US2694637A - Photographic emulsions containing a silanic sensitizer - Google Patents

Photographic emulsions containing a silanic sensitizer Download PDF

Info

Publication number
US2694637A
US2694637A US237687A US23768751A US2694637A US 2694637 A US2694637 A US 2694637A US 237687 A US237687 A US 237687A US 23768751 A US23768751 A US 23768751A US 2694637 A US2694637 A US 2694637A
Authority
US
United States
Prior art keywords
silanic
silver halide
coated
emulsion
photographic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US237687A
Inventor
Russell H Gray
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to US237687A priority Critical patent/US2694637A/en
Application granted granted Critical
Publication of US2694637A publication Critical patent/US2694637A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/08Sensitivity-increasing substances
    • G03C1/10Organic substances

Definitions

  • This invention relates to photography and more particularly to radiation sensitive photographic emulsions and elements. Still more particularly it relates to light-sensitive siiver halide emulsions or dispersions and tophotographic elements having a layer or layers composed of such emulsions which have in operative association with the emulsions a silanic compound possessing at least one silicon-hydrogen linkage.
  • An object of this invention is to provide improved photographic silver halide emulsions and emulsion layers. Another object is to provide a practical and economical method of increasing the speed of photographic silver halide emulsions and emulsion layers. A further object is to provide photographic elements including plates, films and papers with silver halide emulsion layers of increased speed or sensitivity. A still further object of the invention is to provide such photographic elements of two or more layers with different degrees of sensitivity in the various layers. Still other objects will be apparent from the following description of the invention.
  • silanic compounds possessing at least one silicon-hydrogen linkage are brought into operative association with a lightsensitive silver halide emulsion a beneficial increase in the speed or sensitivity of the emulsion is obtained.
  • the silanic compounds can be brought into operative association with the silver halide grains by incorporating them with the emulsions or by having them in a layer contiguous with the silver halide emulsion layer.
  • the invention is useful in improving the speed or sensitivity of photographic silver halide emulsions in general, it is especially useful for improving silver halide emulsions which have a pH on the alkaline side.
  • the silanic compounds which possess at least one silicon-hydrogen bond are coated; combined, or adsorbed on the surface of finely divided discrete inert particles which have an average diameter not greater than 10,000 and not less. than 1 millimicron.
  • the coated particles have the advantage that they provide a relatively large surface area so that the silanic compound will be brought into operative association or intimate contact with the silver halide grains and by virtue of their size tend to prevent diffusion or. wandering in the coated layers.
  • Suitable materials for the discrete inert particles include colorless or white materials, e.
  • silicon dioxide of the dense or solid type inorganic silicates such as magnesium silicate, diatomaceous silicas, sodium aluminum silicate and calcium carbonate, barium sulfate and titanium dioxide, etc., or colored or black particles, e. g., carbon black, lamp black, etc.
  • the inert particles can be coated by adding an inert solvent solution or dispersion of the silanic compound to the finely divided particles.
  • the amount of silanic compound used should in general, constitute from 0.1% to 100% of the total weight of the coated particles.
  • liquid silanic compounds no solvent is needed and the inert particles and liquid silanic compound can be mixed in suitable proportions so that the latter are coated in an amount between 0.1% and 100% based on the weight of the particles.
  • the silanic compounds containing at least one silicon-hydrogen bond are incorporated with the light-sensitive silver halide emulsion prior to coating it as a layer in a photographic element, e. g., a film, plate or paper.
  • a photographic element e. g., a film, plate or paper.
