US2801939A - Hydrolysis of hemicellulose and alphacellulose to produce sugar - Google Patents

Hydrolysis of hemicellulose and alphacellulose to produce sugar Download PDF

Info

Publication number
US2801939A
US2801939A US499254A US49925455A US2801939A US 2801939 A US2801939 A US 2801939A US 499254 A US499254 A US 499254A US 49925455 A US49925455 A US 49925455A US 2801939 A US2801939 A US 2801939A
Authority
US
United States
Prior art keywords
hydrolysis
mixture
sugars
wood
alphacellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US499254A
Inventor
Travis P Hignett
Gilbert Nathan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tennesse Valley Authority (ATV)
Original Assignee
Tennesse Valley Authority (ATV)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tennesse Valley Authority (ATV) filed Critical Tennesse Valley Authority (ATV)
Priority to US499254A priority Critical patent/US2801939A/en
Application granted granted Critical
Publication of US2801939A publication Critical patent/US2801939A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials

Definitions

  • This invention relates to the production of sugars from wood by hydrolysis of cellulose in the presence of acid.
  • the United States Forest Products Laboratory has developed an improved process in which wood chips are charged to a digester, the charge is submerged rapidly in hot dilute sulfuric acid, and hot dilute acid is percolated continuously through the charge under high pressure until the sugar concentration in the hydrolyzate is about percent. The pressure on the hydrolyzate is then reduced to about 30 p. s. i., and it is neutralized and filtered continuously under pressure.
  • the product may be evaporated to form molasses or maybe fermented directly to alcohol or may be used for the production of commercial yeast, but there is continuous destruction of sugars as the hydrolysis progresses.
  • Another object is to provide such process which can be made continuous, is simple in operation, has low labor costs, and which may be carried out in simple and cheap apparatus.
  • Still another object is to provide such process wherein improved operability and improved quality of the sugar product are attained.
  • the cellulose contained in wood may be divided into two fractions, namely, a fraction that may be hydrolyzed by acid under relatively mild conditions of heat and pressure and a fraction that requires more severe conditions of heat and pressure for this reaction.
  • These fractions are substantially identical with those called hemicellulose and alphacellulose, respectively, by many workers in this field, although the separation into hemicellulose and alphacellulose is frequently based upon other reactions such as solubility in alkali.
  • this method comprises treating wood with a recycled dilute sulfuric acid-sugar solution under conditions of heat and pressure sufficiently severe to cause hydrolysis of the more easily hydrolyzed portion of the cellulose (hemicellulose), separating the resulting hydrolyzate from solid residue, neutralizing and withdraw ing the hydrolyzate for evaporation to molasses, fermen tation, or any other use desired.
  • the solid residue is then treated with a second portion of dilute sulfuric acid under conditions of heat and pressure sutficiently severe to cause hydrolysis of the more difiicultly hydrolyzed portion of cellulose (alphacellulose).
  • the resulting acid hydrolyzate is separated from a solid residue composed principally of lignin and is recycled at lower temperature and pressure to serve as hydrolysis reagent for a fresh batch of wood chips.
  • sugars of higher purity are obtained by making all withdrawals from the system immediately after the hemicellulose hydrolysis step.
  • the attached drawing is a flow sheet illustrating diagrammatically one preferred method employing principles of our invention.
  • the numeral 1 indicates mixing zone or vessel equipped with a stirrer 2.
  • Means for introducing controlled quantities of Wood chips, sulfuric acid, water, and steam for heating purposes are indicated by the arrows designated 3, 4, 5, and 6 respectively.
  • a line 7 also is provided to conduct liquid hydrolyzate from an alphacellulose hydrolysis step to mixing vessel 1.
  • the full quantity of hot liquid produced in the hydrolysis of alphacellulose is introduced into vessel 1 via line 7 and is there mixed by action of the stirrer 2 with a fresh charge of wood chips introduced at 3.
  • Sufficient sulfuric acid and make-up water are introduced if necessary via 4 and 5 respectively to form a mixture of wood chips suspended in at least 8 times their weight of liquid containing from 0.5 to 2.0 percent, or preferably about 1.0 percent, of sulfuric acid.
  • Zone 8 preferably is a coil of pipe as illustrated in the drawing. The length and diameter of this tubular zone are chosen so that the rate of flow under the conditions just described is such that the retention time in zone 8 is from about 3 to 5 minutes.
  • the material is then discharged into a fiash tank 11 and is there flashed to atmospheric pressure. Next it is passed to a separation step 12 where the liquid hystep, although other types of separation apparatus may be used if desired. Separated liquid hydrolyzate is Withdrawn at 14 and is neutralized, evaporated to molasses, fermented, or used in any other manner desired.
  • the solid residue from the separation step 12 is introduced into a second mixing zone 17.
