US2858411A - Arc torch and process - Google Patents

Arc torch and process Download PDF

Info

Publication number
US2858411A
US2858411A US539794A US53979455A US2858411A US 2858411 A US2858411 A US 2858411A US 539794 A US539794 A US 539794A US 53979455 A US53979455 A US 53979455A US 2858411 A US2858411 A US 2858411A
Authority
US
United States
Prior art keywords
arc
nozzle
gas
passage
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US539794A
Inventor
Robert M Gage
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Carbide Corp
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24152675&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US2858411(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Priority to US539794A priority Critical patent/US2858411A/en
Priority to GB20815/56A priority patent/GB845410A/en
Priority to FR1156530D priority patent/FR1156530A/en
Priority to CH342303D priority patent/CH342303A/en
Priority to DE1956U0004034 priority patent/DE1066676B/de
Priority to ES0230637A priority patent/ES230637A1/en
Priority to GB1048657A priority patent/GB860613A/en
Priority to FR71172D priority patent/FR71172E/en
Priority to FR72076D priority patent/FR72076E/en
Priority to DEU4622A priority patent/DE1230937B/en
Priority to FR750581A priority patent/FR72427E/en
Priority to CH349010D priority patent/CH349010A/en
Publication of US2858411A publication Critical patent/US2858411A/en
Application granted granted Critical
Priority to GB2307959A priority patent/GB877095A/en
Priority to DEU6323A priority patent/DE1098636B/en
Priority to FR799600A priority patent/FR76013E/en
Priority to CH353470D priority patent/CH353470A/en
Priority to FR870884A priority patent/FR80463E/en
Priority to DE19611440628 priority patent/DE1440628B2/en
Priority to NL6407028A priority patent/NL6407028A/xx
Priority to NL6407027A priority patent/NL6407027A/xx
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/222Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc
    • B05B7/226Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc the material being originally a particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/42Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid

Definitions

  • Fig. 3 is a perspective view of another modification in which four electrodes are employed, consisting of a rod,
  • Fig. 4 is a vertical sectional view illustrating a threeelectrode modification of my arc torch.

