US2676925A - Method of dispersing metal oxides and hydroxides in lubricating oils - Google Patents

Method of dispersing metal oxides and hydroxides in lubricating oils Download PDF

Info

Publication number
US2676925A
US2676925A US203783A US20378350A US2676925A US 2676925 A US2676925 A US 2676925A US 203783 A US203783 A US 203783A US 20378350 A US20378350 A US 20378350A US 2676925 A US2676925 A US 2676925A
Authority
US
United States
Prior art keywords
hydroxides
calcium
polyvalent metal
lubricating oil
metal oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US203783A
Inventor
Eddie G Lindstrom
Richard L Woodruff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
California Research LLC
Original Assignee
California Research LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to NL82973D priority Critical patent/NL82973C/xx
Priority to BE505425D priority patent/BE505425A/xx
Application filed by California Research LLC filed Critical California Research LLC
Priority to US203783A priority patent/US2676925A/en
Priority to GB19393/51A priority patent/GB718714A/en
Priority to DEC4623A priority patent/DE1002491B/en
Application granted granted Critical
Publication of US2676925A publication Critical patent/US2676925A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/123Reaction products obtained by phosphorus or phosphorus-containing compounds, e.g. P x S x with organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/063Peroxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/024Propene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/022Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/16Naphthenic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/086Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/109Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/066Arylene diamines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/068Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings having amino groups bound to polycyclic aromatic ring systems, i.e. systems with three or more condensed rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/022Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/042Sulfate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/088Neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • C10M2223/065Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/12Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2225/00Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2225/04Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of macromolecualr compounds not containing phosphorus in the monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/08Groups 4 or 14
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/14Group 7
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/16Groups 8, 9, or 10
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • C10N2040/253Small diesel engines

