US2714563A - Method and apparatus utilizing detonation waves for spraying and other purposes - Google Patents

Method and apparatus utilizing detonation waves for spraying and other purposes Download PDF

Info

Publication number
US2714563A
US2714563A US275332A US27533252A US2714563A US 2714563 A US2714563 A US 2714563A US 275332 A US275332 A US 275332A US 27533252 A US27533252 A US 27533252A US 2714563 A US2714563 A US 2714563A
Authority
US
United States
Prior art keywords
detonation
barrel
gun
mixture
detonatable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US275332A
Inventor
Richard M Poorman
Herbert B Sargent
Lamprey Headlee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Carbide Corp
Original Assignee
Union Carbide and Carbon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide and Carbon Corp filed Critical Union Carbide and Carbon Corp
Priority to US275332A priority Critical patent/US2714563A/en
Application granted granted Critical
Publication of US2714563A publication Critical patent/US2714563A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0006Spraying by means of explosions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/06Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure by shock waves
    • B21D26/08Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure by shock waves generated by explosives, e.g. chemical explosives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/004Filling molds with powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C5/00Devices or accessories for generating abrasive blasts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B1/00Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
    • B30B1/001Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by explosive charges
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/126Detonation spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K7/00Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof
    • F02K7/02Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof the jet being intermittent, i.e. pulse-jet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41AFUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
    • F41A1/00Missile propulsion characterised by the use of explosive or combustible propellant charges
    • F41A1/04Missile propulsion using the combustion of a liquid, loose powder or gaseous fuel, e.g. hypergolic fuel
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/263Metals other than noble metals, Cu or Hg
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/17Deposition methods from a solid phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/72Processes of molding by spraying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/937Sprayed metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12139Nonmetal particles in particulate component

