US2783971A - Apparatus for earth boring with pressurized air - Google Patents

Apparatus for earth boring with pressurized air Download PDF

Info

Publication number
US2783971A
US2783971A US341742A US34174253A US2783971A US 2783971 A US2783971 A US 2783971A US 341742 A US341742 A US 341742A US 34174253 A US34174253 A US 34174253A US 2783971 A US2783971 A US 2783971A
Authority
US
United States
Prior art keywords
air
drill
pressurized air
motor
cage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US341742A
Inventor
Guy F Carle
Buford M Baker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENGINEERING LAB Inc
ENGINEERING LABORATORIES Inc
Original Assignee
ENGINEERING LAB Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENGINEERING LAB Inc filed Critical ENGINEERING LAB Inc
Priority to US341742A priority Critical patent/US2783971A/en
Application granted granted Critical
Publication of US2783971A publication Critical patent/US2783971A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/08Apparatus for feeding the rods or cables; Apparatus for increasing or decreasing the pressure on the drilling tool; Apparatus for counterbalancing the weight of the rods
    • E21B19/084Apparatus for feeding the rods or cables; Apparatus for increasing or decreasing the pressure on the drilling tool; Apparatus for counterbalancing the weight of the rods with flexible drawing means, e.g. cables
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/16Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor using gaseous fluids
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/02Fluid rotary type drives
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/02Drilling rigs characterized by means for land transport with their own drive, e.g. skid mounting or wheel mounting