Definitions

  • This invention pertains to a method of dispersing polyvalent metal oxides and hydroxides in lubricating oils.
  • acids are formed in the lubricating oil itself and in the combustion chamber.
  • the acids formed in the lubricating oil itself are normally caused by oxidation of the lubricating oil during engine operation.
  • the resulting organic acids and peroxides break down the lubricating oil and contribute to wear by corrosion.
  • the combustion chamber acids normally come from the combustion products of the fuel. For example, when high sulfur fuels are used in diesel engines, sulfuric acid is formed from the sulfur. This sulfuric acid finds its way into the crankcase along with the blow-by gases.
  • col1oida1 dispersions (colloidal solutions) of polyvending metal oxides and hydroxides in lubricating oils can be obtained by the use of dihydric alcohols; the dispersions stabilized by dispersants.
  • polyvalent metal oxides and hydroxides are dispersed in lubricating oils by a method involving the use of dihydric alcohols, which dispersion is stabilized by a dispersant.
  • the polyvalent metal oxides and hydroxides normally are dissolved (or dispersed) in a dihydric alcohol.
  • the dihydric alcohol solutions (or dispersions) are then thoroughly blended with lubricating oils to form dispersions of polyvalent metal oxides or hydroxides, which dispersions are stabilized by dispersants.
  • Lubricating oils in which the polyvalent metal oxides and hydroxides can be dispersed according to the present invention include a wide variety of lubricating oils such as naphthenic base, parafiin base, and mixed base mineral oils, other hydrocarbon lubricants, e. g., lubricating oils derived from coal products and synthetic oils, e. g., alkylene polymers (such as polymers of propylene, butylene, etc., and mixtures thereof), alkylene oxide type polymers, dicarboxylic acid esters and liquid esters of acids of phosphorus.
  • Synthetic oils of the alkylene oxide type polymer which may be used include those exemplified by alkylene oxide polymers (e.
  • propylene oxide polymers and derivatives, including alkylene oxide polymers prepared by polymerizing alkylene oxides (e. g., propylene oxide) in the presence of Water or alcohols, e. g., ethyl alcohol, and esters of alkylene oxide type polymers, e. g., acetylated propylene oxide polymers prepared by acetylating the propylene oxide polymers containing hydroxyl groups.
  • alkylene oxide polymers prepared by polymerizing alkylene oxides (e. g., propylene oxide) in the presence of Water or alcohols, e. g., ethyl alcohol, and esters of alkylene oxide type polymers, e. g., acetylated propylene oxide polymers prepared by acetylating the propylene oxide polymers containing hydroxyl groups.
  • Synthetic oils of the dicarboxylic acid ester type include those which are prepared by esterifying such dicarboxylic acids as adipic acid, azelaic acid, suberic acid, sebacic acid, alkenyl succinic acid, fumaric acid, maleic acid, etc., with alcohols such as butyl alcohol, hexyl alcohol, Z-ethylhexyl alcohol, dodecyl alcohol, etc.
  • Examples of dicarboxylic acid ester synthetic oils include dibutyl adipate, i r t ethylhexyl sebacate, di-n-hexyl fumarate polymer, etc.
  • Synthetic oils of the type of liquid esters of acids of phosphorus include the esters of phosphoric acid, e. g., tricresyl phosphate; the esters of phosphonic acid, e. g., diethyl ester of decane phosphonic acid, or other such esters as obtained by reacting alkyl phosphonyl chlorides with hydroxyl-containing compounds, such as phenols and aliphatic alcohols, and with olefin oxides such as propylene oxide, as described in Jensen et a1.
  • the polyvalent metal oxides and hydroxides which are dispersed in lubricating oil compositions according to this invention include the oxides and hydroxides of the metals of Groups II, III, IV and VIII of Mendeleefs Periodic Table of Elements, particularly calcium, magnesium, strontium, barium, lead, tin, zinc, cadmium, iron, cobalt, nickel and aluminum.
  • the dihydric alcohols used to disperse the polyvalent metal oxides and hydroxides in lubricating oils according to the present invention are dihydric alcohols containing up to 6 carbon atoms.
  • Suitable dihydric alcohols include, for example, ethylene glycol, propylene glycol, butane diol-2,3; pentane dim-2,4; Z-methyl butane diol-1,3; 2-methyl butane-2,4 and 2-methyl butane diol-3,4.
  • ethylene glycol is the preferred dihydric alcohol.
  • the amount of the dihydric alcohols used will depend in part upon the nature of the dihydric alcohol itself which is used, and as noted above, on the amount of polyvalent metal oxides and hydroxides which are to be dispersed. In general, the use of low molecular weight dihydric alcohols (e. g., ethylene glycol) results in obtaining a greater amount of the oxides and hydroxides dispersed in the lubricating oil than the use of a higher molecular weight dihydric alcohol (e. propylene glycol) when both are used in the same amounts by weight.
  • low molecular weight dihydric alcohols e. ethylene glycol
  • a higher molecular weight dihydric alcohol e. propylene glycol
  • a sufiicient amount of dihydric alcohol is employed to disperse the polyvalent metal oxides or hydroxides in a reasonably short time. That is, the amount of dihydric alcohol used is sufiicient to cause substantial contact between the polyvalent metal oxides or hydroxides and the lubrieating oil composition in which the polyvalent metal oxides and hydroxides are to be dispersed.
  • the temperatures at which it is desired to promote the dispersion of the polyvalent metal oxides and hydroxides in the lubricating oil composition by means of the dihydric alcohol are dependent also to a large extent on the nature of the polyvalent metal oxides and hydroxides and the dihydric alcohols. It is preferred to use the minimum temperatures at which the dispersions will take place. In most instances it is not necessary to use temperatures above about 400 F. The dispersion will normally take place in a temperature range of 250 F. to 350 F., but, if it is necessary. temperatures as low as 200 F. may be used.
  • the dispersions are stabilized by the addition of a dispersant which forms a part of the lubricating oil composition.
  • the dihydric alcohol is then removed from the composition by distillation or other means.
  • the dispersants which are used to stabilize the dispersions of polyvalent metal oxides and hydroxides prepared according to the present invention include polyvalent metal sulfonate, sulfates, phosphates, thiophosphates, phosphonates, thiophosphonates, phenates, naphthenates, carboxylates, etc.
  • Polyvalent metal sulfonate dispersants may be represented by the formulas (RSOsMM and [(R) aASOIilrIVI wherein R is a high molecular weight cyclic, straight-chained or branched-chained, saturated or unsaturated essentially hydrocarbon radical having a molecular weight ranging from about to about 800; A is an aromatic radical, such as benzene, naphthalene, anthracene, biphenyl, etc.; a is a number having a value of 1 to 4; M is a polyvalent metal, and a: is a number having a value equal to the valence of the polyvalent metal. As the metal, calcium, barium, strontium, mag nesium, zinc and lead are preferred.
  • hydrocarbon i. e., hydrocarbonaceous radical
  • radicals which are composed mainly of hydrogen and carbon, and include such radicals which contain, in addition, minor amounts of substituents such as chlorine, bromine, oxygen, hydroxyl groups, etc., which do not substantially affect their hydrocarbon character.
  • hydrocarbonaceous radicals examples include the following: dodecane, hexadecane, eicosane, triacontane radicals; radicals derived from petroleum hydrocarbons such as white oil, wax, olefin polymers (e. g., polypropylene and polybutylene, etc.).
  • the sulfonic acids used in preparing the sulfonates of this invention also include the oil-soluble sulfonic acids obtained from petroleum, such as the mahogany acids, and the synthetic sulfonic acids prepared by various methods of synthesis (e.
  • sulfonic acids prepared by reacting a chlorinated white oil with benzene, using hydrofluoric acid as the catalyst, then treating the resulting white oil alkylated benzene with chlorosulfonic acid or fuming sulfuric acid to form a white oil benzene sulfonic acid).
  • the metal sulfonates are exemplified as follows: calcium white oil benzene sulfonate, magnesium white oil benzene sulfonate, calcium dipolypropene benzene sulfonate, magnesium dipolypropene benzene sulfonate, calcium mahogany petroleum sulfonate, magnesium mahogany petroleum sulfonate, calcium triacontyl sulfonate and magnesium triacontyl sulfonate, calcium lauryl sulfonate, magnesium lauryl sulfonate, etc.
  • Phosphonate dispersants which can be used according to this invention are represented by the empirical formula:
  • R is a straight-chained or branchedchained, saturated or unsaturated substantially hydrocarbon radical having from '7 to 60 carbon atoms
  • M represents a divalent metal, preferably calcium, barium, magnesium, lead and zinc.
  • the hydrocarbonaceous radicals can be derived from organic compounds, such as the following: cycloaliphatic hydrocarbons, such as methylcyclohexane, diethylcyclohexane, cetylcyclohexane, tetralin, ctc.; aliphatic hydrocarbons such as propane, propane, butane, butene, isobutane, pentane, pentene, isopentene, El-methylpentane, hexane, hexene, isohexane, isohexene, isohexene, isoheptane, heptane, heptcne, octane, octene, iso-octane, cetane, hexadecane, octadecane, tetradecane, dodecane, hydrogenated olefin polymers; and aromatic hydrocarbons substituted by aliphatic or
  • Suitable radicals can also be obtained from mixtures of hydrocarbon, e. g, gasoline, kerosene, mineral lubricating oil fractions (e. g., white oil) and paraffin Wax.
  • hydrocarbon e. g, gasoline, kerosene, mineral lubricating oil fractions (e. g., white oil) and paraffin Wax.
  • the phosphonates used in this reaction can be preparedfromphosphonyl chlorides and phosphonic acids and their rsters, as set forth in the Jensen and Clayton patent application Serial No. 86,856, filed April 11, 1949.
  • Phosphate dispersants of this in ention are metal salts of substituted derivatives of acids of phosphorus, such as phosphorus acid, HaPOx: hypophosphoric acid, HzPOsI acid, H3PO'4; and pyrophosphoric acid, I'IdPilQ'l.
  • the phosphates of this invention are metal salts formed from substituted oxyacids of pentavalent phosphorus of the following type formulas:
  • R and R may be alkyl, aryl, alka-ryl, aralkyl, or cyclic non-benzenoid radicals.
  • substituted phosphoric acids containing at least 12 carbon atoms especially preferred are alkyl or alkaryl substituted phosphoric acids having at least 12 carbon atoms in the molecule.
  • substituted acids of phosphorus which are used in the formation of the polyvalent metal salts are as follows:
  • the naphthenates contemplated herein as dispersants are the polyvalent metal salts of naphthenic acids; that is, the polyvalent metal salts of the carboxylic acids of the naphthenes, in particular, calcium, barium, zinc, lead, strontium, magnesium, manganese and copper salts of the petroleum naphthenic acids.
  • the phenates contemplated herein as dispersants are polyvalent metal salts of phenol and substituted phenols.
  • polyvalent metal phenates include the calcium, barium, strontium, iron, lead, zinc, manganese, magnesium and copper salts of octyl phenol, decyl phenol, lauryl phenol, pentadecyl phenol, cetyl phenol, triacontyl phenol, etc.
  • the dispersants can be used in amounts of 0.1% to by weight of the total composition. However, because lubricating oil compositions orthopliosphoric It is x containing from 0.3% to 2.0% of the dispersants markedly increase the over-all rating of an engine, it is preferred to use these latter amounts.
  • the amounts of polyvalent oxides and hydroxides which can be stably dispersed in the lubricating oil depends on the effectiveness of the particular dispersant used.
  • One part by weight of a dispersant can stably disperse as much as 0.2 part or more by weight of polyvalent metal oxides or hydroxides.
  • 1 part by weight of lead mahogany sulfonate can stably disperse 0.7 part by weight of lead oxide.
  • Five parts by weight of calcium mahogany sulfonate can stably disperse 1 part by weight of calcium hydroxide.
  • from 0.02% to 7% by weight of oxide and hydroxide can be. dispersed in the lubricating oil composition.
  • the resulting lubricating oil composition is clear and filterable.
  • the effectively stabilized colloidal dispersion is similar in appearance to a clear solution which can be filtered without removing any of the in gradients of the composition.
  • the polyvalent metal of the dispersant may be the same the polyvalent metal of the oxide or hydroxide dispersed; or the polyvalent metal of the dispersant may be different from the polyvalent metal oxide or hydroxide dispersed.
  • a calcium sulfonate may be used in a lubricating oil composition to stabilize a dispersion of lead oxide; or a calcium sulfonate may be used in a lubricating oil composition to stabilize a dispersion of lime.
  • the polyvalent metal oxides or hydroxides may be blended with the dispersants in the lubricating oil prior to being mixed with the dihydric alcohol, or the polyvalent metal oxides or hydroxides may be blended with the dihydric alcohol and the dispersant first before blending this mixture with the lubricating oil, or all of the ingredients may be blended together at once. It is preferred to mix the dihydric alcohols and the metal oxides or hydroxides first to obtain a colloidal dispersion or solution of the metal oxides or hydroxides in the polyhydric alcohols before mixing with the lubricating oil and dispersant.
  • polyvalent metal oxides and hydroxides are stably dispersed in lubricating;- oil I compositions in accordance with this invention by heating a mixture of a dispersant, a polyvalent metal oxide and/or hydroxide, and a dihydric alcohol in a lubricating oil to a temperature of about 200 F. to 400 F. (250 F. to 350 F. being preferred) for a suflicient period of time until. the desired amount of polyvalent metal oxides and hydroxides are dispersed in the lubrieating oil composition.
  • the combined weight of the sodium sulfonate was 515.
  • the sodium sulfonate-mineral oil mixture was then added to 170 parts by weight of petroleum thinner having a boiling range of 186 F. to 290 F. This whole mixture was washed with dilute aqueous sodium chloride to remove the sodium sulfate.
  • Calcium mahogany petroleum sulfonate was prepared by emulsifying 76 parts by weight of a 10% aqueous solution of calcium chloride in the mineral oil-sodium sulfonate blend. All inorganic salts were removed from the oil phase by water washes. The thinne and the water were removed by heating the mixture to a temperature of 320 F., at a pressure of 30 millimeters of mercury.
  • the mineral oil blend of neutral calcium mahogany petroleum sulfonate thus formed contained 1.75% calcium and 2.98% sulfurv Exam le II-Preparation of calcium dialkyl benzene sulfonate
  • the dialkyl benzene used in this example was obtained by alkylation of benzene with polypropylene having a molecular weight of about 170, using hydrofluoric acid as the catalyst.
  • the dialkyl benzene stock (37 parts by weight) was treated with 48 parts by weight of 27% fuming sulfuric acid, after which the acid and sludge settled out and was discarded.
  • the sulfonated material was neutralized with aqueous caustic soda. To this stock, 29 parts by weight of a mineral oil having a viscosity of 350 SSU at 1 0 F. was added.
  • the mineral oil blend of crude sodium dialkyl benzene sulfonate was dissolved in 80 parts by weight of petroleum thinner having a boiling range of 186 to 290 R, which solution was then washed with aqueous sodium chloride to remove the sulfate present.
  • the sodium dialkyl benzene sulfonate was converted to the calcium dialkyl benzene sulfonate by metathesis resulting from the addition of 50 parts by weight of 'a aqueous calcium chloride solution.
  • the whole mixture was water washed to free the mixture of any residual inorganic salts.
  • the thinner and the water were removed by heating the whole mixture to a temperature of 320 F. at a pressure of 30 millimeters of mercury.
  • the mineral oil blend of calcium dialkyl benzene sulfonate thus prepared contained 1.25% calcium and 2.25% sulfur.
  • Example III is representative of a preparation of a dispersion of calcium oxide in lubricating oil.
  • Example III-Stabilized colloidal dispersion of calcium oxide A mixture of 450 grams of a mineral oil solution of calcium mahogany petroleum sulfonate (the oil solution having 1.15% calcium), 6.? grams of calcium oxide and 320 grams of ethylene glycol were heated together with stirring at a temperature of 300 F. for a period of 3 hours. The ethylene lycol was then removed by heating to a temperature of 320 F. at a pressure of 3 millimeters of mercury. The remaining mineral oil mixture was filtered. This filtered mineral oil solution contained 2.14% calcium, which showed the presence of 86% more calcium in the lubricating oil after the dispersion than before.
  • ethylene glycol was used as the dihydric alcohol.
  • Example IV-Coll0idal dispersions of calcium oxide in lubricating oil stabilized by calc um naphthenate A mixture of 370 grams of a mineral oil solution of calcium naphthenate (the oil solution having 2.57% calcium) and grams of calcium oxide in ethylene glycol (the ethylene glycol solution contained 3.6% calcium) was heated to 380 F. for a period of 2 hours. Due to the increase in the viscosity an additional 100 grams of a mineral oil were added, and the mixture was heated for an additional period of 1 hour. The ethylene glycol was then removed by heating to a temperature of 450 F. at atmospheric pressure. The dispersion thus prepared contained 2.89% calcium, of which 2.02% was accounted for by the calcium in calcium naphthenate.
  • polyvalent metal oxides and hydroxides which are dispersible according to above procedures are useful as additives in lubricating oils for increasing the over-all rating of the engine.
  • these dispersions of polyvalent metal oxides and hydroxides assist in keeping piston skirts clean, preventing deposit formation in ring grooves and in ring belt areas,
  • This L-l Caterpillar Test was run for a period of 120 hours in a single cylinder Caterpillar engine having an exhaust temperature of 800 F., using a fuel containing 0.1% sulfur.
  • the lubricating oil compositions may contain oxidation inhibitors, such as organo esters of phosphorus (e. g., zinc cetylphenyl dithiophosphate and calcium cetylphenyl dithiophosphate); metal salts of thiocarbamie acids (e. g., zinc dibutyl dithiocarbamate) sulfides (e.
  • organo esters of phosphorus e. g., zinc cetylphenyl dithiophosphate and calcium cetylphenyl dithiophosphate
  • metal salts of thiocarbamie acids e. g., zinc dibutyl dithiocarbamate
  • sulfides e.
  • sulfurized diparaffin sulfide sulfurized olefins Pass-1311718118 reaction products, eta
  • amines phenyl alpha naphthyl amine; i,4-diamino (dodecyl) anthraquinone; p,p-dioctyl dip henyl amine; N-diethyl thiocarbamyl-p phenylene diarnine, etc).
  • the lubricating oil composition may contain pour point depressants, corrosion inhibitors, oiliness agents, extreme pressure agents, blooming agents, compounds for enhancing the viscosity index of hydrocarbon oils; grease-forming agents, other dispersants, etc.
  • a process of incorporating polyvalent metal base substances in lubricating oils to produce stable, filterable compositions which comprises the steps of forming a mixture of a lubricating oil,
  • an oil soluble polyvalent metal dispersant and an inorganic polyvalent metal base selected from the group consisting of oxides and hydroxides, said dihydric alcohol being present in the mixture in an amount ranging from 2 to 50 moles for each mole of said inorganic metal base, and heating said mixture for a sufficient time to effect the dispersion of said inorganic metal base in the lubricating oil-dispersant composition and to remove dihydric alcohol.
  • a process for incorporating polyvalent metal base substances in lubricating oils to produce stable, filterable compositions which comprises the steps of first mixing an inorganic alkaline earth metal base selected from the group consisting of oxides and hydroxides with 10 to 30 moles of ethylene glycol per mole of said metal phase, dispersing said mixture of metal base and ethylene glycol in a lubricating oil containing an alkaline earth metal sulfonate dispersant, said dispersant being present in an amount of at least 1 part by Weight for each 0.?
  • said lubricating oil being present in an amount sufficient to give an inorganic metal base concentration in said lubricating oil of 0.02 to 7% by weight, and heating the resulting dispersion for a sufficient time to remove a substantial proportion of said ethylene glycol.