Definitions

  • detonation is meant a very rapid combustion in which the flame front moves at velocities higher than the velocity of sound in the unburned gases, and therefore characterized as supersonic velocities.
  • Typical calculated velocities of sound at normal pressure are 1085 feet per second at 18 C. in a 50% oxygen-50% acetylene mixture, 1384 in the same mixture at 200 C., and 1122 at 18 C. in a 9.5% acetylene-90.5% air mixture; in air at 18 C.
  • the sonic velocity is calculated as 1122 feet per second.
  • the rate of flame propagation is far greater in a detonation than in an explosion, which is a combustion in which the velocity of flame propagation does not exceed the velocity of sound in the unburned gases.
  • the velocity of the flame front in detonations thus far investigated is from 1 to 4 kilometers per second (about 3,280 to 13,120 feet per second), as compared to, for instance, 50 feet per second for a typical explosion.
  • the flame of a detention moves into the unburned gas with a velocity which is supersonic instead of subsonic, and it is initiated by and remains associated with a shock front. Once established in a long tube, the detonation wave travels at a constant velocity (Lewis and Von Elbe, Combustion, Flames and Explosions, Academic Press Inc., 1951).
  • a single fluid fuel charge or a rapid succession of fluid fuel charges of proper composition to be detonated are fed to a gun where they are ignited to establish a single detonation or a series of detonations following one another at short time intervals.
  • particles such as powder are introduced in such manner that they are accelerated by the detonation and its associated phenomena and projected from the open end of the gun onto a surface.
  • Fig. 1 is a view, partly diagrammatic, of one form of detonation gun embodying the invention
  • Fig. 2 is a view of a modification of the gun shown in Fig. 1;
  • Fig. 3 is a view, also partly diagrammatic, of a further modification of the gun shown in Fig. 1;
  • Fig. 5 is a photomicrograph, at 300 diameters magnification, showing a layer of tungsten carbide-cobalt alloy deposited on a steel workpiece by the method of the invention.
  • a combustible gas such as acetylene
  • an oxidizing gas such as air
  • spark plug 15 ignites the charge, leading to the formation of a detonation wave which travels through a barrel 16 of the gun and out its open end.
  • the firing of the spark plug 15 is accomplished by a spark coil 17, battery 13, and cam operated switch 19.
  • the frequency of firing is regulated by a variablespeed motor 20 which drives the cam of the switch 19.
  • Powder is introduced into and carried by the oxidizing gas fed through the pipe 11, or it may be carried by the combustible gas.
  • the powder particles are heated and accelerated by the detonation waves and propelled from the open end of the gun barrel 16 at high velocities.
  • Fig. 3 shows poppet valves 25 operated in conventional fashion by a motor 26 and cam 27 to obtain the desired frequency of opening and closing of the valves.
  • a powder introduction pipe 28 is shown between the ignition chamber 14 and the open end of the gun barrel 16. Coatings have also been made when the powder was introduced between the open end of the barrel and the workpiece.
  • the detonation gun shown in Fig. 4 is similar to that of Fig. 3 except that an inert gas such as nitrogen is introduced into the gun from a conduit 29 through a poppet valve 31, to purge the mixing chamber and thereby protect the valves.
  • Valve 31 is operated by a second cam 32 on cam shaft 33 which is so constructed and arranged relatively to cam 27 and so correlated with a spark timing cam 34 that the following timed sequence of operations occurs:
  • Cam 27 opens poppet valves 35 and 37 simultaneously to admit combustible gas and oxidant (with or without powder) to the gun.
  • cam 34 fires the gun.
  • nitrogen from open valve 31 flows through the gun to drive out the hot combustion products, and forms a protective wall between them and the next combustible mixture charge.
  • Cam 32 then permits nitrogen valve 31 to close and the cycle is ready to repeat with the reopening of valves 35 and 37 to form the next combustible mixture.
  • Simple air cooling is ordinarily adequate for the gun barrel. If in a particular use of the gun, for instance for nearly continuous use with oxygen-acetylene mixtures it is found that the barrel gets too hot, it may be water cooled. Poorly cooled corners and edges within the ignition and mixing chambers should of course be avoided to prevent the development of hot spots which could cause too early ignition.
  • the detonation Wave may be generated in a wide variety of fluids and fluid mixtures.
  • Liquid fuels such as gasoline may be vaporized and used.
  • Solid fuels such as coal powder may be suspended as dusts in a gas to make a fluid mixture.
  • Suitable gaseous fuels include acetylene, hydrogen, propane, butane, pentane, and
  • the temperature in the detonation wave is high, for several mixtures upwards of 2800 C. However, much of the heat is dissipated before the particles strike a workpiece so that, inherently, little heating of the workpiece results from application of a coating. Heat distortion of the workpiece is thus absent when using the process of the invention.
  • Such heating of the workpiece as may take place can readily be overcome or compensated by interrupting the application of coating from time to time and permitting the workpiece to cool with or without directing a blast of coo-ling fluid such as air against it.
  • External cooling with a liquid spray or fog can also be used, as can internal water cooling when the workpiece is hollow.
  • Particles of a material such as tungsten carbide can be applied securely to a workpiece having a substantially different coeihcient of thermal expansion, such as steel, by cooling the workpiece as described.
  • the flow rates of the gases may be adjusted so that the mixture just fills the gun in the time interval between igniticns, in which case the detonation front travels to the end of the barrel. At a lower flow rate the detonation front travels through the part of the length of the barrel that contains detonatable gas mixture and a shock wave arising from the detonation travels the rest of the way to the end of the barrel. A greater flow rate of gas gives a flame beyond the end of the barrel.
  • the ignition system illustrated is an adaptation of the conventional system used for internal combustion engines, it is obvious that other ignition means, such as an electrically heated filament or injected hot powder particles, could be used.
  • the illustrated system is convenient, inexpensive, and reliable.
  • the frequency of the detonations is a factor in attaining effective operation of this detonation gun.
  • the most useful frequency depends on the particular use of the gun, the design of the gun, and the character of the detonating gas mixture.
  • a single detonation suffices when a thin deposit on a small area is desired, for example a tungsten carbide coating .0005 inch thick on a steel surface one inch or less in diameter. For making thicker coatings, and coating larger areas quickly several detonations per second are usually desirable.
  • fc-r projecting tungsten carbide-cobalt alloy powto form coatings on various tools and articles with a one-inch diameter gun barrel about five feet long using an oxygen-acetylene detonating mixture, a frequency in the neighborhood of 4 per second is very satisfactory and a frequency of 7.8 has been used.
  • a frequency of 40 per second is very satisfactory and frequencies as high as 70 have been used.
  • frequencies above 7.8 for the oxygen-acetylene mixture and 70 for the air-acetylene mixture the gun tends to overheat, and flashbacks and continuous burning tend to occur.
  • the maximum frequency theoretically would be limited only by the mechanics of valve operation or by the rate at which gas could be flowed into the gun between detonations.
  • High rates of gas flow may require inconvenient or dangerous gas pressures, and high rates of operation of the gun may overheat it or some parts of it.
  • Powders fed into the gun are accelerated to very high velocities. Particles are believed to be accelerated within the gun by one or more of: (a) the shock front at the head of the detonation wave, (b) the rapidly moving gases behind the shock front, and (c) the previously described shock wave beyond (downstream of) the detonated gas mixture.
  • Powder flow rates into the gun are not particularly critical except as they influence the economics of coating formation, i. e., the cost and rapidity at which a given coating is built up.
  • Ten pounds per hour seems to be most advantageous for good quality of coating with maximum hardness when using 180 cubic feet per hour each of acetylene, oxygen, and nitrogen (for conveying powder and for blanketing the poppet valves) in a oneinch inside diameter gun with a detonation frequency of 4.3 per second. Rates as low as 0.6 pound per hour, and as high as 24 pounds per hour have been used successfully with tungsten carbide powder finer than 44 microns.
  • One practical application of the invention is to clean or roughen surfaces. For instance a rusty steel plate was effectively cleaned with steel blasting grit of .42 to .59 millimeter particle size. Steel shot can similarly be directed forcibly against a metal body to peen its surface.
  • Another application is to pulverize frangible material.
  • diatomaceous earth powders of l to micron particle size were passed through the gun, thereby being reduced to 0.1 to 1 micron in size.
  • detonation gun Another application of the detonation gun is to the spheroidizing of powders.
  • unspheroidized powder particles are shot through an oxy-acetylene detonation gun the original sharp corners and edges are melted and rounded over, and in many cases a shape approaching spherical is obtained. Finer particles tend to become more nearly spherical than larger ones, and metals become more spherical than non-metals.
  • Metals which have been successfully spheroidized are chromium, Cr-Ni-B alloy, tungsten, and molybdenum.
  • Non-metals are alumina, boron carbide, silicon carbide, tungsten carbide, silicon nitride, chromium carbide, tungsten carbide-cobalt alloy, titanium carbide, and borosilicate glass. Particle sizes of the powder ranged up to microns in diameter.
  • the composition of the gas mixture detonated in the gun was approximately .5 oxygen, 45.5% acetylene, and 9% nitrogen (the vehicle for carrying powder into the gun).
  • the spheroidized particles may be collected in a liquid or in a wax target.
  • the invention is particularly well adapted for coating surfaces with any of a wide variety of metals, alloys, metallic compounds, plastics, ceramics, and minerals.
  • Foundation surfaces may be of metal, glass, wood, cloth, paper, plastic, or other.
  • the surface to be coated may be located any convenient small distance from the open end of the gun, say one-half inch to ten inches.
  • an object to be coated with tungsten carbide particles is usually spaced about three inches from the muzzle of the gun.
  • tungsten carbide alloy tin, aluminum, molybdenum, copper, tungsten, tungsten carbide alloy, austenitic stainless steel, chromium, cobaltchromium-tungsten alloy, nickel-molybdenum alloy, boron carbide, and porcelain frit to steel; and tungsten carbide alloy to firebrick.
  • Mixtures of various powders also may be deposited on a workpiece by the detonation gun.
  • a friction plate may be formed by mixing a soft metal powder such as aluminum with a powdered hard material such as alumina, passing the mixture through the gun and depositing the mixture on a steel base as alumina particles in an aluminum matrix.
  • a mixture of iron, chromium, and nickel powders may be deposited on steel to impart resistance to corrosion and wear. It may sometimes be advantageous to include a non-metallic powdered flux with the powder to improve adhesion.
  • Optimum powder size is believed to be that which permits the surfaces of the particles to be softened enough to give good adherence but does not permit excessive vaporization of the particles.
  • materials of lower melting point such as tin, lead, zinc, aluminum, and magnesium may be of larger particle size, say up to microns, and those of higher melting point, such as chromium, tungsten, and tungsten carbide, have been most successfully used when smaller than about 50 microns to produce dense adherent coatings.
  • these size limits are not critical, for instance 12 to 32 microns copper powder has been used very successfully to coat aluminum, and tungsten carbide-cobalt alloy powder as coarse as 74 microns has been successfully coated on a metal body.
  • Copper or other readily soldered metal may be sprayed onto materials such as glass, porcelain, wood, plastics, or aluminum, which are unsolderable or solderable with difliculty, and the so-coated materials then easily soldered to form a joint.
  • Pieces of canvas cloth were successfully coated with aluminum and with zinc on both sides by directing the metal particles from the detonation gun against one side only of the cloth. Paper tape was also coated with aluminum while moving the tape slowly in front of the gun muzzle to avoid charring. In both cases the fuel was an air-acetylene mixture.
  • the method and apparatus of this invention may be used to clean or coat objects submerged in water or other liquid, or protected by a special atmosphere such as argon.
  • the gun operates well under water.
  • a particularly interesting example of the performance capabilities of this invention is its use to deposit adherent coating of high-melting point abrasion-resistant hard coatings such as tungsten carbide compositions.
  • Finely powdered (mostly 10 to 40 microns particle size) cast tungsten carbide composition containing, apart from the tungsten, about 9% cobalt and 4% carbon is fed at a rate of about 10 to 15 pounds per hour to a gun of the form shown in Fig. 4 about five feet long and one-inch inside diameter.
  • Acetylene and oxygen are fed in a ratio of about 1 cubic foot of the former to 1 to 2 cubic feet of the latter at an average rate of about 360 cubic feet per hour of the mixture.
  • the average flow of nitrogen is about cubic feet per hour total.
  • the ignition frequency is about four per second.
  • a clean iron or steel surface either soft or hard (for instance tool steel) preferably roughened as by grit blasting or thinly coated with a soft metal such as copper, nickel, or cobalt, suitably in a coating 0.00025 to 0.0005 inch thick, is p0sitioned about three inches from the open end of the gun.
  • a dense, adherent layer of tungsten carbide composition 0.02 inch thick is deposited at a rate of about one square inch per minute. Thinner or much thicker coatings may be applied by varying the time of application.
  • Fig. 5 shows at a magnification of 300X the appearance of a tungsten carbide-cobalt alloy coating WC deposited by the process of the invention on a steel base S.
  • tungsten carbide included 9% of cobalt.
  • the sample was polished and then given an anodic etch with chromic acid, followed by a potassium permanganate stain.
  • the detonation gun deposits of tungsten carbide composition are fine grained dense, lamellar structures composed of mixed layers of tungsten carbide (WC), complex carbides of cobalt and tungsten, and small amounts of a secondary tungsten carbide (W2C). These particles which form the coating are elongated and flattened by the heat and impact imparted by the gun into thin overlapping discs or leaves such that their diameter is many times larger than their thickness.
  • This structure is in direct contrast to sintered carbides which have a fine dense equiaxial structure, and tungsten carbide alloy coatings sprayed on with a conventional flame spray gun which have a relatively coarse, porous, weakly bonded structure.
  • the conventional flame spraying method produces a coating of tungsten carbide which is formed of particles that are essentially unchanged in shape and poorly bonded while the detonation gun flattens out the particles and produces an excellent bond between the individual particles.
  • the coating has bulk density substantially identical with that of the solid cast material applied, 14.5 g./cc. Porosity is less than 1%. Adherence of the coating to the base is excellent, as shown by the fact that portions may be ground down to and through the interface without peeling. The hardness on the Vickers scale is at least 1100.
  • the coating has a smooth matte surface which may be brought to a high polish by standard precision grinding and polishing procedures.
  • this coating adapt it for surfaces of such articles as core rods used for pressing and coining, burnishing broaches, snap and plug gages, crusher jaws, shaft seal rings and plates, electrical contacts, boring bars, saw teeth, knife blades, textile thread guides, valve seats and plugs, and bearing surfaces.
  • a metal of high conductivity such as silver.
  • a detonation gun comprising a barrel, a mixing chamber communicating with said barrel, means for separately supplying charges of an oxidizing gas and gaseous fuel to said chamber and barrel, an ignition chamber positioned between the barrel and the mixing chamber directly and continuously communicating with said barrel and said mixing chamber, means for entraining powder particles in one of the components of the gaseous mixture formed in the mixing chamber, and means for detonating charges of the mixture repeatedly many times a second, the gun barrel being long enough to allow formation of a detonation wave theerin, whereby a high velocity is imparted to the powder particles.
  • a detonation gun provided with an elongated barrel, a gas mixing chamber at one end of the barrel directly and continuously communicating with said barrel, gas conduits provided with valves for separately supplying an oxidizing gas and a gaseous fuel to said mixing chamber and thence to said barrel, means for supplying powder particles to said barrel, an ignition chamber in the gun having an opening to the barrel of said gun, ignition means in said ignition chamber, the length and diameter of the gun barrel being adapted for the formation and maintenance therein of detonations, whereby powder supplied to said gun is ejected from the barrel under the impetus of said detonations.
  • a detonation gun comprising a barrel of diameter and length to permit the formation in a fluid fuel charge of a detonation; first valve means for supplying successive fluid fuel charges to said barrel; second valve means adjacent said first valve means for supplying an inert gas positioned to flow across said first valve means into said barrel to protect said first valve means; and ignition means for initiating a detonation in said fluid fuel charge in said barrel.
  • a method for utilizing detonation waves which comprises providing, in an elongated barrel having an open end, a detonatable body of a detonatable gas and a comminuted solid material unconsumable by the detonation phenomena in said body, and igniting said detonatable body of gas to produce a detonation and thereby to eject said comminuted material at high velocity from the open end of said barrel.
  • said detonatable gas comprises oxygen and a fuel gas selected from the group consisting of acetylene, hydrogen, propane, butane, pentane, and ethylene.
  • a method for utilizing detonation waves which comprises mixing a fuel gas and an oxidizing gas to form a mixture capable of being detonated, introducing a comminuted solid material unconsumable by the detonation phenomena in said detonatable mixture, introducing said detonatable mixture containing said comminuted solid material into an elongated barrel having an open end, and igniting said detonatable body of said mixture to produce a detonation and thereby transmit to said comminuted material some of the energy from at least one of said detonation and its associated phenomena to eject said comminuted material from the open end of said barrel.
  • a method for utilizing detonation waves which comprises mixing a fuel gas containing a comminuted solid material unconsumable by the detonation phenomena with an oxidizing gas to form a mixture capable of being detonated, introducing a detonatable body of said detonatable mixture containing said comminuted material into an elongated barrel having an open end, igniting said detonatable body of said mixture to produce a detonation and thereby transmit to said comminuted material some of the energy of said detonation to eject said comminuted material from the open end of said barrel.
  • a method for utilizing detonation waves which comprises introducing a comminuted solid material unconsumable by the detonation phenomena into an oxidizing gas, mixing said oxidizing gas containing said comminuted material with a fuel gas to form a mixture capable of being detonated, introducing a detonatable body of said detonatable mixture containing said comminuted material into an elongated barrel having an open end, igniting said detonatable body of said mixture to produce a detonation and thereby transmit to said comminuted material some of the energy of said detonation to eject said comminuted material from the open end of said barrel.
  • a method for coating an object which comprises providing, in an elongated barrel having an open end, a detonatable body of a mixture of fuel gas and oxidizing gas capable of being detonated and a comminuted solid material unconsumable by the detonation phenonema; igniting said detonatable body of detonatable mixture to produce a detonation and thereby transmit to said comminuted material some of the energy of said detonation to eject said comminuted material at high velocity from the open end of said barrel; directing said comminuted material toward said object to be coated by virtue of said energy and thereafter repeating said providing, igniting and directing steps at short intervals of time.
  • said comminuted solid material comprises a tungsten carbide composition comminuted to finer than about 50 microns, said fuel gas is acetylene, and said oxidizing gas is oxygen.
  • a method in accordance with claim 11 wherein said mixture of fuel gas and oxidizing gas is an acetyleneair mixture containing between 7% and 13 by volume of acetylene.
  • a method for coating an object which comprises mixing a fuel gas and an oxidizing gas to form a mixture capable of being detonated, feeding a comminuted solid material unconsumable by the detonation phenomena into said detonatable mixture, introducing said detonatable mixture containing said comminuted solid material into an elongated barrel having an open end until said barrel is substantially filled therewith, igniting said detonatable mixture to produce a detonation and thereby transmit to said comminuted material some of the energy of said detonation to eject said comminuted material at high velocity from the open end of said barrel; directing said comminuted material toward said object to be coated by virtue of said energy; and thereafter repeating said mixing, feeding, introducing, igniting and directing steps at short intervals of time less than one second.
  • a method in accordance with claim 11 which also comprises passing a body of an inert gas through said barrel between said providing and subsequent ignition steps.
  • a method for coating an object which comprises mixing a fuel gas and an oxidizing gas to form a mixture capable of being detonated, introducing said detonatable mixture into an elongated barrel having an open end until said barrel is substantially filled therewith, feeding a comminuted solid material unconsumable by the detonation phenomena into said detonatable mixture, igniting said detonatable mixture to produce a detonation and thereby transmit to said comminuted material some of the energy of said detonation to eject said comminuted material at high velocity from the open end of said barrel, directing said comminuted material toward said object to be coated under the impetus of said energy and thereafter repeating said mixing, introducing, feeding, igniting and directing steps at short intervals of time less than one second.
  • a method for coating an object which comprises mixing a fuel gas with an oxidizing gas to form a mixture capable of being detonated; prior to such mixing feeding into at least one of the fuel gas and oxidizing gas a comminuted solid material unconsumable by the detonation phenonema; introducing said detonatable mixture containing said comminuted material into an elongated barrel having an open end until said barrel is substantially filled therewith; igniting said detonatable mixture to produce a detonation and thereby transmit to said comminuted material some of the energy of said detonation to eject said comminuted material at high velocity from the open end of said barrel; directing said comminuted material toward said object to be coated under the impetus of said energy; and thereafter repeating said feeding, mixing, introducing, igniting and directing steps at short intervals of time less than one second.
  • a method of preparing for soldering surfaces of objects which are diflicult to solder directly which comprises applying a readily solderable metal onto the surfaces to be soldered in accordance with the method of claim 11, thereby providing a thin adherent coating of solderable metal on such surfaces.
  • a detonation gun comprising an elongated barrel having an open end, said barrel having a length'to-diameter ratio sufiiciently high to permit the formation of detonations therein; means associated with said barrel for providing successive quantities of a detonatable fluid fuel mixture in said barrel at regular intervals; supply means associated with said barrel for providing comminuted solid material in each successive quantity of detonatable fluid fuel mixture; and means directly and continuously communicating with said barre] for igniting, at timed intervals, each of said successive quantities of fluid fuel mixture in said barrel to initiate a series of detonations and propel said comminuted solid material from said gun.
  • a detonation gun employing detonations comprising an elongated barrel open at one end and having an ignition chamber directly and continuously communicating with the end thereof, said barrel having a length-todiameter ratio sufficiently high to permit the formation of detonation therein; means associated with said chamber for providing successive quantities of a detonatable fluid fuel mixture in said chamber and barrel at intervals; supply means associated with said chamber for providing comminuted solid material in each successive quantity of fluid fuel mixture; and means associated with said ignition chamber for igniting, at automatically timed intervals, each of said successive quantities of fluid fuel mixture in said chamber and barrel to initiate a series of detonations and propel said comminuted solid material from said gun.
  • a method of pulverizin g frangible material utilizing detonations and their associated phenomena which comprises providing, in an elongated barrel having an open end, a detonatable body of detonatable gas containing a frangible solid material unconsumable by the detonation phenomena in said body; igniting said detonatable body of gas to produce a detonation and its associated phenomena and thereby pulverize said frangible material and eject it from the open end of said barrel; and collecting said pulverized frangible material after ejection from said barrel.
  • a method of spheroidizing material utilizing detonations and their associated phenomena which comprises providing, in an elongated barrel having an open end, a detonatable body of a detonatable gas containing a fusible, comminuted solid material unconsumable by the detonation phenomena in said body; igniting said detonatable body of gas to produce a detonation and its asso- 2,714,563 1 l 1 2 ciated phenomena and thereby fuse said comminuted solid FOREIGN PATENTS material and eject it at high velocity from said open end G t B f 1943 of said barrel, whereby said material is spheroidized; and Tea n am n o collecting said spheroidized material after ejection from OTHER REFERENCES Third Symposium on Combustion and Flame and Exsaid barrel. 5