Definitions

  • the primary object of this inyention is to provide a rotary method and apparatus for earth boring utilizes pressuriged air to rotate the drill bit in'theh by n a r mot r c t n a th b tttap e B51? jacent the drill.
  • 'Yet another object is to provide a longitudinal air motor for rotary drilling which receiyes its ai pply axia ly hro gh't e m s n 'a 'cn fllqn i s.
  • Q6 35 a ter expan ng a po t n of theen i v i 111 r 9 pellsit through'the other end in a rariiiedand co dition for cooling the drill bit spindle b gs, he flalpressure of the air being suchlthatsuifieient p" t re remains afterturning the air motor to carry 'gs back up the borehole to the surface.
  • i i v Fig. 1 represents a side elevational view of the complete mobile drilling rig of this invention wi'th thedrilling iudit in transport and/or horizontal drilling. position.
  • Fig. 2 represents a side elevationalview oflthemobile drilling rig with the drilling unit in a vertical position preparatory to commencing the drilling operation.
  • Fig. 3 represents a side elevational view, partially in section of the drilling unit with the drill stem in its raised andlocked position.
  • Fig. 4 is a front elevational view of the drilling unit shown in Fig. 3 except here the drill stem isin'its operating FiglS .is a cross section of the drill stern taken about 65 the line 5 5 of Eig. 3. i
  • Fig, 6 is a detail plan viewof the bottom plate sa es o l ia ia,3- 5'
  • Fig. 7 isf'a'detail planyiew of thetop plafte of the drill vcagt Shown i, 1Fig l I Fig. 8,is acro sssectipnal view. of the motor talr en .alongtheline 8- SOfFigLQ.
  • FIG. 9 is a sectional elevational view of the drill motor of this invention.
  • Fig. 10 is a sectional elevational view of the drill bit detached from the drill motor.
  • Fig. 11 is a bottom view of the drillbit of Fig. 10, but with cutters and spindles removed.
  • Fig. 12 is a detail fragmentary view of the bottom plate and rear uprights showing the hold down lock of the drill cage.
  • FIG. 13 is adetail fragmentary view of the top plate and rear uprights showing the up position lock of the drill cage.
  • Fig: '14' is a diagrammatic view of the cablereevingand movements involved when lowering the drill vcage froin the position shown in Fig. 1, and iirmoving the drill stem horizontally.
  • r Fig. 15 is a diagrammatic view of the cable reeving and movements involved in raising the drill cage from the position'shown in Fig. 2, and in moving the drill stem vertically.
  • FIG. 16 is a fragmentary elevational view of a drillingrig of this invention employing a special cab.
  • Fig. 17 is a fragmentary plan view of the rig shown vin I Fig. 16 in partial section about the line 1717.
  • the drilling unit 6 is supported from a platform 10 which'is rigidlyatta-ched to the frame 4 and includes vertical members'll and braces 12 as seen in Fig. 3.
  • Top and bottom plates 14 and '15 are connected by bolts 16 which include shoulders 17 whereby'the' plates and bolts form a sturdy rigid cage 18 for guiding and supporting the nonrotatable drill pipe 20 as will" be shown.
  • Top plate l4 includes a vertical 'bore lllwith a tapered section 22 for reception of and guiding fordrill pipe 20, and a horizontal bore 23 for insertion of pivot pin 24.
  • Bottom P at .15 udes a e t a ba s 5 i ss s o the/drill stem 'and includes horizontal pins 26'and"27 onwhich are mounted latch 30 and sheave -31respectively.
  • Plate 15 also includes lips 32 which guide plate 15 by vertical members 11 and preventsidewiselateral movement of drill cage/ 18 when the unit is in vertical operation.
  • bracket 33 attaehes to plate 15 adjacent latchv30
  • Lower plate 15 includes an"in wafrd projecting key 45 which cooperates with groove 40, as "do sheaves :46 and 47 supported from plate 15 by vertical arms 48 and pins 49.
  • Sheave 51 is mounted incut out 52 centrally of top plate 14 and includes two grooves 53 and 54 receive lift and lower cable leads 55 and 56 respectively which are oppositely wound on power winch 57.
  • Line pulley 58 is alsojournalled to shaft 24 andis located in cut-out 59"oftOPfpl ate'l l.
  • Sheav'e 31 is'l-ocated in cut-out 60 of plate-15am is jouirnallcd on shaft 27 which is inserted plate'l S. R eferringt'o l ligs.'5', 6 'and'7,
  • FIG. 4 By reference to Fig. 4 the operation of line 36 in releasing latch 30 may be observed.
  • a second line pulley 61 is supported from vertical bolt 16 at a position whereby line 36 passing thereover will be substantially horizontal relative to the offset arm 66 of latch 30. Since the center line of pulley 58 coincides with the centerline of the pivoting action of cage 18, no allowance is required for extension of line 36 to allow for increased length when cage 18 is in its raised position.
  • the compressor 7 includes an air storage bottle 62 which connects by way of flexible hose 63 to air fitting 64 at the top of drill pipe 20.
  • Hose 63 is supported intermediate its length by bracket 65.
  • Winch 57 is powered from the truck engine by any convenient means such as chain drive, power take-off, or electric motor.
  • Cable lead 55 is wrapped counterclockwise (when viewed in Fig. 3), and acts to lift drill stem 20, by means of the following reeving: cable 55 passes upwardly from winch 56 to and around one groove 53 of sheave 51 and down and around sheave 31 and 78 and after performing work passes through the exhaust side of the drill motor as indicated by arrows 79.
  • the now cool and expanded air indicated by arrow 80 passes axially through bit 39 to blast out cuttings in the bottom of the hole and return upward (arrows 81) carrying the cuttings with it until they strike deflector 82 which causes the cuttings to follow the curvature of the deflector in the path shown by arrow 83 and build up at pile 84.
  • deflector 82 which causes the cuttings to follow the curvature of the deflector in the path shown by arrow 83 and build up at pile 84.
  • other paths are provided for air streams as represented by arrows 85 to cool the bearings of bit 39 with the now expanded and cooled air stream.
  • the bearings may be lubricated as well as cooled by the addition of an atomized spray or drops of oil into the air stream.
  • Cable lead 56 is wrapped clockwise about winch 57, and this lead may be used to apply down pressure to drill bit 39 through the following reeving: cable 56 passes up and over a second groove 54 of sheave 51 from winch 57 and thence down and about sheave 46 and upward to anchor 42 near the top of drill pipe 20.
  • a spring actuated hold down lock 68 engages a lug 69 on bottom plate 15 to keep the drilling unit 6 rigid relative to truck'2.
  • Fig. 12 shows the path 70 which lug 69 follows when cage 18 is lowered to its vertical position.
  • lug 69 strikes the tapered surface 71 it extends spring 72 and raises lock 68 sufiiciently to permit lug 69 to pass by surface 71 and to the position shown, whereat spring 72 retracts lock 68 to grasp lug 69 and hold plate 15 securely to upright 11.
  • Line 73 leads from the top of lock 68 to lever 74 inside the cab 5 to permit release of lock 68 prior to raising cage 18 to travel position.
  • the operator may drive truck 2 toward the selected site with attached drilling unit 6 in travelling position as shown in Fig. 1.
  • the drilling unit 6 Upon arrival at the drill site, the drilling unit 6 is lowered to the postion shown in Fig. 2, by rotating the winch 57 in clockwise direction. Since latch 30 is closed when the unit 6 is in travelling position, a downward pull applied by cable 56 to anchor 42 will not pull drill pipe 20 down but rather will cause the entire unit 6 to totate about pivot 24 until it reaches its vertical position at which point cage lock 68 automatically engages lug 69 to hold cage 18 in rigid vertical position during drillmg.