  • Sulfuric acid, water, and steam are also introduced via lines 18, 19, and 2t) respectively to form a mixture of residue in at least 8 times its weight of dilute aqueous sulfuric acid having an acid strength in the range from about 0.5 to 2.0 percent, and preferably about 1 percent.
  • This mixture then is passed'into a heater 21 and on through an alphacellulose hydrolysis zone 22 under a pressure about to p. s. i. in excess of that required to maintain liquid state, at a temperature in the range from 360 to 390 F. and at a rate of flow such that the mixture passes through zone 22, illustrated as a coil of pipe, in a retention time of about 4 to 6 minutes.
  • the mixture is then introduced into a flash tank 23 and is flashed to atmospheric pressure.
  • the mixture is then conducted to a separation step 24 where the liquid hydrolyzate is separated from a solid residue composed principally of lignin. This residue is withdrawn at 25, and the entire liquid hydrolyzate is recycled via line 7 to mixing vessel 1 to serve as hydrolysis medium for a fresh batch of wood chips.
  • Example 7 The method developed by the United States Forest Products Laboratory is believed to be the most efficient process for production of sugars from wood that was available prior to the development of our process. An average of 29 runs reported by that Laboratory, using their process and Douglas fir, had shown total sugar re-,. covery of 50.3 percent of the hark-free dry wood and an average concentration of sugars in the final hydrolyzate of 5.0 percent. 7
  • dry mixed hardwoods contains approximately 456 pounds of bark and 1544 pounds of drywood substance; it contains an amount of easily hydrolyzed cellulose (hemicellulose and the like) equivalent to 230 pounds of reducing sugars and an amount of more stable cellulose (alphacellulose and the like) equivalent to 923 pounds of reducing sugars.
  • This quantity of wood is chipped, introduced into a mixing vessel equipped with a stirrer, as shown at 1 in the drawing, and is there mixed with a sufiicient amount of recycled hydrolyzate from an alphacellulose hydrolysis step 22 to form a pumpable slurry.
  • About 8 parts or more of liquid will be required for each part of wood chips.
  • the physical properties of the slurry will determine the amount of hydrolyzate that must be added: the slurry must be pumpable in order to carry out the remainder of the process without excessive difficulties in operation, but addition of excess water is to be avoided as it results in dilution of the final hydrolyzate and increases the cost of recovering sugars from it.
  • the slurry preferably has an acid content of about 1 percent sulfuric acid.
  • the slurry is then heated to or near its boiling point and is passed into a hemicellulose hydrolysis zone 8, at a pressure about 15 p. s. i. in excess of that required to maintain liquid state.
  • High-pressure steam is introduced at 9 to maintain the temperature at about 275 F. in this zone.
  • the slurry is passed through this zone at such rate that its retention time in the zone is about 4 minutes. This period of time is preferred for mixed hardwoods, but other woods may require somewhat longer retention times.
  • the retention time should be as short as is compatible With complete hydrolysis of the hemicellulose fraction in order to minimize decomposition of thesugars formed.
  • the partially hydrolyzed chips are then separated from the liquid hydrolyzate which has an average concentration of about 5.1 percent total reducing sugars. separated chips are reslurried with water to which sulfuric acid has been added. These chips contain resistant cellulose equivalent to 923 pounds of reducing sugars.
  • the resulting slurry is then passed through an alphacellulose hydrolysis zone 22 at a pressure somewhat in excess of that required to maintain liquid state.
  • the temperature is maintained at 400 F., acid concentration is 1 percent, and retention time is 3.5 minutes. This retention is that at which the net yield of reducing sugars from this particular material is at a maximum. Under these conditions only about three-fourths of the more resistant cellulose fraction is hydrolyzed and decomposition of sugars formed is such that the net yield is only about 50 percent of the amount equivalent to the cellulose content. Thus 461 pounds of reducing sugars are received in the hydrolyzate from this stage.
  • the hydrolyzate is then separated from the spent chips (lignin) and is recycled to vessel 1 where it is used to Water lost in flashing produce slurry with fresh chips. to atmospheric pressure is compensated for by water added to the solution by washing the lignin residue.
  • the over-all yield of the two-stage hydrolysis is about 230 pounds of reducing sugars from the hemicellulose hydrolysis step plus 461 pounds from the alphacellulose hydrolysis step: a total of 691 pounds of reducing sugars of the potential reducing sugars in the charge. Iuterms of 50 percent molasses, the yield is 1244 pounds or I07 gallons per ton of dry wood.
  • a process for the production of sugars from wood which comprises mixing wood residue from a hereinafter described hemicellulose hydrolysis step with at least 8 times its weight of 0.5 to 2.0 percent aqueous sulfuric acid; passing the resulting mixture at a temperature in the range from about 360 to 400 F. through a tubular alphacellulose hydrolysis zone under a pressure about 15 to 25 p. s. i.