Description

Aug. 2, 1955 PQORMAN ETAL 2,714,563
METHOD AND APPARATUS UTILIZING DETONATION WAVES FOR SPRAYING AND OTHER PURPOSES Filed March 7, 1952 2 Sheets-Sheet l I 17 s xjg; COIL 7 i Q; ACETYLENE' 2 ACETYLENE 28 INVENTORS RICHARD M. POORMAN YG HERBERT B.SARGENT OX EN g HEADLEE LAMPREY A'TToRNEY g- .g. i
Aug. 2, 1955 R. M. POORMAN ET AL 2,714,563
METHOD AND APPARATUS UTILIZING DETONATION WAVES FOR SPRAYING AND OTHER PURPOSES Filed March 7, 1952 2 Sheets-Sheet 2 Ed 33 WW 03 4.
32 I I SPARK COIL 2 ACETYILENE+ POWDER A A A Tl W6 (Tungsten Carbide alloy) (Steel base) INVENTORS J 5 RICHARD M. POORMAN y- HERBERT B. SARGENT r I HEADLEE LAMPREY h AT ORNEY METHOD AND APPARATUS UTILIZING DETONA- TION WAVES FOR SPRAYING AND OTHER PURPGSES Richard M. Poorman, Speedway, and Herbert B. Sargent, Indianapolis, Ind, and Headlee Lamprey, Lakewood, Ghio, assignors to Union Carbide and Carbon Corporation, a corporation of New York Application March 7, 1952, Serial No. 275,332
27 Ciaims. (Cl. 117105) This invention relates to new methods of using detonations and to novel apparatus for making, controlling, and using detonations.
By the term detonation is meant a very rapid combustion in which the flame front moves at velocities higher than the velocity of sound in the unburned gases, and therefore characterized as supersonic velocities. (Typical calculated velocities of sound at normal pressure are 1085 feet per second at 18 C. in a 50% oxygen-50% acetylene mixture, 1384 in the same mixture at 200 C., and 1122 at 18 C. in a 9.5% acetylene-90.5% air mixture; in air at 18 C. the sonic velocity is calculated as 1122 feet per second.) The rate of flame propagation is far greater in a detonation than in an explosion, which is a combustion in which the velocity of flame propagation does not exceed the velocity of sound in the unburned gases. According to Wilhelm Josts Explosion and Combustion Processes in Gases. McGraw-Hill Book Co., Inc., New York (1946), pages 160 to 210 of which are devoted to detonations, the velocity of the flame front in detonations thus far investigated is from 1 to 4 kilometers per second (about 3,280 to 13,120 feet per second), as compared to, for instance, 50 feet per second for a typical explosion.
The flame of a detention moves into the unburned gas with a velocity which is supersonic instead of subsonic, and it is initiated by and remains associated with a shock front. Once established in a long tube, the detonation wave travels at a constant velocity (Lewis and Von Elbe, Combustion, Flames and Explosions, Academic Press Inc., 1951).
Detonations in gases have not been considered commercially useful. Where they have occurred they have been objectionable. An object of this invention is to utilize the phenomenon of a detonation in helpful and valuable ways. For example, the invention uses detonations to impart a high velocity and a high temperature to particles, and to project the speeding particles against a surface for coating, cleaning, breaking, or boring, and for other purposes.
In accordance with the invention, a single fluid fuel charge or a rapid succession of fluid fuel charges of proper composition to be detonated are fed to a gun where they are ignited to establish a single detonation or a series of detonations following one another at short time intervals. Into this gun, in one aspect of the invention, particles such as powder are introduced in such manner that they are accelerated by the detonation and its associated phenomena and projected from the open end of the gun onto a surface.
The invention will be more particularly described with reference to the accompanying drawings, in which:
Fig. 1 is a view, partly diagrammatic, of one form of detonation gun embodying the invention;
Fig. 2 is a view of a modification of the gun shown in Fig. 1;
Fig. 3 is a view, also partly diagrammatic, of a further modification of the gun shown in Fig. 1;
Eatented Aug. 2, 1955 Fig. 4 is a side elevational view, also partly diagrammatic, of still another modification of a detonation gun; and
Fig. 5 is a photomicrograph, at 300 diameters magnification, showing a layer of tungsten carbide-cobalt alloy deposited on a steel workpiece by the method of the invention.
According to the embodiment shown in Fig. 1, a combustible gas, such as acetylene, is supplied through a pipe 10, and an oxidizing gas, such as air, is supplied through a pipe 11, to a mixing chamber 12 where they form a detonating gaseous charge mixture which moves through a short connecting pipe 13 into an ignition chamber 14 provided with a spark plug 15. Sparking of the spark plug 15 ignites the charge, leading to the formation of a detonation wave which travels through a barrel 16 of the gun and out its open end. The firing of the spark plug 15 is accomplished by a spark coil 17, battery 13, and cam operated switch 19. The frequency of firing is regulated by a variablespeed motor 20 which drives the cam of the switch 19.
Powder is introduced into and carried by the oxidizing gas fed through the pipe 11, or it may be carried by the combustible gas. The powder particles are heated and accelerated by the detonation waves and propelled from the open end of the gun barrel 16 at high velocities.
in the modification shown in Fig. 2, powder is fed into the air inlet pipe 1., from a container 21 at a rate controlled by a valve 22. A pressure equalizing line 23 leads from the upstream side of the powder introduction point 24 to the headspace of the powder container 21. To promote thorough mixing of the combustible gas and the oxidant the former is introduced into the mixing chamber 12 from two opposite sides through pipes 10 and 10a. Detonation conditions are improved by providing a small ignition chamber 140: of initially less diameter than that of the barrel 16, which diameter gradually increases towards the barrel.
We have found that under some operating conditions, for instance when using oxygen and acetylene, it is desirable to have a positive closure between the ignition chamber and the gas supply. Also, under some circumstances, for instance when using very fine powder or low melting powders, it is advantageous to introduce the powder downstream of the ignition chamber so that the power will not deposit in the chamber. These features are indicated in Fig. 3 which shows poppet valves 25 operated in conventional fashion by a motor 26 and cam 27 to obtain the desired frequency of opening and closing of the valves. A powder introduction pipe 28 is shown between the ignition chamber 14 and the open end of the gun barrel 16. Coatings have also been made when the powder was introduced between the open end of the barrel and the workpiece.
The detonation gun shown in Fig. 4 is similar to that of Fig. 3 except that an inert gas such as nitrogen is introduced into the gun from a conduit 29 through a poppet valve 31, to purge the mixing chamber and thereby protect the valves. Valve 31 is operated by a second cam 32 on cam shaft 33 which is so constructed and arranged relatively to cam 27 and so correlated with a spark timing cam 34 that the following timed sequence of operations occurs:
1. Cam 27 opens poppet valves 35 and 37 simultaneously to admit combustible gas and oxidant (with or without powder) to the gun.
2. Cam 27 then permits poppet valves 35 and 37 to close.
3. Immediately after valves 35 and 37 close, cam 32 opens poppet valve 31 and admits inert nitrogen gas to the gun. Nitrogen gas flows across valves 35 and 37 to dilute any leaks from such valves which might cause flashback upon detonation of the mixture.
4. Immediately after nitrogen valve 31 opens, and while it remains open, cam 34 fires the gun.
5. After detonation occurs nitrogen from open valve 31 flows through the gun to drive out the hot combustion products, and forms a protective wall between them and the next combustible mixture charge.
' 6. Cam 32 then permits nitrogen valve 31 to close and the cycle is ready to repeat with the reopening of valves 35 and 37 to form the next combustible mixture.
There is wide latitude of choice in the dimensions of the gun barrel 16, provided that the length is at least several times the diameter of the bore. If the barrel is too short, the gas mixture will not detonate. At oneinch inner diameter We have successfully used lengths from fifteen to one hundred and twenty inches. Somewhat shorter barrels are much less efiicient although usable with some gas mixtures. Our best results with one-inch inner diameter barrels have been achieved with barrel lengths from three to six feet. Using /2 inch inner diameter pipe we have found a length of eight inches to be usable with some gas mixtures but three feet to be more generally suitable.
Simple air cooling is ordinarily adequate for the gun barrel. If in a particular use of the gun, for instance for nearly continuous use with oxygen-acetylene mixtures it is found that the barrel gets too hot, it may be water cooled. Poorly cooled corners and edges within the ignition and mixing chambers should of course be avoided to prevent the development of hot spots which could cause too early ignition.
The forms of apparatus shown in Figs. 1 and 2 operate without valves in the gas lines. In these forms the oxidizing and fuel gases should be supplied at about the same pressure to reduce the danger of backfire. A conventional backfire arrester may be inserted in the fuel supply line for greater safety.
The detonation Wave may be generated in a wide variety of fluids and fluid mixtures. Liquid fuels such as gasoline may be vaporized and used. Solid fuels such as coal powder may be suspended as dusts in a gas to make a fluid mixture. Suitable gaseous fuels include acetylene, hydrogen, propane, butane, pentane, and
ethylene which form detonatable mixtures with an Detonation Wave Mixture fg Approx. Velocity, ft. per sec.
Hydrogen-air 29 6, 360 Acetylene-air 9 7, 200 Propane-oxygen 29 8. 540 Hydrogen-oxygen- 67 9, 250 Acetylene-oxygen. 50 9, 700
The aforementioned volumes by Jost and by Lewis and Von Elbe list the percentage ranges of composition .to provide detonatable mixtures of air or oxygen with eight different fuels, and describe detonation velocities for a variety of mixtures. With oxygen the lower limit .of acetylene is 3.53.6%, and the upper limit is 9293%.
With air the lower limit of acetylene is 4.2%, and the upper limit is 50%.
The temperature in the detonation wave is high, for several mixtures upwards of 2800 C. However, much of the heat is dissipated before the particles strike a workpiece so that, inherently, little heating of the workpiece results from application of a coating. Heat distortion of the workpiece is thus absent when using the process of the invention. Such heating of the workpiece as may take place can readily be overcome or compensated by interrupting the application of coating from time to time and permitting the workpiece to cool with or without directing a blast of coo-ling fluid such as air against it. External cooling with a liquid spray or fog can also be used, as can internal water cooling when the workpiece is hollow. Particles of a material such as tungsten carbide can be applied securely to a workpiece having a substantially different coeihcient of thermal expansion, such as steel, by cooling the workpiece as described.
The flow rates of the gases may be adjusted so that the mixture just fills the gun in the time interval between igniticns, in which case the detonation front travels to the end of the barrel. At a lower flow rate the detonation front travels through the part of the length of the barrel that contains detonatable gas mixture and a shock wave arising from the detonation travels the rest of the way to the end of the barrel. A greater flow rate of gas gives a flame beyond the end of the barrel.
Although the ignition system illustrated is an adaptation of the conventional system used for internal combustion engines, it is obvious that other ignition means, such as an electrically heated filament or injected hot powder particles, could be used. The illustrated system is convenient, inexpensive, and reliable.
The frequency of the detonations is a factor in attaining effective operation of this detonation gun. The most useful frequency depends on the particular use of the gun, the design of the gun, and the character of the detonating gas mixture. A single detonation suffices when a thin deposit on a small area is desired, for example a tungsten carbide coating .0005 inch thick on a steel surface one inch or less in diameter. For making thicker coatings, and coating larger areas quickly several detonations per second are usually desirable. For instance, fc-r projecting tungsten carbide-cobalt alloy powto form coatings on various tools and articles with a one-inch diameter gun barrel about five feet long using an oxygen-acetylene detonating mixture, a frequency in the neighborhood of 4 per second is very satisfactory and a frequency of 7.8 has been used. For projecting aluminum powder in a similar gun using an air-acetylene detonating mixture, a frequency of 40 per second is very satisfactory and frequencies as high as 70 have been used. At frequencies above 7.8 for the oxygen-acetylene mixture and 70 for the air-acetylene mixture the gun tends to overheat, and flashbacks and continuous burning tend to occur. With better design, the maximum frequency theoretically would be limited only by the mechanics of valve operation or by the rate at which gas could be flowed into the gun between detonations. High rates of gas flow may require inconvenient or dangerous gas pressures, and high rates of operation of the gun may overheat it or some parts of it.
Powders fed into the gun are accelerated to very high velocities. Particles are believed to be accelerated within the gun by one or more of: (a) the shock front at the head of the detonation wave, (b) the rapidly moving gases behind the shock front, and (c) the previously described shock wave beyond (downstream of) the detonated gas mixture.
Powder flow rates into the gun are not particularly critical except as they influence the economics of coating formation, i. e., the cost and rapidity at which a given coating is built up. Ten pounds per hour seems to be most advantageous for good quality of coating with maximum hardness when using 180 cubic feet per hour each of acetylene, oxygen, and nitrogen (for conveying powder and for blanketing the poppet valves) in a oneinch inside diameter gun with a detonation frequency of 4.3 per second. Rates as low as 0.6 pound per hour, and as high as 24 pounds per hour have been used successfully with tungsten carbide powder finer than 44 microns.
One practical application of the invention is to clean or roughen surfaces. For instance a rusty steel plate was effectively cleaned with steel blasting grit of .42 to .59 millimeter particle size. Steel shot can similarly be directed forcibly against a metal body to peen its surface.
Another application is to pulverize frangible material. For example, diatomaceous earth powders of l to micron particle size were passed through the gun, thereby being reduced to 0.1 to 1 micron in size.
Another application of the detonation gun is to the spheroidizing of powders. When unspheroidized powder particles are shot through an oxy-acetylene detonation gun the original sharp corners and edges are melted and rounded over, and in many cases a shape approaching spherical is obtained. Finer particles tend to become more nearly spherical than larger ones, and metals become more spherical than non-metals. Metals which have been successfully spheroidized are chromium, Cr-Ni-B alloy, tungsten, and molybdenum. Non-metals are alumina, boron carbide, silicon carbide, tungsten carbide, silicon nitride, chromium carbide, tungsten carbide-cobalt alloy, titanium carbide, and borosilicate glass. Particle sizes of the powder ranged up to microns in diameter. The composition of the gas mixture detonated in the gun was approximately .5 oxygen, 45.5% acetylene, and 9% nitrogen (the vehicle for carrying powder into the gun). The spheroidized particles may be collected in a liquid or in a wax target.
The invention is particularly well adapted for coating surfaces with any of a wide variety of metals, alloys, metallic compounds, plastics, ceramics, and minerals. Foundation surfaces may be of metal, glass, wood, cloth, paper, plastic, or other. The surface to be coated may be located any convenient small distance from the open end of the gun, say one-half inch to ten inches. For example, an object to be coated with tungsten carbide particles is usually spaced about three inches from the muzzle of the gun.
Good coatings on smooth glass have been made with the gun of the invention, rising aluminum, copper, brass, tin, lead, zinc, and magnesium powders. Copper and zinc have been applied successfully to aluminum; aluminum and nickel to carbon; aluminum to mesh stainless steel wire screen; aluminum and zinc to cotton cloth; aluminum to paper; aluminum, copper, magnesium, nickel, and tin to wood; aluminum to methacrylate plastic;
tin, aluminum, molybdenum, copper, tungsten, tungsten carbide alloy, austenitic stainless steel, chromium, cobaltchromium-tungsten alloy, nickel-molybdenum alloy, boron carbide, and porcelain frit to steel; and tungsten carbide alloy to firebrick. Mixtures of various powders also may be deposited on a workpiece by the detonation gun. For instance a friction plate may be formed by mixing a soft metal powder such as aluminum with a powdered hard material such as alumina, passing the mixture through the gun and depositing the mixture on a steel base as alumina particles in an aluminum matrix. A mixture of iron, chromium, and nickel powders may be deposited on steel to impart resistance to corrosion and wear. It may sometimes be advantageous to include a non-metallic powdered flux with the powder to improve adhesion.
Optimum powder size is believed to be that which permits the surfaces of the particles to be softened enough to give good adherence but does not permit excessive vaporization of the particles. Generally, materials of lower melting point, such as tin, lead, zinc, aluminum, and magnesium may be of larger particle size, say up to microns, and those of higher melting point, such as chromium, tungsten, and tungsten carbide, have been most successfully used when smaller than about 50 microns to produce dense adherent coatings. However, these size limits are not critical, for instance 12 to 32 microns copper powder has been used very successfully to coat aluminum, and tungsten carbide-cobalt alloy powder as coarse as 74 microns has been successfully coated on a metal body.
With aluminum powder smaller than 44 microns, a work surface about two inches from the open end of the one-inch diameter gun, and repeated detonations of air and 10% acetylene at a frequency of about 30 cycles per second, a coating 0.017 inch thick by 1% inch diameter was formed in a minute and a half on a clean steel surface. This coating was substantially impermeable.
Copper or other readily soldered metal may be sprayed onto materials such as glass, porcelain, wood, plastics, or aluminum, which are unsolderable or solderable with difliculty, and the so-coated materials then easily soldered to form a joint.