  • Example 1 127 F. for 60 minutes- After this digestion and before coating chrome alum, glycerine, benzotriazole and saponin were added. The resulting emulsions were coated onto a baryta coated paper base to form a thin layer and dried. Samples of these coatings were then exposed to a standard negative in a diffuse-light enlarger so that prints matched for photographic quality were obtained upon development in a solution of the following composition:
  • coated silica particles in the above table were made by treating water moistened silica particles having an average particle diameter of 0.015 micron with trichlorosilane which then hydrolyzed to form a coating of (HSiO1.5)n where n is 1 or more which constituted 15 to 20% of the total weight. of the coated particle.
  • Example 2 Inert-gelatin silver bromo-chloride emulsions containing the sensitizing adjuvant given in the table below were made, coated, exposed and processed in the same manner as. in Example 1 except that emulsion pH was adjusted The coated particles contained 0.184 g. of (HSiO1,5)'/L where n is 1 or greater.
  • the silica particles were coated with (HSiO1.5)7l where n is 1 or greater.
  • Example 5 Inert-gelatin silver bromo-chloride emulsions containing the adjuvants listed in the table below were made, coated, exposed and processed in the same manner as described in Example 2.
  • the [C2H5(H)Si0]4 of this example was a cyclic tetrarner prepared by the hydrolysis of C2H5(H)SiCl2 and subsequent condensation of the intermediate to the cyclic tetramer.
  • This emulsion was then coated on to a paper stock, dried and exposed in contact with a standard negative in a contact printer so that prints matched for photographic quality were obtained upon devolpment in the developer shown in Example 1 for 1.0 minute with the results tabulated below:
  • Example 9 A gelatino-silver halide emulsion containing about 93.5 mol percent of silver bromide and 6.5 mol percent of silver iodide was brought to its maximum light sensitivity and prepared for coating. Prior to digestion varying amounts based on 1.5 mol of silver halide of an aqueous dispersion of silaceous particles coated with hydrolized trichlorosilane were added to several separate portions of the emulsion as shown. The samples were coated on cellulose acetate film base and dried in the usual manner. The resulting coated elements were exposed to a series of graduated light intensities in an intensity scale sensitometer (Type 1-B) and then processed in a developer of the following composition:
  • silica particles of Examples 1, 2, 7, 8 and 9 had an average diameter of 0.015 micron and were obtained from Linde Air Products Company and those of Examples 3 and 4 had the same diameter but were obtained from Mallinckrodt Chemical Works under the trade name Si-O-Lite.
  • Example 10 A photographic emulsion comprising a dispersion of silver bromo-iodide in a hydrophilic hydrolyzed ethylene/vinylacetate copolymer of the type described in McQueen U. S. Patent 2,397,866 was prepared and during the final digestion was split into a number of portions. One of the portions was used as a control and digestion was continued. To the others were added the adjuvants listed in the following table. Digestion was continued and after addition of ammonium hydroxide and saponin, the various portions of emulsions were coated onto a paper base to form a thin layer and dried. Sample strips of the light-sensitive photographic papers were then exposed and processed in the manner described in Example 1 with the following results:
  • the invention is, of course, not limited to the use of the specific silanic compounds mentioned in the foregoing examples nor to the specific amounts given in such examples.
  • a large number of other silanic compounds which possess at least one silicon-hydrogen bond can be substituted in like manner.
  • any particular silanic compound which contains a silicon-hydrogen bond can be determined by testing whether it or its hydrolysis products are capable of exerting a reducing action on or nucleating silver halide.
  • the mechanism or theory as to why the silanic compounds are effective as chemical sensitizers for silver halide emulsions is not completely understood but it is believed that the silicon-hydrogen linkage must be capable of alkaline induced hydrolysis which is illustrated in the following equation for a useful class of silanic compounds:
  • Rn is hydrogen, halogen, e. g., Fl, Cl and Br; alkyl of 1 to 30 carbon atoms, alkoxy of 1 to 30 carbon atoms, aryl, e. g., phenyl, tolyl, naphthyl, etc.; aryloxy, e. g., phenoxy, naphthoxy, etc., siloxy or combinations thereof, n being 1-3.