Description

Patented Apr. 27, 1954 UNITED STATES PATENT OFFICE METHOD OF DISPERSING METAL OXIDES AND HYDROXIDES IN LUBRICATING OILS No Drawing. Application December 30, 1950, Serial No. 203,7 83
6 Claims. 1
This invention pertains to a method of dispersing polyvalent metal oxides and hydroxides in lubricating oils.
During normal operation of internal combustion engines, acids are formed in the lubricating oil itself and in the combustion chamber. The acids formed in the lubricating oil itself are normally caused by oxidation of the lubricating oil during engine operation. The resulting organic acids and peroxides break down the lubricating oil and contribute to wear by corrosion. The combustion chamber acids normally come from the combustion products of the fuel. For example, when high sulfur fuels are used in diesel engines, sulfuric acid is formed from the sulfur. This sulfuric acid finds its way into the crankcase along with the blow-by gases.
Large amounts of detergents are being incorporated in lubricating oil compositions for use as dispersing agents and, incidentally, as neutralizing agents for these acids. For example, calcium oetyl phenate is incorporated into a lubricating oil composition primarily to serve as a detergent. However, a portion of the calcium cetyl phenate reacts with the sulfuric acid formed from high sulfur fuels to form calcium sulfate, neutralizing the effect of the acids, and removing a part of the detergent from its intended purpose.
Rather than use relatively expensive organic compounds to neutralize the acids formed during the operation of an engine, it would be more practical to use relatively inexpensive inorganic materials for this purpose. Likewise, it is more practical to use a detergent in a lubricating oil composition primarily for its intended purpose, not for the purpose of neutralizing acids. Furthermore, the inorganic materials which can be used to neutralize acids in lubricating oils will neutralize larger amounts of acids per unit weight than the organic compounds.
It is a primary object of this invention to provide a method for dispersing polyvalent metal oxides and hydroxides in lubricating oil.
It is therefore an object of this invention to rovide lubricating oil compositions containing stable dispersions of relatively inexpensive inorganic acid-neutralizing compounds.
It is also an object of this invention to form clear, filterable dispersions of polyvalent metal oxides and hydroxides in lubricating oil cornpositions.
It is another object of this invention to form colloidal dispersions of polyvalent metal oxides and hydroxides in lubricating oil.
It is a still further object of this invention to provide means for colloidally dispersing relatively oil-insoluble polyvalent metal oxides and hydroxides in lubricating oil.
These and other objects of this invention will be apparent from the ensuing description and the appended claims.
It has been discovered that col1oida1 dispersions (colloidal solutions) of polyvaient metal oxides and hydroxides in lubricating oils can be obtained by the use of dihydric alcohols; the dispersions stabilized by dispersants.
According to the present invention, polyvalent metal oxides and hydroxides are dispersed in lubricating oils by a method involving the use of dihydric alcohols, which dispersion is stabilized by a dispersant. The polyvalent metal oxides and hydroxides normally are dissolved (or dispersed) in a dihydric alcohol. The dihydric alcohol solutions (or dispersions) are then thoroughly blended with lubricating oils to form dispersions of polyvalent metal oxides or hydroxides, which dispersions are stabilized by dispersants.
Lubricating oils in which the polyvalent metal oxides and hydroxides can be dispersed according to the present invention include a wide variety of lubricating oils such as naphthenic base, parafiin base, and mixed base mineral oils, other hydrocarbon lubricants, e. g., lubricating oils derived from coal products and synthetic oils, e. g., alkylene polymers (such as polymers of propylene, butylene, etc., and mixtures thereof), alkylene oxide type polymers, dicarboxylic acid esters and liquid esters of acids of phosphorus. Synthetic oils of the alkylene oxide type polymer which may be used include those exemplified by alkylene oxide polymers (e. g., propylene oxide polymers) and derivatives, including alkylene oxide polymers prepared by polymerizing alkylene oxides (e. g., propylene oxide) in the presence of Water or alcohols, e. g., ethyl alcohol, and esters of alkylene oxide type polymers, e. g., acetylated propylene oxide polymers prepared by acetylating the propylene oxide polymers containing hydroxyl groups.
Synthetic oils of the dicarboxylic acid ester type include those which are prepared by esterifying such dicarboxylic acids as adipic acid, azelaic acid, suberic acid, sebacic acid, alkenyl succinic acid, fumaric acid, maleic acid, etc., with alcohols such as butyl alcohol, hexyl alcohol, Z-ethylhexyl alcohol, dodecyl alcohol, etc. Examples of dicarboxylic acid ester synthetic oils include dibutyl adipate, i r t ethylhexyl sebacate, di-n-hexyl fumarate polymer, etc.
Synthetic oils of the type of liquid esters of acids of phosphorus include the esters of phosphoric acid, e. g., tricresyl phosphate; the esters of phosphonic acid, e. g., diethyl ester of decane phosphonic acid, or other such esters as obtained by reacting alkyl phosphonyl chlorides with hydroxyl-containing compounds, such as phenols and aliphatic alcohols, and with olefin oxides such as propylene oxide, as described in Jensen et a1. U. S. application No. 86,856, filed April 11, 1949, now abandoned.
The polyvalent metal oxides and hydroxides which are dispersed in lubricating oil compositions according to this invention include the oxides and hydroxides of the metals of Groups II, III, IV and VIII of Mendeleefs Periodic Table of Elements, particularly calcium, magnesium, strontium, barium, lead, tin, zinc, cadmium, iron, cobalt, nickel and aluminum.
The dihydric alcohols used to disperse the polyvalent metal oxides and hydroxides in lubricating oils according to the present invention are dihydric alcohols containing up to 6 carbon atoms. Suitable dihydric alcohols include, for example, ethylene glycol, propylene glycol, butane diol-2,3; pentane dim-2,4; Z-methyl butane diol-1,3; 2-methyl butane-2,4 and 2-methyl butane diol-3,4.
Because of the greater amounts of polyvalent metal oxides and hydroxides dispersible in the lubricating oil composition thereby, ethylene glycol is the preferred dihydric alcohol.
The amount of the dihydric alcohols used will depend in part upon the nature of the dihydric alcohol itself which is used, and as noted above, on the amount of polyvalent metal oxides and hydroxides which are to be dispersed. In general, the use of low molecular weight dihydric alcohols (e. g., ethylene glycol) results in obtaining a greater amount of the oxides and hydroxides dispersed in the lubricating oil than the use of a higher molecular weight dihydric alcohol (e. propylene glycol) when both are used in the same amounts by weight.
A sufiicient amount of dihydric alcohol is employed to disperse the polyvalent metal oxides or hydroxides in a reasonably short time. That is, the amount of dihydric alcohol used is sufiicient to cause substantial contact between the polyvalent metal oxides or hydroxides and the lubrieating oil composition in which the polyvalent metal oxides and hydroxides are to be dispersed. For this purpose, it is beneficial to use certain ratios by weight of the dihydric alcohol to the polyvalent metal oxide and hydroxide, which ratio may be from about 50 to 1 to about 2 to 1; 30 to 1 to about 10 to 1 being preferred.
The temperatures at which it is desired to promote the dispersion of the polyvalent metal oxides and hydroxides in the lubricating oil composition by means of the dihydric alcohol are dependent also to a large extent on the nature of the polyvalent metal oxides and hydroxides and the dihydric alcohols. It is preferred to use the minimum temperatures at which the dispersions will take place. In most instances it is not necessary to use temperatures above about 400 F. The dispersion will normally take place in a temperature range of 250 F. to 350 F., but, if it is necessary. temperatures as low as 200 F. may be used.
Once the polyvalent metal oxides and hydroxides have been dispersed in lubricating oils according to the present invention, the dispersions are stabilized by the addition of a dispersant which forms a part of the lubricating oil composition. When the dispersion of metal oxides and hydroxides has been thus stabilized, the dihydric alcohol is then removed from the composition by distillation or other means.
The dispersants which are used to stabilize the dispersions of polyvalent metal oxides and hydroxides prepared according to the present invention include polyvalent metal sulfonate, sulfates, phosphates, thiophosphates, phosphonates, thiophosphonates, phenates, naphthenates, carboxylates, etc.
Polyvalent metal sulfonate dispersants may be represented by the formulas (RSOsMM and [(R) aASOIilrIVI wherein R is a high molecular weight cyclic, straight-chained or branched-chained, saturated or unsaturated essentially hydrocarbon radical having a molecular weight ranging from about to about 800; A is an aromatic radical, such as benzene, naphthalene, anthracene, biphenyl, etc.; a is a number having a value of 1 to 4; M is a polyvalent metal, and a: is a number having a value equal to the valence of the polyvalent metal. As the metal, calcium, barium, strontium, mag nesium, zinc and lead are preferred.
