US2876178A - Electrodepositing copper - Google Patents

Electrodepositing copper Download PDF

Info

Publication number
US2876178A
US2876178A US569675A US56967556A US2876178A US 2876178 A US2876178 A US 2876178A US 569675 A US569675 A US 569675A US 56967556 A US56967556 A US 56967556A US 2876178 A US2876178 A US 2876178A
Authority
US
United States
Prior art keywords
copper
cobalt
deposit
nickel
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US569675A
Inventor
Ewald H Mccoy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US569675A priority Critical patent/US2876178A/en
Application granted granted Critical
Publication of US2876178A publication Critical patent/US2876178A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • C25D3/40Electroplating: Baths therefor from solutions of copper from cyanide baths, e.g. with Cu+

Definitions

  • An object of the present invention is to provide a novel process of producing an improved copper deposit. Another object is to provide addition agents of a metallic character which are not depleted by the electrode deposition process. .A further object is to provide for an improved plating range of wider current densities. A still further object is to provide a copper deposit of excellent buifability. Yet another object is to provide a copper electroplatingjsolutioh havin a wide range'of operating conditions which requires less care and exactness in obtaining optimum results. A still further object of the inventionvis to provide a copper electroplating solution having a smooth, lustrous deposit. Other specific objects and advantages will appear as the specification proceeds. I have discovered that the. electrodeposition of copper titles as small as .05 g./l.
  • the lustrous, smooth,- and fine-grained deposit obtained' by the addition of nickel or cobalt to the copper cyanide solution is *obtained even though the quantities of the'added metal may be Widely varied, and need not be confined within narrow or critical limits to produce good results. Further, the nickel or cobalt is not removed in any measurable amount by a codeposition; they are lost primarily by dragout.
  • the concentrations for operation may be varied over wide ranges, and further they are efiective over a wide range of solution-operating 2,876,178 Fatented'Mar. 3, 1959 conditions. For example, cobalt used in quantities as small as .001 g./l. produces a favorable change in the electrodeposit, while quantities as large as .25 g./l. are useful and do not produce unfavorable results.
  • the nickel or cobalt may be added in any form which permits their introduction into the solution. They may be added in either organic or inorganic complexes or by electrolysis of the metal or copper alloy. I have found that cobalt or nickel may be combined with organic or other metal-organic compounds for special effects within the range of electroplating. They may be used in combination with other substances but the basic effect of cathode depolarization, luster, smoothness of the deposit and bulfability is primarily determined by their presence in the electroplating solution. In addition, I have found that certain organic addition agents are helpful in promoting the buifability and extending the current density range. I have found that While piperidine produces some beneficial effect, other piperidine complexes are to be preferred. Substances such as; 2,4 lutidine, 2,6 lutidine are preferable. These were found to be beneficial in quan- The amount I prefer to use is .25 g./l. More may be used without bad effect.
  • Protein Metaprotein Proteoses Peptones Simple polypeptides Amiiio acids.
  • salts of organic acids may be substituted for Rochelle salts within theart of electroplating. Salts as sodium or potassium tartratc, oxalate, tormate, etc.
  • the potassium formulation is preferred to the sodium formulation. However, either may be used and modified in composition within the art of electroplating to produce the desired results. All the above proportions are with'respect to one liter of solution and the pH of the solution should be above 12.5.
  • Example I To the process as described in Example I with the temperature maintained at about 70 C., nickel was added in the amount of .025 g./l., and a copper deposit of smooth and lustrous quality. having excellent bufiability was produced.
  • Example III Inthe process as described in Example I, .025 g./l. cobalt and .25 g./l. 2,4-lutidine was added, giving a copper deposit of wide range and excellent butfability. The substitution of a like amount of 2,6-lutidine for 2,4- lutidine was found also to give a smooth, lustrous copper deposit of wide range and excellent bufiability.
  • Example I V In the process as described in Example I, .025 g./l. nickel and .25 g./l. 2,4-lutidine was added, to produce a smooth copper deposit of excellent buffability. The same result was obtained when 2,6-lutidine was added.
  • Example V To a copper cyanide plating solution was added cobalt in the amount of .025 g./l. and approximately .25 g./l. of the degradation products of the hydrolysis of proteins, producing a smooth, lustrous copper deposit of wide range and brilliance. The same result was obtained when nickel 'was substituted for cobalt in like amount.
  • Example VI To a copper cyanide plating solution maintained within the range of 5080 C. was added cobalt in the amount -of .025 g./l. and cobalt selenite in the amount of at least .001 g./l., producing a smooth, lustrous copper deposit of wide range and brilliance. The same result was obtained when nickel was substituted for cobalt and nickel selenite substituted for cobalt selenite.
  • Example VII Cobalt in the amount of .025 g./l. was added to a 4 copper cyanide plating solution, together with at least .001 g./l. copper selenite, and there was produced a smooth, lustrous copper deposit of wide range and brilliance. The same result was obtained when nickel was substituted for cobalt in like amount.
  • Example VIII Nickel in the amount of at least .001 g./l. and KCNS in the amount of at least 2 g./l. were added to a copper cyanide plating solution, producing a smooth, lustrous deposit having good range and butfability. The same result was obtained when cobalt was substituted for the nickel in like amount and when NaCNS or NHiCNS was substituted for KCNS.
  • the copper deposit produced by the above described processes is changed in visible and physical ways.
  • This deposit is formed with a decided bluish cast, in contrast to the red-orange deposit conventionally formed.
  • the metallurgical hardness is affected to such a degree that formerly where a part was plated and required hard buffing and coloring to produce an acceptable finish, now only coloring with a soft bull and very light pressures are required.
  • the deposit has the ability to flow" readily under light pressure to cover imperfections in the basis metal, thus reducing the finishing cost drastically.