  • alkyl silanes e. g., methyl silane, dimethyl silane, trimethyl silane; ethyl silane, diethyl silane, triethyl silane, n-propyl silane, butyl silane; alkyl halogenosilanes, dimethylchlorosilane, ethyl dichlorosilane, diethylchlorosilane, propyl dichlorosilane, aryl silanes, e. g., diphenyl silane, triphenyl silane and mixed alkyl aryl silanes, e.
  • ethyl diphenyl silane methyl phenyl silane and dihexyl phenyl silane
  • alkoxy, aroxy, alkoxy halogeno, and aroxy halogeno silanes e. g., diethoxy silane, methyl dichlorodiethoxy silane and phenoxy silane
  • cyclic and linear polymeric siloxanes e. g., cyclic tetrameric methyl siloxane and its linear analogue HO[CH3(H)SiO]4I-I. Hydrolysis products of the above listed silanes which retain a siliconhydrogen bond may also be used.
  • the invention is not limited to the use of one silanic compound as mixtures of two or more can often be used with satisfactory results. Nor is the invention limited to any particular method of application.
  • the silanic compounds When the silanic compounds are not used as coatings on inert particles they may be added to an aqueous colloid silver halide emulsion or an aqueous colloid solution as solutions in suitable solvents which do not have a deleterious efiect on a light-sensitive silver halide.
  • suitable solvents are methanol, ethanol, diethyl ether, acetone, benzene, etc.
  • silanic compounds of the invention may be added to the hydrophilic or water-permeable colloid silver halide emulsions over a wide range of proportions, e. g., from 0.5 mg. to 370 mg. of said silanic compound per 1.5 mols of silver halide.
  • the amount will, of course, vary with the particular silanic compound and the particular type of emulsion. They may be used with other emulsion sensitizers, e. g., sulfur sensitizers.
  • the silanic compound When the silanic compound is not added directly to the silver halide emulsion but is used in a continguous light-insensitive layer, e. g., a sub-layer or filter layer or overcoating they can be added to the coating solution, which is generally an aqueous solution or dispersion of a water-permeable colloid, e. g., gelatin, hydrolyzed ethylene/vinylacetate copolymers, polyvinyl alcohol, polyvinyl acetals including those which contain color forming nuclei such as those described in Jennings et al. U. S. Patent 2,397,864; polyglycuronic acids, hydrolyzed cellulose acetate, carboxymethyl cellulose, albumin, zein, casein, agaragar, etc.
  • a water-permeable colloid e. g., gelatin, hydrolyzed ethylene/vinylacetate copolymers, polyvinyl alcohol, polyviny
  • colloids also have utility as binding agents for the silver halide grains in emulsion layers.
  • a wetting or dispersing agent in an amount of 0.1 to based on the total weight of the silanic compound-coated inert particle.
  • Suitable agents include the oxyalkylene ethers of hexitol ring dehydration products, e. g., the polyoxyethylene sorbitan monolaurate, monostearate and monooleates which contain 2 to 20 oxyethylene groups divided in 3 chains. Additional specific agents of this type are described in Blake et a1. U. S. Patent 2,400,532. Still other agents which may be suitable include octyl phenyl polyglycol ether; sodium lauryl sulfate and the dioctyl ester of sodium sulfosuccinic acid.
  • An advantage of this invention is that it provides silver halide emulsion layers which have enhanced photographic density and this can be attained in a simple and economical manner.
  • a further advantage is that the silanic compounds are commercially available.
  • Another advantage resides in the fact that the compounds in addition to conferring enhanced speed characteristics to the emulsions do not produce any material amount of fog.
  • An advantage of the use of inert particles, e. g., silica particles, coated with the silanic compounds is that they do not migrate or diffuse in emulsion layers. This is of importance for uniformity and in multilayer photographic films and popers for color photography.
  • a photographic silver halide emulsion containing from 0.5 to 370 mg. of a silanic compound having at least one silicon-hydrogen bond per 1.5 mols of silver halide.
  • a photographic silver halide emulsion containing from 0.5 to 370 mg. of a silanic compound having at least one silicon-hydrogen bond per 1.5 mols of silver halide, said silanic compound being coated on the surface of inert particles having an average diameter from 0.001 to 10 microns.