Description

Au 6, 1957 T, P. HIGNETT ET AL HYDROLYSIS OF HEMIC 2,801,939 ELLULOSE AND ALPHACELLULOSE TO PRODUCE SUGAR Filed April 4, 1955 United States Patent Ofiice 2,801,939 Patented Aug. 6, 1957 HYDROLYSIS OF HEMECELLULOSE AND ALPHA- CELLULOSE TO PRODUCE SUGAR Travis P. Hignett, Sheiiieltl, Alan, and Nathan Gilbert,
Cincinnati, Ohio, assignors to Tennessee Valiey Authority, a corporation of the United States Application April 4, 1955, Serial No. 499,254
3 Claims. (Cl. 127-37) (Granted under Title 35, U. S. Code (H52), sec. 266) The invention herein described may be manufactured and used by or for the Government for governmental purposes without the payment to us of any royalty therefor.
This invention relates to the production of sugars from wood by hydrolysis of cellulose in the presence of acid.
Processes based upon such hydrolysis have been used extensively abroad. For instance, about twenty plants were known to be in operation in Germany in 1941 according to the Scholler process, described in Industrial and Engineering Chemistry 37, 9ll (1945). This process is very slow, operates batchwise, is characterized by high maintenance costs and low yields of sugars per unit volume of equipment, and requires so much labor as to be uneconomical except where labor is very cheap.
The United States Forest Products Laboratory has developed an improved process in which wood chips are charged to a digester, the charge is submerged rapidly in hot dilute sulfuric acid, and hot dilute acid is percolated continuously through the charge under high pressure until the sugar concentration in the hydrolyzate is about percent. The pressure on the hydrolyzate is then reduced to about 30 p. s. i., and it is neutralized and filtered continuously under pressure. The product may be evaporated to form molasses or maybe fermented directly to alcohol or may be used for the production of commercial yeast, but there is continuous destruction of sugars as the hydrolysis progresses.
It is an object of this invention to provide a process for the hydrolysis of wood in which destruction of sugars produced is greatly reduced.
Another object is to provide such process which can be made continuous, is simple in operation, has low labor costs, and which may be carried out in simple and cheap apparatus.
. Still another object is to provide such process wherein improved operability and improved quality of the sugar product are attained.
Other objects and advantages will become apparent as this disclosure proceeds.
It has long been known that the cellulose contained in wood may be divided into two fractions, namely, a fraction that may be hydrolyzed by acid under relatively mild conditions of heat and pressure and a fraction that requires more severe conditions of heat and pressure for this reaction. These fractions are substantially identical with those called hemicellulose and alphacellulose, respectively, by many workers in this field, although the separation into hemicellulose and alphacellulose is frequently based upon other reactions such as solubility in alkali.
T We have found that a principal cause of the low yields or impure sugars obtained in other methods is the destruction or degradation of sugars produced by hydrolysis of the easily hydrolyzed or hemicellulose fraction when they are subjected to conditions of heat and pressure sufficiently severe to hydrolyze the more difiicultly hy- 2 drolyzed, or alphacellulose fraction. We have also found that the sugars produced by hydrolysis of the alphacellulose fraction have suflicient chemical stability that they are not destroyed to any appreciable extent by exposure to conditions of hydrolysis sufiiciently severe to cause hydrolysis of hemicellulose. We have developed a simple method for increasing the purity of sugars by application of those principles.
Briefly, this method comprises treating wood with a recycled dilute sulfuric acid-sugar solution under conditions of heat and pressure sufficiently severe to cause hydrolysis of the more easily hydrolyzed portion of the cellulose (hemicellulose), separating the resulting hydrolyzate from solid residue, neutralizing and withdraw ing the hydrolyzate for evaporation to molasses, fermen tation, or any other use desired. The solid residue is then treated with a second portion of dilute sulfuric acid under conditions of heat and pressure sutficiently severe to cause hydrolysis of the more difiicultly hydrolyzed portion of cellulose (alphacellulose). The resulting acid hydrolyzate is separated from a solid residue composed principally of lignin and is recycled at lower temperature and pressure to serve as hydrolysis reagent for a fresh batch of wood chips. We have found that sugars of higher purity are obtained by making all withdrawals from the system immediately after the hemicellulose hydrolysis step.
The attached drawing is a flow sheet illustrating diagrammatically one preferred method employing principles of our invention. With reference thereto, the numeral 1 indicates mixing zone or vessel equipped with a stirrer 2. Means for introducing controlled quantities of Wood chips, sulfuric acid, water, and steam for heating purposes are indicated by the arrows designated 3, 4, 5, and 6 respectively. A line 7 also is provided to conduct liquid hydrolyzate from an alphacellulose hydrolysis step to mixing vessel 1.
The full quantity of hot liquid produced in the hydrolysis of alphacellulose is introduced into vessel 1 via line 7 and is there mixed by action of the stirrer 2 with a fresh charge of wood chips introduced at 3. Sufficient sulfuric acid and make-up water are introduced if necessary via 4 and 5 respectively to form a mixture of wood chips suspended in at least 8 times their weight of liquid containing from 0.5 to 2.0 percent, or preferably about 1.0 percent, of sulfuric acid.