  • the air compressor 7 is placed in operation to supply pressurized air to bottle 62 and the through line 63 and fitting 64 to the central bore 44 running through stationary drill pipe 20 to drill motor 38 and drill bit 29 which the pressurized air rotates in a manner to be hereinafter described.
  • the motor and bit thus rotating the operator moves lever 36 to release latch 30 and then rotates winch 57' in a clockwise direction to apply a downward pull on pipe 20 through cable 56 and anchor 42.
  • Drill bit 39 will commence to dig when it contacts the surface of the earth 75 and will. continue to dig downward due to the down pressure exerted by winch 57 and the weight of drill pipe 20 until a hole 76 of the desired depth has been excavated.
  • the pressurized air I represented by broken arrow 77 of Fig. 4 enters the pressure side of the drill motor 38 as indicated by arrows gages a control (not shown) in cab 5 to rotate Winch 57 in a counter-clockwise direction to reel in cable 55 and thus apply a lifting force through anchor 43 to drill pipe 20 to raise the entire drill stem out of the hole 46 to a height suflicient to permit latch 30 to engage notch 35 and lock the drill stem 85 in its up position.
  • the complete mobile drill rig may be moved to adjacent drill sites and the drilling operation may begin again.
  • cage 18 and drill tor 38 consists basically of a cylindrical tube enclosing a longitudinal rotor 101 of a substantial length supported within the tube by upper and lower bearings 102 and 103 respectively; upper and lower ends of tube 100 terminate at tubular boxes 104 and 105 which connect to the drill pipe 20.
  • Cavity 106 is connected to an arcuate slot 107 in bearing mount 108 through holes 109 and circular passage 110 which slot delivers pressurized air to annular intake chamber 111.
  • Bearing mount 108 includes threads 117 which engage threads 118 of box 104 which are tightened to compress fabric shim 119 to provide an air seal between the mount and box at engagement.
  • a generally cylindrical shell 112 extends longitudinally but not concentrically through the tube 100 beyond the active length of rotor 101. Intermediate its length shell 112 includes a circumferential projection 113 including a groove 114 for reception of an O ring 115. It should be noted that shell 112 is olfset from the center of rotor 101 to provide aneccentrio rotor chamber 116 and offset from tube 100 so as to provide a relatively large annular section for intake chamber 111 on one side of tube 100. and a very small annular section at the opposite side.
  • the outerrace 132 is mounted in annular shaped mount 108.
  • the lower end 133 of box 104 retains the outer.race 132 in place by compressing the opposite end of. thefout'er races 132,
  • the top bearing102-A is exposed to the incoming blast of air from cavity 106 and consequently permits passage of air vertically down through all the top"bearingsf102 and. through radial passages to. intake chamber 111 .thereby providing a means for cooling the bearings.
  • the lower bearings are cooled similarly by a jet of airlen'tering through radial passage 146 in shell 112 and mount1129.
  • the lower end of bearings 103.. is open to channel 1.47 and these bearings are held in place by retaining ring 148.
  • Neck 150 projecting from the lower end of rotor 101 is splined as at 151 and engages matching spline 152 in lower box 105 to impart rotary motion to box 105 and attached drill bit 39.
  • a pin 153 passes through aligned holes 154 and 155 in the neck 150 and box 105 respectively to secure the drill motor 38 and drill bit 39 against relative axial movement.
  • Longitudinal passages 156 connect channel 147 to cavity 157 which opens directly into the central opening 158 of drill bit 39.
  • the lower rim 159 of tube 100 overlaps undercut 160 of box 105 to provide a relatively air tight rotary seal between tube 100 and box 105.
  • the complete bit 39 is seen to consist basically of a shank including a tapered threaded pin 171 and three forks 172 each including a spindle 173 which is welded thereto as at 174, and a cutter cone 175 journalled thereto.
  • Tines 172A and 172-B of forks 172 are connected by a flat land 176 and together therewith form a cavity 178 for reception of lip 177 of spindle 173.
  • Spindle shaft 179 includes a race 180 which together with cooperating race 181 defines a raceway 182 for reception of balls 183 which are loaded at assembly through loading track 184.
  • a channel 185 is drilled in shank 170 and at an angle to central opening 158 and in alignment with channel 186 in spindle 173 which leads to raceway 182.
  • a hollow insert 137 having shoulder 188 is placed at assembly in the space 189 between said surfaces. The partially expended air from drill motor 38 after entering cavity 157 enters central opening 158 as indicated at arrow 80.
  • a detailed schematic sequence of cable operation may be .obserfged P1P. jnii hi 'pb i bfl eat r;
  • latch 39 is ltenizag idthc' are "d ack t i ih rizbntal t t qu h clockwise rotation of winch 57 as represented by arrow 207-A.
  • latch 30 released and latch 68 engaged the pipe 20 may be raised or lowered relative to its vertical axis by the operation shown diagrammatically in Fig. 15.
  • winch 57 When winch 57 is rotated clockwise (arrow 206A) cable 56 is reeled in, and through upper anchor 42 causes pipe 20 to move down (into hole 76) as indicated by arrow 205-A; when winch 57 is rotated counterclockwise (arrow 207-A) cable 55 is reeled in, and through lower anchor 43 raises pipe 20 up (out of hole 76) as indicated by arrow 208-A.
  • a cab-over type truck shown in Figs. 16 and 17 may be used in place of the conventional truck (Figs. 1 and 2) for further improved operation.
  • the truck chassis represented by numeral 220 includes a special cab 221 with an inwardly inclined windshield 222 and a downwardly tapered front panel 223.
  • a separate upper section 224 of the windshield is tinted to permit increased vision without glare.
  • Winch 5'7-A is driven by means of gear box 225 which in turn is driven by a power take-off shaft 226 extending forward from engine 227.
  • Gear box 225 is supported by cross piece 228 which is attached to longitudinal runners 229 to become part of the frame 4A.
  • the cage 18-A is virtually identical to that shown in Fig.
  • a drilling unit comprising: a drill stem, means to support said drill stem for longitudinal movement, a source of pressurized air; said drill stem including a non-rotary drill pipe, a rotary air motor, and a drill bit in close proximity to said motor; a central bore through said drill pipe, means to introduce pressurized air into said bore, an air intake side and air exhaust side on said drill motor, said intake air side adapted to receive pressurized air, said exhaust side adapted to exhaust expanded and cooled air, a vane type rotor extending axially in said air motor attaching to said drill pipe, a stationary upper box on said motor connecting said bore and intake side, a stationary shell extending longitudinally but non-com centrically in surrounding relation to said rotor to form an air chamber therebetween, said vanes cooperating with said shell to form an air tight sliding fit with said shell when moving through said air chamber, a stationary tube extending from said upper box in longitudinal and concentric relation to said rotor, a lower box attached to said rotor for rotation therewith, said stationary tube