Pieces of canvas cloth were successfully coated with aluminum and with zinc on both sides by directing the metal particles from the detonation gun against one side only of the cloth. Paper tape was also coated with aluminum while moving the tape slowly in front of the gun muzzle to avoid charring. In both cases the fuel was an air-acetylene mixture.
The method and apparatus of this invention may be used to clean or coat objects submerged in water or other liquid, or protected by a special atmosphere such as argon. The gun operates well under water.
A particularly interesting example of the performance capabilities of this invention is its use to deposit adherent coating of high-melting point abrasion-resistant hard coatings such as tungsten carbide compositions.
Finely powdered (mostly 10 to 40 microns particle size) cast tungsten carbide composition containing, apart from the tungsten, about 9% cobalt and 4% carbon is fed at a rate of about 10 to 15 pounds per hour to a gun of the form shown in Fig. 4 about five feet long and one-inch inside diameter. Acetylene and oxygen are fed in a ratio of about 1 cubic foot of the former to 1 to 2 cubic feet of the latter at an average rate of about 360 cubic feet per hour of the mixture. The average flow of nitrogen is about cubic feet per hour total. The ignition frequency is about four per second. A clean iron or steel surface, either soft or hard (for instance tool steel) preferably roughened as by grit blasting or thinly coated with a soft metal such as copper, nickel, or cobalt, suitably in a coating 0.00025 to 0.0005 inch thick, is p0sitioned about three inches from the open end of the gun. A dense, adherent layer of tungsten carbide composition 0.02 inch thick is deposited at a rate of about one square inch per minute. Thinner or much thicker coatings may be applied by varying the time of application.
Fig. 5 shows at a magnification of 300X the appearance of a tungsten carbide-cobalt alloy coating WC deposited by the process of the invention on a steel base S. The
tungsten carbide included 9% of cobalt. The sample was polished and then given an anodic etch with chromic acid, followed by a potassium permanganate stain.
The detonation gun deposits of tungsten carbide composition are fine grained dense, lamellar structures composed of mixed layers of tungsten carbide (WC), complex carbides of cobalt and tungsten, and small amounts of a secondary tungsten carbide (W2C). These particles which form the coating are elongated and flattened by the heat and impact imparted by the gun into thin overlapping discs or leaves such that their diameter is many times larger than their thickness. This structure is in direct contrast to sintered carbides which have a fine dense equiaxial structure, and tungsten carbide alloy coatings sprayed on with a conventional flame spray gun which have a relatively coarse, porous, weakly bonded structure. The conventional flame spraying method produces a coating of tungsten carbide which is formed of particles that are essentially unchanged in shape and poorly bonded while the detonation gun flattens out the particles and produces an excellent bond between the individual particles.
The coating has bulk density substantially identical with that of the solid cast material applied, 14.5 g./cc. Porosity is less than 1%. Adherence of the coating to the base is excellent, as shown by the fact that portions may be ground down to and through the interface without peeling. The hardness on the Vickers scale is at least 1100. The coating has a smooth matte surface which may be brought to a high polish by standard precision grinding and polishing procedures.
The properties of this coating adapt it for surfaces of such articles as core rods used for pressing and coining, burnishing broaches, snap and plug gages, crusher jaws, shaft seal rings and plates, electrical contacts, boring bars, saw teeth, knife blades, textile thread guides, valve seats and plugs, and bearing surfaces. For some electrical contacts, it may be desirable to incorporate in the powder a metal of high conductivity, such as silver.
This application is in part a continuation of application Serial No. 19,268 and application Serial No. 239,748, both now abandoned.
What is claimed is:
1. A detonation gun comprising a barrel, a mixing chamber communicating with said barrel, means for separately supplying charges of an oxidizing gas and gaseous fuel to said chamber and barrel, an ignition chamber positioned between the barrel and the mixing chamber directly and continuously communicating with said barrel and said mixing chamber, means for entraining powder particles in one of the components of the gaseous mixture formed in the mixing chamber, and means for detonating charges of the mixture repeatedly many times a second, the gun barrel being long enough to allow formation of a detonation wave theerin, whereby a high velocity is imparted to the powder particles.
2. A detonation gun provided with an elongated barrel, a gas mixing chamber at one end of the barrel directly and continuously communicating with said barrel, gas conduits provided with valves for separately supplying an oxidizing gas and a gaseous fuel to said mixing chamber and thence to said barrel, means for supplying powder particles to said barrel, an ignition chamber in the gun having an opening to the barrel of said gun, ignition means in said ignition chamber, the length and diameter of the gun barrel being adapted for the formation and maintenance therein of detonations, whereby powder supplied to said gun is ejected from the barrel under the impetus of said detonations.
3. A detonation gun comprising a barrel of diameter and length to permit the formation in a fluid fuel charge of a detonation; first valve means for supplying successive fluid fuel charges to said barrel; second valve means adjacent said first valve means for supplying an inert gas positioned to flow across said first valve means into said barrel to protect said first valve means; and ignition means for initiating a detonation in said fluid fuel charge in said barrel.
4. A detonation gun in accordance with claim 3, also comprising automatic timing sequence control mechanism operatively associated with said first and second valve means and said ignition means, and acting first to open and then close said first valve means to fill said gun with fluid fuel, then to open said second valve means to start the admission of inert gas to said gun, then to operate said ignition means to initiate a detonation, and after a time delay for such inert gas to purge the gaseous products of combustion from the gun acting to close said second valve means.
5. A method for utilizing detonation waves which comprises providing, in an elongated barrel having an open end, a detonatable body of a detonatable gas and a comminuted solid material unconsumable by the detonation phenomena in said body, and igniting said detonatable body of gas to produce a detonation and thereby to eject said comminuted material at high velocity from the open end of said barrel.
6. A method in accordance with claim 5, wherein said detonatable gas comprises oxygen and a fuel gas selected from the group consisting of acetylene, hydrogen, propane, butane, pentane, and ethylene. 7
7. A method for utilizing detonation waves which comprises mixing a fuel gas and an oxidizing gas to form a mixture capable of being detonated, introducing a detonatable body of said mixture into an elongated barrel having an open end, introducing a comminuted solid material unconsumable by the detonation phenomena in said detonatable body of said mixture, and igniting said detonatable mixture to produce a detonation and thereby transmit to said comminuted material some of the energy from at least one of said detonation and its associated phenomena to eject said comminuted material from the open end of said barrel.
8. A method for utilizing detonation waves which comprises mixing a fuel gas and an oxidizing gas to form a mixture capable of being detonated, introducing a comminuted solid material unconsumable by the detonation phenomena in said detonatable mixture, introducing said detonatable mixture containing said comminuted solid material into an elongated barrel having an open end, and igniting said detonatable body of said mixture to produce a detonation and thereby transmit to said comminuted material some of the energy from at least one of said detonation and its associated phenomena to eject said comminuted material from the open end of said barrel.
9. A method for utilizing detonation waves which comprises mixing a fuel gas containing a comminuted solid material unconsumable by the detonation phenomena with an oxidizing gas to form a mixture capable of being detonated, introducing a detonatable body of said detonatable mixture containing said comminuted material into an elongated barrel having an open end, igniting said detonatable body of said mixture to produce a detonation and thereby transmit to said comminuted material some of the energy of said detonation to eject said comminuted material from the open end of said barrel.
10. A method for utilizing detonation waves which comprises introducing a comminuted solid material unconsumable by the detonation phenomena into an oxidizing gas, mixing said oxidizing gas containing said comminuted material with a fuel gas to form a mixture capable of being detonated, introducing a detonatable body of said detonatable mixture containing said comminuted material into an elongated barrel having an open end, igniting said detonatable body of said mixture to produce a detonation and thereby transmit to said comminuted material some of the energy of said detonation to eject said comminuted material from the open end of said barrel.
11. A method for coating an object which comprises providing, in an elongated barrel having an open end, a detonatable body of a mixture of fuel gas and oxidizing gas capable of being detonated and a comminuted solid material unconsumable by the detonation phenonema; igniting said detonatable body of detonatable mixture to produce a detonation and thereby transmit to said comminuted material some of the energy of said detonation to eject said comminuted material at high velocity from the open end of said barrel; directing said comminuted material toward said object to be coated by virtue of said energy and thereafter repeating said providing, igniting and directing steps at short intervals of time.
12. A method in accordance with claim ll, wherein said comminuted solid material comprises a tungsten carbide composition comminuted to finer than about 50 microns, said fuel gas is acetylene, and said oxidizing gas is oxygen.
13. A method in accordance with claim 11 wherein said mixture of fuel gas and oxidizing gas is an acetyleneair mixture containing between 7% and 13 by volume of acetylene.
14. A method for coating an object which comprises mixing a fuel gas and an oxidizing gas to form a mixture capable of being detonated, feeding a comminuted solid material unconsumable by the detonation phenomena into said detonatable mixture, introducing said detonatable mixture containing said comminuted solid material into an elongated barrel having an open end until said barrel is substantially filled therewith, igniting said detonatable mixture to produce a detonation and thereby transmit to said comminuted material some of the energy of said detonation to eject said comminuted material at high velocity from the open end of said barrel; directing said comminuted material toward said object to be coated by virtue of said energy; and thereafter repeating said mixing, feeding, introducing, igniting and directing steps at short intervals of time less than one second.
15. A method in accordance with claim 11 which also comprises passing a body of an inert gas through said barrel between said providing and subsequent ignition steps.
16. A method for coating an object which comprises mixing a fuel gas and an oxidizing gas to form a mixture capable of being detonated, introducing said detonatable mixture into an elongated barrel having an open end until said barrel is substantially filled therewith, feeding a comminuted solid material unconsumable by the detonation phenomena into said detonatable mixture, igniting said detonatable mixture to produce a detonation and thereby transmit to said comminuted material some of the energy of said detonation to eject said comminuted material at high velocity from the open end of said barrel, directing said comminuted material toward said object to be coated under the impetus of said energy and thereafter repeating said mixing, introducing, feeding, igniting and directing steps at short intervals of time less than one second.
17. A method in accordance with claim 16 which also comprises passing an inert gas through said barrel between said ignition and said subsequent introducing steps.
18. A method for coating an object which comprises mixing a fuel gas with an oxidizing gas to form a mixture capable of being detonated; prior to such mixing feeding into at least one of the fuel gas and oxidizing gas a comminuted solid material unconsumable by the detonation phenonema; introducing said detonatable mixture containing said comminuted material into an elongated barrel having an open end until said barrel is substantially filled therewith; igniting said detonatable mixture to produce a detonation and thereby transmit to said comminuted material some of the energy of said detonation to eject said comminuted material at high velocity from the open end of said barrel; directing said comminuted material toward said object to be coated under the impetus of said energy; and thereafter repeating said feeding, mixing, introducing, igniting and directing steps at short intervals of time less than one second.
19. A method in accordance with claim 18, which also comprises passing an inert gas through said barrel between said ignition and said subsequent introducing steps.
20. A method of preparing for soldering surfaces of objects which are diflicult to solder directly, which comprises applying a readily solderable metal onto the surfaces to be soldered in accordance with the method of claim 11, thereby providing a thin adherent coating of solderable metal on such surfaces.
21. A detonation gun comprising an elongated barrel having an open end, said barrel having a length-to-diameter ratio sufliciently high to permit the formation of a detonation therein; mixing chamber means directly and continuously communicating with said barrel for forming and passing to said barrel charges of detonatable fluid fuel mixture; means for supplying the components of said detonatable fluid fuel mixture to said mixing chamber means; supply means associated with said barrel for providing comminuted solid material in said detonatable fluid fuel mixture; and means associated with said barrel for igniting said fluid fuel mixture in said barrel to initiate 1 3 said detonation and propel said comminuted solid material from said gun.
22. A detonation gun comprising an elongated barrel having an open end, said barrel having a length'to-diameter ratio sufiiciently high to permit the formation of detonations therein; means associated with said barrel for providing successive quantities of a detonatable fluid fuel mixture in said barrel at regular intervals; supply means associated with said barrel for providing comminuted solid material in each successive quantity of detonatable fluid fuel mixture; and means directly and continuously communicating with said barre] for igniting, at timed intervals, each of said successive quantities of fluid fuel mixture in said barrel to initiate a series of detonations and propel said comminuted solid material from said gun.
23. A detonation gun employing detonations comprising an elongated barrel open at one end and having an ignition chamber directly and continuously communicating with the end thereof, said barrel having a length-todiameter ratio sutficiently high to permit the formation of a detonation therein; means associated with said chamher for providing a detonatable fluid fuel mixture in said barrel and ignition chamber; supply means associated with said chamber for providing a comminuted solid material in said detonatable fluid fuel mixture; and means, associated with said ignition chamber, for igniting said fluid fuel charge in said chamber and barrel to initiate said detonation and propel said comminuted solid material from said gun.
24. A detonation gun employing detonations comprising an elongated barrel open at one end and having an ignition chamber directly and continuously communicating with the end thereof, said barrel having a length-todiameter ratio sufficiently high to permit the formation of detonation therein; means associated with said chamber for providing successive quantities of a detonatable fluid fuel mixture in said chamber and barrel at intervals; supply means associated with said chamber for providing comminuted solid material in each successive quantity of fluid fuel mixture; and means associated with said ignition chamber for igniting, at automatically timed intervals, each of said successive quantities of fluid fuel mixture in said chamber and barrel to initiate a series of detonations and propel said comminuted solid material from said gun.
25. A method of cleaning or roughening surfaces of a workpiece utilizing detonations and their associated phenomena which comprises providing, in an elongated barrel having an open end, a detonatable body of a detonatable gas containing a comminuted solid material unconsumable by the detonation phenomena in said body; igniting said detonatable body of gas to produce a detonation and its associated phenomena and thereby eject said comminuted solid material at high velocity from the open end of said barrel; and directing said comminuted solid material toward said workpiece surface to roughen or clean said surface.
26. A method of pulverizin g frangible material utilizing detonations and their associated phenomena which comprises providing, in an elongated barrel having an open end, a detonatable body of detonatable gas containing a frangible solid material unconsumable by the detonation phenomena in said body; igniting said detonatable body of gas to produce a detonation and its associated phenomena and thereby pulverize said frangible material and eject it from the open end of said barrel; and collecting said pulverized frangible material after ejection from said barrel.
27. A method of spheroidizing material utilizing detonations and their associated phenomena which comprises providing, in an elongated barrel having an open end, a detonatable body of a detonatable gas containing a fusible, comminuted solid material unconsumable by the detonation phenomena in said body; igniting said detonatable body of gas to produce a detonation and its asso- 2,714,563 1 l 1 2 ciated phenomena and thereby fuse said comminuted solid FOREIGN PATENTS material and eject it at high velocity from said open end G t B f 1943 of said barrel, whereby said material is spheroidized; and Tea n am n o collecting said spheroidized material after ejection from OTHER REFERENCES Third Symposium on Combustion and Flame and Exsaid barrel. 5
plosion Phenomenon, Williams & Wilkins, Baltimore, Maryland 1949, pgs. 185-190.
Jost Explosion and Combustion Processes In Gas, 1946,
References Cited in the file of this patent UNITED STATES PATENTS 1,375,653 McLain et al. Apr. 19, 1921 10 1,620,994 Berstamante Mar. 15, 1927 2,374,816 Hansen May 1, 1945