Description

PHOTOGRAPHIC EMULSIONS CONTAINING A SILANIC SENSITIZER Russell H. Gray, Red Bank, N. 5., assignor to E. I. du Pont de Nemours and Company, Wilmington, DeL, a corporation of Delaware No Drawing. Application July 19, 1951, Serial No. 237,687
8 Claims. (Cl. 95-7) This invention relates to photography and more particularly to radiation sensitive photographic emulsions and elements. Still more particularly it relates to light-sensitive siiver halide emulsions or dispersions and tophotographic elements having a layer or layers composed of such emulsions which have in operative association with the emulsions a silanic compound possessing at least one silicon-hydrogen linkage.
An object of this invention is to provide improved photographic silver halide emulsions and emulsion layers. Another object is to provide a practical and economical method of increasing the speed of photographic silver halide emulsions and emulsion layers. A further object is to provide photographic elements including plates, films and papers with silver halide emulsion layers of increased speed or sensitivity. A still further object of the invention is to provide such photographic elements of two or more layers with different degrees of sensitivity in the various layers. Still other objects will be apparent from the following description of the invention.
It has been discovered that if a small amount of a silanic compound possessing at least one silicon-hydrogen linkage is brought into operative association with a lightsensitive silver halide emulsion a beneficial increase in the speed or sensitivity of the emulsion is obtained. The silanic compounds can be brought into operative association with the silver halide grains by incorporating them with the emulsions or by having them in a layer contiguous with the silver halide emulsion layer.
While the invention is useful in improving the speed or sensitivity of photographic silver halide emulsions in general, it is especially useful for improving silver halide emulsions which have a pH on the alkaline side.
In a preferred embodiment of the invention the silanic compounds which possess at least one silicon-hydrogen bond are coated; combined, or adsorbed on the surface of finely divided discrete inert particles which have an average diameter not greater than 10,000 and not less. than 1 millimicron. The coated particles have the advantage that they provide a relatively large surface area so that the silanic compound will be brought into operative association or intimate contact with the silver halide grains and by virtue of their size tend to prevent diffusion or. wandering in the coated layers. Suitable materials for the discrete inert particles include colorless or white materials, e. g., silicon dioxide of the dense or solid type, inorganic silicates such as magnesium silicate, diatomaceous silicas, sodium aluminum silicate and calcium carbonate, barium sulfate and titanium dioxide, etc., or colored or black particles, e. g., carbon black, lamp black, etc.
The inert particles can be coated by adding an inert solvent solution or dispersion of the silanic compound to the finely divided particles. The amount of silanic compound used, should in general, constitute from 0.1% to 100% of the total weight of the coated particles. In the case of liquid silanic compounds, no solvent is needed and the inert particles and liquid silanic compound can be mixed in suitable proportions so that the latter are coated in an amount between 0.1% and 100% based on the weight of the particles.
In the preferred aspect of the invention, the silanic compounds containing at least one silicon-hydrogen bond are incorporated with the light-sensitive silver halide emulsion prior to coating it as a layer in a photographic element, e. g., a film, plate or paper. This-may be accomplished' by adding it or a particle coated with it to the Stats Patent silver halide emulsion or dispersion at some stage during the preparation of or treatment of the emulsion prior to coating. In general, it is more advantageous to incorporate the silanic compound with the emulsion or dispersion subsequent to the attainment of the final or maximum silver halide grain size, e. g., before, during or after the stage of emulsion manufacture termed remeltingJ' digestion or second or after-ripening.
The invention will be further illustrated but is not intended to be limited by the following examples wherein the: emulsions were made and coated under such conditions that no significant amount of actinic. light was present.
Example 1 127 F. for 60 minutes- After this digestion and before coating chrome alum, glycerine, benzotriazole and saponin were added. The resulting emulsions were coated onto a baryta coated paper base to form a thin layer and dried. Samples of these coatings were then exposed to a standard negative in a diffuse-light enlarger so that prints matched for photographic quality were obtained upon development in a solution of the following composition:
Grams N-methyl para-aminophenol sulfate 1.0 Hydroquinone 4.0 Sodium sulfite 15.0 Sodium carbonate 22.5 Potassium bromide 0.63
Water to make 1.0, liter for 1.5 minutes at 68 F. The results are shown in the following table.
Adjuvant; Grams g ggg Fog None .i 0. 01 Silicaparticles coated th hydrolyzed I trichlorosllane 1.05 417 0. 04
The coated silica particles in the above table were made by treating water moistened silica particles having an average particle diameter of 0.015 micron with trichlorosilane which then hydrolyzed to form a coating of (HSiO1.5)n where n is 1 or more which constituted 15 to 20% of the total weight. of the coated particle.