It is desirable to use the minimum amount of liquid required to produce a pumpable slurry. A quantity of liquid at least 8 times the weight of the wood chips will be necessary to form such slurry and often a Weight of liquid 10 to 12 times that of the chips may be required. The resulting mixture is rapidly heated to near its boiling point by steam introduced at 6 and is passed into a hemicellulose hydrolysis zone 8. Pressure of about 15 to 25 p. s. i. in excess of that required to maintain liquid state is maintained in this zone; the rate of flow is such that the material passes through zone 8 in about 3 to 5 minutes. High-pressure steam is introduced at some con- Venient point 9 in quantity sufficient to maintain the temperature at about 265 to 285 F. during the time the material remains in the hernicellulose hydrolysis zone. Zone 8 preferably is a coil of pipe as illustrated in the drawing. The length and diameter of this tubular zone are chosen so that the rate of flow under the conditions just described is such that the retention time in zone 8 is from about 3 to 5 minutes.
The material is then discharged into a fiash tank 11 and is there flashed to atmospheric pressure. Next it is passed to a separation step 12 where the liquid hystep, although other types of separation apparatus may be used if desired. Separated liquid hydrolyzate is Withdrawn at 14 and is neutralized, evaporated to molasses, fermented, or used in any other manner desired.
The solid residue from the separation step 12 is introduced into a second mixing zone 17. Sulfuric acid, water, and steam are also introduced via lines 18, 19, and 2t) respectively to form a mixture of residue in at least 8 times its weight of dilute aqueous sulfuric acid having an acid strength in the range from about 0.5 to 2.0 percent, and preferably about 1 percent. This mixture then is passed'into a heater 21 and on through an alphacellulose hydrolysis zone 22 under a pressure about to p. s. i. in excess of that required to maintain liquid state, at a temperature in the range from 360 to 390 F. and at a rate of flow such that the mixture passes through zone 22, illustrated as a coil of pipe, in a retention time of about 4 to 6 minutes. The mixture is then introduced into a flash tank 23 and is flashed to atmospheric pressure.
The mixture is then conducted to a separation step 24 where the liquid hydrolyzate is separated from a solid residue composed principally of lignin. This residue is withdrawn at 25, and the entire liquid hydrolyzate is recycled via line 7 to mixing vessel 1 to serve as hydrolysis medium for a fresh batch of wood chips.
Principal advantages gained in our process are (a) a good yield of sugars; (b) the operating conveniences obtained by making all separations of hydrolyzate from residues at atmospheric pressure; (0) higher concentration of sugars in the hydrolyzate withdrawn for neutralization and use; (d) improved operability due to minimize-d production of sludge by decomposition of sugars; and (e) a sugar product of improved quality due to the small quantity of decomposition products contained therein.
Example The method developed by the United States Forest Products Laboratory is believed to be the most efficient process for production of sugars from wood that was available prior to the development of our process. An average of 29 runs reported by that Laboratory, using their process and Douglas fir, had shown total sugar re-,. covery of 50.3 percent of the hark-free dry wood and an average concentration of sugars in the final hydrolyzate of 5.0 percent. 7
In a pilot plant constructed at Wilson Dam, Alabama, we operated according to that process to determine its efliciency in respect to other Woods. Using mixed hardwoods, We obtained a total sugar recovery of 51.1 percent; in good agreement with the results reported by the Forest Products Laboratory, but with a concentration of only 3.8 percent sugars in the final hydrolyzate.
These results are to be contrasted with those obtainable by use of our process, which are calculated below on the basis of one ton of dry mixed hardwoods as starting material.
One ton of dry mixed hardwoods contains approximately 456 pounds of bark and 1544 pounds of drywood substance; it contains an amount of easily hydrolyzed cellulose (hemicellulose and the like) equivalent to 230 pounds of reducing sugars and an amount of more stable cellulose (alphacellulose and the like) equivalent to 923 pounds of reducing sugars.
This quantity of wood is chipped, introduced into a mixing vessel equipped with a stirrer, as shown at 1 in the drawing, and is there mixed with a sufiicient amount of recycled hydrolyzate from an alphacellulose hydrolysis step 22 to form a pumpable slurry. About 8 parts or more of liquid will be required for each part of wood chips. The physical properties of the slurry will determine the amount of hydrolyzate that must be added: the slurry must be pumpable in order to carry out the remainder of the process without excessive difficulties in operation, but addition of excess water is to be avoided as it results in dilution of the final hydrolyzate and increases the cost of recovering sugars from it. The slurry preferably has an acid content of about 1 percent sulfuric acid.
The slurry is then heated to or near its boiling point and is passed into a hemicellulose hydrolysis zone 8, at a pressure about 15 p. s. i. in excess of that required to maintain liquid state. High-pressure steam is introduced at 9 to maintain the temperature at about 275 F. in this zone. The slurry is passed through this zone at such rate that its retention time in the zone is about 4 minutes. This period of time is preferred for mixed hardwoods, but other woods may require somewhat longer retention times. The retention time should be as short as is compatible With complete hydrolysis of the hemicellulose fraction in order to minimize decomposition of thesugars formed.