Description

March 5, 1957 e. F. CARLE EI'AL 2,783,971
APPARATUS FOR EARTH BORING WITH PRESSURIZED AIR Filed March 11, 1953 I 7 Sheets-Sheet l INVENTORS GUY. F CARLE AGENT March 5, 1957 a. F. CARLE EI'AL 2,783,971
APPARATUS FOR EARTH BORING WITH PRESSURIZED AIR 7 Sheets-Sheet 2 Filed March 11, 1953 INVENTORS GUY F CARLE BY B M BAKER AGE T March 5, 1957 APPARATUS FOR EARTH BORING WITH PRESSURIZED AIR Filed March 11, 1953 e. F. CARLE ETAL 7 Sheets-Sheet 3 INVENTOR GUY. F. CARLE BY & B. M. BAKER- AGENT March 5, 1957 e. F. CARLE nu. 2,783,971
APPARATUS FOR EARTH BORING WITH PRESSURIZED AIR Filed March 11,- 1953 7 Sheets-Sheet 4 I70 I78 I85 I72 l72-A 172-8 INVENTORS GUY F. CARLE & BYBJM. BAKER AG E Mud! 1957 e. F. CARLE EI'AL 2,783,971
APPARATUS FOR AR'iH BORING WITH PRESURIZED AIR Filed March 11, 1953 7 Sheets-Sheet 6 2os 2o 205 VENTOR GU .F CARLE IL B M BAKER JO. T
AGE
1957 e. F. CARLE ETAL 2,783,971
APPARATUS FOR EARTH BORING WITH PRESSURIZED AIR Filed March 11,- 1953 7 Sheets-Sheet '7 17F" 23l 230 82A INVENTOR I GUY F CARLE I BY & B M BAKER 1A. ,ao w
AGENT rosit 'c United States Patent ....l i..,.. .r. an mp3 APPARATUS FOR EARTHBORING. WITH PRESSURIZED AIR This invention relates to the art of earth boring and more] particularly to drilling holes throughldirt, i'ock'bi' other formations for water wells, oil etiploratiomwb and holes for blas n either verticalor hhrizontal, 'or for other purposes. i
The primary object of this inyention is to provide a rotary method and apparatus for earth boring utilizes pressuriged air to rotate the drill bit in'theh by n a r mot r c t n a th b tttap e B51? jacent the drill. r A other o j s to Pr vid t q, a ,ap at a for r l h'qles whe e n p ii' viie a is ou rotate thedr ill bit, cool the bearings, and iitishhutm t rial' om h to npf he h le-L A st turthe fibi c .O thi nv st eais t p e ude, a relatively n tubu a r mo or pil s'e r l n ,bio e holes whereby the air motor is directly nser becomesa part of the string ofdrill pipe. L
'Yet another object is to provide a longitudinal air motor for rotary drilling which receiyes its ai pply axia ly hro gh't e m s n 'a 'cn fllqn i s. Q6 35 a ter expan ng a po t n of theen i v i 111 r 9 pellsit through'the other end in a rariiiedand co dition for cooling the drill bit spindle b gs, he flalpressure of the air being suchlthatsuifieient p" t re remains afterturning the air motor to carry 'gs back up the borehole to the surface.
A st further objec i to pr 'yide a nle hoq an apparatus of drilling holes which is truck mounted and wherein the drivermay'remain in thetrucl; and proceed to th'location and drill one or more holes as required in. Oi U plcration work without ever getting "out of the cab.
Other objects and advantages of theinvention'willjbecome apparent from the following descriptionf'and'for'the purposes ofillustration, but not of limitation, anem ment of the invention is shown inthe laccompanyin ings in which: i i v Fig. 1 represents a side elevational view of the complete mobile drilling rig of this invention wi'th thedrilling iiriit in transport and/or horizontal drilling. position.
Fig. 2 represents a side elevationalview oflthemobile drilling rig with the drilling unit in a vertical position preparatory to commencing the drilling operation.
Fig. 3 represents a side elevational view, partially in section of the drilling unit with the drill stem in its raised andlocked position.
Fig. 4 is a front elevational view of the drilling unit shown in Fig. 3 except here the drill stem isin'its operating FiglS .is a cross section of the drill stern taken about 65 the line 5 5 of Eig. 3. i
Fig, 6 is a detail plan viewof the bottom plate sa es o l ia ia,3- 5' Fig. 7 isf'a'detail planyiew of thetop plafte of the drill vcagt Shown i, 1Fig l I Fig. 8,is acro sssectipnal view. of the motor talr en .alongtheline 8- SOfFigLQ.
hr the ice Fig. 9 is a sectional elevational view of the drill motor of this invention.
" Fig. 10 is a sectional elevational view of the drill bit detached from the drill motor.
' Fig. 11 is a bottom view of the drillbit of Fig. 10, but with cutters and spindles removed.
Fig. 12 is a detail fragmentary view of the bottom plate and rear uprights showing the hold down lock of the drill cage.
'Fig. 13 is adetail fragmentary view of the top plate and rear uprights showing the up position lock of the drill cage.
Fig: '14' is a diagrammatic view of the cablereevingand movements involved when lowering the drill vcage froin the position shown in Fig. 1, and iirmoving the drill stem horizontally. r Fig. 15 "is a diagrammatic view of the cable reeving and movements involved in raising the drill cage from the position'shown in Fig. 2, and in moving the drill stem vertically. t
' v Fig. 16 is a fragmentary elevational view of a drillingrig of this invention employing a special cab.
' Fig. 17 is a fragmentary plan view of the rig shown vin I Fig. 16 in partial section about the line 1717.
Referring now more particularly to the'charact ers of reference on the drawing, the complete mobile drilli'ng rig bf'this invention is seenin Figs.' 1 and 2 toconsistba'sically ofacoiiventiona'l' truck chassisZ including at least four wheels 3,21, frame 4 and cab 5; and a drilling unit'dat tziche'd b," theifrafm e ahead of the cab 5, andai1 aircompr set 7' mounted 'at'th'e jrear'fo'f the cab'and separately powered or driven by apower take-off (not shown) from the truckengine,ifdesired.
The drilling unit 6 is supported from a platform 10 which'is rigidlyatta-ched to the frame 4 and includes vertical members'll and braces 12 as seen in Fig. 3.
Top and bottom plates 14 and '15 are connected by bolts 16 which include shoulders 17 whereby'the' plates and bolts form a sturdy rigid cage 18 for guiding and supporting the nonrotatable drill pipe 20 as will" be shown. Top plate l4 includes a vertical 'bore lllwith a tapered section 22 for reception of and guiding fordrill pipe 20, and a horizontal bore 23 for insertion of pivot pin 24. Bottom P at .15 udes a e t a ba s 5 i ss s o the/drill stem 'and includes horizontal pins 26'and"27 onwhich are mounted latch 30 and sheave -31respectively. Plate 15 also includes lips 32 which guide plate 15 by vertical members 11 and preventsidewiselateral movement of drill cage/ 18 when the unit is in vertical operation. A
bracket 33 attaehes to plate 15 adjacent latchv30, and
spring 34 urges latch 30 into engagement with notch 35 of "non-rotata'bldrill pipe 20 When'the latter is in its raised and locked position (Fig. 3). Latch 30 may be released by apull on line 36 from a level-'37 in the cab 5. Drill pipe Zlllineludes a groove 40 which acts as a combination cable guide "and keyway, and the lower end of this stern terminates in a threaded pin 41 for connection with threads 28 of drill motor 38, which is' attached by threads 29 to drill bit'39. Near the upper'an'd lower ends of the drill stem are, cable anchors 42 and 43 respectively, and a central bore 44 provides an air passage through the stern.
Lower plate 15 includes an"in wafrd projecting key 45 which cooperates with groove 40, as "do sheaves :46 and 47 supported from plate 15 by vertical arms 48 and pins 49. Sheave 51 is mounted incut out 52 centrally of top plate 14 and includes two grooves 53 and 54 receive lift and lower cable leads 55 and 56 respectively which are oppositely wound on power winch 57. Line pulley 58 is alsojournalled to shaft 24 andis located in cut-out 59"oftOPfpl ate'l l. Sheav'e 31is'l-ocated in cut-out 60 of plate-15am is jouirnallcd on shaft 27 which is inserted plate'l S. R eferringt'o l ligs.'5', 6 'and'7,
the relationship between the sheaves and their supporting plates may be seen.
By reference to Fig. 4 the operation of line 36 in releasing latch 30 may be observed. A second line pulley 61 is supported from vertical bolt 16 at a position whereby line 36 passing thereover will be substantially horizontal relative to the offset arm 66 of latch 30. Since the center line of pulley 58 coincides with the centerline of the pivoting action of cage 18, no allowance is required for extension of line 36 to allow for increased length when cage 18 is in its raised position.