Description

Oct. 28, 1958 2,858,411
R. GAGE ARC TORCH AND PROCESS Filed 001;. 11, 1955 k? w W f4 L42 64 372 .4, CURRENT M on -35 SOURCE :2 v Q Wang; I Q I 68 v 74 30 {'11: 2a s or Powder -5 52 -Wafer 36' 32 li i fi z 34 INVENTOR Ill ROBERT M. GAGE United States Patent 2,858,411 ARC TORCH AND PROCESS Robert M. Gage, Buffalo, N. Y., assignor to Union Carbide Corporation, a corporation of New York This invention relates to high pressure arcs of the general type disclosed in my application Serial No. 524,353, filed July 26, 1955, now Patent No. 2,806,124, dated September 10, 1957, of which the present application is a continuation-in-part. t
According to this invention the workpiece may be but is not necessarily in the arc circuit, the arrangement being such, however, that an eflluent is provided which includes advantages of the work-in-circuit type. A feature is the use of a nozzle which is provided with a passage into which the arc and gas are delivered and from which the hot gas emerges after being forcibly confluent with the wall-stabilized, constricted arc. Material to be acted upon or used with the arc can be conveniently introduced into the arc stream between the electrodes.
More particularly, according to the present invention, there is provided a high pressure are torch comprising spaced electrodes including a non-consumable nozzle having a passage into which the gas and the arc are delivered under pressure. A jet-like column of hot efiluent is discharged from such passage after being forcibly confluent with the arc in the operation of such torch.
Broadly speaking the invention involves a high pressure are process comprising feeding gas into and discharging such gas from a nozzle passage and establishing a high pressure are in such passage. Such arc heats and ionizes such gas as it flows into and through the passage, thereby raising a substantial portion of such gas to are temperature, and discharging a jet-like efiluent column of hot ionized gas the shape and cross section of which are defined by such nozzle passage. The essential feature is that the gas entering the passage is forcibly constrained to enter and become for a finite time a part of the arc because the arc being constricted by the passage forcibly fills a substantial proportion of the passage cross section.
A portion of the are forced into and contained within the nozzle passage is wall-stabilized in the same manner as is the wall-stabilized arc of Patent No.-2,806,l24 mentioned above. The existence of effective wall-stabilization of a contained arc is described therein as evidenced by an increase in the axial voltage gradient of a portion of the arc within the nozzle passage as compared to a prior gas-shielded arc of the same gas flow and current. This voltage gradient is the rate of change of voltage with arc length and can be evaluated at any cross-section of a given arc. In Fig. 12, for example, of Patent No. 2,806,124 the voltage gradients at difierent nozzle cross-section diameters are given and compared with gradients in an open arc. Such curves need not specify the origin or destination of the arc nor in practical fact anything other than the conditions for the arc column at a cross-sectional plane of interest. Such curves are applicable to the portion of the arcs of the present invention which are contained within the passage of the nozzle electrode.
In the drawings:
Fig. l is a view in vertical section of an arc torch setup illustrating the invention; v
Fig. 2 is a perspective view of a modification of the invention in which the arc electrodes are a refractory metal rod and a non-consumable annulus;
Fig. 3 is a perspective view of another modification in which four electrodes are employed, consisting of a rod,
a nozzle, an annulus and the workpiece; and
Fig. 4 is a vertical sectional view illustrating a threeelectrode modification of my arc torch.
As shown in Fig. 1, there is provided an arc torch setup comprising a pair of spaced electrodes 5 and 6 which are connected to opposite terminals of a suitable source of electric power 7, such as a generator, for energizing a high pressure are across such electrodes. The electrode 5 is preferably a pencil or stick of thoriated tungsten, while the electrode 6 is preferably a tubular nozzle composed of copper having an orifice or outlet passage 8 axially aligned with the business end of said stick electrode 5. The nozzle is provided with an annular cooling water passage 9 about such orifice so that the annular electrode is substantially non-consumable in use. Gas, such as argon, is delivered to a chamber 10 in the nozzle 6 between the electrodes, so that the arc is forced into the orifice 8 by the flow of such gas therein and the arc is thereby wall stabilized. The gas is ionized by the arc in such orifice, is forced into the cross sectional shape of the orifice, and is discharged as a column of very hot jet-like effluent 11 which retains such shape for a substantial distance after leaving the orifice. Fluid cooling of at least a portion of orifice 8 by the cooling water circulated in passage 9 assures wall-stabilization of the arc. In use the efiluent 11 is applied to a workpiece 12 which, as shown in Fig. 1, is not in the electrical circuit of the arc.
The electrode annulus is preferably made of high melting point material such as tungsten when it is to be the cathode, as in D. C.R. P., and in the case of A. C.