Claims (1)

18. A METHOD FOR COATING AN OBJECT WHICH COMPRISES MIXING A FUEL GAS WITH AN OXIDIZING GAS TO FORM A MIXTURE CAPABLE OF BEING DETONATED; PRIOR TO SUCH MIXING FEEDING INTO AT LEAST ONE OF THE FUEL GAS AND OXIDIZING GAS A COMMINUTED SOLID MATERIAL UNCONSUMABLE BY THE DETONATION PHENONEMA; INTRODUCING SAID DETONATABLE MIXTURE CONTAINING SAID COMMINUTED MATERIAL INTO AN ELONGATED BARREL HAVING AN OPEN END UNTIL SAID BARREL IS SUBSTANTIALLY FILLED THEREWITH; IGNITING SAID DETONATABLE MIXTURE TO PRODUCE A DETONATION AND THEREBY TRANSMIT TO SAID COMMINUTED MATERIAL SOME OF THE ENERGY OF SAID DETONATION TO EJECT SAID COMMINUTED MATERIAL AT HIGH VELOCITY FROM THE OPEN END OF SAID BARREL; DIRECTING SAID COMMINUTED MATERIAL TOWARD SAID OBJECT TO BE COATED UNDER THE IMPETUS OF SAID ENERGY; AND THEREAFTER REPEATING SAID FEEDING, MIXING, INTRODUCING, IGNITING AND DIRECTING STEPS AT SHORT INTERVALS OF TIME LESS THAN ONE SECOND.
US275332A 1952-03-07 1952-03-07 Method and apparatus utilizing detonation waves for spraying and other purposes Expired - Lifetime US2714563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US275332A US2714563A (en) 1952-03-07 1952-03-07 Method and apparatus utilizing detonation waves for spraying and other purposes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US275332A US2714563A (en) 1952-03-07 1952-03-07 Method and apparatus utilizing detonation waves for spraying and other purposes
US349856XA 1955-03-28 1955-03-28
CH329742T 1956-06-05

Publications (1)

Publication Number Publication Date
US2714563A true US2714563A (en) 1955-08-02

Family

ID=25736582

Family Applications (1)

Application Number Title Priority Date Filing Date
US275332A Expired - Lifetime US2714563A (en) 1952-03-07 1952-03-07 Method and apparatus utilizing detonation waves for spraying and other purposes

Country Status (8)

Country Link
US (1) US2714563A (en)
BE (2) BE512449A (en)
CH (3) CH329742A (en)
DE (1) DE1184176B (en)
FR (1) FR1058357A (en)
GB (3) GB742387A (en)
LU (3) LU33526A1 (en)
NL (1) NL91125C (en)