The compressor 7 includes an air storage bottle 62 which connects by way of flexible hose 63 to air fitting 64 at the top of drill pipe 20. Hose 63 is supported intermediate its length by bracket 65.
Winch 57 is powered from the truck engine by any convenient means such as chain drive, power take-off, or electric motor. Cable lead 55 is wrapped counterclockwise (when viewed in Fig. 3), and acts to lift drill stem 20, by means of the following reeving: cable 55 passes upwardly from winch 56 to and around one groove 53 of sheave 51 and down and around sheave 31 and 78 and after performing work passes through the exhaust side of the drill motor as indicated by arrows 79. The now cool and expanded air indicated by arrow 80 passes axially through bit 39 to blast out cuttings in the bottom of the hole and return upward (arrows 81) carrying the cuttings with it until they strike deflector 82 which causes the cuttings to follow the curvature of the deflector in the path shown by arrow 83 and build up at pile 84. At the point where air as represented by arrow 80 passes downward through the drill bit 39 for flushing purposes, other paths are provided for air streams as represented by arrows 85 to cool the bearings of bit 39 with the now expanded and cooled air stream. Additionally the bearings may be lubricated as well as cooled by the addition of an atomized spray or drops of oil into the air stream. When the hole 76 has reached the desired depth, the operator shuts 011 the air supply and enover sheave 47 to anchor 43 at the lower end of the nonrotary drill pipe 20. Cable lead 56 is wrapped clockwise about winch 57, and this lead may be used to apply down pressure to drill bit 39 through the following reeving: cable 56 passes up and over a second groove 54 of sheave 51 from winch 57 and thence down and about sheave 46 and upward to anchor 42 near the top of drill pipe 20.
When drill cage 18 and pipe 20 are in the vertical or drilling position a spring actuated hold down lock 68 engages a lug 69 on bottom plate 15 to keep the drilling unit 6 rigid relative to truck'2. Fig. 12 shows the path 70 which lug 69 follows when cage 18 is lowered to its vertical position. When lug 69 strikes the tapered surface 71 it extends spring 72 and raises lock 68 sufiiciently to permit lug 69 to pass by surface 71 and to the position shown, whereat spring 72 retracts lock 68 to grasp lug 69 and hold plate 15 securely to upright 11. Line 73 leads from the top of lock 68 to lever 74 inside the cab 5 to permit release of lock 68 prior to raising cage 18 to travel position.
Operation When a drill site is selected, the operator may drive truck 2 toward the selected site with attached drilling unit 6 in travelling position as shown in Fig. 1. Upon arrival at the drill site, the drilling unit 6 is lowered to the postion shown in Fig. 2, by rotating the winch 57 in clockwise direction. Since latch 30 is closed when the unit 6 is in travelling position, a downward pull applied by cable 56 to anchor 42 will not pull drill pipe 20 down but rather will cause the entire unit 6 to totate about pivot 24 until it reaches its vertical position at which point cage lock 68 automatically engages lug 69 to hold cage 18 in rigid vertical position during drillmg.
With the truck 2 braked in position shown in Fig. 2, the air compressor 7 is placed in operation to supply pressurized air to bottle 62 and the through line 63 and fitting 64 to the central bore 44 running through stationary drill pipe 20 to drill motor 38 and drill bit 29 which the pressurized air rotates in a manner to be hereinafter described. With the motor and bit thus rotating the operator moves lever 36 to release latch 30 and then rotates winch 57' in a clockwise direction to apply a downward pull on pipe 20 through cable 56 and anchor 42. Drill bit 39 will commence to dig when it contacts the surface of the earth 75 and will. continue to dig downward due to the down pressure exerted by winch 57 and the weight of drill pipe 20 until a hole 76 of the desired depth has been excavated. The pressurized air I represented by broken arrow 77 of Fig. 4 enters the pressure side of the drill motor 38 as indicated by arrows gages a control (not shown) in cab 5 to rotate Winch 57 in a counter-clockwise direction to reel in cable 55 and thus apply a lifting force through anchor 43 to drill pipe 20 to raise the entire drill stem out of the hole 46 to a height suflicient to permit latch 30 to engage notch 35 and lock the drill stem 85 in its up position. At this point the complete mobile drill rig may be moved to adjacent drill sites and the drilling operation may begin again. If, however, there is no further drilling in the immediate area, then the lock 68 is released by the operator by a pull on lever 74 and line 73, so that continued rotation of winch 57 will raise cage 18 and drill tor 38 consists basically of a cylindrical tube enclosing a longitudinal rotor 101 of a substantial length supported within the tube by upper and lower bearings 102 and 103 respectively; upper and lower ends of tube 100 terminate at tubular boxes 104 and 105 which connect to the drill pipe 20. Cavity 106 is connected to an arcuate slot 107 in bearing mount 108 through holes 109 and circular passage 110 which slot delivers pressurized air to annular intake chamber 111. Bearing mount 108 includes threads 117 which engage threads 118 of box 104 which are tightened to compress fabric shim 119 to provide an air seal between the mount and box at engagement. A generally cylindrical shell 112 extends longitudinally but not concentrically through the tube 100 beyond the active length of rotor 101. Intermediate its length shell 112 includes a circumferential proiection 113 including a groove 114 for reception of an O ring 115. It should be noted that shell 112 is olfset from the center of rotor 101 to provide aneccentrio rotor chamber 116 and offset from tube 100 so as to provide a relatively large annular section for intake chamber 111 on one side of tube 100. and a very small annular section at the opposite side. Similarly proiection 113 is offset relative to shell 110 so that it completely fills the annular chamber 111 and O ring and seals the lower end of the intake chamber 111 and provides a second longitudinal annular chamber which becomes the exhaust chamber 120. Adiacent the large section of the intake chamber 111, shell 112 is drilled with a series of holes or ports 121. Rotor 101, being oifset radially in shell 112. touches the shell at point iust to one side of ports 121. Blades 122 are spring loaded within slots 123 by compression springs 124 so that they ex and from their minimum volume position at the point 125 of rotor and shell contact to their maximum volumeposition at point 126. When pressurized air enters ports 121 it expands and forces blade 122 and rotor 101 in a clockwise direction until the blade 122 passes point 126, after which blade 122 forces the air ahead out exhaust ports 127 and through exhaust slot 128 in bearing mount 129-at the l wer end. of air motor 38.
h per end, at atgtor 101 istformed as a neck which serves as auto rig for the inner race 131 of bearing 102. The outerrace 132 is mounted in annular shaped mount 108. The lower end 133 of box 104 retains the outer.race 132 in place by compressing the opposite end of. thefout'er races 132,
is a lock type device which p,reven :ts nut135from work- T ing loose and permits the nut and rotor 101 to rotate simultaneously with inner bearing. race 131. The top bearing102-A is exposed to the incoming blast of air from cavity 106 and consequently permits passage of air vertically down through all the top"bearingsf102 and. through radial passages to. intake chamber 111 .thereby providing a means for cooling the bearings. The lower bearings are cooled similarly by a jet of airlen'tering through radial passage 146 in shell 112 and mount1129. The lower end of bearings 103.. is open to channel 1.47 and these bearings are held in place by retaining ring 148. Neck 150 projecting from the lower end of rotor 101 is splined as at 151 and engages matching spline 152 in lower box 105 to impart rotary motion to box 105 and attached drill bit 39. A pin 153 passes through aligned holes 154 and 155 in the neck 150 and box 105 respectively to secure the drill motor 38 and drill bit 39 against relative axial movement. Longitudinal passages 156 connect channel 147 to cavity 157 which opens directly into the central opening 158 of drill bit 39. The lower rim 159 of tube 100 overlaps undercut 160 of box 105 to provide a relatively air tight rotary seal between tube 100 and box 105.