Example 2 Inert-gelatin silver bromo-chloride emulsions containing the sensitizing adjuvant given in the table below were made, coated, exposed and processed in the same manner as. in Example 1 except that emulsion pH was adjusted The coated particles contained 0.184 g. of (HSiO1,5)'/L where n is 1 or greater.
Example 3 Inert-gelatin silver bromo-chloride emulsions containing the adjuvant listed in the table below were made,
coated, exposed and processed in the same manner as described in Example 2.
Adjuvant Grams igg Fog None t 100 0.01 Solid silica particles coated with by lyzed trichlorosilane 1. 05 375 0.02
The silica particles were coated with (HSiO1.5)7l where n is 1 or greater.
Example 5 Inert-gelatin silver bromo-chloride emulsions containing the adjuvants listed in the table below were made, coated, exposed and processed in the same manner as described in Example 2.
Admvant Grams Fog one 100 Cyclic ECzHsQEUSlO 700 0. Cyclic C2H5(H)SiO]4 0. 005 350 U The [C2H5(H)Si0]4 of this example was a cyclic tetrarner prepared by the hydrolysis of C2H5(H)SiCl2 and subsequent condensation of the intermediate to the cyclic tetramer.
Example 6 Inert-gelatin silver bromo-chloride emulsions containing the adjuvant listed in the table below were made,
coated, exposed and processed in the same manner as described in Example 2.
Adjuvant Grams 532; 6 Fog None 100 0 Methyldichlorosilane 0. 005 167 0 Example 7 A slow speed chlorobromide emulsion (AgCl=95.2 mol percent, AgBr=4.8 mol percent) was prepared by a formula which normally yields a satisfactory contact printing paper and was brought to optimum speed level preparatory to coating and additions of a sensitizing dye, glycerine, benzotriazole and chrome alum were made. To a portion of this emulsion was added a stabilized aqueous dispersion of silaceous particles of approximately 50 millimicrons diameter coated with -20% of hydrolyzed trichlorosilane (HSiO1.5)11, where n is l or greater in the quantity as shown per 1.5 mols silver halide. This emulsion was then coated on to a paper stock, dried and exposed in contact with a standard negative in a contact printer so that prints matched for photographic quality were obtained upon devolpment in the developer shown in Example 1 for 1.0 minute with the results tabulated below:
Gram i Relative Speed 1.5 mo e Ad uvant Fog Blue Green Light Light None 100 124 0 S102 particles coated with hydrolyzed trichlorosilane 0.10 124 150 0.01
Example 9 A gelatino-silver halide emulsion containing about 93.5 mol percent of silver bromide and 6.5 mol percent of silver iodide was brought to its maximum light sensitivity and prepared for coating. Prior to digestion varying amounts based on 1.5 mol of silver halide of an aqueous dispersion of silaceous particles coated with hydrolized trichlorosilane were added to several separate portions of the emulsion as shown. The samples were coated on cellulose acetate film base and dried in the usual manner. The resulting coated elements were exposed to a series of graduated light intensities in an intensity scale sensitometer (Type 1-B) and then processed in a developer of the following composition:
Water to make 1.0 liter for 10 minutes at 68, fixed, washed and dried. The following results were obtained at equal degrees of contrast:
- Relative Total Weight Ad uvaut Added-Grams speed Fog The silica particles of Examples 1, 2, 7, 8 and 9 had an average diameter of 0.015 micron and were obtained from Linde Air Products Company and those of Examples 3 and 4 had the same diameter but were obtained from Mallinckrodt Chemical Works under the trade name Si-O-Lite.
Example 10 A photographic emulsion comprising a dispersion of silver bromo-iodide in a hydrophilic hydrolyzed ethylene/vinylacetate copolymer of the type described in McQueen U. S. Patent 2,397,866 was prepared and during the final digestion was split into a number of portions. One of the portions was used as a control and digestion was continued. To the others were added the adjuvants listed in the following table. Digestion was continued and after addition of ammonium hydroxide and saponin, the various portions of emulsions were coated onto a paper base to form a thin layer and dried. Sample strips of the light-sensitive photographic papers were then exposed and processed in the manner described in Example 1 with the following results:
i R 1 i per e at V0 Adluvzmt mol silver Speed Fng halide None 0 Cyclic [C2H5(H)S1O]4 2, 540 0.15 Methyldlchiorosilane (0 E8101: 1, 940 0.05
The invention is, of course, not limited to the use of the specific silanic compounds mentioned in the foregoing examples nor to the specific amounts given in such examples. A large number of other silanic compounds which possess at least one silicon-hydrogen bond can be substituted in like manner.
The utility of any particular silanic compound which contains a silicon-hydrogen bond can be determined by testing whether it or its hydrolysis products are capable of exerting a reducing action on or nucleating silver halide. The mechanism or theory as to why the silanic compounds are effective as chemical sensitizers for silver halide emulsions is not completely understood but it is believed that the silicon-hydrogen linkage must be capable of alkaline induced hydrolysis which is illustrated in the following equation for a useful class of silanic compounds:
where Rn is hydrogen, halogen, e. g., Fl, Cl and Br; alkyl of 1 to 30 carbon atoms, alkoxy of 1 to 30 carbon atoms, aryl, e. g., phenyl, tolyl, naphthyl, etc.; aryloxy, e. g., phenoxy, naphthoxy, etc., siloxy or combinations thereof, n being 1-3.