Description

ELECTRODEPOSITING COPPER Ewald H. McCoy, Milwaukee, Wis.
N Drawing. Application March 6, 1956 Serial N0. 569,675 I 3 Claims. (Cl. 204-52) This invention relates to a process for electrodepositing States Patent "0 ice copper, and more particularly to makingimproved deposits from copper cyanide solutions.
.Heretofore, various materials have been added to'copper cyanide solutions such as, for example, lead, selenium, zinc and antimony, the materials being added in various proportions and amounts to improve electrodeposited copper. Such metals, however, have certain disadvantages. The quantities of each required are small and have to be controlled within relatively narrow limits to provide fair operating conditions. Because all are codeposited, they are depleted rapidly and frequent replacement is required to maintain their optimum concentrations. When used in combination, such as-lead and selenium are, this problem' arises: Each metal iscodeposited with the copper in a preferential current density ranges The amount of each removed from the bath depends upon the relationship of the currentdensities in the low and high current densities present on the parts "being electroplated. It is easy to see that the amount of each removed by electrolysis can be variable and notin proportion to the original concentration. This complicates the selection of the replacement addition agents because they must be correct in both proportion and concentration for fair results. a
An object of the present invention is to provide a novel process of producing an improved copper deposit. Another object is to provide addition agents of a metallic character which are not depleted by the electrode deposition process. .A further object is to provide for an improved plating range of wider current densities. A still further object is to provide a copper deposit of excellent buifability. Yet another object is to provide a copper electroplatingjsolutioh havin a wide range'of operating conditions which requires less care and exactness in obtaining optimum results. A still further object of the inventionvis to provide a copper electroplating solution having a smooth, lustrous deposit. Other specific objects and advantages will appear as the specification proceeds. I have discovered that the. electrodeposition of copper titles as small as .05 g./l.
from cyanide solutions can be greatly improved by the addition of cobalt, which results in a deposit which is smooth; lustrous, and very easily buffed to a high luster. Nickel can also be employed, and to the cobalt or nickel can be added organic and other compounds for improving the quality 'of the deposit. 1
The lustrous, smooth,- and fine-grained deposit obtained' by the addition of nickel or cobalt to the copper cyanide solution is *obtained even though the quantities of the'added metal may be Widely varied, and need not be confined within narrow or critical limits to produce good results. Further, the nickel or cobalt is not removed in any measurable amount by a codeposition; they are lost primarily by dragout. The concentrations for operation may be varied over wide ranges, and further they are efiective over a wide range of solution-operating 2,876,178 Fatented'Mar. 3, 1959 conditions. For example, cobalt used in quantities as small as .001 g./l. produces a favorable change in the electrodeposit, while quantities as large as .25 g./l. are useful and do not produce unfavorable results.
The nickel or cobalt may be added in any form which permits their introduction into the solution. They may be added in either organic or inorganic complexes or by electrolysis of the metal or copper alloy. I have found that cobalt or nickel may be combined with organic or other metal-organic compounds for special effects within the range of electroplating. They may be used in combination with other substances but the basic effect of cathode depolarization, luster, smoothness of the deposit and bulfability is primarily determined by their presence in the electroplating solution. In addition, I have found that certain organic addition agents are helpful in promoting the buifability and extending the current density range. I have found that While piperidine produces some beneficial effect, other piperidine complexes are to be preferred. Substances such as; 2,4 lutidine, 2,6 lutidine are preferable. These were found to be beneficial in quan- The amount I prefer to use is .25 g./l. More may be used without bad effect.
I have found also that the addition of amino acids, or the secondary protein derivatives, such as peptones and peptides, have favorable effects on the deposit when used singly or in combination. I have found also that the addition of the hydrolysis products of hide proteins results in favorable effects. Because hydrolysis is not a perfectly controllable process, and it is difficult, if not impossible, to stop the reaction at a particular stage, the hydrolytic products, of protein may be thought to be a mixture of the following: 7
Protein Metaprotein Proteoses Peptones Simple polypeptides Amiiio acids.
Although many proteins may be used for the hydrolysis, I prefer to use collagen or jelly-forming albuminoids, fibroids and keratins. I have found that, because of the variable amounts of the degradation products present, the required amounts of the mixture of hydrolysis products of protein can vary over a wide range. In general, an amount in the neighborhood of .25 to .5 g'./1. is sufficient to produce satisfactory results, but a range of .05-.25 g./l. may be used.