Referring to Fig. 10 the construction and operation of the drill bit per se may be observed. The complete bit 39 is seen to consist basically of a shank including a tapered threaded pin 171 and three forks 172 each including a spindle 173 which is welded thereto as at 174, and a cutter cone 175 journalled thereto. Tines 172A and 172-B of forks 172 are connected by a flat land 176 and together therewith form a cavity 178 for reception of lip 177 of spindle 173. Spindle shaft 179 includes a race 180 which together with cooperating race 181 defines a raceway 182 for reception of balls 183 which are loaded at assembly through loading track 184. Since this is an air course bit, certain channels are necessary therethrough to introduce air to raceway 182; a channel 185 is drilled in shank 170 and at an angle to central opening 158 and in alignment with channel 186 in spindle 173 which leads to raceway 182. In order to prevent leakage of air between surfaces 176 and 177, a hollow insert 137 having shoulder 188 is placed at assembly in the space 189 between said surfaces. The partially expended air from drill motor 38 after entering cavity 157 enters central opening 158 as indicated at arrow 80. As the air stream passes channel 185 a portion of the air (arrow 85) enters the channel and passes through insert 187 and channel 186 to raceway 182, and after passing around the raceway and balls 183 it passes through clearance 194 between the spindle 173 and cutter 175 to rejoin the air stream 81 going back up the hole 76 to carry the cuttings to the surface. A particular advantage in using the partially expanded exhaust air 80 of air motor 38 to cool air motor bearings 103 and drill bit bearings 183 is that compressed air cools rapidly upon expansion and is much cooler than ambient air and therefore capable of carrying away more heat from the bearings than would be possible using atmospheric air or compressed air. t
In Fig. 14 a detailed schematic sequence of cable operation may be .obserfged P1P. jnii hi 'pb i bfl eat r;
as "required in some excavation operations; is anti :1 sepa atela qhlfi sis t qu edtoma nt iqthi t lttf i at 00 S ii t t 3. 1 tibal y latch ab LPii MiQf'Pl E I4,
5. .Withi, latch 39 is ltenizag idthc' are "d ack t i ih rizbntal t t qu h clockwise rotation of winch 57 as represented by arrow 207-A. With latch 30 released and latch 68 engaged the pipe 20 may be raised or lowered relative to its vertical axis by the operation shown diagrammatically in Fig. 15. When winch 57 is rotated clockwise (arrow 206A) cable 56 is reeled in, and through upper anchor 42 causes pipe 20 to move down (into hole 76) as indicated by arrow 205-A; when winch 57 is rotated counterclockwise (arrow 207-A) cable 55 is reeled in, and through lower anchor 43 raises pipe 20 up (out of hole 76) as indicated by arrow 208-A.
A cab-over type truck shown in Figs. 16 and 17 may be used in place of the conventional truck (Figs. 1 and 2) for further improved operation. The truck chassis represented by numeral 220 includes a special cab 221 with an inwardly inclined windshield 222 and a downwardly tapered front panel 223. A separate upper section 224 of the windshield is tinted to permit increased vision without glare. Winch 5'7-A is driven by means of gear box 225 which in turn is driven by a power take-off shaft 226 extending forward from engine 227. Gear box 225 is supported by cross piece 228 which is attached to longitudinal runners 229 to become part of the frame 4A. The cage 18-A is virtually identical to that shown in Fig. 3, and the shield 82-A is shown attached to cage 18-A by means of brackets 230 and capscrews 231. Vertical members 11-A upstand from runners 229 and are reinforced by braces 12-A to form a frame to pivotally support the cage 18-A and drill stem 85A. Winch 57-A is set as far rearward as possible to provide a clear field of vision as represented by line 232 between the operator and the drill bit 39-A so that the hole 233 to be drilled may be accurately located. The remaining structure of the rig in Figs. 16 and 17 corresponds to that previously described. By using a cab-over type truck and rig it is possible for the operator to drill a series of shallow shot holes in a predetermined pattern for seismic operations without ever having to get out of the cab. This feature is especially advantageous when operating in cold or inclement weather, not only from the standpoint of comfort to the operator but also from the standpoint of increased speed and efiiciency of operation.
From the foregoing description it will be readily seen that there has been produced a device and process as substantially fulfills the objects of the invention as set forth herein.
While this specification sets forth in detail the present and preferred construction of this invention, still in practice suoh deviations from such detail may be resorted to as do not form a departure from the spirit of the invention as defined in the appended claims.
Having thus described the invention, what is claimed as new and useful and is'desired to be secured by Letters Patent is:
A drilling unit comprising: a drill stem, means to support said drill stem for longitudinal movement, a source of pressurized air; said drill stem including a non-rotary drill pipe, a rotary air motor, and a drill bit in close proximity to said motor; a central bore through said drill pipe, means to introduce pressurized air into said bore, an air intake side and air exhaust side on said drill motor, said intake air side adapted to receive pressurized air, said exhaust side adapted to exhaust expanded and cooled air, a vane type rotor extending axially in said air motor attaching to said drill pipe, a stationary upper box on said motor connecting said bore and intake side, a stationary shell extending longitudinally but non-com centrically in surrounding relation to said rotor to form an air chamber therebetween, said vanes cooperating with said shell to form an air tight sliding fit with said shell when moving through said air chamber, a stationary tube extending from said upper box in longitudinal and concentric relation to said rotor, a lower box attached to said rotor for rotation therewith, said stationary tube engaging said lower box ina close sliding fit, a drill bit including bearings attached to said box, cutter cones on said bearings, a central opening extending through said bit to the vicinity of said cutter cones, an air passage longitudinally through said box and connecting said central opening, an air path connecting said central opening and said bearings whereby air is adapted to enter said intake side, rotate said rotor, pass through said air passage and central opening to said cutter cones as expanded and cooled air, a portion of the air passing through said air path to cool said bearings.
References Cited in the file of this patent UNITED STATES PATENTS 307,606 Westinghouse Nov. 4, 1884 1,390,025 Drake Sept. 6, 1921 1,484,065 Gould Feb. 19, 1924 2,340,738 Dilley Feb. 1, 1944 2,401,190 Reynolds May 28, 1946 2,410,959. Brown Nov. 12, 1946 2,575,524 Mitchell Nov. 20, 1951 2,594,098 Vanderzee Apr. 22, 1952 2,661,932 Woods Dec. 8, 1953
US341742A 1953-03-11 1953-03-11 Apparatus for earth boring with pressurized air Expired - Lifetime US2783971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US341742A US2783971A (en) 1953-03-11 1953-03-11 Apparatus for earth boring with pressurized air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US341742A US2783971A (en) 1953-03-11 1953-03-11 Apparatus for earth boring with pressurized air