Among the additional suitable specific silanic compounds which can be used, there may be mentioned: alkyl silanes, e. g., methyl silane, dimethyl silane, trimethyl silane; ethyl silane, diethyl silane, triethyl silane, n-propyl silane, butyl silane; alkyl halogenosilanes, dimethylchlorosilane, ethyl dichlorosilane, diethylchlorosilane, propyl dichlorosilane, aryl silanes, e. g., diphenyl silane, triphenyl silane and mixed alkyl aryl silanes, e. g., ethyl diphenyl silane, methyl phenyl silane and dihexyl phenyl silane; alkoxy, aroxy, alkoxy halogeno, and aroxy halogeno silanes, e. g., diethoxy silane, methyl dichlorodiethoxy silane and phenoxy silane; cyclic and linear polymeric siloxanes, e. g., cyclic tetrameric methyl siloxane and its linear analogue HO[CH3(H)SiO]4I-I. Hydrolysis products of the above listed silanes which retain a siliconhydrogen bond may also be used.
The invention is not limited to the use of one silanic compound as mixtures of two or more can often be used with satisfactory results. Nor is the invention limited to any particular method of application. When the silanic compounds are not used as coatings on inert particles they may be added to an aqueous colloid silver halide emulsion or an aqueous colloid solution as solutions in suitable solvents which do not have a deleterious efiect on a light-sensitive silver halide. Among such solvents are methanol, ethanol, diethyl ether, acetone, benzene, etc.
The silanic compounds of the invention may be added to the hydrophilic or water-permeable colloid silver halide emulsions over a wide range of proportions, e. g., from 0.5 mg. to 370 mg. of said silanic compound per 1.5 mols of silver halide. The amount will, of course, vary with the particular silanic compound and the particular type of emulsion. They may be used with other emulsion sensitizers, e. g., sulfur sensitizers.
When the silanic compound is not added directly to the silver halide emulsion but is used in a continguous light-insensitive layer, e. g., a sub-layer or filter layer or overcoating they can be added to the coating solution, which is generally an aqueous solution or dispersion of a water-permeable colloid, e. g., gelatin, hydrolyzed ethylene/vinylacetate copolymers, polyvinyl alcohol, polyvinyl acetals including those which contain color forming nuclei such as those described in Jennings et al. U. S. Patent 2,397,864; polyglycuronic acids, hydrolyzed cellulose acetate, carboxymethyl cellulose, albumin, zein, casein, agaragar, etc.
These colloids also have utility as binding agents for the silver halide grains in emulsion layers.
In order that the particles coated with such silanic compounds, may be dispersed rapidly and uniformly throughout the emulsions, it is desirable to use a wetting or dispersing agent in an amount of 0.1 to based on the total weight of the silanic compound-coated inert particle. Suitable agents include the oxyalkylene ethers of hexitol ring dehydration products, e. g., the polyoxyethylene sorbitan monolaurate, monostearate and monooleates which contain 2 to 20 oxyethylene groups divided in 3 chains. Additional specific agents of this type are described in Blake et a1. U. S. Patent 2,400,532. Still other agents which may be suitable include octyl phenyl polyglycol ether; sodium lauryl sulfate and the dioctyl ester of sodium sulfosuccinic acid.
An advantage of this invention is that it provides silver halide emulsion layers which have enhanced photographic density and this can be attained in a simple and economical manner. A further advantage is that the silanic compounds are commercially available. Another advantage resides in the fact that the compounds in addition to conferring enhanced speed characteristics to the emulsions do not produce any material amount of fog. An advantage of the use of inert particles, e. g., silica particles, coated with the silanic compounds is that they do not migrate or diffuse in emulsion layers. This is of importance for uniformity and in multilayer photographic films and popers for color photography.
As many widely different embodiments of this invention can be made without departing from the spirit and scope thereof, it is to be understood that the invention is not to be limited except as defined by the claims.
What is claimed is:
1. A photographic silver halide emulsion containing from 0.5 to 370 mg. of a silanic compound having at least one silicon-hydrogen bond per 1.5 mols of silver halide.
2. An emulsion as set forth in claim 1 wherein said compound is CHsHSiClz.
3. A photographic gelatino-silver halide emulsion containing from 0.5 to 370 mg. of a silanic compound having at least one silicon-hydrogen bond per 1.5 mols of silver halide.
4. An emulsion as set forth in claim 3 wherein said compound is [CzHs (H) SiO]4.
5. A photographic silver halide emulsion containing from 0.5 to 370 mg. of a silanic compound having at least one silicon-hydrogen bond per 1.5 mols of silver halide, said silanic compound being coated on the surface of inert particles having an average diameter from 0.001 to 10 microns.
6. An emulsion as set forth in claim 5 where said compound is a hydrolyzed trichlorosilane of the formula (HSiO1.5)n where n is an integer of at least 1.
7. A photographic silver halide emulsion containing from 0.5 to 370 mg. of a silanic compound having at least one silicon-hydrogen bond per 1.5 mols of silver halide, said silanic compound being coated on the surface of silica particles having an average diameter from 0.001 to 10 microns.
8. An emulsion as set forth in claim 7 where said compound is H0[(C2H5)HSiO]nH where n is 6 to 20.
References Cited in the file of this patent UNITED STATES PATENTS Number Name Date 2,322,037 Lindquist June 15, 1943 2,327,380 Toland et al. Aug. 24, 1943 2,433,515 Jahoda Dec. 30, 1947 2,604,398 Soper July 22, 1952 FOREIGN PATENTS Number Country Date 368,082 Great Britain Mar. 3, 1932 OTHER REFERENCES Rochow, Chemistry of the Silicones (1946), pub., John Wiley and Sons, N. Y. C., pp. 8, 49-59 and 122.