By "essentially hydrocarbon (i. e., hydrocarbonaceous) radical is meant those radicals which are composed mainly of hydrogen and carbon, and include such radicals which contain, in addition, minor amounts of substituents such as chlorine, bromine, oxygen, hydroxyl groups, etc., which do not substantially affect their hydrocarbon character.
Examples of suitable hydrocarbonaceous radicals are the following: dodecane, hexadecane, eicosane, triacontane radicals; radicals derived from petroleum hydrocarbons such as white oil, wax, olefin polymers (e. g., polypropylene and polybutylene, etc.). The sulfonic acids used in preparing the sulfonates of this invention also include the oil-soluble sulfonic acids obtained from petroleum, such as the mahogany acids, and the synthetic sulfonic acids prepared by various methods of synthesis (e. g., sulfonic acids prepared by reacting a chlorinated white oil with benzene, using hydrofluoric acid as the catalyst, then treating the resulting white oil alkylated benzene with chlorosulfonic acid or fuming sulfuric acid to form a white oil benzene sulfonic acid).
The metal sulfonates are exemplified as follows: calcium white oil benzene sulfonate, magnesium white oil benzene sulfonate, calcium dipolypropene benzene sulfonate, magnesium dipolypropene benzene sulfonate, calcium mahogany petroleum sulfonate, magnesium mahogany petroleum sulfonate, calcium triacontyl sulfonate and magnesium triacontyl sulfonate, calcium lauryl sulfonate, magnesium lauryl sulfonate, etc.
Phosphonate dispersants which can be used according to this invention are represented by the empirical formula:
it R l|?0 o where R is a straight-chained or branchedchained, saturated or unsaturated substantially hydrocarbon radical having from '7 to 60 carbon atoms, and M represents a divalent metal, preferably calcium, barium, magnesium, lead and zinc.
The hydrocarbonaceous radicals can be derived from organic compounds, such as the following: cycloaliphatic hydrocarbons, such as methylcyclohexane, diethylcyclohexane, cetylcyclohexane, tetralin, ctc.; aliphatic hydrocarbons such as propane, propane, butane, butene, isobutane, pentane, pentene, isopentene, El-methylpentane, hexane, hexene, isohexane, isohexene, isoheptane, heptane, heptcne, octane, octene, iso-octane, cetane, hexadecane, octadecane, tetradecane, dodecane, hydrogenated olefin polymers; and aromatic hydrocarbons substituted by aliphatic or cycloaliphatic radicals such as toluene, xylene, hexylbenzene, cetylbenzene, octadecylbenzene, cyclohexylbenzene, etc.
Suitable radicals can also be obtained from mixtures of hydrocarbon, e. g, gasoline, kerosene, mineral lubricating oil fractions (e. g., white oil) and paraffin Wax.
The phosphonates used in this reaction can be preparedfromphosphonyl chlorides and phosphonic acids and their rsters, as set forth in the Jensen and Clayton patent application Serial No. 86,856, filed April 11, 1949.
Phosphate dispersants of this in ention are metal salts of substituted derivatives of acids of phosphorus, such as phosphorus acid, HaPOx: hypophosphoric acid, HzPOsI acid, H3PO'4; and pyrophosphoric acid, I'IdPilQ'l.
referably, the phosphates of this invention are metal salts formed from substituted oxyacids of pentavalent phosphorus of the following type formulas:
where R and R may be alkyl, aryl, alka-ryl, aralkyl, or cyclic non-benzenoid radicals. preferred to use substituted phosphoric acids containing at least 12 carbon atoms; especially preferred are alkyl or alkaryl substituted phosphoric acids having at least 12 carbon atoms in the molecule. Examples of the substituted acids of phosphorus which are used in the formation of the polyvalent metal salts are as follows:
Monoand di-lauryl phosphoric acids, mono and di-cetyl phosphoric acids, monoand dioctadecyl phosphoric acids, monoand di-cyclohexenyl phosphoric acids, monoand di-cetylphenyl phosphoric acids, etc.
The naphthenates contemplated herein as dispersants are the polyvalent metal salts of naphthenic acids; that is, the polyvalent metal salts of the carboxylic acids of the naphthenes, in particular, calcium, barium, zinc, lead, strontium, magnesium, manganese and copper salts of the petroleum naphthenic acids.
The phenates contemplated herein as dispersants are polyvalent metal salts of phenol and substituted phenols. Examples of polyvalent metal phenates include the calcium, barium, strontium, iron, lead, zinc, manganese, magnesium and copper salts of octyl phenol, decyl phenol, lauryl phenol, pentadecyl phenol, cetyl phenol, triacontyl phenol, etc.
The dispersants can be used in amounts of 0.1% to by weight of the total composition. However, because lubricating oil compositions orthopliosphoric It is x containing from 0.3% to 2.0% of the dispersants markedly increase the over-all rating of an engine, it is preferred to use these latter amounts.
The amounts of polyvalent oxides and hydroxides which can be stably dispersed in the lubricating oil depends on the effectiveness of the particular dispersant used. One part by weight of a dispersant can stably disperse as much as 0.2 part or more by weight of polyvalent metal oxides or hydroxides. For example, 1 part by weight of lead mahogany sulfonate can stably disperse 0.7 part by weight of lead oxide. Five parts by weight of calcium mahogany sulfonate can stably disperse 1 part by weight of calcium hydroxide. On a percentage basis, depending on the dispersant used and the polyvalent metal oxide and hydroxide dispersed, from 0.02% to 7% by weight of oxide and hydroxide can be. dispersed in the lubricating oil composition.
When the metal oxides and hydroxides have been dispersed in lubricating oil and the dis persion stabilized by a dispersant, the resulting lubricating oil composition is clear and filterable. The effectively stabilized colloidal dispersion is similar in appearance to a clear solution which can be filtered without removing any of the in gradients of the composition.
The polyvalent metal of the dispersant may be the same the polyvalent metal of the oxide or hydroxide dispersed; or the polyvalent metal of the dispersant may be different from the polyvalent metal oxide or hydroxide dispersed. For example, a calcium sulfonate may be used in a lubricating oil composition to stabilize a dispersion of lead oxide; or a calcium sulfonate may be used in a lubricating oil composition to stabilize a dispersion of lime.
Numerous variations of the methods presented here may be employed in preparing the dispersions of this invention. For example, the polyvalent metal oxides or hydroxides may be blended with the dispersants in the lubricating oil prior to being mixed with the dihydric alcohol, or the polyvalent metal oxides or hydroxides may be blended with the dihydric alcohol and the dispersant first before blending this mixture with the lubricating oil, or all of the ingredients may be blended together at once. It is preferred to mix the dihydric alcohols and the metal oxides or hydroxides first to obtain a colloidal dispersion or solution of the metal oxides or hydroxides in the polyhydric alcohols before mixing with the lubricating oil and dispersant.
As stated above, polyvalent metal oxides and hydroxides are stably dispersed in lubricating;- oil I compositions in accordance with this invention by heating a mixture of a dispersant, a polyvalent metal oxide and/or hydroxide, and a dihydric alcohol in a lubricating oil to a temperature of about 200 F. to 400 F. (250 F. to 350 F. being preferred) for a suflicient period of time until. the desired amount of polyvalent metal oxides and hydroxides are dispersed in the lubrieating oil composition.
The following examples are illustrative of the dispersions of polyvalent metal oxides and hy droxides stabilized by dispersants according to the present invention. (Examples I and II illustrate the preparation of the calcium sulfonates which were used to stabilize the colloidal dispersions of calcium oxide.)
30 parts by weight of a mineral oil having a viscosity of 350 at F. was added to 0 parts by weight of a sodium mahogany petroleum sulfonate having the following analyses:
Per cent Water 4.4 Oil 29.0 Sodium sulfonate 66.0 Inorganic salt 0.6
The combined weight of the sodium sulfonate was 515. The sodium sulfonate-mineral oil mixture was then added to 170 parts by weight of petroleum thinner having a boiling range of 186 F. to 290 F. This whole mixture was washed with dilute aqueous sodium chloride to remove the sodium sulfate. Calcium mahogany petroleum sulfonate was prepared by emulsifying 76 parts by weight of a 10% aqueous solution of calcium chloride in the mineral oil-sodium sulfonate blend. All inorganic salts were removed from the oil phase by water washes. The thinne and the water were removed by heating the mixture to a temperature of 320 F., at a pressure of 30 millimeters of mercury.
