements heretofore utilized for the purpose of increasing tensile strength in titanium base alloys have invariably decreased the ductility thereof to such extent as to prevent adequate fabrication of structural shapes therefrom. Moreover, these prior art alloying elements also contribute to an appreciable reduction in the resistance to impact or toughness of the resulting alloy thereby seriously limiting the usefulness thereof for such important applications as ordnance materiel.

It is, therefore, an object of this invention to provide ternary alloys consisting of titanium, aluminum and vanadium.

A further object of this invention is to produce hightalc-e 2 dium produces a substantial increase in tensile strength together with a corresponding increase in both ductility and toughness. At the same time, it has been determined that while any further increase in the percentages of aluminum above 6% produced a corresponding decrease in ductility, the ease of fabrication of the resutling alloy was still substantially greater than that encountered in existing commercial types of titanium base alloys having comparable tensile strengths. 7

While most titanium base alloys suffer a marked loss in ductility as a result of any increase in those alloying elements which are known to provide high tensile strength, such is not the case in the present invention where the ductility actually increases at a constant rate as indicated in Fig. 2 of the drawing until such time as the total aluminum content exceeds 6%. A further aluminum increase up to 7% will, of course, produce the conventional loss in ductility but even then the reduction in area in the annealed state of the alloy remains at about 17% which is considered satisfactory from the standpoint of ordinary mechanical Working. However, when the aluminum content is increased beyond 7%, the ductility of the resulting the third alloying element ordinarily consists of manstrength, tough titanium base alloys of aluminum and vanadium characterized by a degree of ductility superior to that found in existing types of commercial alloys.

Yet another object of this invention is to provide-a titanium base alloy possessing an optimum'combination of tensile strength and ductility superior in either respect to that found in known commercial type alloys.

It is a specific object of this invention to provide a titanium base alloy of aluminum and vanadium wherein the proportions of the alloying elements are particularly selected to yield an optimum combination of tensile strength and ductility together with a useful level of toughness and weldability.

Other advantages and purposes of the present invention will become apparent from the following disclosure thereof, when considered in conjunction with the accompanying drawing wherein:

Fig. 1 is a graph illustrating the efiect on tensile strength, in both the annealed and heat treated conditions, of increasing the proportion of aluminum in a Ti--Al-V alloy containing 4% vanadium; and

Fig. 2 is a graph which shows the effect on ductility as measured by the reduction in area of the same additions of aluminum under the same conditions as those of Fig. 1.

According to the present invention, it has been discovered that adding up to 6% aluminum to a binary titanium alloy which includes from 3% to 5% of vanaganese, chromium, or iron. While these elements do improve the tensile strength of the resulting alloy, they severely decrease the ductility thereof. However, investigation has revealed that unlike the alloying elements of the prior art, vanadium has little adverse effect on ductility, possibly because it, as well as the aluminum, does not appear to form compounds with the titanium. It has been previously established that the percentage of beta stabilizing elements alloyed with titanium has a marked effect on weldability. Consequently, in order to provide maximum tensile strength consistent with good weldability, the vanadium content of the alloys should be limited to 4%. On the other hand, where weldability is not of prime importance, the vanadium content can be increased to 6% in order to attain the maximum tensile strength possible without an undue loss in ductility.

Toughness is another vital factor in those titanium base alloys intended for ordnance use. As is apparent from the table, the preferred alloy provides adequate toughness as indicated by the 11 ft.-lbs obtained in a V-notch Charpy impact test at -40 C. However, where slightly lower tensile strengths are permissible, both the ductility and toughness of the preferred alloy can be increased to much higher levels by the proper heat treatment as indicated in the table.

The titanium base alloys of the present invention may be prepared from either commercial or high purity titanium. However, when the commercial product is employed, the amounts of such contaminants as nitrogen, oxygen, carbon, and hydrogen must be kept to a minimum. For example, neither the oxygen nor carbon should exceed 0.1% while the nitrogen must be kept below 0.07% and the hydrogen below 0.03% in order to limit their embrittling eifects on the alloy.