I have found also that the addition of selenium to a cyanide copper solution containing cobalt or nickel is beneficial in producing a high luster in the deposit. I prefer to add selenium in the form of nickel or cobalt selenite. The amount of .001 g./l. is enough to produce an improvement in the luster, however I prefer to use .005 g./l. Greater or lesser amounts may be used, desired. Copper selenite may be substituted for either, if desired.
Specific examples of copper solutions or baths prepared in accordance with the invention are as follows:
Range Optimum Copper cyanide grams. 50-120 85 (Copper as metal)" do 40-95 60 Potassium cyanide. do 70-140 100 (free cyanide) do 630 11.5 Potassium carbonate... do -60 Potassium hydroxid do 15-45 30 Rochelle salts 1 .do 30-75 '15 Temperature 50-80 C.
Current density to 100 amperes/ltfi, dependent upon metal concentration and operating temperature.
l Other salts of organic acids may be substituted for Rochelle salts within theart of electroplating. Salts as sodium or potassium tartratc, oxalate, tormate, etc.
The potassium formulation is preferred to the sodium formulation. However, either may be used and modified in composition within the art of electroplating to produce the desired results. All the above proportions are with'respect to one liter of solution and the pH of the solution should be above 12.5.
Specific examples of the process may be set out as follows:
Example I To the process as described in Example I with the temperature maintained at about 70 C., nickel was added in the amount of .025 g./l., and a copper deposit of smooth and lustrous quality. having excellent bufiability was produced.
Example III Inthe process as described in Example I, .025 g./l. cobalt and .25 g./l. 2,4-lutidine was added, giving a copper deposit of wide range and excellent butfability. The substitution of a like amount of 2,6-lutidine for 2,4- lutidine was found also to give a smooth, lustrous copper deposit of wide range and excellent bufiability.
Example I V In the process as described in Example I, .025 g./l. nickel and .25 g./l. 2,4-lutidine was added, to produce a smooth copper deposit of excellent buffability. The same result was obtained when 2,6-lutidine was added.
Example V To a copper cyanide plating solution was added cobalt in the amount of .025 g./l. and approximately .25 g./l. of the degradation products of the hydrolysis of proteins, producing a smooth, lustrous copper deposit of wide range and brilliance. The same result was obtained when nickel 'was substituted for cobalt in like amount.
Example VI To a copper cyanide plating solution maintained within the range of 5080 C. was added cobalt in the amount -of .025 g./l. and cobalt selenite in the amount of at least .001 g./l., producing a smooth, lustrous copper deposit of wide range and brilliance. The same result was obtained when nickel was substituted for cobalt and nickel selenite substituted for cobalt selenite.
Example VII Cobalt in the amount of .025 g./l. was added to a 4 copper cyanide plating solution, together with at least .001 g./l. copper selenite, and there was produced a smooth, lustrous copper deposit of wide range and brilliance. The same result was obtained when nickel was substituted for cobalt in like amount.
Example VIII Nickel in the amount of at least .001 g./l. and KCNS in the amount of at least 2 g./l. were added to a copper cyanide plating solution, producing a smooth, lustrous deposit having good range and butfability. The same result was obtained when cobalt was substituted for the nickel in like amount and when NaCNS or NHiCNS was substituted for KCNS.
The copper deposit produced by the above described processes is changed in visible and physical ways. This deposit is formed with a decided bluish cast, in contrast to the red-orange deposit conventionally formed. The metallurgical hardness is affected to such a degree that formerly where a part was plated and required hard buffing and coloring to produce an acceptable finish, now only coloring with a soft bull and very light pressures are required. The deposit has the ability to flow" readily under light pressure to cover imperfections in the basis metal, thus reducing the finishing cost drastically.
While, in the foregoing specification, I have set forth process steps in considerable detail, it will be understood that such details of proportion or procedure steps may be .varied widely by those skilled in the art without departing from the spirit of my invention.
I claim:
1. In a process for electrodepositing coper from a copper cyanide solution, the step of adding at least .001 g./l. of a metal selected from the group consisting of cobalt and nickel, and at least .05 g./l. of a compound selected from the group consisting of 2,4-lutidine and 2,6-lutidine.
2. The process of claim 1, in which the metal is nickel.
3. In a process for electrodepositing copper from a copper cyanide solution, the steps of supplementing the solution with at least .001 g./l. of a metal selected from the group consisting of cobalt and nickel and with at least .05 g./l. of a compound selected from the group consisting of 2,4-lutidine and 2,6-lutidine, thereafter maintaining the said solution at a temperature in the range 50-80 C. and at a pH in excess of 12.5 while subjecting an object in said solution to a current having a density up to amperes/foot to provide the object with a copper deposit having a bluish cast and which deposit requires only soft bufling for finishing.
References Cited in the file of this patent UNITED STATES PATENTS 1,536,859 Humphries May 5, 1925 2,216,605 Skalarew Oct. 1, 1940 2,701,234 Wernlund Feb. 1, 1955 2,737,485 Overcash'et al. Mar. 6, 1956 2,809,929 Ostrow et al. Oct. 15, 1957 OTHER REFERENCES