Under these conditions all the easily hydrolyzed cel lulose is converted into sugars, and 230 pounds are thus formed. The more resistant cellulose fraction is not affected appreciably and is retained as such in the chips. The sugars contained in the recycled alphacellulose hydrolyzate are not attacked to any appreciable extent, as these are the more resistant sugars. Decomposition of sugars in this step is well under 1 percent, and this loss is included in the over-all loss from the process, as shown below, which is about 10 percent of the yield. The average sugar concentration in solution withdrawn at M is about 5.1 percent.
The partially hydrolyzed chips are then separated from the liquid hydrolyzate which has an average concentration of about 5.1 percent total reducing sugars. separated chips are reslurried with water to which sulfuric acid has been added. These chips contain resistant cellulose equivalent to 923 pounds of reducing sugars.
The resulting slurry is then passed through an alphacellulose hydrolysis zone 22 at a pressure somewhat in excess of that required to maintain liquid state. The temperature is maintained at 400 F., acid concentration is 1 percent, and retention time is 3.5 minutes. This retention is that at which the net yield of reducing sugars from this particular material is at a maximum. Under these conditions only about three-fourths of the more resistant cellulose fraction is hydrolyzed and decomposition of sugars formed is such that the net yield is only about 50 percent of the amount equivalent to the cellulose content. Thus 461 pounds of reducing sugars are received in the hydrolyzate from this stage.
A longer retention time would, of course, result in more complete hydrolysis of the cellulose, but it will be found that whatever type of wood is used there is a point of maximum yield, since the same conditions of heat and acid concentration that result in hydrolysis of the resistant alphacellulose fraction also result in decomposition of the sugars formed. It is therefore impractical to pro-' ceed beyond the point at which the rate of sugar decomposition becomes substantially equal to the rate of sugar formation.
The hydrolyzate is then separated from the spent chips (lignin) and is recycled to vessel 1 where it is used to Water lost in flashing produce slurry with fresh chips. to atmospheric pressure is compensated for by water added to the solution by washing the lignin residue.
The over-all yield of the two-stage hydrolysis is about 230 pounds of reducing sugars from the hemicellulose hydrolysis step plus 461 pounds from the alphacellulose hydrolysis step: a total of 691 pounds of reducing sugars of the potential reducing sugars in the charge. Iuterms of 50 percent molasses, the yield is 1244 pounds or I07 gallons per ton of dry wood.
The
It will thus be seen that our process results in a good over-all yield. Also, the quality of the sugar product is high because of the presence of relatively small proportions of decomposition products. Operational difi'iculties due to decomposition are minimized, and the small quantity of decomposition products present makes possible the production of a molasses that is highly palatable to livestock.
Although our process is described above as a continuous process it is not restricted to continuous operation, but could be carried out batchwise if desired. Other modifications also may be made without departing from the spirit of our invention, which is limited only by the attached claims.
We claim as our invention:
1. A process for the production of sugars from wood which comprises mixing wood residue from a hereinafter described hemicellulose hydrolysis step with at least 8 times its weight of 0.5 to 2.0 percent aqueous sulfuric acid; passing the resulting mixture at a temperature in the range from about 360 to 400 F. through a tubular alphacellulose hydrolysis zone under a pressure about 15 to 25 p. s. i. in excess of that required to maintain liquid state, at a rate of flow such that the mixture passes through the hydrolysis zone in a retention time of about 3 to 20 minutes; flashing the resulting mixture to atmospheric pressure; separating a solid residue composed essentially of lignin from said mixture; passing the resulting liquid mixture to a mixing zone; therein mixing it with wood chips, water, and acid to form a mixture of wood chips in from 10 to 12 times their weight: of liquid con taining from 0.5 to 2.0 percent sulfuric acid; passing the resulting mixture through a tubular hemicellulose hydrolysis zone at a temperature in the range from about 265 to 285 F. under a pressure about 15 to 25 p. s. i. in excess of that required to maintain liquid state, at such rate of flow that is passes through the hemicellulose hydrolysis zone in a retention time of about 3 to 5 minutes; flashing the mixture to atmospheric pressure; separating the mixture into liquid high in wood sugars and a solid residue; recycling the solid residue; and withdrawing and neutralizing the liquid high in wood sugars.
2. The process of claim 1 wherein the concentration of sulfuric acid in both hydrolysis steps is about 1 percent.
3. The process of claim 1 wherein both separation steps are conducted at atmospheric pressure.
References Cited in the file of this patent UNITED STATES PATENTS 1,896,753 Ricard et a1 Feb. 7, 1933 2,222,885 Thomsen Nov. 26, 1940 2,356,500 Boinot Aug. 22, 1944 2,516,833 Ant-Wuorinen Aug. 1, 1950 OTHER REFERENCES Ind. and Eng. Chem., January 1945, pp. 24-29 (p. 27 especially pertinent).