It has been found that the optimum combination of high strength and ductility is obtained when a 6% Al4% V titanium base alloy is subjected to a solution treatment at a temperature just below the beta transus and is there after water-quenched and tempered in the alpha-beta range. Illustrative properties of the preferred alloy composition at various heat treatments are shown in the fol- [20 1b. ingot rolled to ;,-inch plate] MECHANICAL PROPERTIES AFTER VARIOUS HEAT TREATMENTS treated for one hour at 1750 F. and then quenched and then further heat treated for two hours at 800 F. and

V-notch,

Yield Ultimate Charpy Heat treatment strength, tensile, BHN Percent Percent impact p.s.i., 2% p.s.i. elon. RA. energy,

930 F. (1 hr.) WQ 159,200 336 14.3 39.4 15.0 930 F. (1 hr.) WQ 161,500 336 15.0 43.6 15.8 930 F. (1 hr.) WQ 153,000 331 16. 4 46.1 18.0 930 F. (1 hr.) WQ 156, 000 331 17. 1 49. 4 17. 5 930 F. (1 hr.) WQ, 168,200 349 14.3 40. 2 14.0 930 F. (1 hr.) WQ, 750 170, 200 352 12. 9 37. 6 13. 8 1,650 F. (1 hr.) WQ, 60 171, 400 352 15.0 49.8 13.2 1,650 F. (1 hr.) WQ, 80 185,400 375 11.4 37.1 12.0 1,650 F. (1 hr.) WQ, 1,00 5.) AC 182, 363 12.9 45.7 12.7 1,750 F. (1 hr.) WQ, 600 F. (2 hrs.) AC 164,500 188,000 375 12. 1 43. 2 11. 8 1,750 F. (1 hr.) WQ, 800 F. (2 hrs.) AC 170,500 192,800 388 14.3 45.3 11.0 1,7 0 F. (1 hr.) WQ, 1,000 F. (2 hrs.) AG... 178,000 190,400 388 1 3. 6 1 5. 11.0 930 F. (1 hr.) WQ, 1,200 F. (2 hrs.) AC... 4, 142,600 305 15.7 46.5 21.5 1,800 F. (1 hr.) WQ, 1,000 F. (2 hrs.) AC-.. 163, 500 179, 400 380 6. 4 12.4 7, 5 1,800 F. (1 hr.) WQ, 1,200 F. (2 hrs.) AC 153,000 166,000 350 10.7 16.6 10.5 1,650 I (1 hr.) WQ, 1,200 F. (2 hrs.) AC 148,000 154,000 331 17. 1 51.7 18.2 1,650 F. (1 hr.) AC, 1,200 F. (2 hrs.) AC 134, 500 -141,400 302 16.4 51.7 22.5 1,650 F. (1 hr.) AC, 1,000 F. (2 hrs. A0 138,000 147, 316 18. 6 56. 3 32.0

I Flaw in specimen-break in outer third. WQ=water quench; AC=air cool.

The best heat treatment for the preferred 6% Al-4% then arr cooled to provlde a tensile strength of about V alloy was found to be a solution treatment at 1750 F. for one hour followed by a two-hour treatment at 800 F. and air-cooled since it provides the optimum combination of 192,000 p.s.i. tensile strength and 42% reduction in area in thicknesses of approximately one-half inch. Even in the annealed condition provided by 930 F. anneal for one hour and water-quenched, the tensile strength has been found to reach 160,000 p.s.i. and at the same time provide excellent ductility as shown by the 45% reduction in area.

In addition to the outstanding properties of tensile strength, ductility, and toughness at room temperatures, the 6% Al-4% V titanium base alloy is also characterized by its ability to maintain tensile strengths up to 110,000 p.s.i. at such elevated temperatures as 700 F.

Although a particular embodiment of the invention has been described in detail herein, it is evident that many variations may be devised within the spirit and scope thereof and the following claims are intended to include such variations.

I claim:

A titanium base alloy consisting of about 6% aluminum, about 4% vanadium, and the balance of titanium with incidental impurities, said alloy having been heat 1,92 ,000 p.s.i., a reduction in area of about 45%, and a Charpy V-notch impact energy of at least 11 foot pounds at 40 C.