Publications (1)

Publication Number Publication Date
US2783971A true US2783971A (en) 1957-03-05

Family

ID=23338839

Family Applications (1)

Application Number Title Priority Date Filing Date
US341742A Expired - Lifetime US2783971A (en) 1953-03-11 1953-03-11 Apparatus for earth boring with pressurized air

Country Status (1)

Country Link
US (1) US2783971A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2915285A (en) * 1956-05-23 1959-12-01 Jersey Prod Res Co Coring subterranean formations
US2967577A (en) * 1956-08-04 1961-01-10 Tiraspolsky Wladimir Turbines for the actuation of drills
US3012618A (en) * 1958-09-25 1961-12-12 Daniel A Hoagland Fluid actuated drill
US3058533A (en) * 1958-11-04 1962-10-16 Jr Hight M Collins Machine for installing and removing poles
US3076514A (en) * 1958-12-01 1963-02-05 Empire Oil Tool Co Deep well motor drill
US3088529A (en) * 1957-09-23 1963-05-07 Cullen Fluid-driven engine
US3125174A (en) * 1964-03-17 figure
US3159222A (en) * 1958-09-30 1964-12-01 Dresser Ind Turbodrill
US3464506A (en) * 1968-06-27 1969-09-02 Reserve Mining Co Blower system for jet piercers
US3717205A (en) * 1971-01-27 1973-02-20 Kenting Drilling Ltd Draw works for drilling rig
US3924695A (en) * 1974-10-02 1975-12-09 John R Kennedy Rotary drilling method and apparatus
DE2752768A1 (en) * 1977-11-25 1979-05-31 Inst Burovoi Tekhnik Turbine drill - with separate bearing set for each rotor carrying shaft section
WO1998007951A1 (en) 1996-08-23 1998-02-26 Javins Brooks H Rotary-percussion drill apparatus and method
US20070108200A1 (en) * 2005-04-22 2007-05-17 Mckinzie Billy J Ii Low temperature barrier wellbores formed using water flushing
US20070131415A1 (en) * 2005-10-24 2007-06-14 Vinegar Harold J Solution mining and heating by oxidation for treating hydrocarbon containing formations
WO2009031963A1 (en) * 2007-09-07 2009-03-12 Svenska Maskin Och Tryckluft I Bålsta Ab A device preferably for performing of a drilling in earth-layer and rock
US7735935B2 (en) 2001-04-24 2010-06-15 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US307606A (en) * 1884-11-04 Well-drilling apparatus for oil
US1390025A (en) * 1920-02-24 1921-09-06 Jacob P Teter Well-drilling apparatus
US1484065A (en) * 1921-03-23 1924-02-19 Charles T Henry Automatic depth-drilling machine
US2340738A (en) * 1941-05-01 1944-02-01 Smith Corp A O Turbine driven well drilling unit
US2401190A (en) * 1944-08-23 1946-05-28 Ingersoll Rand Co Fluid actuated tool
US2410959A (en) * 1943-12-13 1946-11-12 Hugh S Brown Earth drill
US2575524A (en) * 1946-10-10 1951-11-20 Independent Pneumatic Tool Co Rotary tool
US2594098A (en) * 1943-11-29 1952-04-22 Joy Mfg Co Drilling apparatus
US2661932A (en) * 1950-11-16 1953-12-08 Hughes Tool Co Roller cutter bit with fluid flushed bearings