The mineral oil blend of neutral calcium mahogany petroleum sulfonate thus formed contained 1.75% calcium and 2.98% sulfurv Exam le II-Preparation of calcium dialkyl benzene sulfonate The dialkyl benzene used in this example was obtained by alkylation of benzene with polypropylene having a molecular weight of about 170, using hydrofluoric acid as the catalyst. The dialkyl benzene stock (37 parts by weight) was treated with 48 parts by weight of 27% fuming sulfuric acid, after which the acid and sludge settled out and was discarded. The sulfonated material was neutralized with aqueous caustic soda. To this stock, 29 parts by weight of a mineral oil having a viscosity of 350 SSU at 1 0 F. was added.
The mineral oil blend of crude sodium dialkyl benzene sulfonate was dissolved in 80 parts by weight of petroleum thinner having a boiling range of 186 to 290 R, which solution was then washed with aqueous sodium chloride to remove the sulfate present. The sodium dialkyl benzene sulfonate was converted to the calcium dialkyl benzene sulfonate by metathesis resulting from the addition of 50 parts by weight of 'a aqueous calcium chloride solution. The whole mixture was water washed to free the mixture of any residual inorganic salts. The thinner and the water were removed by heating the whole mixture to a temperature of 320 F. at a pressure of 30 millimeters of mercury.
The mineral oil blend of calcium dialkyl benzene sulfonate thus prepared contained 1.25% calcium and 2.25% sulfur.
The following Example III is representative of a preparation of a dispersion of calcium oxide in lubricating oil.
Example III-Stabilized colloidal dispersion of calcium oxide A mixture of 450 grams of a mineral oil solution of calcium mahogany petroleum sulfonate (the oil solution having 1.15% calcium), 6.? grams of calcium oxide and 320 grams of ethylene glycol were heated together with stirring at a temperature of 300 F. for a period of 3 hours. The ethylene lycol was then removed by heating to a temperature of 320 F. at a pressure of 3 millimeters of mercury. The remaining mineral oil mixture was filtered. This filtered mineral oil solution contained 2.14% calcium, which showed the presence of 86% more calcium in the lubricating oil after the dispersion than before.
Further preparations of stable dispersions of polyvalent metal oxides and hydroxides are well illustrated by the data presented in the table, which presents the reaction conditions and the analytical results of the final lubricating oil composition. Calcium mahogany petroleum sulfonate was the dispersing agent (the detergent) used. Column 3 of the table gives the amount of calcium in the lubricating oil solution prior to the dispersion, and column 8 gives the amount of calcium present in the lubricating oil solution after the dispersion and filtration. The dispersions were prepared by heating mineral oil solutions of calcium mahogany petroleum sulfonate and calcium oxide in the presence of ethylene glycol at a temperature ranging from 290 to 300 for periods ranging from 3 to 11 hours. The mineral oil solutions of calcium mahogany petroleum sulfonates were prepared according to the method illustrated by Example I.
In all the examples of the table, ethylene glycol was used as the dihydric alcohol.
TABLE Sull'onnlc Concentrate I I Grams Grams Reaction 53; Per- No. CaO Solvent Temp, cont Amount Per- Used Uscd F. E Ga Used com (Grams) On M i g r sec 1.31 l l5 400 1mm .1 2 700 D. 20 40(1 300 8 Z 800 ll. 55 21 400 300 It 300 l. 17 6. 5 290 4- 300 1.17 6. 5 60 290 l 300 l. 17 6. 5 30 290 4- 300 l. 17 6. 5 15 290 l 4 500 1.15 12.5 0 son :0 l l l 1 Example IV-Coll0idal dispersions of calcium oxide in lubricating oil stabilized by calc um naphthenate A mixture of 370 grams of a mineral oil solution of calcium naphthenate (the oil solution having 2.57% calcium) and grams of calcium oxide in ethylene glycol (the ethylene glycol solution contained 3.6% calcium) was heated to 380 F. for a period of 2 hours. Due to the increase in the viscosity an additional 100 grams of a mineral oil were added, and the mixture was heated for an additional period of 1 hour. The ethylene glycol was then removed by heating to a temperature of 450 F. at atmospheric pressure. The dispersion thus prepared contained 2.89% calcium, of which 2.02% was accounted for by the calcium in calcium naphthenate.
As noted hereinabove, polyvalent metal oxides and hydroxides which are dispersible according to above procedures are useful as additives in lubricating oils for increasing the over-all rating of the engine. As shown by a modified L-l Caterpillar Engine Test, these dispersions of polyvalent metal oxides and hydroxides assist in keeping piston skirts clean, preventing deposit formation in ring grooves and in ring belt areas,
and also decreasing corrosion. This L-l Caterpillar Test was run for a period of 120 hours in a single cylinder Caterpillar engine having an exhaust temperature of 800 F., using a fuel containing 0.1% sulfur.
Caterpillar Engine Tests (L-l) were made with a lubricating oil composition containing sulfurized diparaffin sulfide, sulfurized calcium cetyl phenate, zinc cetyl phenyl dithiophosphate, and a calcium mahogany petroleum sulfonate which contributed 0.028% total calcium to the oil (none of which was dispersed calcium). The top ring groove deposit number was 42 (a rating of 0" indicates a clean groove, and a rating of "100 indicates a groove filled with gum deposits). After testing the same lubricating oil composition in which calcium oxide was dispersed in the lubricating oil by calcium mahogany petroleum sulfonate (0.013% being dispersed calcium present), the top ring groove deposit number was 23. Thus, the stabilized dispersion of calcium oxide resulted in approximately 45% reduction of top ring groove deposit (from 42 to 23) over that of the calcium mahogany petroleum sulfonate alone.
In addition to the components of this invention, other groups of additives may be used in the lubricating oil compositions. The lubricating oil compositions may contain oxidation inhibitors, such as organo esters of phosphorus (e. g., zinc cetylphenyl dithiophosphate and calcium cetylphenyl dithiophosphate); metal salts of thiocarbamie acids (e. g., zinc dibutyl dithiocarbamate) sulfides (e. g., sulfurized diparaffin sulfide sulfurized olefins, Pass-1311718118 reaction products, eta); amines (phenyl alpha naphthyl amine; i,4-diamino (dodecyl) anthraquinone; p,p-dioctyl dip henyl amine; N-diethyl thiocarbamyl-p phenylene diarnine, etc).
Furthermore, the lubricating oil composition may contain pour point depressants, corrosion inhibitors, oiliness agents, extreme pressure agents, blooming agents, compounds for enhancing the viscosity index of hydrocarbon oils; grease-forming agents, other dispersants, etc.
We claim:
1. A process of incorporating polyvalent metal base substances in lubricating oils to produce stable, filterable compositions, which comprises the steps of forming a mixture of a lubricating oil,
a dihydric alcohol of less than 6 carbon atoms, .1
an oil soluble polyvalent metal dispersant, and an inorganic polyvalent metal base selected from the group consisting of oxides and hydroxides, said dihydric alcohol being present in the mixture in an amount ranging from 2 to 50 moles for each mole of said inorganic metal base, and heating said mixture for a sufficient time to effect the dispersion of said inorganic metal base in the lubricating oil-dispersant composition and to remove dihydric alcohol.
2. The process of claim 1 wherein said mixture is formed in stages by first mixing said dihydric alcohol with said metal base and then blending said resulting mixture with said lubricating oil and stabilizing dispersant.
3. In the process of incorporating polyvalent metal substances in lubricating oils to produce stable, filterable compositions, which comprises the steps of forming a mixture of an inorganic polyvalent metal base selected from the group consisting of oxides and hydroxides, 2 to 50 moles of ethylene glycol per mole of said inorganic base, a polyvalent metal dispersant in an amount of at least 1 part by weight for each 0.? part of said inorganic metal base, and lubricating oil sufficient to give an inorganic metal base concentration in said lubricating oil of 0.02 to 7% by weight, and heating said mixture for a sufficient time to disperse said inorganic metal base in said lubricating oil and to remove a substantial portion of said ethylene glycol.
4. Process of claim 3 wherein said metal base is an alkaline earth metal base.
5. Process of claim 3 wherein said dispersant is a polyvalent metal sulfonate.
6. A process for incorporating polyvalent metal base substances in lubricating oils to produce stable, filterable compositions, which comprises the steps of first mixing an inorganic alkaline earth metal base selected from the group consisting of oxides and hydroxides with 10 to 30 moles of ethylene glycol per mole of said metal phase, dispersing said mixture of metal base and ethylene glycol in a lubricating oil containing an alkaline earth metal sulfonate dispersant, said dispersant being present in an amount of at least 1 part by Weight for each 0.? part of said inorganic metal base, and said lubricating oil being present in an amount sufficient to give an inorganic metal base concentration in said lubricating oil of 0.02 to 7% by weight, and heating the resulting dispersion for a sufficient time to remove a substantial proportion of said ethylene glycol.
References Cited in the file of this patent UNITED STATES PATENTS Number Name Date 2,043,638 Watts June 9, 1936 2,079,051 Sullivan et al May 4, 1937 2,285,453 Merkle June 9, 1942 2,470,913 Bjorksten et a1 May 24, 1949 2,485,861 Campbell Oct. 25, 1949