Cited By (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2832640A (en) * 1954-12-09 1958-04-29 Metallizing Engineering Co Inc Heat fusible material spray gun
US2861900A (en) * 1955-05-02 1958-11-25 Union Carbide Corp Jet plating of high melting point materials
US2869924A (en) * 1955-03-28 1959-01-20 Union Carbide Corp Apparatus for utilizing detonation waves
US2872338A (en) * 1955-04-18 1959-02-03 Haloid Xerox Inc Electrophotographic developing process
US2901826A (en) * 1957-01-31 1959-09-01 Edgar A Kline Dental cutting tool
US2920001A (en) * 1955-07-11 1960-01-05 Union Carbide Corp Jet flame spraying method and apparatus
US2943951A (en) * 1956-03-23 1960-07-05 Kanthal Ab Flame spraying method and composition
US2950867A (en) * 1954-10-21 1960-08-30 Union Carbide Corp Pulse powder feed for detonation waves
US2963782A (en) * 1954-04-20 1960-12-13 Union Carbide Corp Flexible compsoite article
US2964420A (en) * 1955-06-14 1960-12-13 Union Carbide Corp Refractory coated body
US2972550A (en) * 1958-05-28 1961-02-21 Union Carbide Corp Flame plating using detonation reactants
US2972247A (en) * 1952-07-24 1961-02-21 Charles J Zablocki Device for testing flash explosives
US2976941A (en) * 1956-05-25 1961-03-28 Fletcher Co H E Method for thermal mineral piercing
US2990293A (en) * 1956-01-13 1961-06-27 Ohio Commw Eng Co Method of impregnating and rustproofing metal articles
US2990653A (en) * 1958-04-21 1961-07-04 G H Temant Company Method and apparatus for impacting a stream at high velocity against a surface to be treated
US3004822A (en) * 1958-01-31 1961-10-17 Union Carbide Corp Method for utilizing detonation waves to effect chemical reactions
US3016311A (en) * 1958-12-17 1962-01-09 Union Carbide Corp High temperature coatings and bodies
US3030678A (en) * 1959-09-08 1962-04-24 Sr William J Huston Method of disintegrating a sand mold while in association with a flask and a casting
US3048060A (en) * 1957-03-25 1962-08-07 Union Carbide Corp Method of making articles having internal surface of desired contour and articles produced thereby
US3056693A (en) * 1959-04-07 1962-10-02 Herbert J Woock Method of hard facing metallic articles
US3071489A (en) * 1958-05-28 1963-01-01 Union Carbide Corp Process of flame spraying a tungsten carbide-chromium carbide-nickel coating, and article produced thereby
US3084064A (en) * 1959-08-06 1963-04-02 Union Carbide Corp Abradable metal coatings and process therefor
US3089409A (en) * 1961-06-12 1963-05-14 Kimberly Clark Co Papermaking machines
US3100724A (en) * 1958-09-22 1963-08-13 Microseal Products Inc Device for treating the surface of a workpiece
US3105150A (en) * 1959-11-18 1963-09-24 Honeywell Regulator Co Coated radiant energy sight guide for temperature measurement
US3149409A (en) * 1959-12-01 1964-09-22 Daimler Benz Ag Method of producing an engine piston with a heat insulating layer
US3150828A (en) * 1961-10-04 1964-09-29 Union Carbide Corp Apparatus for utilizing detonation waves
US3150938A (en) * 1958-05-28 1964-09-29 Union Carbide Corp Coating composition, method of application, and product thereof
US3165570A (en) * 1962-08-22 1965-01-12 Alexander T Deutsch Refractory powder injection, process and apparatus
US3185751A (en) * 1961-03-07 1965-05-25 Veedip Ltd Manufacture of latices, dispersions and compounds of polymeric organic materials containing metal
US3212914A (en) * 1961-05-23 1965-10-19 Union Carbide Corp Electric pulse coating process and apparatus
US3231416A (en) * 1961-06-09 1966-01-25 Union Carbide Corp Zirconia-boron ablation coating
US3231417A (en) * 1961-06-09 1966-01-25 Union Carbide Corp Zircon-boron ablation coating
US3254970A (en) * 1960-11-22 1966-06-07 Metco Inc Flame spray clad powder composed of a refractory material and nickel or cobalt
US3279283A (en) * 1965-03-22 1966-10-18 Burnie J Craig Method of making razor blades
US3335025A (en) * 1963-03-22 1967-08-08 Standard Oil Co Formation of catalytic oxide surface on an electrode
US3372297A (en) * 1964-09-28 1968-03-05 Varian Associates High frequency electron discharge devices and thermionic cathodes having improved (cvd) refractory insulation coated heater wires
US3389977A (en) * 1964-08-05 1968-06-25 Texas Instruments Inc Tungsten carbide coated article of manufacture
US3399253A (en) * 1966-03-28 1968-08-27 Union Carbide Corp Method of making refractory shapes
US3473943A (en) * 1963-04-10 1969-10-21 Asahi Chemical Ind Explosive coating of metallic substrates with powder
US3505101A (en) * 1964-10-27 1970-04-07 Union Carbide Corp High temperature wear resistant coating and article having such coating
US3552653A (en) * 1968-01-10 1971-01-05 Inoue K Impact deposition of particulate materials
US3663788A (en) * 1966-06-11 1972-05-16 Inoue K Kinetic deposition of particles
US3708322A (en) * 1969-10-09 1973-01-02 British Steel Corp Method of producing a coated ferrous substrate
US3810637A (en) * 1972-01-14 1974-05-14 Mecanique Ind Int Shaft packing
DE2356616A1 (en) * 1972-11-17 1974-05-22 Union Carbide Corp ABRASION RESISTANT BEARING MATERIAL AND METHOD FOR ITS MANUFACTURING
US3851426A (en) * 1957-06-27 1974-12-03 J Lemelson Method for finishing articles
US3854997A (en) * 1970-12-14 1974-12-17 Peck Co C Jet flame cleaning
US3910494A (en) * 1974-02-21 1975-10-07 Southwest Res Inst Valveless combustion apparatus
US3910734A (en) * 1973-08-20 1975-10-07 Ford Motor Co Composite apex seal
US3915381A (en) * 1971-11-15 1975-10-28 Southwest Res Inst Method and apparatus for applying particulate coating material to a work piece
US3944683A (en) * 1967-12-28 1976-03-16 Kaman Sciences Corporation Methods of producing chemically hardening coatings
US4067291A (en) * 1974-04-08 1978-01-10 H. B. Zachry Company Coating system using tape encapsulated particulate coating material
FR2413133A1 (en) * 1977-12-21 1979-07-27 Inst Materialovedeni Powder coatings applied by detonation - in spray gun using ignited mixt. of oxygen and acetylene
US4279383A (en) * 1979-03-12 1981-07-21 Zverev Anatoly I Apparatus for coating by detonation waves
DE3105323A1 (en) * 1981-02-13 1982-09-02 Vorošilovgradskij mašinostroitel'nyj institut SSSR, Vorošilovgrad Body of a device for detonation-gas powder coating
DE3430685A1 (en) * 1983-10-03 1985-04-18 Institut sverchtverdych materialov Akademii Nauk Ukrainskoj SSR, Kiev Detonation equipment for the application of coatings
US4519840A (en) * 1983-10-28 1985-05-28 Union Carbide Corporation High strength, wear and corrosion resistant coatings
US4526618A (en) * 1983-10-18 1985-07-02 Union Carbide Corporation Abrasion resistant coating composition
US4588606A (en) * 1983-10-18 1986-05-13 Union Carbide Corporation Abrasion resistant coating and method for producing the same
US4626476A (en) * 1983-10-28 1986-12-02 Union Carbide Corporation Wear and corrosion resistant coatings applied at high deposition rates
US4626477A (en) * 1983-10-28 1986-12-02 Union Carbide Corporation Wear and corrosion resistant coatings and method for producing the same
US4637947A (en) * 1984-08-14 1987-01-20 Anmin Manufacturing Co., Ltd. Heat insulation material
US4705762A (en) * 1984-02-09 1987-11-10 Toyota Jidosha Kabushiki Kaisha Process for producing ultra-fine ceramic particles
EP0256803A2 (en) * 1986-08-07 1988-02-24 Praxair S.T. Technology, Inc. Embossing tools, their formation and use
US4741975A (en) * 1984-11-19 1988-05-03 Avco Corporation Erosion-resistant coating system
US4761346A (en) * 1984-11-19 1988-08-02 Avco Corporation Erosion-resistant coating system
US4781145A (en) * 1985-07-26 1988-11-01 Amlinsky Roman A Detonation deposition apparatus
US4788077A (en) * 1987-06-22 1988-11-29 Union Carbide Corporation Thermal spray coating having improved addherence, low residual stress and improved resistance to spalling and methods for producing same
US4826734A (en) * 1988-03-03 1989-05-02 Union Carbide Corporation Tungsten carbide-cobalt coatings for various articles
US4865252A (en) * 1988-05-11 1989-09-12 The Perkin-Elmer Corporation High velocity powder thermal spray gun and method
US4902539A (en) * 1987-10-21 1990-02-20 Union Carbide Corporation Fuel-oxidant mixture for detonation gun flame-plating
US4999225A (en) * 1989-01-05 1991-03-12 The Perkin-Elmer Corporation High velocity powder thermal spray method for spraying non-meltable materials
US4999255A (en) * 1989-11-27 1991-03-12 Union Carbide Coatings Service Technology Corporation Tungsten chromium carbide-nickel coatings for various articles
US5075129A (en) * 1989-11-27 1991-12-24 Union Carbide Coatings Service Technology Corporation Method of producing tungsten chromium carbide-nickel coatings having particles containing three times by weight more chromium than tungsten
US5082502A (en) * 1988-09-08 1992-01-21 Cabot Corporation Cleaning apparatus and process
WO1992010304A1 (en) * 1990-12-14 1992-06-25 Sjoedin Sven Eric A device for detonation spraying
US5223332A (en) * 1990-05-31 1993-06-29 Praxair S.T. Technology, Inc. Duplex coatings for various substrates
US5328763A (en) * 1993-02-03 1994-07-12 Kennametal Inc. Spray powder for hardfacing and part with hardfacing
EP0688885A1 (en) 1994-06-24 1995-12-27 Praxair S.T. Technology, Inc. A process for producing an oxide dispersed MCrAIY-based coating
EP0688886A1 (en) 1994-06-24 1995-12-27 Praxair S.T. Technology, Inc. A process for producing carbide particles dispersed in a MCrAIY-based coating
US5531590A (en) * 1995-03-30 1996-07-02 Draco Shock-stabilized supersonic flame-jet method and apparatus
US5607342A (en) * 1995-03-27 1997-03-04 Demeton Usa, Inc. High velocity flame jet apparatus for thermoabrasive cutting or cleaning or for the application of protective coatings
WO1997023301A1 (en) * 1995-12-26 1997-07-03 Aerostar Coatings, S.L. Energy bleed apparatus and method for a detonation gun
EP0707921A3 (en) * 1994-10-22 1997-07-23 Zwilling J A Henckels Aktienge Knife and method of fabricating it
US5716422A (en) * 1996-03-25 1998-02-10 Wilson Greatbatch Ltd. Thermal spray deposited electrode component and method of manufacture
US6000995A (en) * 1995-11-06 1999-12-14 Heinrich Schlick Unit for the dosage of grained, pourable materials, in particular blasting abrasives
US6004372A (en) * 1999-01-28 1999-12-21 Praxair S.T. Technology, Inc. Thermal spray coating for gates and seats
US6146693A (en) * 1995-12-26 2000-11-14 Aerostar Coatings, S.L. Energy bleed apparatus and method for a detonation gun
US6175485B1 (en) 1996-07-19 2001-01-16 Applied Materials, Inc. Electrostatic chuck and method for fabricating the same
US6455108B1 (en) 1998-02-09 2002-09-24 Wilson Greatbatch Ltd. Method for preparation of a thermal spray coated substrate for use in an electrical energy storage device
US20020168466A1 (en) * 2001-04-24 2002-11-14 Tapphorn Ralph M. System and process for solid-state deposition and consolidation of high velocity powder particles using thermal plastic deformation
US6503442B1 (en) 2001-03-19 2003-01-07 Praxair S.T. Technology, Inc. Metal-zirconia composite coating with resistance to molten metals and high temperature corrosive gases
US6630207B1 (en) 2001-07-17 2003-10-07 Science Applications International Corporation Method and apparatus for low-pressure pulsed coating
WO2003082533A1 (en) * 2002-03-28 2003-10-09 Hardide Limited Self-sharpening cutting tool with hard coating
US20030196600A1 (en) * 2002-04-17 2003-10-23 Science Applications International Corporation Method and apparatus for pulsed detonation coating of internal surfaces of small diameter tubes and the like
US6736902B2 (en) 2002-06-20 2004-05-18 General Electric Company High-temperature powder deposition apparatus and method utilizing feedback control
US20050109231A1 (en) * 2003-11-20 2005-05-26 Bussing Thomas R.A. Detonative cleaning apparatus
US20060208113A1 (en) * 2003-04-21 2006-09-21 Kwang-Jae Lee Muller
US20060251821A1 (en) * 2004-10-22 2006-11-09 Science Applications International Corporation Multi-sectioned pulsed detonation coating apparatus and method of using same
US20070087205A1 (en) * 2005-10-13 2007-04-19 William Jarosinski Thermal spray coated rolls for molten metal bath
US20070261767A1 (en) * 2006-05-12 2007-11-15 William John Crim Jarosinski Thermal spray coated work rolls for use in metal and metal alloy sheet manufacture
WO2008000851A1 (en) 2006-06-28 2008-01-03 Fundacion Inasmet Thermal spraying method and device
EP1893782A1 (en) * 2005-05-09 2008-03-05 University of Ottawa Methods and apparatuses for material deposition
WO2008076953A2 (en) * 2006-12-15 2008-06-26 Praxair S.T. Technology, Inc. Amorphous-nanocrystalline-microcrystalline coatings
US20080292897A1 (en) * 2007-05-22 2008-11-27 United Technologies Corporation Wear resistant coating
US20090133788A1 (en) * 2007-11-09 2009-05-28 Firestar Engineering, Llc Nitrous oxide fuel blend monopropellants
US20100211180A1 (en) * 2006-03-21 2010-08-19 Jet Engineering, Inc. Tetrahedral Amorphous Carbon Coated Medical Devices
US20110287189A1 (en) * 2010-05-12 2011-11-24 Enerize Corporation Method of the electrode production
US8197950B2 (en) 2006-05-26 2012-06-12 Praxair S.T. Technology, Inc. Dense vertically cracked thermal barrier coatings
CN102560320A (en) * 2012-01-05 2012-07-11 哈尔滨飞机工业集团有限责任公司 Detonation gun spraying method of tungsten carbide
US20120212249A1 (en) * 2011-02-23 2012-08-23 King Yuan Electronics Co., Ltd Hard and wear-resisting probe and manufacturing method thereof
US8572946B2 (en) 2006-12-04 2013-11-05 Firestar Engineering, Llc Microfluidic flame barrier
US8697250B1 (en) 2013-02-14 2014-04-15 Praxair S.T. Technology, Inc. Selective oxidation of a modified MCrAlY composition loaded with high levels of ceramic acting as a barrier to specific oxide formations
US20140117109A1 (en) * 2012-10-29 2014-05-01 Christian Widener Cold spray device and system
US8906130B2 (en) 2010-04-19 2014-12-09 Praxair S.T. Technology, Inc. Coatings and powders, methods of making same, and uses thereof
WO2017112546A2 (en) 2015-12-23 2017-06-29 Praxair S.T. Technology, Inc. Improved thermal spray coatings onto non-smooth surfaces
US9975812B2 (en) 2005-10-07 2018-05-22 Oerlikon Metco (Us) Inc. Ceramic material for high temperature service
US10099322B2 (en) 2012-10-29 2018-10-16 South Dakota Board Of Regents Methods for cold spray repair
US11626584B2 (en) 2014-04-25 2023-04-11 South Dakota Board Of Regents High capacity electrodes
US11780051B2 (en) 2019-12-31 2023-10-10 Cold Jet, Llc Method and apparatus for enhanced blast stream
US11824189B2 (en) 2018-01-09 2023-11-21 South Dakota Board Of Regents Layered high capacity electrodes