Claims (1)

1.A PROCESS FOR THE PRODUCTION OF SUGARS FROM WOOD WHICH COMPRISES MIXING WOOD RESIDUE FROM A HEREINAFTER DESCRIBED HEMICELLULOSE HYDROLYSIS STEP WHICH AT LEAST 8 TIMES ITS WEIGHT OF 0.5 TO 2.0 PERCENT AQUEOPUS SULFURIC ACID; PASSING THE RESULTING MIXTURE AT A TEMPERATURE IN THE RANGE FROM ABOUT 360* TO 400*F. THROUGH A TUBULAR ALPHACELLULOSE HYDDROLYSIS ZONE UNDER A PRESSURE ABOUT 15 TO 25 P. S. I. IN EXCESS OF THAT REQUIRED TO MAINTAIN LIQUID STATE, AT A RATE OF FLOW SUCH THAT THE MIXTURE PASSES THROUGH THE HYDROLYSIS ZONE IN A RETENTION TIME OF ABOUT 3 TO 20 MINUTES; FLASHING THE RESULTING MIXTURE TO ATMOSPHERIC PRESSURE; SEPARATING A SOLID RESIDUE COMPOSED ESSENTIALLY OF LIGNIN FROM SAID MIXTURE; PASSING THE RESULTING LIQUID MIXTURE TO A MIXING XONE; THEREIN MIXING IT WITH WOOD CHIPS, WATER, AND ACID TO FORM A MIXTURE OF WOOD CHIPS IN FROM 10 TO 12 TIMES THEIR WEIGHT OF LIQUID CON-
US499254A 1955-04-04 1955-04-04 Hydrolysis of hemicellulose and alphacellulose to produce sugar Expired - Lifetime US2801939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US499254A US2801939A (en) 1955-04-04 1955-04-04 Hydrolysis of hemicellulose and alphacellulose to produce sugar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US499254A US2801939A (en) 1955-04-04 1955-04-04 Hydrolysis of hemicellulose and alphacellulose to produce sugar

Publications (1)

Publication Number Publication Date
US2801939A true US2801939A (en) 1957-08-06

Family

ID=23984499

Family Applications (1)

Application Number Title Priority Date Filing Date
US499254A Expired - Lifetime US2801939A (en) 1955-04-04 1955-04-04 Hydrolysis of hemicellulose and alphacellulose to produce sugar

Country Status (1)