References Cited in the file of this patent UNITED STATES PATENTS 992,423 Hutfard May 16, 1911 2,703,278 Finlay et a1 Mar. 1, 1955 2,754,204 Jaffee et a1. July 10, 1956 FOREIGN PATENTS 718,822 Germany Mar. 24, 1942 OTHER REFERENCES Product Engineering, vol. 20, No. 11, November 1949, pp. 147-149.

Titanium Project (Mallory Co.), Final Report No. 17, Navy Contract No. NO,,(s) 8698, released as PB103370 by OTS on June 15, 1951.

Titanium Project, Final Report No. 9 (Mallory Co.), Navy Contract No. NO,,(s) 51-006-C, dated January 26, 1952, released as PB107150 by OTS on September 12, 1952.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US992423 *14 Nov 191016 May 1911Electro Metallurg CoProcess of producing titanium alloys.
US2703278 *23 Apr 19541 Mar 1955Rem Crn Titanium IncTitanium-aluminum alloys
US2754204 *31 Dec 195410 Jul 1956Rem Cru Titanium IncTitanium base alloys
DE718822C *18 Sep 193724 Mar 1942Wilhelm Kroll Dr IngVerwendung titanhaltiger Legierungen
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3248679 *11 Dec 196226 Apr 1966Ward Leonard Electric CoMetal alloy resistors
US3248680 *11 Dec 196226 Apr 1966Ward Leonard Electric CoResistor
US3511622 *12 Oct 196512 May 1970Milton A NationTitanium wire and wire rope
US4149884 *30 Jun 197817 Apr 1979The United States Of America As Represented By The Secretary Of The Air ForceHigh specific strength polycrystalline titanium-based alloys
US4167427 *18 Oct 197711 Sep 1979Mitsubishi Jukogyo Kabushiki KaishaHeat treatment of titanium alloys
US4299626 *8 Sep 198010 Nov 1981Rockwell International CorporationTitanium base alloy for superplastic forming
US4745977 *12 Apr 198524 May 1988Union Oil Company Of CaliforniaMethod for resisting corrosion in geothermal fluid handling systems
US4898624 *7 Jun 19886 Feb 1990Aluminum Company Of AmericaHigh performance Ti-6A1-4V forgings
US663509812 Feb 200221 Oct 2003Dynamet Technology, Inc.Low cost feedstock for titanium casting, extrusion and forging
US751332016 Dec 20047 Apr 2009Tdy Industries, Inc.Cemented carbide inserts for earth-boring bits
US75971599 Sep 20056 Oct 2009Baker Hughes IncorporatedDrill bits and drilling tools including abrasive wear-resistant materials
US768715618 Aug 200530 Mar 2010Tdy Industries, Inc.Composite cutting inserts and methods of making the same
US770355530 Aug 200627 Apr 2010Baker Hughes IncorporatedDrilling tools having hardfacing with nickel-based matrix materials and hard particles
US77035564 Jun 200827 Apr 2010Baker Hughes IncorporatedMethods of attaching a shank to a body of an earth-boring tool including a load-bearing joint and tools formed by such methods
US777528712 Dec 200617 Aug 2010Baker Hughes IncorporatedMethods of attaching a shank to a body of an earth-boring drilling tool, and tools formed by such methods
US777625610 Nov 200517 Aug 2010Baker Huges IncorporatedEarth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies
US77845676 Nov 200631 Aug 2010Baker Hughes IncorporatedEarth-boring rotary drill bits including bit bodies comprising reinforced titanium or titanium-based alloy matrix materials, and methods for forming such bits
US780249510 Nov 200528 Sep 2010Baker Hughes IncorporatedMethods of forming earth-boring rotary drill bits
US784125927 Dec 200630 Nov 2010Baker Hughes IncorporatedMethods of forming bit bodies
US784655116 Mar 20077 Dec 2010Tdy Industries, Inc.Composite articles
US791377929 Sep 200629 Mar 2011Baker Hughes IncorporatedEarth-boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum-based alloy matrix materials, and methods for forming such bits
US795456928 Apr 20057 Jun 2011Tdy Industries, Inc.Earth-boring bits
US799735927 Sep 200716 Aug 2011Baker Hughes IncorporatedAbrasive wear-resistant hardfacing materials, drill bits and drilling tools including abrasive wear-resistant hardfacing materials
US800205227 Jun 200723 Aug 2011Baker Hughes IncorporatedParticle-matrix composite drill bits with hardfacing