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US307606A (en) * 1884-11-04 Well-drilling apparatus for oil
US1390025A (en) * 1920-02-24 1921-09-06 Jacob P Teter Well-drilling apparatus
US1484065A (en) * 1921-03-23 1924-02-19 Charles T Henry Automatic depth-drilling machine
US2340738A (en) * 1941-05-01 1944-02-01 Smith Corp A O Turbine driven well drilling unit
US2594098A (en) * 1943-11-29 1952-04-22 Joy Mfg Co Drilling apparatus
US2410959A (en) * 1943-12-13 1946-11-12 Hugh S Brown Earth drill
US2401190A (en) * 1944-08-23 1946-05-28 Ingersoll Rand Co Fluid actuated tool
US2575524A (en) * 1946-10-10 1951-11-20 Independent Pneumatic Tool Co Rotary tool
US2661932A (en) * 1950-11-16 1953-12-08 Hughes Tool Co Roller cutter bit with fluid flushed bearings

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3125174A (en) * 1964-03-17 figure
US2915285A (en) * 1956-05-23 1959-12-01 Jersey Prod Res Co Coring subterranean formations
US2967577A (en) * 1956-08-04 1961-01-10 Tiraspolsky Wladimir Turbines for the actuation of drills
US3088529A (en) * 1957-09-23 1963-05-07 Cullen Fluid-driven engine
US3012618A (en) * 1958-09-25 1961-12-12 Daniel A Hoagland Fluid actuated drill
US3159222A (en) * 1958-09-30 1964-12-01 Dresser Ind Turbodrill
US3058533A (en) * 1958-11-04 1962-10-16 Jr Hight M Collins Machine for installing and removing poles
US3076514A (en) * 1958-12-01 1963-02-05 Empire Oil Tool Co Deep well motor drill
US3464506A (en) * 1968-06-27 1969-09-02 Reserve Mining Co Blower system for jet piercers
US3717205A (en) * 1971-01-27 1973-02-20 Kenting Drilling Ltd Draw works for drilling rig
US3924695A (en) * 1974-10-02 1975-12-09 John R Kennedy Rotary drilling method and apparatus
DE2752768A1 (en) * 1977-11-25 1979-05-31 Inst Burovoi Tekhnik Turbine drill - with separate bearing set for each rotor carrying shaft section
WO1998007951A1 (en) 1996-08-23 1998-02-26 Javins Brooks H Rotary-percussion drill apparatus and method
US5803187A (en) * 1996-08-23 1998-09-08 Javins; Brooks H. Rotary-percussion drill apparatus and method
US7735935B2 (en) 2001-04-24 2010-06-15 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals
US20070108200A1 (en) * 2005-04-22 2007-05-17 Mckinzie Billy J Ii Low temperature barrier wellbores formed using water flushing
US20070137856A1 (en) * 2005-04-22 2007-06-21 Mckinzie Billy J Double barrier system for an in situ conversion process
US20070144732A1 (en) * 2005-04-22 2007-06-28 Kim Dong S Low temperature barriers for use with in situ processes
US7500528B2 (en) * 2005-04-22 2009-03-10 Shell Oil Company Low temperature barrier wellbores formed using water flushing
US7527094B2 (en) 2005-04-22 2009-05-05 Shell Oil Company Double barrier system for an in situ conversion process
US7546873B2 (en) 2005-04-22 2009-06-16 Shell Oil Company Low temperature barriers for use with in situ processes
US7575053B2 (en) 2005-04-22 2009-08-18 Shell Oil Company Low temperature monitoring system for subsurface barriers
US20070131415A1 (en) * 2005-10-24 2007-06-14 Vinegar Harold J Solution mining and heating by oxidation for treating hydrocarbon containing formations
US7549470B2 (en) 2005-10-24 2009-06-23 Shell Oil Company Solution mining and heating by oxidation for treating hydrocarbon containing formations
WO2009031963A1 (en) * 2007-09-07 2009-03-12 Svenska Maskin Och Tryckluft I Bålsta Ab A device preferably for performing of a drilling in earth-layer and rock

Similar Documents

Publication Publication Date Title
US2783971A (en) Apparatus for earth boring with pressurized air
US3645343A (en) Rotary drilling machine
US4365676A (en) Method and apparatus for drilling laterally from a well bore
US2334312A (en) Drilling machine
US3220494A (en) Raise drilling method and mechanism
US2410959A (en) Earth drill
US2643858A (en) Soil sampling machine
US20050126821A1 (en) All terrain vehicle powered mobile drill
CN105649561B (en) A kind of coiled tubing tractor
US4312413A (en) Drilling apparatus
US2684834A (en) Horizontal boring machine
CN111173449A (en) Large-torque drilling machine for coal mine
CN107605400B (en) The boring track-mounted drill in the inclination angle underground coal mine Di Chou Xiang Quan and its construction method
US3951215A (en) Mobile drilling and bolting machine
CN111963188A (en) Anchor drill heading machine and construction method thereof
US4416337A (en) Drill head assembly
CN205743712U (en) A kind of pneumatic frame column type vibrodrill
US3236315A (en) Auger mining machine
CN104405282B (en) Self-propelling hydraulic water well drilling rig
WO2018094546A1 (en) Pile hole cleaning mechanism
CN205206756U (en) Machine is repaiied to brill
CN209040760U (en) A kind of digging drills steel sharpener
US3811290A (en) Multi-purpose vehicle for use underground
US2240738A (en) Rotary drilling rig
US4223870A (en) Bailer for top head drive rotary well drills