The elementary modification 13 of the invention shown in Fig. 2 also is supplied with a suitable are gas, such as argon, which preferably is caused to flow in an annular stream about a suitable electrode 5 and then through a suitable nozzle 14 provided with an internal arc wall stabilizing and constricting elongated passage 15. Typically, according to the invention, the electrode 5 is of the pencil, rod or stick type provided with an arc-locus tip 16 axially aligned with an adjacent to one end of the nozzle 14. The other electrode 17 is an annulus providing an orifice 18 located, coaxially with the nozzle 14, opposite the electrode 5. The electrodes 5 and 17 are connected to a suitable source of electric energy by conductors 19 and 19. The arc is thus drawn into and through the nozzle 14 by the electric field existing between electrodes 5 and 17, and is thus not dependent on gas force. The resulting unique jet-like column 24) of hot ionized gas issues from the open end of the nozzle 14 and then from orifice 18 of the torch.
In the modification 13' shown in Fig. 3, conductor 21 is connected to electrode 5; and conductor 22 is connected to the nozzle 14, annulus 18, and workelectrode 23 through adjustable impedances such as resistors R1, R2 and R3, respectively. In this case current from nozzle 14 to electrode 5 serves to energize a pilot are, and suitable adjustment of the resistors causes all or part of the arc column 24 to extend to and through orifice 18, and/ or to the work 23, thus providing a simple yet sensitive control of heat distribution. In each case the arc passages laterally wall-stabilize and constrict the arc column or efiluent 24.
The nozzle and annulus may be made of any suitable material such as copper and/ or tungsten and cooled with water. However, they may be made of any other suitable heat-conducting solid material and may be cooled in any convenient way.
Asshown in Fig. 4, there is provided a torch T4 of the invention which comprises a cylindrical shell 26 on the lower end of which is mounted a cup 28. The cup is electrically insulated from the shell by an annulus 30 of suitable insulating material, and is provided with an inner annular passage 32 through which a cooling liquid, such as water, is circulated between a water inlet 34 and outlet 36. The interior of the cup 28 is shaped to form an orifice 38 having a cylindrical wall that is axially aligned with a pencil-shaped cathode 40 which is composed of refractory material that is conductive, such as thoriated-tungsten. The cathode 40 is held in place by suitable means within an annular body 42 of the torch to which the shell 26 is attached.
The business or arc-locus end 44 of the cathode 40 is axially located within a nozzle 46 having a central hole 48, the cylindrical wall of which surrounds the end portion of such cathode 40 in spaced concentric relation, providing an annular passage 50 therebetween for the flow of suitable gas, argon (an inert gas that protects at least the electrode 40 from chemical attack) in this case, supplied through the interior of shell 26. The nozzle 46 is provided with an annular flange 52 at the lower end thereof that is threaded in the inner lower end portion of the shell 26, the connection being sealed by a silicone rubber O-ring 51 disposed between the upper edge of such flange and a shoulder 54 in the shell. The body portion of the nozzle is spaced from the inner wall of the shell to form a cylindrical space 56 therebetween for the circulation of a cooling liquid, such as water, that enters such space through an inlet 58, and flows therefrom through an outlet 60 in the wall of the shell. The upper end of passage 56 is sealed by an O-ring 62 that is disposed between the nozzle and shell.
The cathode 40 is electrically connected to the negative terminal of a current source S by suitable circuit means including a conductor or lead 64. In the case of direct current the positive terminal of such source S is electrically connected by means including an electrical conductor 66 to the cup 28, and to the shell 26 by a parallel conductor 68 comprising a ballast resistor 70. The cup is shaped so as to provide an internal chamber 72 having a lateral inlet 74 for the introduction of material such as gas or powder or liquid or any combination thereof.
As an example of the operation of the torch T4, Fig. 4, with a one-eighth inch diameter cathode 40 of tungsten, -60 C. F. H. of argon, amperes of current flowing in the pilot arc circuit containing resistor 70, and a BOO-ampere current flowing in the main arc circuit at 40 volts, a very hot gas effluent E is produced, which is non-reactive. The luminous efiluent is, in appearance, similar to an oxy-acetylene flame but can have three to six times higher temperature and is easily controlled up to ten or more inches in length. The effluent E melts sapphire or zirconia, and is useful for heating, brazing, soldering, or as a source of light of high intensity.
The torch T4 also may be used for chemical reactions by introducing a second gas into the chamber 72. This torch is remarkable in that the arc can be adjusted by varying current, gas composition and flow, and orifices to give an eifluent E that is hot enough to melt tungsten, or cool enough to barely char wood.
The gases which are suitable for use in this invention may be any which are metallurgically compatible with the torch components and with the desired work operation, such as argon and/or hydrogen, for example, as well as other gases including those that are disclosed in my said application, Serial No. 524,353, now Patent No. 2,806,124.