US800771420 Feb 200830 Aug 2011Tdy Industries, Inc.Earth-boring bits
US800792225 Oct 200730 Aug 2011Tdy Industries, IncArticles having improved resistance to thermal cracking
US802511222 Aug 200827 Sep 2011Tdy Industries, Inc.Earth-boring bits and other parts including cemented carbide
US80747503 Sep 201013 Dec 2011Baker Hughes IncorporatedEarth-boring tools comprising silicon carbide composite materials, and methods of forming same
US808732420 Apr 20103 Jan 2012Tdy Industries, Inc.Cast cones and other components for earth-boring tools and related methods
US810455028 Sep 200731 Jan 2012Baker Hughes IncorporatedMethods for applying wear-resistant material to exterior surfaces of earth-boring tools and resulting structures
US81378164 Aug 201020 Mar 2012Tdy Industries, Inc.Composite articles
US817291415 Aug 20088 May 2012Baker Hughes IncorporatedInfiltration of hard particles with molten liquid binders including melting point reducing constituents, and methods of casting bodies of earth-boring tools
US817681227 Aug 201015 May 2012Baker Hughes IncorporatedMethods of forming bodies of earth-boring tools
US82016105 Jun 200919 Jun 2012Baker Hughes IncorporatedMethods for manufacturing downhole tools and downhole tool parts
US82215172 Jun 200917 Jul 2012TDY Industries, LLCCemented carbide—metallic alloy composites
US822588611 Aug 201124 Jul 2012TDY Industries, LLCEarth-boring bits and other parts including cemented carbide
US82307627 Feb 201131 Jul 2012Baker Hughes IncorporatedMethods of forming earth-boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum-based alloy matrix materials
US82616329 Jul 200811 Sep 2012Baker Hughes IncorporatedMethods of forming earth-boring drill bits
US827281612 May 200925 Sep 2012TDY Industries, LLCComposite cemented carbide rotary cutting tools and rotary cutting tool blanks
US830809614 Jul 200913 Nov 2012TDY Industries, LLCReinforced roll and method of making same
US830901830 Jun 201013 Nov 2012Baker Hughes IncorporatedEarth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies
US831294120 Apr 200720 Nov 2012TDY Industries, LLCModular fixed cutter earth-boring bits, modular fixed cutter earth-boring bit bodies, and related methods
US831789310 Jun 201127 Nov 2012Baker Hughes IncorporatedDownhole tool parts and compositions thereof
US831806324 Oct 200627 Nov 2012TDY Industries, LLCInjection molding fabrication method
US832246522 Aug 20084 Dec 2012TDY Industries, LLCEarth-boring bit parts including hybrid cemented carbides and methods of making the same
US83887238 Feb 20105 Mar 2013Baker Hughes IncorporatedAbrasive wear-resistant materials, methods for applying such materials to earth-boring tools, and methods of securing a cutting element to an earth-boring tool using such materials
US84030801 Dec 201126 Mar 2013Baker Hughes IncorporatedEarth-boring tools and components thereof including material having hard phase in a metallic binder, and metallic binder compositions for use in forming such tools and components
US84593808 Jun 201211 Jun 2013TDY Industries, LLCEarth-boring bits and other parts including cemented carbide
US846481410 Jun 201118 Jun 2013Baker Hughes IncorporatedSystems for manufacturing downhole tools and downhole tool parts
US849067419 May 201123 Jul 2013Baker Hughes IncorporatedMethods of forming at least a portion of earth-boring tools
US863712727 Jun 200528 Jan 2014Kennametal Inc.Composite article with coolant channels and tool fabrication method
US864756125 Jul 200811 Feb 2014Kennametal Inc.Composite cutting inserts and methods of making the same
US869725814 Jul 201115 Apr 2014Kennametal Inc.Articles having improved resistance to thermal cracking
US87463733 Jun 200910 Jun 2014Baker Hughes IncorporatedMethods of attaching a shank to a body of an earth-boring tool including a load-bearing joint and tools formed by such methods
US87584628 Jan 200924 Jun 2014Baker Hughes IncorporatedMethods for applying abrasive wear-resistant materials to earth-boring tools and methods for securing cutting elements to earth-boring tools