Claims (1)

1. A PHOTOGRAPHIC SILVER HALIDE EMULSION CONTAINING FROM 0.5 TO 370 MG. OF A SILANIC COMPOUND HAVING AT LEAST ONE SILICON-HYDROGEN BOND PER 1.5 MOLS OF SILVER HALIDE.
US237687A 1951-07-19 1951-07-19 Photographic emulsions containing a silanic sensitizer Expired - Lifetime US2694637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US237687A US2694637A (en) 1951-07-19 1951-07-19 Photographic emulsions containing a silanic sensitizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US237687A US2694637A (en) 1951-07-19 1951-07-19 Photographic emulsions containing a silanic sensitizer

Publications (1)

Publication Number Publication Date
US2694637A true US2694637A (en) 1954-11-16

Family

ID=22894737

Family Applications (1)

Application Number Title Priority Date Filing Date
US237687A Expired - Lifetime US2694637A (en) 1951-07-19 1951-07-19 Photographic emulsions containing a silanic sensitizer

Country Status (1)

Country Link
US (1) US2694637A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1049230B (en) * 1956-06-07 1959-01-22 Gevaert Photo Prod Nv Production of direct positive photographic images
US3042522A (en) * 1958-06-13 1962-07-03 Gen Aniline & Film Corp Photographic film and a composition for improving the slippage characteristics thereof
US3637391A (en) * 1968-09-05 1972-01-25 Agfa Gevaert Ag Process for the preparation of silver halide emulsions
US4046586A (en) * 1974-08-19 1977-09-06 American Optical Corporation Stabilized photochromic materials
EP0115351A2 (en) 1983-01-28 1984-08-08 Fuji Photo Film Co., Ltd. Silver halide light-sensitive material
EP0200206A2 (en) 1985-04-30 1986-11-05 Konica Corporation Silver halide photographic light-sensitive material
EP0201027A2 (en) 1985-04-30 1986-11-12 Konica Corporation Silver halide photographic light-sensitive material
EP0202784A2 (en) 1985-04-23 1986-11-26 Konica Corporation Silver halide photographic light-sensitive material
EP0209118A2 (en) 1985-07-17 1987-01-21 Konica Corporation Silver halide photographic material
EP0228084A2 (en) 1985-12-25 1987-07-08 Fuji Photo Film Co., Ltd. Image forming process
EP0476327A1 (en) 1990-08-20 1992-03-25 Fuji Photo Film Co., Ltd. Data-retainable photographic film product and process for producing color print
EP0580041A2 (en) 1992-07-10 1994-01-26 Fuji Photo Film Co., Ltd. Method of processing silver halide photographic material and composition for processing
EP0589460A1 (en) 1992-09-24 1994-03-30 Fuji Photo Film Co., Ltd. Method for processing a black & white silver halide light-sensitive material
EP0708371A2 (en) 1994-10-18 1996-04-24 Minnesota Mining And Manufacturing Company Additive for improving the performance of diffusion transfer printing plates
EP0708370A2 (en) 1994-10-18 1996-04-24 Minnesota Mining And Manufacturing Company Process for manufacturing diffusion transfer printing plates
US5582957A (en) * 1995-03-28 1996-12-10 Eastman Kodak Company Resuspension optimization for photographic nanosuspensions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB368082A (en) * 1930-03-16 1932-03-03 Reinhold Kupfer Improvements in or relating to light sensitive emulsions for photographic purposes for metal films
US2322037A (en) * 1939-07-07 1943-06-15 Eastman Kodak Co Photographic film
US2327380A (en) * 1941-11-13 1943-08-24 William C Toland Negative element
US2433515A (en) * 1945-04-18 1947-12-30 H P Andrews Paper Company Method of making photographic paper
US2604398A (en) * 1946-02-21 1952-07-22 Eastman Kodak Co Light-sensitive photographic stripping film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB368082A (en) * 1930-03-16 1932-03-03 Reinhold Kupfer Improvements in or relating to light sensitive emulsions for photographic purposes for metal films
US2322037A (en) * 1939-07-07 1943-06-15 Eastman Kodak Co Photographic film
US2327380A (en) * 1941-11-13 1943-08-24 William C Toland Negative element
US2433515A (en) * 1945-04-18 1947-12-30 H P Andrews Paper Company Method of making photographic paper
US2604398A (en) * 1946-02-21 1952-07-22 Eastman Kodak Co Light-sensitive photographic stripping film