Country Link
US (1) US2801939A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3212932A (en) * 1963-04-12 1965-10-19 Georgia Pacific Corp Selective hydrolysis of lignocellulose materials
US3212933A (en) * 1963-04-12 1965-10-19 Georgia Pacific Corp Hydrolysis of lignocellulose materials with solvent extraction of the hydrolysate
US3640768A (en) * 1967-10-17 1972-02-08 Rudolf Eickemeyer Process for hydrolytic degradation of cellulosic materials to sugars
US3928121A (en) * 1973-10-23 1975-12-23 Zepeda Castillo Enrique Process for the obtention of fermentable powdered syrup and alphacellulose from xerophyte plants
US4023982A (en) * 1974-12-03 1977-05-17 Sulzer Brothers Limited Apparatus for the production of sugars from hemi-cellulose-containing raw materials
US4384897A (en) * 1981-11-23 1983-05-24 The Regents Of The University Of California Method of treating biomass material
US4425433A (en) 1979-10-23 1984-01-10 Neves Alan M Alcohol manufacturing process
US4564595A (en) * 1980-10-20 1986-01-14 Biomass International Inc. Alcohol manufacturing process
US4880473A (en) * 1988-04-01 1989-11-14 Canadian Patents & Development Ltd. Process for the production of fermentable sugars from biomass
US5221357A (en) * 1979-03-23 1993-06-22 Univ California Method of treating biomass material
US5536325A (en) * 1979-03-23 1996-07-16 Brink; David L. Method of treating biomass material
US5628830A (en) * 1979-03-23 1997-05-13 The Regents Of The University Of California Enzymatic hydrolysis of biomass material
WO2007090926A1 (en) * 2006-02-10 2007-08-16 Metso Paper, Inc. Method for recovering hydrolysis products
WO2007090925A1 (en) * 2006-02-10 2007-08-16 Metso Paper, Inc. Method for recovering hydrolysis products
US20100287826A1 (en) * 2007-07-31 2010-11-18 Hoffman Richard B System and Method of Preparing Pre-Treated Biorefinery Feedstock from Raw and Recycled Waste Cellulosic Biomass
US8409357B2 (en) 2011-05-04 2013-04-02 Renmatix, Inc. Self-cleaning apparatus and method for thick slurry pressure control
US8546560B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Solvo-thermal hydrolysis of cellulose
US8546561B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Nano-catalytic-solvo-thermal technology platform bio-refineries
US8568533B2 (en) 2011-05-04 2013-10-29 Renmatix, Inc. Multistage cellulose hydrolysis and quench with or without acid
US8747561B2 (en) 2011-05-04 2014-06-10 Renmatix, Inc. Cellulose hydrolysis with pH adjustment
US8759498B2 (en) 2011-12-30 2014-06-24 Renmatix, Inc. Compositions comprising lignin
US8840995B2 (en) 2011-05-04 2014-09-23 Renmatix, Inc. Lignin production from lignocellulosic biomass
US8968479B2 (en) 2010-01-19 2015-03-03 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
US10793646B2 (en) 2014-09-26 2020-10-06 Renmatix, Inc. Adhesive compositions comprising type-II cellulose

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1896753A (en) * 1928-05-14 1933-02-07 Distilleries Des Deux Sevres Saccharification of wood and other cellulosic materials
US2222885A (en) * 1937-03-01 1940-11-26 Alfred M Thomsen Utilization of plant wastes
US2356500A (en) * 1941-03-27 1944-08-22 Boinot Firmin Charles Method for saccharifying cellulosic materials by means of diluted mineral acids
US2516833A (en) * 1947-06-09 1950-08-01 Ant-Wuorinen Olli Viljo Anton Process for hydrolyzing cellulosic materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1896753A (en) * 1928-05-14 1933-02-07 Distilleries Des Deux Sevres Saccharification of wood and other cellulosic materials
US2222885A (en) * 1937-03-01 1940-11-26 Alfred M Thomsen Utilization of plant wastes
US2356500A (en) * 1941-03-27 1944-08-22 Boinot Firmin Charles Method for saccharifying cellulosic materials by means of diluted mineral acids
US2516833A (en) * 1947-06-09 1950-08-01 Ant-Wuorinen Olli Viljo Anton Process for hydrolyzing cellulosic materials