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3228222A (en) * 1962-04-25 1966-01-11 Continental Can Co Method and apparatus for the explosion forming of hollow objects, including such container elements as cups, cans, can ends
US3252312A (en) * 1962-04-25 1966-05-24 Continental Can Co Method and apparatus for explosive reshaping of hollow ductile objects
US3353994A (en) * 1964-05-07 1967-11-21 Scott Paper Co Novel reticulated products
EP0118249B1 (en) * 1983-02-22 1987-11-25 Tateho Kagaku Kogyo Kabushiki Kaisha Spraying materials containing ceramic needle fiber and composite materials spray-coated with such spraying materials
GB2190858B (en) * 1986-04-25 1989-11-29 Smith Meters Ltd Coating surfaces
CA2002497A1 (en) * 1988-12-28 1990-06-28 Anthony J. Rotolico High velocity powder thermal spray method for spraying non-meltable materials
CZ303411B6 (en) * 2005-04-29 2012-09-05 Ústav fyziky plazmatu AV CR, v.v.i. Tungsten-based protective coating and process for preparing thereof
DE102008031735B4 (en) 2007-07-10 2019-11-07 Heidelberger Druckmaschinen Ag Gray balance correction of a printing process
CN101962697B (en) * 2010-11-01 2012-02-08 中冶京诚工程技术有限公司 Oxygen coal spray gun nozzle combining device
CN106238557B (en) * 2016-07-29 2017-12-26 重庆新钰立金属科技有限公司 Reciprocating hole punched device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1375653A (en) * 1917-06-01 1921-04-19 Quick Mclain Machine Gun Compa Machine-gun
US1620994A (en) * 1926-01-22 1927-03-15 Bustamante Eduardo Device for firing cannons
GB553099A (en) * 1940-09-29 1943-05-07 Fritz Gfeller Improvements in processes and apparatus for spraying fusible and thermoplastic material
US2374816A (en) * 1942-05-18 1945-05-01 Sern L Hansen Rapid-fire gun

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH226698A (en) * 1940-09-29 1943-04-30 Gfeller Fritz Method and device for spraying thermoplastic materials.
DE813360C (en) * 1949-11-04 1951-09-13 Willi Lehmann Process for the production of coatings

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1375653A (en) * 1917-06-01 1921-04-19 Quick Mclain Machine Gun Compa Machine-gun
US1620994A (en) * 1926-01-22 1927-03-15 Bustamante Eduardo Device for firing cannons
GB553099A (en) * 1940-09-29 1943-05-07 Fritz Gfeller Improvements in processes and apparatus for spraying fusible and thermoplastic material
US2374816A (en) * 1942-05-18 1945-05-01 Sern L Hansen Rapid-fire gun