Claims (1)

1. IN A PROCESS FOR ELECTRODEPOSITING COPPER FROM A COPPER CYANIDE SOULATION, THE STEP OF ADDING AT LEAST .001 G/L. OF A METAL SELECTED FROM THE GROUPE CONSISTING OF COBALT AND NICKLE, AND AT LEAST. 05 G/L. OF A COMPOUND SELECTED FROM THE GROUPE CONSISTING OF 2,4-LUTIDINE AND 2,6-LUTIDINE.
US569675A 1956-03-06 1956-03-06 Electrodepositing copper Expired - Lifetime US2876178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US569675A US2876178A (en) 1956-03-06 1956-03-06 Electrodepositing copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US569675A US2876178A (en) 1956-03-06 1956-03-06 Electrodepositing copper

Publications (1)

Publication Number Publication Date
US2876178A true US2876178A (en) 1959-03-03

Family

ID=24276389

Family Applications (1)

Application Number Title Priority Date Filing Date
US569675A Expired - Lifetime US2876178A (en) 1956-03-06 1956-03-06 Electrodepositing copper

Country Status (1)

Country Link
US (1) US2876178A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3111465A (en) * 1959-02-09 1963-11-19 M & T Chemicals Inc Electrodeposition of copper and copper alloys
US3463710A (en) * 1965-03-30 1969-08-26 American Cyanamid Co Electrolytic recovery of copper from copper cyanide leaching solutions
US5403465A (en) * 1990-05-30 1995-04-04 Gould Inc. Electrodeposited copper foil and process for making same using electrolyte solutions having controlled additions of chloride ions and organic additives
US5421985A (en) * 1990-05-30 1995-06-06 Gould Inc. Electrodeposited copper foil and process for making same using electrolyte solutions having low chloride ion concentrations
US5431803A (en) * 1990-05-30 1995-07-11 Gould Electronics Inc. Electrodeposited copper foil and process for making same
US5958209A (en) * 1996-05-13 1999-09-28 Mitsui Mining & Smelting Co., Ltd. High tensile strength electrodeposited copper foil and process of electrodepositing thereof
EP2113587A1 (en) 2008-04-28 2009-11-04 ATOTECH Deutschland GmbH Aqueous acidic bath and method for electroplating copper
EP2518187A1 (en) 2011-04-26 2012-10-31 Atotech Deutschland GmbH Aqueous acidic bath for electrolytic deposition of copper