The term high pressure are as used herein is discussed (pages 290 and 325) by Cobine in his book Gaseous Conductors, published in 1941 by McGraw-Hill and is to be understood to relate to self-sustaining gas discharges in the general pressure range above 5 atmosphere 4 and generally in the current range of a few to thousands of amperes.
In addition to the uses mentioned above, the efiluent may be efliciently used to cut, pierce, sever, scarf, gouge and desurface a workpiece by simply applying such efiiuent to the workpiece and relatively moving one with respect to the other as may be necessary. In the case of scarfing a metal workpiece, for example, the effluent is applied at an acute angle to the surface to be removed, melting and blowing away the surface metal. In the case of cutting or severing the efiluent is used to form a kerf in the workpiece by progressively melting and blowing away the molten metal along a selected path as in the oxy-acetylene process.
In order to determine for a given gas and flow rate if the operation of an arc torch is within the scope of the present invention, one can measure the arc current through a given nozzle passage cross-section for that portion of the arc column passing through such crosssection, and then compare the arc voltage gradient at these conditions with that taught herein as distinguished from that obtained in a prior gas-shielded open arc of same current.
I claim:
1. A high pressure are torch comprising an, electrode in the form of a pencil, an electrode in the form of a nozzle, an electrode in the form of an annulus defining an orifice axially aligned with said pencil and nozzle, and an electrode comprising a workpiece, means insulating said electrodes from each other, and means connecting one terminal of a source of current to such pencil and the other terminal to such nozzle, annulus and workpiece through separate impedances that are adjustable for establishing an arc column that originates at the tip of said pencil, flows through said nozzle and said annulus, and is discharged in the form of a stable column against said workpiece.
2. A high pressure are torch comprising the combination of an elongated cathode, a shell surrounding such cathode in spaced relation providing a gas passage, a metal nozzle mounted on the outlet end portion of said shell, said nozzle and shell having spaced annular walls forming an annular cooling liquid passage, a metal cup mounted on the outlet end of said shell, means electrically insulating said cup from said shell, said cup and said nozzle being shaped to provide a transverse chamber therebetween, said cup having an elongated orifice of constant diameter and said nozzle having an elongated hole of constant diameter in axial alignment with said cathode, and said cup having an annular cooling liquid passage surrounding said orifice.
3. In combination with an arc flame torch as defined by claim 2, means supplying gas under pressure to the interior of said shell above said nozzle, means circulating cooling water through said cooling liquid passages, means supplying a relatively low current at relatively low potential to said cathode and nozzle, and means supplying a relatively large direct current at higher potential to said cathode and cup.
4. A high pressure are torch comprising spaced electrodes for establishing an arc therebetween, means including a non-consumable nozzle through which a gas flow is established and in which at least a portion of said are is wall stabilized, providing an effluent from said torch in the form of a hot gas stream the thermal intensity of which is controlled by such wall stabilizing nozzle.
5. A high pressure are torch comprising spaced electrodes for establishing an arc therebetween, one of said electrodes being non-consumable and having a passage through which a gas flow is established, the wall of said passage acting to stabilize at least a portion of said arc, providing an eflluent from said torch in the form of a hot gas stream that is controlled and directed by said well stabilizing passage.
6. A high pressure arc torch comprising spaced electrodes for establishing an arc therebetween, one of said electrodes having an externally cooled nozzle passage through which an axial fiow of gas is established, the wall of said nozzle passage acting to stabilize at least a portion of said are, providing an efiluent from said torch in the form of a hot gas stream that is controlled and directed by said wall stabilizing passage.
7. A high pressure are torch comprising, in combination, a non-consumable stick electrode, a non-consumable electrode having an externally cooled nozzle passage, said passage being axially aligned with said stick electrode, means for supplying a stream of arc-shielding gas for longitudinal flow about the end of said stick electrode and through said nozzle passage, and means for connecting a high pressure are energizing source of current to said electrodes, whereby an arc is established within said nozzle passage and a portion of such are is wail stabilized, providing an efiluent from said torch in the form of a hot gas stream that is controlled and directed thereby.
8. A high pressure are torch comprising, in combination, a stick electrode, a nozzle having an arc wall stabilizing passage, an electrode providing an orifice, a means for supplying a stream of arc-shielding gas through said passage and orifice, and means for establishing an are between said electrodes, whereby a portion of said are is wall stabilized, providing an effluent from said torch in the form of a hot gas stream that is controlled and directed by said wall stabilizing passage.