US877032410 Jun 20088 Jul 2014Baker Hughes IncorporatedEarth-boring tools including sinterbonded components and partially formed tools configured to be sinterbonded
US878962516 Oct 201229 Jul 2014Kennametal Inc.Modular fixed cutter earth-boring bits, modular fixed cutter earth-boring bit bodies, and related methods
US879043926 Jul 201229 Jul 2014Kennametal Inc.Composite sintered powder metal articles
US880084831 Aug 201112 Aug 2014Kennametal Inc.Methods of forming wear resistant layers on metallic surfaces
US88085911 Oct 201219 Aug 2014Kennametal Inc.Coextrusion fabrication method
US88410051 Oct 201223 Sep 2014Kennametal Inc.Articles having improved resistance to thermal cracking
US88588708 Jun 201214 Oct 2014Kennametal Inc.Earth-boring bits and other parts including cemented carbide
US886992017 Jun 201328 Oct 2014Baker Hughes IncorporatedDownhole tools and parts and methods of formation
US890511719 May 20119 Dec 2014Baker Hughes IncoporatedMethods of forming at least a portion of earth-boring tools, and articles formed by such methods
US897873419 May 201117 Mar 2015Baker Hughes IncorporatedMethods of forming at least a portion of earth-boring tools, and articles formed by such methods
US901640630 Aug 201228 Apr 2015Kennametal Inc.Cutting inserts for earth-boring bits
US91634615 Jun 201420 Oct 2015Baker Hughes IncorporatedMethods of attaching a shank to a body of an earth-boring tool including a load-bearing joint and tools formed by such methods
US91929897 Jul 201424 Nov 2015Baker Hughes IncorporatedMethods of forming earth-boring tools including sinterbonded components
US92004859 Feb 20111 Dec 2015Baker Hughes IncorporatedMethods for applying abrasive wear-resistant materials to a surface of a drill bit
US92661718 Oct 201223 Feb 2016Kennametal Inc.Grinding roll including wear resistant working surface
US942882219 Mar 201330 Aug 2016Baker Hughes IncorporatedEarth-boring tools and components thereof including material having hard phase in a metallic binder, and metallic binder compositions for use in forming such tools and components
US943501022 Aug 20126 Sep 2016Kennametal Inc.Composite cemented carbide rotary cutting tools and rotary cutting tool blanks
US95062974 Jun 201429 Nov 2016Baker Hughes IncorporatedAbrasive wear-resistant materials and earth-boring tools comprising such materials
US964323611 Nov 20099 May 2017Landis Solutions LlcThread rolling die and method of making same
US968796310 Mar 201527 Jun 2017Baker Hughes IncorporatedArticles comprising metal, hard material, and an inoculant
US97009915 Oct 201511 Jul 2017Baker Hughes IncorporatedMethods of forming earth-boring tools including sinterbonded components
US979074524 Nov 201417 Oct 2017Baker Hughes IncorporatedEarth-boring tools comprising eutectic or near-eutectic compositions
US20060045789 *2 Sep 20042 Mar 2006Coastcast CorporationHigh strength low cost titanium and method for making same
US20070056776 *9 Sep 200515 Mar 2007Overstreet James LAbrasive wear-resistant materials, drill bits and drilling tools including abrasive wear-resistant materials, methods for applying abrasive wear-resistant materials to drill bits and drilling tools, and methods for securing cutting elements to a drill bit
US20070056777 *30 Aug 200615 Mar 2007Overstreet James LComposite materials including nickel-based matrix materials and hard particles, tools including such materials, and methods of using such materials
US20070102199 *10 Nov 200510 May 2007Smith Redd HEarth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies
US20070102202 *6 Nov 200610 May 2007Baker Hughes IncorporatedEarth-boring rotary drill bits including bit bodies comprising reinforced titanium or titanium-based alloy matrix materials, and methods for forming such bits
US20080029186 *13 Feb 20077 Feb 2008Stanley AbkowitzHomogeneous titanium tungsten alloys produced by powder metal technology