Claims (1)

1. A PROCESS OF INCORPORATING POLYVALENT METAL BASE SUBSTANCES IN LUBRICATING OILS TO PRODUCE STABLE, FILTERABLE COMPOSITIONS, WHICH COMPRISES THE STEPS OF FORMING A MIXTURE OF A LUBRICATING OIL, A DIHYDRIC ALCOHOL OF LESS THAN 6 CARBON ATOMS, AN OIL SOLUBLE POLYVALENT METAL DISPERSANT, AND AN INORGANIC POLYVALENT METAL BASE SELECTED FROM THE GROUP CONSISTING OF OXIDES AND HYDROXIDES, SAID DIHYDRIC ALCOHOL BEING PRESENT IN THE MIXTURE IN AN AMOUNT RANGING FROM 2 TO 50 MOLES FOR EACH MOLE OF SAID INORGANIC METAL BASE, AND HEATING SAID MIXTURE FOR A SUFFICIENT TIME TO EFFECT THE DISPERSION OF SAID INORGANIC METAL BASE IN THE LUBRICATING OIL-DISPERSANT COMPOSITION AND TO REMOVE DIHYDRIC ALCOHOL.
US203783A 1950-12-30 1950-12-30 Method of dispersing metal oxides and hydroxides in lubricating oils Expired - Lifetime US2676925A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
NL82973D NL82973C (en) 1950-12-30
BE505425D BE505425A (en) 1950-12-30
US203783A US2676925A (en) 1950-12-30 1950-12-30 Method of dispersing metal oxides and hydroxides in lubricating oils
GB19393/51A GB718714A (en) 1950-12-30 1951-08-16 Lubricating oil compositions
DEC4623A DE1002491B (en) 1950-12-30 1951-08-22 Additive for lubricating oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US203783A US2676925A (en) 1950-12-30 1950-12-30 Method of dispersing metal oxides and hydroxides in lubricating oils

Publications (1)

Publication Number Publication Date
US2676925A true US2676925A (en) 1954-04-27

Family

ID=22755287

Family Applications (1)

Application Number Title Priority Date Filing Date
US203783A Expired - Lifetime US2676925A (en) 1950-12-30 1950-12-30 Method of dispersing metal oxides and hydroxides in lubricating oils

Country Status (5)