9. A high pressure arc torch comprising, in combination, a stick primary electrode, a secondary electrode having a nozzle passage, another primary electrode having a nozzle passage, means for supplying a stream of arc-shielding gas through said secondary electrode passage and said primary electrode passage, means for establishing a secondary are between said primary stick electrode and secondary electrode, means for establishing a primary are between said primary electrodes, whereby a portion of said primary arc is wall stabilized, providing an efiiuent from said torch in the form of a hot gas stream that is controlled and directed thereby.
10. A high pressure are process comprising feeding inert gas within a closed chamber, discharging such inert gas from said chamber through a non-consumable orifice, establishing between non-consumable electrodes a high pressure are adjacent such orifice, such inert gas flow forcing the are into the orifice whereby a portion of such are is wall stabilized, and discharging a jet-like efliuent of hot gas the shape and cross section of which are controlled thereby, said inert gas acting to protect at least one of such arc-carrying electrodes from chemical attack.
11. A high pressure are process comprising feeding gas through a nozzle passage and an electrode having an orifice, establishing an are between a stick electrode and said orifice electrode that is wall stabilized by said nozzle passage, projecting said wall stabilized are into said orifice electrode, and discharging therefrom a jetlike effluent of hot gas the shape and cross section of Wl'iich are controlled.
12. A high pressure arc process comprising feeding a gas axially along a stick electrode, passing such gas axially through a secondary electrode orifice and a primary electrode orifice, establishing a pilot are between said stick electrode and said secondary electrode, establishing a main are between said stick electrode and said primary electrode, a portion of said main are being wall stabilized, and discharging a jet-like effluent of hot gas controlled and directed thereby.
13. A high pressure are process as defined by claim 10, that includes the additional step of fluid cooling at least a portion of such orifice to assure such wall-stabilization.
14. A high pressure are process as defined by claim 13, that includes the additional step of introducing material selected from the class consisting of gas and powder into the torch for discharge therefrom with the inert gas in such effluent.
15. A high pressure arc process as defined by claim 12, that includes the additional step of introducing material selected from the class consisting of fluid and powder into the torch between such primary and secondary electrode orifices for discharge in such efiluent.
16. A high pressure arc torch as defined by claim 2, that also inciudes means for supplying material selected from the class consisting of gas and powder to said chamber.
References Cited in the file of this patent UNXTED STATES PATENTS 641,767 Drosse Jan. 23, 1900 1,002,721 Matthers Sept. 5, 1911 1,638,336 Hinnes Aug. 9, 1927 2,106,692 Embleton Jan. 25, 1938 2,215,108 Nigra Sept. 17, 1940 2,284,351 Wyer May 26, 1942 2,522,482 Olzak Sept. 12, 1950 2,686,860 Buck et a1. Aug. 17, 1954 2,768,279 Rava Oct. 23, 1956
US539794A 1955-07-26 1955-10-11 Arc torch and process Expired - Lifetime US2858411A (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
US539794A US2858411A (en) 1955-10-11 1955-10-11 Arc torch and process
GB20815/56A GB845410A (en) 1955-07-26 1956-07-05 Improved arc working process and apparatus
FR1156530D FR1156530A (en) 1955-07-26 1956-07-24 Method and apparatus for archery
CH342303D CH342303A (en) 1955-07-26 1956-07-25 Process for working by melting a part by means of an electric arc and apparatus for its implementation
DE1956U0004034 DE1066676B (en) 1955-07-26 1956-07-26
ES0230637A ES230637A1 (en) 1955-10-11 1956-08-28 Arc torch and process
GB1048657A GB860613A (en) 1955-07-26 1957-04-01 Arc torch interruption
FR71172D FR71172E (en) 1955-07-26 1957-04-06 Method and apparatus for archery
FR72076D FR72076E (en) 1955-07-26 1957-06-26 Method and apparatus for archery
DEU4622A DE1230937B (en) 1955-07-26 1957-06-29 Process for melting reactive substances that are at least electrically conductive at elevated temperatures
FR750581A FR72427E (en) 1955-07-26 1957-10-30 Method and apparatus for archery
CH349010D CH349010A (en) 1955-07-26 1957-11-02 Process for working by melting a part by means of an electric arc and apparatus for its implementation
GB2307959A GB877095A (en) 1955-07-26 1959-07-06 Improvements in and relating to arc cladding or arc welding
DEU6323A DE1098636B (en) 1955-07-26 1959-07-06 Method and device for arc welding
FR799600A FR76013E (en) 1955-07-26 1959-07-07 Method and apparatus for archery
CH353470D CH353470A (en) 1955-07-26 1959-07-08 Process for working by melting a part by means of an electric arc and apparatus for its implementation
DE19611440628 DE1440628B2 (en) 1955-07-26 1961-08-16 ARC BURNER FOR AN ARC FURNACE
FR870884A FR80463E (en) 1955-07-26 1961-08-16 Method and apparatus for archery
NL6407028A NL6407028A (en) 1955-07-26 1964-06-19
NL6407027A NL6407027A (en) 1955-07-26 1964-06-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US539794A US2858411A (en) 1955-10-11 1955-10-11 Arc torch and process