US20080073125 *27 Sep 200727 Mar 2008Eason Jimmy WAbrasive wear resistant hardfacing materials, drill bits and drilling tools including abrasive wear resistant hardfacing materials, and methods for applying abrasive wear resistant hardfacing materials to drill bits and drilling tools
US20080083568 *28 Sep 200710 Apr 2008Overstreet James LMethods for applying wear-resistant material to exterior surfaces of earth-boring tools and resulting structures
US20080135304 *12 Dec 200612 Jun 2008Baker Hughes IncorporatedMethods of attaching a shank to a body of an earth-boring drilling tool, and tools formed by such methods
US20080156148 *27 Dec 20063 Jul 2008Baker Hughes IncorporatedMethods and systems for compaction of powders in forming earth-boring tools
US20080163723 *20 Feb 200810 Jul 2008Tdy Industries Inc.Earth-boring bits
US20080202814 *23 Feb 200728 Aug 2008Lyons Nicholas JEarth-boring tools and cutter assemblies having a cutting element co-sintered with a cone structure, methods of using the same
US20080302576 *15 Aug 200811 Dec 2008Baker Hughes IncorporatedEarth-boring bits
US20090308662 *11 Jun 200817 Dec 2009Lyons Nicholas JMethod of selectively adapting material properties across a rock bit cone
US20100000798 *23 Jun 20097 Jan 2010Patel Suresh GMethod to reduce carbide erosion of pdc cutter
US20100006345 *9 Jul 200814 Jan 2010Stevens John HInfiltrated, machined carbide drill bit body
US20100132265 *8 Feb 20103 Jun 2010Baker Hughes IncorporatedAbrasive wear-resistant materials, methods for applying such materials to earth-boring tools, and methods of securing a cutting element to an earth-boring tool using such materials
US20100263935 *30 Jun 201021 Oct 2010Baker Hughes IncorporatedEarth boring rotary drill bits and methods of manufacturing earth boring rotary drill bits having particle matrix composite bit bodies
US20100276205 *7 Jul 20104 Nov 2010Baker Hughes IncorporatedMethods of forming earth-boring rotary drill bits
US20100303566 *4 Aug 20102 Dec 2010Tdy Industries, Inc.Composite Articles
US20100307838 *5 Jun 20099 Dec 2010Baker Hughes IncorporatedMethods systems and compositions for manufacturing downhole tools and downhole tool parts
US20100326739 *3 Sep 201030 Dec 2010Baker Hughes IncorporatedEarth-boring tools comprising silicon carbide composite materials, and methods of forming same
US20110094341 *30 Aug 201028 Apr 2011Baker Hughes IncorporatedMethods of forming earth boring rotary drill bits including bit bodies comprising reinforced titanium or titanium based alloy matrix materials
US20110138695 *9 Feb 201116 Jun 2011Baker Hughes IncorporatedMethods for applying abrasive wear resistant materials to a surface of a drill bit
US20110142707 *7 Feb 201116 Jun 2011Baker Hughes IncorporatedMethods of forming earth boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum based alloy matrix materials
US20110186354 *3 Jun 20094 Aug 2011Baker Hughes IncorporatedMethods of attaching a shank to a body of an earth-boring tool including a load bearing joint and tools formed by such methods
EP0163018A2 *23 Apr 19824 Dec 1985Nissan Motor Co., Ltd.Method of welding titanium alloy parts with an insert member consisting essentially of 0 to 3% by weight of aluminium and the balance of titanium
EP0163018A3 *23 Apr 198210 Feb 1988Hitachi, Ltd.Method of welding titanium alloy parts with an insert member consisting essentially of 0 to 3% by weight of aluminium and the balance of titanium
EP0396236A1 *13 Mar 19907 Nov 1990Titanium Metals Corporation of AmericaHigh strength alpha-beta titanium-base alloy
WO2013162658A225 Jan 201331 Oct 2013Dynamet Technology, Inc.Oxygen-enriched ti-6ai-4v alloy and process for manufacture
WO2013162658A3 *25 Jan 201323 Jan 2014Dynamet Technology, Inc.Oxygen-enriched ti-6ai-4v alloy and process for manufacture
Classifications
U.S. Classification148/407, 420/420
International ClassificationC22F1/18
Cooperative ClassificationC22F1/183
European ClassificationC22F1/18B