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3212932A (en) * 1963-04-12 1965-10-19 Georgia Pacific Corp Selective hydrolysis of lignocellulose materials
US3212933A (en) * 1963-04-12 1965-10-19 Georgia Pacific Corp Hydrolysis of lignocellulose materials with solvent extraction of the hydrolysate
US3640768A (en) * 1967-10-17 1972-02-08 Rudolf Eickemeyer Process for hydrolytic degradation of cellulosic materials to sugars
US3928121A (en) * 1973-10-23 1975-12-23 Zepeda Castillo Enrique Process for the obtention of fermentable powdered syrup and alphacellulose from xerophyte plants
US4023982A (en) * 1974-12-03 1977-05-17 Sulzer Brothers Limited Apparatus for the production of sugars from hemi-cellulose-containing raw materials
US5221357A (en) * 1979-03-23 1993-06-22 Univ California Method of treating biomass material
US5536325A (en) * 1979-03-23 1996-07-16 Brink; David L. Method of treating biomass material
US5628830A (en) * 1979-03-23 1997-05-13 The Regents Of The University Of California Enzymatic hydrolysis of biomass material
US4425433A (en) 1979-10-23 1984-01-10 Neves Alan M Alcohol manufacturing process
US4564595A (en) * 1980-10-20 1986-01-14 Biomass International Inc. Alcohol manufacturing process
US4384897A (en) * 1981-11-23 1983-05-24 The Regents Of The University Of California Method of treating biomass material
US4880473A (en) * 1988-04-01 1989-11-14 Canadian Patents & Development Ltd. Process for the production of fermentable sugars from biomass
US8262854B2 (en) 2006-02-10 2012-09-11 Metso Paper, Inc. Method for recovering hydrolysis products
WO2007090926A1 (en) * 2006-02-10 2007-08-16 Metso Paper, Inc. Method for recovering hydrolysis products
WO2007090925A1 (en) * 2006-02-10 2007-08-16 Metso Paper, Inc. Method for recovering hydrolysis products
US20100287826A1 (en) * 2007-07-31 2010-11-18 Hoffman Richard B System and Method of Preparing Pre-Treated Biorefinery Feedstock from Raw and Recycled Waste Cellulosic Biomass
US11001776B2 (en) 2007-07-31 2021-05-11 Richard B. Hoffman System and method of preparing pre-treated biorefinery feedstock from raw and recycled waste cellulosic biomass
US8546560B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Solvo-thermal hydrolysis of cellulose
US8546561B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Nano-catalytic-solvo-thermal technology platform bio-refineries
US8968479B2 (en) 2010-01-19 2015-03-03 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
US10858712B2 (en) 2010-01-19 2020-12-08 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
US10053745B2 (en) 2010-01-19 2018-08-21 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
US9359651B2 (en) 2010-01-19 2016-06-07 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
US8840995B2 (en) 2011-05-04 2014-09-23 Renmatix, Inc. Lignin production from lignocellulosic biomass
US8409357B2 (en) 2011-05-04 2013-04-02 Renmatix, Inc. Self-cleaning apparatus and method for thick slurry pressure control
US8747561B2 (en) 2011-05-04 2014-06-10 Renmatix, Inc. Cellulose hydrolysis with pH adjustment
US8568533B2 (en) 2011-05-04 2013-10-29 Renmatix, Inc. Multistage cellulose hydrolysis and quench with or without acid
US9963555B2 (en) 2011-12-30 2018-05-08 Renmatix, Inc. Compositions comprising lignin
US8759498B2 (en) 2011-12-30 2014-06-24 Renmatix, Inc. Compositions comprising lignin
US10793646B2 (en) 2014-09-26 2020-10-06 Renmatix, Inc. Adhesive compositions comprising type-II cellulose

Similar Documents

Publication Publication Date Title
US2801939A (en) Hydrolysis of hemicellulose and alphacellulose to produce sugar
Harris et al. Madison Wood Sugar Process.
US3212932A (en) Selective hydrolysis of lignocellulose materials
US3212933A (en) Hydrolysis of lignocellulose materials with solvent extraction of the hydrolysate
Bergius Conversion of wood to carbohydrates
CA1100266A (en) Organosolv delignification and saccharification process for lignocellulosic plant materials
US4971657A (en) Combined process for thermally and chemically treating lignocellulose-containing biomass and for producing furfural and cellulose-containing fiber masses
US4237226A (en) Process for pretreating cellulosic substrates and for producing sugar therefrom
US4556430A (en) Process for hydrolysis of biomass
FI76547B (en) FOERFARANDE OCH ANORDNING FOER FRAMSTAELLNING AV ETANOL.
KR101390386B1 (en) A process for separating biomass components
US5411594A (en) Bei hydrolysis process system an improved process for the continuous hydrolysis saccharification of ligno-cellulosics in a two-stage plug-flow-reactor system
AU579094B2 (en) Improved organosolv process for hydrolytic decomposition of lignocellulosic and starch materials
EP2173941A1 (en) A single step process for separating biomass components
GB1228057A (en)
US4350766A (en) Pentose syrup production from hemicellulose
US3065263A (en) Process for the manufacture of levulinic acid
CA1266264A (en) Continuous hydrolysis process of wood or other lignocellulose material
US2697703A (en) Fractionation of lignocellulose materials
US3132051A (en) Continuous process for extracting pentoses from substances containing hemicelluloses
US2773026A (en) Removal of dissolved or dispersed organic material from aqueous solutions and suspensions
US4916242A (en) Combined process for thermally and chemically treating lignocellulose-containing biomass and for producing furfural
US4260685A (en) Saccharification of cellulose
US2477861A (en) Production of fibrous watersoluble alginates
US3085038A (en) Production of cellulose furfural and fodder from agricultural waste