Publications (1)

Publication Number Publication Date
US2858411A true US2858411A (en) 1958-10-28

Family

ID=24152675

Family Applications (1)

Application Number Title Priority Date Filing Date
US539794A Expired - Lifetime US2858411A (en) 1955-07-26 1955-10-11 Arc torch and process

Country Status (2)

Country Link
US (1) US2858411A (en)
ES (1) ES230637A1 (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2960594A (en) * 1958-06-30 1960-11-15 Plasma Flame Corp Plasma flame generator
US3007072A (en) * 1959-01-29 1961-10-31 Gen Electric Radial type arc plasma generator
US3024350A (en) * 1959-01-07 1962-03-06 Union Carbide Corp Alternating current arc plasma torches
US3051639A (en) * 1958-09-25 1962-08-28 Union Carbide Corp Arc torch chemical reactions
US3055591A (en) * 1959-07-29 1962-09-25 Metco Inc Heat-fusible material spray equipment
US3071678A (en) * 1960-11-15 1963-01-01 Union Carbide Corp Arc welding process and apparatus
US3082314A (en) * 1959-04-20 1963-03-19 Shin Meiwa Kogyo Kabushiki Kai Plasma arc torch
US3104310A (en) * 1959-08-24 1963-09-17 Nat Res Dev High temperature torches
DE1157321B (en) * 1960-11-15 1963-11-14 Union Carbide Corp Process and device for powder build-up welding in an arc plasma jet
US3114691A (en) * 1960-06-20 1963-12-17 Union Carbide Corp Arc promoted chemical reactions
US3130294A (en) * 1959-11-30 1964-04-21 Air Liquide Method for pre-heating a joint to be arc-welded
US3149222A (en) * 1962-08-21 1964-09-15 Giannini Scient Corp Electrical plasma-jet apparatus and method incorporating multiple electrodes
US3174027A (en) * 1962-09-25 1965-03-16 Union Carbide Corp Pilot arc starting-arc working systems
US3179783A (en) * 1962-06-20 1965-04-20 Giannini Scient Corp Method and apparatus for treating electrically-conductive surfaces to make them hardor corrosion resistant
US3179782A (en) * 1962-02-07 1965-04-20 Matvay Leo Plasma flame jet spray gun with a controlled arc region
US3183337A (en) * 1961-06-13 1965-05-11 Giannini Scient Corp Electrical plasma-jet spray torch and method
US3192427A (en) * 1961-06-19 1965-06-29 Hitachi Ltd Plasma flame generator
US3212914A (en) * 1961-05-23 1965-10-19 Union Carbide Corp Electric pulse coating process and apparatus
US3304402A (en) * 1963-11-18 1967-02-14 Metco Inc Plasma flame powder spray gun
US3311735A (en) * 1964-05-21 1967-03-28 Giannini Scient Corp Apparatus and method for generating heat
US3314129A (en) * 1962-08-14 1967-04-18 Atomic Energy Authority Uk Thermocouples
US3348929A (en) * 1962-04-16 1967-10-24 Metalurgitschen Zd Lenin Protecting carbon materials from oxidation
US3377418A (en) * 1967-08-28 1968-04-09 Westinghouse Electric Corp Small diameter fluid cooled arc-rotating electrode
US3419351A (en) * 1962-09-04 1968-12-31 Bayer Ag Vapor phase process for the conversion of metal halides into their oxides
US3481703A (en) * 1965-03-24 1969-12-02 Bayer Ag Process for converting metal halides into their oxides
US3538378A (en) * 1967-06-13 1970-11-03 Westinghouse Electric Corp Electrical circuit apparatus for detecting when the current which normally produces an arc between electrodes takes a different path
DE2356616A1 (en) * 1972-11-17 1974-05-22 Union Carbide Corp ABRASION RESISTANT BEARING MATERIAL AND METHOD FOR ITS MANUFACTURING
US3816087A (en) * 1969-02-08 1974-06-11 Philips Corp Method of interconnecting glass parts by passing through electric current
US4088966A (en) * 1974-06-13 1978-05-09 Samis Michael A Non-equilibrium plasma glow jet
US4519840A (en) * 1983-10-28 1985-05-28 Union Carbide Corporation High strength, wear and corrosion resistant coatings
US4526618A (en) * 1983-10-18 1985-07-02 Union Carbide Corporation Abrasion resistant coating composition
US4588606A (en) * 1983-10-18 1986-05-13 Union Carbide Corporation Abrasion resistant coating and method for producing the same
EP0182560A2 (en) * 1984-11-13 1986-05-28 Plasmafusion, Inc. Semi-transferred arc in a liquid stabilized plasma generator and method for utilizing the same
US4788077A (en) * 1987-06-22 1988-11-29 Union Carbide Corporation Thermal spray coating having improved addherence, low residual stress and improved resistance to spalling and methods for producing same
US4982067A (en) * 1988-11-04 1991-01-01 Marantz Daniel Richard Plasma generating apparatus and method
US5144110A (en) * 1988-11-04 1992-09-01 Marantz Daniel Richard Plasma spray gun and method of use
US5328763A (en) * 1993-02-03 1994-07-12 Kennametal Inc. Spray powder for hardfacing and part with hardfacing
US5716422A (en) * 1996-03-25 1998-02-10 Wilson Greatbatch Ltd. Thermal spray deposited electrode component and method of manufacture
US6455108B1 (en) 1998-02-09 2002-09-24 Wilson Greatbatch Ltd. Method for preparation of a thermal spray coated substrate for use in an electrical energy storage device
US20040045807A1 (en) * 2002-06-17 2004-03-11 Sarkas Harry W. Process for preparing nanostructured materials of controlled surface chemistry