Cited By (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2972247A (en) * 1952-07-24 1961-02-21 Charles J Zablocki Device for testing flash explosives
US2963782A (en) * 1954-04-20 1960-12-13 Union Carbide Corp Flexible compsoite article
US2950867A (en) * 1954-10-21 1960-08-30 Union Carbide Corp Pulse powder feed for detonation waves
US2832640A (en) * 1954-12-09 1958-04-29 Metallizing Engineering Co Inc Heat fusible material spray gun
US2869924A (en) * 1955-03-28 1959-01-20 Union Carbide Corp Apparatus for utilizing detonation waves
US2872338A (en) * 1955-04-18 1959-02-03 Haloid Xerox Inc Electrophotographic developing process
US2861900A (en) * 1955-05-02 1958-11-25 Union Carbide Corp Jet plating of high melting point materials
US2964420A (en) * 1955-06-14 1960-12-13 Union Carbide Corp Refractory coated body
US2920001A (en) * 1955-07-11 1960-01-05 Union Carbide Corp Jet flame spraying method and apparatus
US2990293A (en) * 1956-01-13 1961-06-27 Ohio Commw Eng Co Method of impregnating and rustproofing metal articles
US2943951A (en) * 1956-03-23 1960-07-05 Kanthal Ab Flame spraying method and composition
US2976941A (en) * 1956-05-25 1961-03-28 Fletcher Co H E Method for thermal mineral piercing
US2901826A (en) * 1957-01-31 1959-09-01 Edgar A Kline Dental cutting tool
US3048060A (en) * 1957-03-25 1962-08-07 Union Carbide Corp Method of making articles having internal surface of desired contour and articles produced thereby
US3851426A (en) * 1957-06-27 1974-12-03 J Lemelson Method for finishing articles
US3004822A (en) * 1958-01-31 1961-10-17 Union Carbide Corp Method for utilizing detonation waves to effect chemical reactions
US2990653A (en) * 1958-04-21 1961-07-04 G H Temant Company Method and apparatus for impacting a stream at high velocity against a surface to be treated
US3150938A (en) * 1958-05-28 1964-09-29 Union Carbide Corp Coating composition, method of application, and product thereof
US3071489A (en) * 1958-05-28 1963-01-01 Union Carbide Corp Process of flame spraying a tungsten carbide-chromium carbide-nickel coating, and article produced thereby
US2972550A (en) * 1958-05-28 1961-02-21 Union Carbide Corp Flame plating using detonation reactants
US3100724A (en) * 1958-09-22 1963-08-13 Microseal Products Inc Device for treating the surface of a workpiece
US3016311A (en) * 1958-12-17 1962-01-09 Union Carbide Corp High temperature coatings and bodies
US3056693A (en) * 1959-04-07 1962-10-02 Herbert J Woock Method of hard facing metallic articles
US3084064A (en) * 1959-08-06 1963-04-02 Union Carbide Corp Abradable metal coatings and process therefor
US3030678A (en) * 1959-09-08 1962-04-24 Sr William J Huston Method of disintegrating a sand mold while in association with a flask and a casting
US3105150A (en) * 1959-11-18 1963-09-24 Honeywell Regulator Co Coated radiant energy sight guide for temperature measurement
US3149409A (en) * 1959-12-01 1964-09-22 Daimler Benz Ag Method of producing an engine piston with a heat insulating layer
US3254970A (en) * 1960-11-22 1966-06-07 Metco Inc Flame spray clad powder composed of a refractory material and nickel or cobalt
US3185751A (en) * 1961-03-07 1965-05-25 Veedip Ltd Manufacture of latices, dispersions and compounds of polymeric organic materials containing metal
US3212914A (en) * 1961-05-23 1965-10-19 Union Carbide Corp Electric pulse coating process and apparatus
US3231416A (en) * 1961-06-09 1966-01-25 Union Carbide Corp Zirconia-boron ablation coating
US3231417A (en) * 1961-06-09 1966-01-25 Union Carbide Corp Zircon-boron ablation coating
US3089409A (en) * 1961-06-12 1963-05-14 Kimberly Clark Co Papermaking machines
US3150828A (en) * 1961-10-04 1964-09-29 Union Carbide Corp Apparatus for utilizing detonation waves
US3165570A (en) * 1962-08-22 1965-01-12 Alexander T Deutsch Refractory powder injection, process and apparatus
US3335025A (en) * 1963-03-22 1967-08-08 Standard Oil Co Formation of catalytic oxide surface on an electrode
US3473943A (en) * 1963-04-10 1969-10-21 Asahi Chemical Ind Explosive coating of metallic substrates with powder
US3389977A (en) * 1964-08-05 1968-06-25 Texas Instruments Inc Tungsten carbide coated article of manufacture
US3372297A (en) * 1964-09-28 1968-03-05 Varian Associates High frequency electron discharge devices and thermionic cathodes having improved (cvd) refractory insulation coated heater wires
US3505101A (en) * 1964-10-27 1970-04-07 Union Carbide Corp High temperature wear resistant coating and article having such coating
US3279283A (en) * 1965-03-22 1966-10-18 Burnie J Craig Method of making razor blades
US3399253A (en) * 1966-03-28 1968-08-27 Union Carbide Corp Method of making refractory shapes
US3663788A (en) * 1966-06-11 1972-05-16 Inoue K Kinetic deposition of particles
US3944683A (en) * 1967-12-28 1976-03-16 Kaman Sciences Corporation Methods of producing chemically hardening coatings
US3552653A (en) * 1968-01-10 1971-01-05 Inoue K Impact deposition of particulate materials
US3708322A (en) * 1969-10-09 1973-01-02 British Steel Corp Method of producing a coated ferrous substrate
US3854997A (en) * 1970-12-14 1974-12-17 Peck Co C Jet flame cleaning
US3915381A (en) * 1971-11-15 1975-10-28 Southwest Res Inst Method and apparatus for applying particulate coating material to a work piece
US3810637A (en) * 1972-01-14 1974-05-14 Mecanique Ind Int Shaft packing
DE2356616A1 (en) * 1972-11-17 1974-05-22 Union Carbide Corp ABRASION RESISTANT BEARING MATERIAL AND METHOD FOR ITS MANUFACTURING
US3910734A (en) * 1973-08-20 1975-10-07 Ford Motor Co Composite apex seal
US3910494A (en) * 1974-02-21 1975-10-07 Southwest Res Inst Valveless combustion apparatus
US4067291A (en) * 1974-04-08 1978-01-10 H. B. Zachry Company Coating system using tape encapsulated particulate coating material
FR2413133A1 (en) * 1977-12-21 1979-07-27 Inst Materialovedeni Powder coatings applied by detonation - in spray gun using ignited mixt. of oxygen and acetylene
US4279383A (en) * 1979-03-12 1981-07-21 Zverev Anatoly I Apparatus for coating by detonation waves
DE3105323A1 (en) * 1981-02-13 1982-09-02 Vorošilovgradskij mašinostroitel'nyj institut SSSR, Vorošilovgrad Body of a device for detonation-gas powder coating
DE3430685A1 (en) * 1983-10-03 1985-04-18 Institut sverchtverdych materialov Akademii Nauk Ukrainskoj SSR, Kiev Detonation equipment for the application of coatings
US4526618A (en) * 1983-10-18 1985-07-02 Union Carbide Corporation Abrasion resistant coating composition
US4588606A (en) * 1983-10-18 1986-05-13 Union Carbide Corporation Abrasion resistant coating and method for producing the same
US4519840A (en) * 1983-10-28 1985-05-28 Union Carbide Corporation High strength, wear and corrosion resistant coatings
US4626476A (en) * 1983-10-28 1986-12-02 Union Carbide Corporation Wear and corrosion resistant coatings applied at high deposition rates
US4626477A (en) * 1983-10-28 1986-12-02 Union Carbide Corporation Wear and corrosion resistant coatings and method for producing the same
US4705762A (en) * 1984-02-09 1987-11-10 Toyota Jidosha Kabushiki Kaisha Process for producing ultra-fine ceramic particles
US4637947A (en) * 1984-08-14 1987-01-20 Anmin Manufacturing Co., Ltd. Heat insulation material
US4741975A (en) * 1984-11-19 1988-05-03 Avco Corporation Erosion-resistant coating system
US4761346A (en) * 1984-11-19 1988-08-02 Avco Corporation Erosion-resistant coating system
US4781145A (en) * 1985-07-26 1988-11-01 Amlinsky Roman A Detonation deposition apparatus
EP0256803A2 (en) * 1986-08-07 1988-02-24 Praxair S.T. Technology, Inc. Embossing tools, their formation and use
US4787837A (en) * 1986-08-07 1988-11-29 Union Carbide Corporation Wear-resistant ceramic, cermet or metallic embossing surfaces, methods for producing same, methods of embossing articles by same and novel embossed articles
EP0256803A3 (en) * 1986-08-07 1990-03-07 Union Carbide Corporation Embossing tools, their formation and use
US4788077A (en) * 1987-06-22 1988-11-29 Union Carbide Corporation Thermal spray coating having improved addherence, low residual stress and improved resistance to spalling and methods for producing same
US4902539A (en) * 1987-10-21 1990-02-20 Union Carbide Corporation Fuel-oxidant mixture for detonation gun flame-plating
US4826734A (en) * 1988-03-03 1989-05-02 Union Carbide Corporation Tungsten carbide-cobalt coatings for various articles
US4865252A (en) * 1988-05-11 1989-09-12 The Perkin-Elmer Corporation High velocity powder thermal spray gun and method
US5082502A (en) * 1988-09-08 1992-01-21 Cabot Corporation Cleaning apparatus and process
US4999225A (en) * 1989-01-05 1991-03-12 The Perkin-Elmer Corporation High velocity powder thermal spray method for spraying non-meltable materials
US5075129A (en) * 1989-11-27 1991-12-24 Union Carbide Coatings Service Technology Corporation Method of producing tungsten chromium carbide-nickel coatings having particles containing three times by weight more chromium than tungsten
US4999255A (en) * 1989-11-27 1991-03-12 Union Carbide Coatings Service Technology Corporation Tungsten chromium carbide-nickel coatings for various articles
US5223332A (en) * 1990-05-31 1993-06-29 Praxair S.T. Technology, Inc. Duplex coatings for various substrates
WO1992010304A1 (en) * 1990-12-14 1992-06-25 Sjoedin Sven Eric A device for detonation spraying
US5328763A (en) * 1993-02-03 1994-07-12 Kennametal Inc. Spray powder for hardfacing and part with hardfacing
EP0688886A1 (en) 1994-06-24 1995-12-27 Praxair S.T. Technology, Inc. A process for producing carbide particles dispersed in a MCrAIY-based coating
US5652028A (en) * 1994-06-24 1997-07-29 Praxair S.T. Technology, Inc. Process for producing carbide particles dispersed in a MCrAlY-based coating
EP0688885A1 (en) 1994-06-24 1995-12-27 Praxair S.T. Technology, Inc. A process for producing an oxide dispersed MCrAIY-based coating
US5741556A (en) * 1994-06-24 1998-04-21 Praxair S.T. Technology, Inc. Process for producing an oxide dispersed MCrAlY-based coating
EP0707921A3 (en) * 1994-10-22 1997-07-23 Zwilling J A Henckels Aktienge Knife and method of fabricating it
US5607342A (en) * 1995-03-27 1997-03-04 Demeton Usa, Inc. High velocity flame jet apparatus for thermoabrasive cutting or cleaning or for the application of protective coatings
US5531590A (en) * 1995-03-30 1996-07-02 Draco Shock-stabilized supersonic flame-jet method and apparatus
US6000995A (en) * 1995-11-06 1999-12-14 Heinrich Schlick Unit for the dosage of grained, pourable materials, in particular blasting abrasives
US6146693A (en) * 1995-12-26 2000-11-14 Aerostar Coatings, S.L. Energy bleed apparatus and method for a detonation gun
WO1997023301A1 (en) * 1995-12-26 1997-07-03 Aerostar Coatings, S.L. Energy bleed apparatus and method for a detonation gun
US5716422A (en) * 1996-03-25 1998-02-10 Wilson Greatbatch Ltd. Thermal spray deposited electrode component and method of manufacture
US6175485B1 (en) 1996-07-19 2001-01-16 Applied Materials, Inc. Electrostatic chuck and method for fabricating the same
US6455108B1 (en) 1998-02-09 2002-09-24 Wilson Greatbatch Ltd. Method for preparation of a thermal spray coated substrate for use in an electrical energy storage device
US6004372A (en) * 1999-01-28 1999-12-21 Praxair S.T. Technology, Inc. Thermal spray coating for gates and seats
US6503442B1 (en) 2001-03-19 2003-01-07 Praxair S.T. Technology, Inc. Metal-zirconia composite coating with resistance to molten metals and high temperature corrosive gases
US20020168466A1 (en) * 2001-04-24 2002-11-14 Tapphorn Ralph M. System and process for solid-state deposition and consolidation of high velocity powder particles using thermal plastic deformation
US6915964B2 (en) 2001-04-24 2005-07-12 Innovative Technology, Inc. System and process for solid-state deposition and consolidation of high velocity powder particles using thermal plastic deformation
US6630207B1 (en) 2001-07-17 2003-10-07 Science Applications International Corporation Method and apparatus for low-pressure pulsed coating
US6749900B2 (en) 2001-07-17 2004-06-15 Science Applications International Corporation Method and apparatus for low-pressure pulsed coating
WO2003082533A1 (en) * 2002-03-28 2003-10-09 Hardide Limited Self-sharpening cutting tool with hard coating
AU2003214433B2 (en) * 2002-03-28 2008-08-07 Hardide Coatings Limited Self-sharpening cutting tool with hard coating
US7166371B2 (en) 2002-03-28 2007-01-23 Hardide Limited Self-sharpening cutting tool with hard coating
US20050158589A1 (en) * 2002-03-28 2005-07-21 Hardide Limited Self-sharpening cutting tool with hard coating
US20030196600A1 (en) * 2002-04-17 2003-10-23 Science Applications International Corporation Method and apparatus for pulsed detonation coating of internal surfaces of small diameter tubes and the like
US6787194B2 (en) 2002-04-17 2004-09-07 Science Applications International Corporation Method and apparatus for pulsed detonation coating of internal surfaces of small diameter tubes and the like
US20040149222A1 (en) * 2002-06-20 2004-08-05 Tefft Stephen Wayne High-temperature powder deposition method utilizing feedback control
US6736902B2 (en) 2002-06-20 2004-05-18 General Electric Company High-temperature powder deposition apparatus and method utilizing feedback control
US20060208113A1 (en) * 2003-04-21 2006-09-21 Kwang-Jae Lee Muller
US7513447B2 (en) * 2003-04-21 2009-04-07 Nano Korea Company, Ltd. Muller
US20050109231A1 (en) * 2003-11-20 2005-05-26 Bussing Thomas R.A. Detonative cleaning apparatus
US7104223B2 (en) * 2003-11-20 2006-09-12 United Technologies Corporation Detonative cleaning apparatus
US20060251821A1 (en) * 2004-10-22 2006-11-09 Science Applications International Corporation Multi-sectioned pulsed detonation coating apparatus and method of using same
US20080233282A1 (en) * 2005-05-09 2008-09-25 University Of Ottawa Methods and Apparatuses For Material Deposition
US8298612B2 (en) * 2005-05-09 2012-10-30 University Of Ottawa Method for depositing particulate material onto a surface
EP1893782A4 (en) * 2005-05-09 2010-08-04 Univ Ottawa Methods and apparatuses for material deposition
EP1893782A1 (en) * 2005-05-09 2008-03-05 University of Ottawa Methods and apparatuses for material deposition
US9975812B2 (en) 2005-10-07 2018-05-22 Oerlikon Metco (Us) Inc. Ceramic material for high temperature service
US11046614B2 (en) 2005-10-07 2021-06-29 Oerlikon Metco (Us) Inc. Ceramic material for high temperature service
US8507105B2 (en) 2005-10-13 2013-08-13 Praxair S.T. Technology, Inc. Thermal spray coated rolls for molten metal baths
US20070087205A1 (en) * 2005-10-13 2007-04-19 William Jarosinski Thermal spray coated rolls for molten metal bath
US20100211180A1 (en) * 2006-03-21 2010-08-19 Jet Engineering, Inc. Tetrahedral Amorphous Carbon Coated Medical Devices
US20070261767A1 (en) * 2006-05-12 2007-11-15 William John Crim Jarosinski Thermal spray coated work rolls for use in metal and metal alloy sheet manufacture
US8524375B2 (en) 2006-05-12 2013-09-03 Praxair S.T. Technology, Inc. Thermal spray coated work rolls for use in metal and metal alloy sheet manufacture
US8197950B2 (en) 2006-05-26 2012-06-12 Praxair S.T. Technology, Inc. Dense vertically cracked thermal barrier coatings
WO2008000851A1 (en) 2006-06-28 2008-01-03 Fundacion Inasmet Thermal spraying method and device
US8572946B2 (en) 2006-12-04 2013-11-05 Firestar Engineering, Llc Microfluidic flame barrier
WO2008076953A3 (en) * 2006-12-15 2009-09-17 Praxair S.T. Technology, Inc. Amorphous-nanocrystalline-microcrystalline coatings
WO2008076953A2 (en) * 2006-12-15 2008-06-26 Praxair S.T. Technology, Inc. Amorphous-nanocrystalline-microcrystalline coatings
US8465602B2 (en) 2006-12-15 2013-06-18 Praxair S. T. Technology, Inc. Amorphous-nanocrystalline-microcrystalline coatings and methods of production thereof
US20080292897A1 (en) * 2007-05-22 2008-11-27 United Technologies Corporation Wear resistant coating
US8530050B2 (en) 2007-05-22 2013-09-10 United Technologies Corporation Wear resistant coating
US20090133788A1 (en) * 2007-11-09 2009-05-28 Firestar Engineering, Llc Nitrous oxide fuel blend monopropellants
US9291264B2 (en) 2010-04-19 2016-03-22 Praxair S. T. Technology, Inc. Coatings and powders, methods of making same, and uses thereof
US8906130B2 (en) 2010-04-19 2014-12-09 Praxair S.T. Technology, Inc. Coatings and powders, methods of making same, and uses thereof
US20140248440A1 (en) * 2010-05-12 2014-09-04 Enerize Corporation Method of the electrode production
US20110287189A1 (en) * 2010-05-12 2011-11-24 Enerize Corporation Method of the electrode production
US20120212249A1 (en) * 2011-02-23 2012-08-23 King Yuan Electronics Co., Ltd Hard and wear-resisting probe and manufacturing method thereof
CN102560320A (en) * 2012-01-05 2012-07-11 哈尔滨飞机工业集团有限责任公司 Detonation gun spraying method of tungsten carbide
US10099322B2 (en) 2012-10-29 2018-10-16 South Dakota Board Of Regents Methods for cold spray repair
US20140117109A1 (en) * 2012-10-29 2014-05-01 Christian Widener Cold spray device and system
US11292019B2 (en) 2012-10-29 2022-04-05 South Dakota Board Of Regents Cold spray device and system
US10441962B2 (en) * 2012-10-29 2019-10-15 South Dakota Board Of Regents Cold spray device and system
KR101553466B1 (en) 2013-02-14 2015-09-15 프랙스에어 에스.티. 테크놀로지, 인코포레이티드 SELECTIVE OXIDATION OF A MODIFIED MCrAlY COMPOSITION LOADED WITH HIGH LEVELS OF CERAMIC ACTING AS A BARRIER TO SPECIFIC OXIDE FORMATIONS
EP2767609A1 (en) 2013-02-14 2014-08-20 Praxair S.T. Technology, Inc. Selective oxidation of a modified MCrAIY composition loaded with high levels of ceramic acting as a barrier to specific oxide formations
US8697250B1 (en) 2013-02-14 2014-04-15 Praxair S.T. Technology, Inc. Selective oxidation of a modified MCrAlY composition loaded with high levels of ceramic acting as a barrier to specific oxide formations
US11626584B2 (en) 2014-04-25 2023-04-11 South Dakota Board Of Regents High capacity electrodes
WO2017112546A2 (en) 2015-12-23 2017-06-29 Praxair S.T. Technology, Inc. Improved thermal spray coatings onto non-smooth surfaces
US10801097B2 (en) 2015-12-23 2020-10-13 Praxair S.T. Technology, Inc. Thermal spray coatings onto non-smooth surfaces
US11824189B2 (en) 2018-01-09 2023-11-21 South Dakota Board Of Regents Layered high capacity electrodes
US11780051B2 (en) 2019-12-31 2023-10-10 Cold Jet, Llc Method and apparatus for enhanced blast stream

Also Published As

Publication number Publication date
NL91125C (en) 1900-01-01
FR1058357A (en) 1954-03-16
DE1184176B (en) 1964-12-23
GB742387A (en) 1955-12-30
CH363540A (en) 1962-07-31
GB742458A (en) 1955-12-30
CH349856A (en) 1960-10-31
BE546121A (en) 1900-01-01
GB787222A (en) 1957-12-04
CH329742A (en) 1958-05-15
LU31550A1 (en)
BE512449A (en) 1900-01-01
LU33526A1 (en)
LU34279A1 (en)

Similar Documents

Publication Publication Date Title
US2714563A (en) Method and apparatus utilizing detonation waves for spraying and other purposes
US3996398A (en) Method of spray-coating with metal alloys
US2964420A (en) Refractory coated body
US20050100756A1 (en) Reactive materials and thermal spray methods of making same
EP0889756B1 (en) Self sustained detonation apparatus
JPH06504227A (en) Thermal spray method that utilizes the powder grain temperature during conveyance, which is below the melting point.
EP1805365A2 (en) Flame spraying process and apparatus
Chagnon et al. Thermal spraying of ceramics
US20070113781A1 (en) Flame spraying process and apparatus
Van Steenkiste Kinetic spray: a new coating process
Browning Hypervelocity impact fusion—a technical note
US20030196600A1 (en) Method and apparatus for pulsed detonation coating of internal surfaces of small diameter tubes and the like
US2976166A (en) Metal oxide containing coatings
US3505101A (en) High temperature wear resistant coating and article having such coating
EP0866732B1 (en) Labyrinth gas feed apparatus and method for a detonation gun
US6146693A (en) Energy bleed apparatus and method for a detonation gun
US2823562A (en) Method of fabricating files and the like
US20030175442A1 (en) Method and apparatus for low-pressure pulsed coating
US6000627A (en) Detonation gun apparatus and method
US6168828B1 (en) Labyrinth gas feed apparatus and method for a detonation gun
Kreye et al. High velocity oxy-fuel flame spraying-process and coating characteristics
US5985373A (en) Method and apparatus for applying multi-layered coatings by detonation
WO1997023301A1 (en) Energy bleed apparatus and method for a detonation gun
WO1997023299A1 (en) Detonation gun apparatus and method
Коваленко et al. INCREASE DURABILITY OF ITEMS BY USING A DETONATION-GAS COATING