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1049230B (en) * 1956-06-07 1959-01-22 Gevaert Photo Prod Nv Production of direct positive photographic images
US3042522A (en) * 1958-06-13 1962-07-03 Gen Aniline & Film Corp Photographic film and a composition for improving the slippage characteristics thereof
US3637391A (en) * 1968-09-05 1972-01-25 Agfa Gevaert Ag Process for the preparation of silver halide emulsions
US4046586A (en) * 1974-08-19 1977-09-06 American Optical Corporation Stabilized photochromic materials
EP0115351A2 (en) 1983-01-28 1984-08-08 Fuji Photo Film Co., Ltd. Silver halide light-sensitive material
EP0202784A2 (en) 1985-04-23 1986-11-26 Konica Corporation Silver halide photographic light-sensitive material
EP0200206A2 (en) 1985-04-30 1986-11-05 Konica Corporation Silver halide photographic light-sensitive material
EP0201027A2 (en) 1985-04-30 1986-11-12 Konica Corporation Silver halide photographic light-sensitive material
EP0209118A2 (en) 1985-07-17 1987-01-21 Konica Corporation Silver halide photographic material
EP0228084A2 (en) 1985-12-25 1987-07-08 Fuji Photo Film Co., Ltd. Image forming process
EP0476327A1 (en) 1990-08-20 1992-03-25 Fuji Photo Film Co., Ltd. Data-retainable photographic film product and process for producing color print
EP0580041A2 (en) 1992-07-10 1994-01-26 Fuji Photo Film Co., Ltd. Method of processing silver halide photographic material and composition for processing
EP0589460A1 (en) 1992-09-24 1994-03-30 Fuji Photo Film Co., Ltd. Method for processing a black & white silver halide light-sensitive material
EP0708371A2 (en) 1994-10-18 1996-04-24 Minnesota Mining And Manufacturing Company Additive for improving the performance of diffusion transfer printing plates
EP0708370A2 (en) 1994-10-18 1996-04-24 Minnesota Mining And Manufacturing Company Process for manufacturing diffusion transfer printing plates
US5582957A (en) * 1995-03-28 1996-12-10 Eastman Kodak Company Resuspension optimization for photographic nanosuspensions

Similar Documents

Publication Publication Date Title
US2694637A (en) Photographic emulsions containing a silanic sensitizer
US2518698A (en) Chemical sensitization of photographic emulsions
US3236652A (en) Stabilized silver halide emulsions
US2403927A (en) Improvers for photographic emulsions
US3150977A (en) Light-sensitive photographic materials
US4230796A (en) High speed lithographic film element
US2614927A (en) Rapid processing of photographic materials
US2878121A (en) Photographic elements and processes
US3359102A (en) Optical brightening of photographic materials
US2566709A (en) Diazotype photoprinting materials containing colloidal silica
US3219451A (en) Sensitizing photographic media
US2725296A (en) Two-layer integral negative positive photographic material
US3793027A (en) Developing composition for use with photographic materials for the graphic arts
US2773768A (en) Light-sensitive diazotype material
US3565625A (en) Photographic elements having thiazolidine compounds in light-in-sensitive layers
US2521925A (en) Chemical sensitization of photographic emulsions
US3857711A (en) Silver halide photographic emulsion sensitized with a heterocyclic compound containing 4-sulfur atoms
US2184023A (en) Buffered photographic emulsion
US3369902A (en) Lithographic plates sensitized with oxacarbocyanine and benzimidazole carbocyanine dyes
US2822271A (en) Photosensitive material
US2293261A (en) Photographic material
US3895950A (en) Photographic material with improved antistatic properties
US2244304A (en) Photographic process
US3294537A (en) Lith-type emulsions with organosilicone block copolymers
US3068100A (en) N-acylhomocysteine thiolactone stabilizers for photographic silver halide emulsions