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1536859A (en) * 1924-06-05 1925-05-05 Udylite Process Company Electroplating
US2216605A (en) * 1938-03-30 1940-10-01 Special Chemicals Corp Electroplating
US2701234A (en) * 1951-07-11 1955-02-01 Du Pont Addition agent for copper plating
US2737485A (en) * 1952-09-22 1956-03-06 Gen Motors Corp Electrodeposition of copper
US2809929A (en) * 1955-01-21 1957-10-15 Barnet D Ostrow Anode for copper plating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1536859A (en) * 1924-06-05 1925-05-05 Udylite Process Company Electroplating
US2216605A (en) * 1938-03-30 1940-10-01 Special Chemicals Corp Electroplating
US2701234A (en) * 1951-07-11 1955-02-01 Du Pont Addition agent for copper plating
US2737485A (en) * 1952-09-22 1956-03-06 Gen Motors Corp Electrodeposition of copper
US2809929A (en) * 1955-01-21 1957-10-15 Barnet D Ostrow Anode for copper plating

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3111465A (en) * 1959-02-09 1963-11-19 M & T Chemicals Inc Electrodeposition of copper and copper alloys
US3463710A (en) * 1965-03-30 1969-08-26 American Cyanamid Co Electrolytic recovery of copper from copper cyanide leaching solutions
US5403465A (en) * 1990-05-30 1995-04-04 Gould Inc. Electrodeposited copper foil and process for making same using electrolyte solutions having controlled additions of chloride ions and organic additives
US5421985A (en) * 1990-05-30 1995-06-06 Gould Inc. Electrodeposited copper foil and process for making same using electrolyte solutions having low chloride ion concentrations
US5431803A (en) * 1990-05-30 1995-07-11 Gould Electronics Inc. Electrodeposited copper foil and process for making same
US5454926A (en) * 1990-05-30 1995-10-03 Gould Electronics Inc. Electrodeposited copper foil
US5958209A (en) * 1996-05-13 1999-09-28 Mitsui Mining & Smelting Co., Ltd. High tensile strength electrodeposited copper foil and process of electrodepositing thereof
US6194056B1 (en) 1996-05-13 2001-02-27 Mitsui Mining & Smelting Co., Ltd. High tensile strength electrodeposited copper foil
EP2113587A1 (en) 2008-04-28 2009-11-04 ATOTECH Deutschland GmbH Aqueous acidic bath and method for electroplating copper
WO2009132861A2 (en) * 2008-04-28 2009-11-05 Atotech Deutschland Gmbh Aqueous, acid bath and method for the electrolytic deposition of copper
WO2009132861A3 (en) * 2008-04-28 2010-04-15 Atotech Deutschland Gmbh Aqueous, acid bath and method for the electrolytic deposition of copper
US20110011746A1 (en) * 2008-04-28 2011-01-20 Atotech Deutschland Gmbh Aqueous, Acid Bath and Method for the Electrolytic Deposition of Copper
US8679316B2 (en) 2008-04-28 2014-03-25 Atotech Deutschland Gmbh Aqueous, acid bath and method for the electrolytic deposition of copper
EP2518187A1 (en) 2011-04-26 2012-10-31 Atotech Deutschland GmbH Aqueous acidic bath for electrolytic deposition of copper
WO2012146591A1 (en) 2011-04-26 2012-11-01 Atotech Deutschland Gmbh Aqueous acidic bath for electrolytic deposition of copper

Similar Documents

Publication Publication Date Title
US2849351A (en) Electroplating process
US2882209A (en) Electrodeposition of copper from an acid bath
USRE31508E (en) Electrodeposition of chromium
US2436316A (en) Bright alloy plating
US4053373A (en) Electroplating of nickel, cobalt, nickel-cobalt, nickel-iron, cobalt-iron and nickel-iron-cobalt deposits
US4234396A (en) Chromium plating
US2822326A (en) Bright chromium alloy plating
US3902977A (en) Gold plating solutions and method
US2876178A (en) Electrodepositing copper
US2176668A (en) Silver plating process
US3620936A (en) Electroplating a decorative chromium-plating resistant to corrosion
US3691027A (en) Method of producing corrosion resistant chromium plated articles
US2990343A (en) Chromium alloy plating
US3920526A (en) Process for the electrodeposition of ductile palladium and electroplating bath useful therefor
JPS5932554B2 (en) Acidic plating solution
US2435967A (en) Bright alloy plating
JPS6141999B2 (en)
US4521282A (en) Cyanide-free copper electrolyte and process
US2110792A (en) Process for electrodeposition of silver and products obtained therefrom
US2773022A (en) Electrodeposition from copper electrolytes containing dithiocarbamate addition agents
JPS6141998B2 (en)
US2809156A (en) Electrodeposition of iron and iron alloys
US2853443A (en) Addition agent for acid copper electrolytes
US4435254A (en) Bright nickel electroplating
US3475290A (en) Bright gold plating solution and process