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US641767A (en) * 1898-12-13 1900-01-23 Hermann Drosse Method of electric-arc heating and apparatus therefor.
US1002721A (en) * 1910-08-09 1911-09-05 Hub Machine Welding & Contracting Co Electric-arc furnace-heater.
US1638336A (en) * 1921-04-14 1927-08-09 Gen Motors Corp Electric-arc welding
US2106692A (en) * 1935-07-26 1938-01-25 Gen Electric Gas-arc torch
US2215108A (en) * 1938-10-03 1940-09-17 Anonima Manifattura Ceramico P Electric heating system
US2284351A (en) * 1938-08-17 1942-05-26 Gen Electric Electric deseaming
US2522482A (en) * 1947-10-17 1950-09-12 Babcock & Wilcox Tube Company Electric arc welding
US2686860A (en) * 1952-11-19 1954-08-17 Int Nickel Co Inert gas-shielded arc welding torch
US2768279A (en) * 1955-01-18 1956-10-23 William A Mcdonald Electric arc torch apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US641767A (en) * 1898-12-13 1900-01-23 Hermann Drosse Method of electric-arc heating and apparatus therefor.
US1002721A (en) * 1910-08-09 1911-09-05 Hub Machine Welding & Contracting Co Electric-arc furnace-heater.
US1638336A (en) * 1921-04-14 1927-08-09 Gen Motors Corp Electric-arc welding
US2106692A (en) * 1935-07-26 1938-01-25 Gen Electric Gas-arc torch
US2284351A (en) * 1938-08-17 1942-05-26 Gen Electric Electric deseaming
US2215108A (en) * 1938-10-03 1940-09-17 Anonima Manifattura Ceramico P Electric heating system
US2522482A (en) * 1947-10-17 1950-09-12 Babcock & Wilcox Tube Company Electric arc welding
US2686860A (en) * 1952-11-19 1954-08-17 Int Nickel Co Inert gas-shielded arc welding torch
US2768279A (en) * 1955-01-18 1956-10-23 William A Mcdonald Electric arc torch apparatus

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2960594A (en) * 1958-06-30 1960-11-15 Plasma Flame Corp Plasma flame generator
US3051639A (en) * 1958-09-25 1962-08-28 Union Carbide Corp Arc torch chemical reactions
US3024350A (en) * 1959-01-07 1962-03-06 Union Carbide Corp Alternating current arc plasma torches
US3007072A (en) * 1959-01-29 1961-10-31 Gen Electric Radial type arc plasma generator
US3082314A (en) * 1959-04-20 1963-03-19 Shin Meiwa Kogyo Kabushiki Kai Plasma arc torch
US3055591A (en) * 1959-07-29 1962-09-25 Metco Inc Heat-fusible material spray equipment
US3104310A (en) * 1959-08-24 1963-09-17 Nat Res Dev High temperature torches
US3130294A (en) * 1959-11-30 1964-04-21 Air Liquide Method for pre-heating a joint to be arc-welded
US3114691A (en) * 1960-06-20 1963-12-17 Union Carbide Corp Arc promoted chemical reactions
US3071678A (en) * 1960-11-15 1963-01-01 Union Carbide Corp Arc welding process and apparatus
DE1157321B (en) * 1960-11-15 1963-11-14 Union Carbide Corp Process and device for powder build-up welding in an arc plasma jet
US3212914A (en) * 1961-05-23 1965-10-19 Union Carbide Corp Electric pulse coating process and apparatus
US3183337A (en) * 1961-06-13 1965-05-11 Giannini Scient Corp Electrical plasma-jet spray torch and method
US3192427A (en) * 1961-06-19 1965-06-29 Hitachi Ltd Plasma flame generator
US3179782A (en) * 1962-02-07 1965-04-20 Matvay Leo Plasma flame jet spray gun with a controlled arc region
US3348929A (en) * 1962-04-16 1967-10-24 Metalurgitschen Zd Lenin Protecting carbon materials from oxidation
US3179783A (en) * 1962-06-20 1965-04-20 Giannini Scient Corp Method and apparatus for treating electrically-conductive surfaces to make them hardor corrosion resistant
US3314129A (en) * 1962-08-14 1967-04-18 Atomic Energy Authority Uk Thermocouples
US3149222A (en) * 1962-08-21 1964-09-15 Giannini Scient Corp Electrical plasma-jet apparatus and method incorporating multiple electrodes
US3419351A (en) * 1962-09-04 1968-12-31 Bayer Ag Vapor phase process for the conversion of metal halides into their oxides
US3174027A (en) * 1962-09-25 1965-03-16 Union Carbide Corp Pilot arc starting-arc working systems
US3304402A (en) * 1963-11-18 1967-02-14 Metco Inc Plasma flame powder spray gun
US3311735A (en) * 1964-05-21 1967-03-28 Giannini Scient Corp Apparatus and method for generating heat
US3481703A (en) * 1965-03-24 1969-12-02 Bayer Ag Process for converting metal halides into their oxides
US3538378A (en) * 1967-06-13 1970-11-03 Westinghouse Electric Corp Electrical circuit apparatus for detecting when the current which normally produces an arc between electrodes takes a different path
US3377418A (en) * 1967-08-28 1968-04-09 Westinghouse Electric Corp Small diameter fluid cooled arc-rotating electrode
US3816087A (en) * 1969-02-08 1974-06-11 Philips Corp Method of interconnecting glass parts by passing through electric current
DE2356616A1 (en) * 1972-11-17 1974-05-22 Union Carbide Corp ABRASION RESISTANT BEARING MATERIAL AND METHOD FOR ITS MANUFACTURING
US4088966A (en) * 1974-06-13 1978-05-09 Samis Michael A Non-equilibrium plasma glow jet
US4526618A (en) * 1983-10-18 1985-07-02 Union Carbide Corporation Abrasion resistant coating composition
US4588606A (en) * 1983-10-18 1986-05-13 Union Carbide Corporation Abrasion resistant coating and method for producing the same
US4519840A (en) * 1983-10-28 1985-05-28 Union Carbide Corporation High strength, wear and corrosion resistant coatings
EP0182560A2 (en) * 1984-11-13 1986-05-28 Plasmafusion, Inc. Semi-transferred arc in a liquid stabilized plasma generator and method for utilizing the same
US4642440A (en) * 1984-11-13 1987-02-10 Schnackel Jay F Semi-transferred arc in a liquid stabilized plasma generator and method for utilizing the same
EP0182560A3 (en) * 1984-11-13 1987-08-12 Plasmafusion, Inc. Semi-transferred arc in a liquid stabilized plasma generator and method for utilizing the same
US4788077A (en) * 1987-06-22 1988-11-29 Union Carbide Corporation Thermal spray coating having improved addherence, low residual stress and improved resistance to spalling and methods for producing same
US4982067A (en) * 1988-11-04 1991-01-01 Marantz Daniel Richard Plasma generating apparatus and method
US5144110A (en) * 1988-11-04 1992-09-01 Marantz Daniel Richard Plasma spray gun and method of use
US5328763A (en) * 1993-02-03 1994-07-12 Kennametal Inc. Spray powder for hardfacing and part with hardfacing
US5716422A (en) * 1996-03-25 1998-02-10 Wilson Greatbatch Ltd. Thermal spray deposited electrode component and method of manufacture
US6455108B1 (en) 1998-02-09 2002-09-24 Wilson Greatbatch Ltd. Method for preparation of a thermal spray coated substrate for use in an electrical energy storage device
US20040045807A1 (en) * 2002-06-17 2004-03-11 Sarkas Harry W. Process for preparing nanostructured materials of controlled surface chemistry

Also Published As

Publication number Publication date
ES230637A1 (en) 1957-03-16

Similar Documents

Publication Publication Date Title
US2858411A (en) Arc torch and process
US2806124A (en) Arc torch and process
US2960594A (en) Plasma flame generator
US2862099A (en) Arc torch process with reactive gases
KR930005953B1 (en) Plasma arc torch starting process having separated generated flows of non-oxidizing and oxidizing gas
US3562486A (en) Electric arc torches
US3153133A (en) Apparatus and method for heating and cutting an electrically-conductive workpiece
US4564740A (en) Method of generating plasma in a plasma-arc torch and an arrangement for effecting same
US5147998A (en) High enthalpy plasma torch
US3149222A (en) Electrical plasma-jet apparatus and method incorporating multiple electrodes
US4777343A (en) Plasma arc apparatus
US4439662A (en) Method of operating a plasma generating apparatus
US2874265A (en) Non-transferred arc torch process and apparatus
GB1456539A (en) Arc welding
GB1007429A (en) Improvements in arc producing apparatus
US3484575A (en) Pulsed welding and cutting by variation of composition of shielding gas
US3246115A (en) Arc compounded combustion and flame arrangement
US2944140A (en) High-intensity electrical plasma-jet torch incorporating magnetic nozzle means
US3073984A (en) Toroidal arc apparatus
NO127066B (en)
US4581516A (en) Plasma torch with a common gas source for the plasma and for the secondary gas flows
NO121388B (en)
US4580031A (en) Plasma burner and method of operation
US4039800A (en) Method of and device for arc welding
CA1067584A (en) Method and torch for sustaining multiple coaxial arcs