Country Link
US (1) US2676925A (en)
BE (1) BE505425A (en)
DE (1) DE1002491B (en)
GB (1) GB718714A (en)
NL (1) NL82973C (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2742427A (en) * 1953-06-08 1956-04-17 Socony Mobil Oil Co Inc Lubricating oil containing dispersed magnesium
US2758085A (en) * 1953-06-08 1956-08-07 Socony Mobil Oil Co Inc Method for incorporating oil-insoluble, solid addition agents in mineral oils
US2781314A (en) * 1953-12-29 1957-02-12 Exxon Research Engineering Co Oil compositions containing solid particles
US2850450A (en) * 1954-01-04 1958-09-02 California Research Corp Crankcase lubricant for spark ignition engines
US2865857A (en) * 1955-07-13 1958-12-23 California Research Corp Acid-neutralizing lubricating oil compositions
US2878185A (en) * 1955-07-26 1959-03-17 California Research Corp Filter aid for preparing dispersions in lubricating oil
US2937991A (en) * 1956-12-19 1960-05-24 Continental Oil Co Method of dispersing calcium carbonate in a non-volatile carrier
US2944023A (en) * 1957-01-15 1960-07-05 Socony Mobil Oil Co Inc Anticorrosive marine diesel lubricant
US2945812A (en) * 1958-09-30 1960-07-19 Frank A Stuart Filterable dispersion of glycoxides in lubricating oils
US2950960A (en) * 1957-02-21 1960-08-30 California Research Corp Hyrocarbon fuels
US2952636A (en) * 1955-04-22 1960-09-13 Shell Oil Co Associates of inorganic metal compounds with copolymers containing a plurality of hydroxy groups
US2956018A (en) * 1955-07-01 1960-10-11 Continental Oil Co Metal containing organic compositions and method of preparing the same
US2964473A (en) * 1956-12-24 1960-12-13 Standard Oil Co Additive for minimizing cold sludge formation and lubricating oil containing the same
US2964474A (en) * 1956-12-31 1960-12-13 Standard Oil Co Lubricating oil resistant to cold sludge formation
US2975131A (en) * 1956-04-09 1961-03-14 California Research Corp Silver non-corrosive lubricants
US3003965A (en) * 1953-09-29 1961-10-10 Philips Corp Method of preparing a magnetic sound carrier
US3018172A (en) * 1957-05-13 1962-01-23 Continental Oil Co Aluminum-containing additive for fuel oil compositions and method of preparing the same
US3021280A (en) * 1956-12-17 1962-02-13 Continental Oil Co Method of dispersing barium hydroxide in a non-volatile carrier
US3032501A (en) * 1958-12-29 1962-05-01 California Research Corp Lubricating oil composition containing oxyalkylated carbonated basic sulfonate
US3095374A (en) * 1957-04-25 1963-06-25 Gulf Oil Corp Lubricating composition
US3268445A (en) * 1962-12-14 1966-08-23 Gulf Research Development Co Lubricating composition having improved thermal stability
US3277002A (en) * 1961-07-17 1966-10-04 Continental Oil Co Process for stably dispersing metal compounds
US3294683A (en) * 1963-02-07 1966-12-27 Shell Oil Co Grease composition
US3361669A (en) * 1964-04-29 1968-01-02 Shell Oil Co Process for lubricating diesel engines having dual lubricating systems
US3676342A (en) * 1969-12-01 1972-07-11 Exxon Research Engineering Co Lubricant for textile machinery
US3819521A (en) * 1971-06-07 1974-06-25 Chevron Res Lubricant containing dispersed borate and a polyol
US4172803A (en) * 1976-10-21 1979-10-30 Terumo Corporation Liquid separating composition and apparatus for applying said composition
US4410446A (en) * 1979-06-07 1983-10-18 Petrolite Corporation Zinc oxide dispersions by decomposition of zinc acetate
US4755308A (en) * 1986-02-10 1988-07-05 Dow Corning Gmbh High temperature screw lubricating paste
WO2003044138A2 (en) * 2001-06-29 2003-05-30 The Lubrizol Corporation Lubricant based on a water in oil emulsion with a suspended solid base
WO2003089550A2 (en) * 2001-06-29 2003-10-30 The Lubrizol Corporation Stable dispersions of oil-insoluble compounds in hydrocarbons for use in lubricants

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2437240B1 (en) * 1978-09-26 1988-07-29 Ihara Chemical Ind Co INVERTED ORGANIC SOLVENT DISPERSION OF AN ALKALINE HYDROXIDE AND REACTION USING THE SAME

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2043638A (en) * 1933-07-15 1936-06-09 Lubriplate Corp Lubricant
US2079051A (en) * 1933-03-15 1937-05-04 Standard Oil Co Lubricating oil
US2285453A (en) * 1940-04-09 1942-06-09 Lubriplate Corp Lubricant
US2470913A (en) * 1945-09-26 1949-05-24 Bee Chemical Co A coolant for metal machining processes
US2485861A (en) * 1945-10-01 1949-10-25 Sumner E Campbell Lubricating oil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2079051A (en) * 1933-03-15 1937-05-04 Standard Oil Co Lubricating oil
US2043638A (en) * 1933-07-15 1936-06-09 Lubriplate Corp Lubricant
US2285453A (en) * 1940-04-09 1942-06-09 Lubriplate Corp Lubricant
US2470913A (en) * 1945-09-26 1949-05-24 Bee Chemical Co A coolant for metal machining processes
US2485861A (en) * 1945-10-01 1949-10-25 Sumner E Campbell Lubricating oil

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2758085A (en) * 1953-06-08 1956-08-07 Socony Mobil Oil Co Inc Method for incorporating oil-insoluble, solid addition agents in mineral oils
US2742427A (en) * 1953-06-08 1956-04-17 Socony Mobil Oil Co Inc Lubricating oil containing dispersed magnesium
US3003965A (en) * 1953-09-29 1961-10-10 Philips Corp Method of preparing a magnetic sound carrier
US2781314A (en) * 1953-12-29 1957-02-12 Exxon Research Engineering Co Oil compositions containing solid particles
US2850450A (en) * 1954-01-04 1958-09-02 California Research Corp Crankcase lubricant for spark ignition engines
US2952636A (en) * 1955-04-22 1960-09-13 Shell Oil Co Associates of inorganic metal compounds with copolymers containing a plurality of hydroxy groups
US2956018A (en) * 1955-07-01 1960-10-11 Continental Oil Co Metal containing organic compositions and method of preparing the same
US2865857A (en) * 1955-07-13 1958-12-23 California Research Corp Acid-neutralizing lubricating oil compositions
US2878185A (en) * 1955-07-26 1959-03-17 California Research Corp Filter aid for preparing dispersions in lubricating oil
US2975131A (en) * 1956-04-09 1961-03-14 California Research Corp Silver non-corrosive lubricants
US3021280A (en) * 1956-12-17 1962-02-13 Continental Oil Co Method of dispersing barium hydroxide in a non-volatile carrier
US2937991A (en) * 1956-12-19 1960-05-24 Continental Oil Co Method of dispersing calcium carbonate in a non-volatile carrier
US2964473A (en) * 1956-12-24 1960-12-13 Standard Oil Co Additive for minimizing cold sludge formation and lubricating oil containing the same
US2964474A (en) * 1956-12-31 1960-12-13 Standard Oil Co Lubricating oil resistant to cold sludge formation
US2944023A (en) * 1957-01-15 1960-07-05 Socony Mobil Oil Co Inc Anticorrosive marine diesel lubricant
US2950960A (en) * 1957-02-21 1960-08-30 California Research Corp Hyrocarbon fuels
US3095374A (en) * 1957-04-25 1963-06-25 Gulf Oil Corp Lubricating composition
US3018172A (en) * 1957-05-13 1962-01-23 Continental Oil Co Aluminum-containing additive for fuel oil compositions and method of preparing the same
US2945812A (en) * 1958-09-30 1960-07-19 Frank A Stuart Filterable dispersion of glycoxides in lubricating oils
US3032501A (en) * 1958-12-29 1962-05-01 California Research Corp Lubricating oil composition containing oxyalkylated carbonated basic sulfonate
US3277002A (en) * 1961-07-17 1966-10-04 Continental Oil Co Process for stably dispersing metal compounds
US3268445A (en) * 1962-12-14 1966-08-23 Gulf Research Development Co Lubricating composition having improved thermal stability
US3294683A (en) * 1963-02-07 1966-12-27 Shell Oil Co Grease composition
US3361669A (en) * 1964-04-29 1968-01-02 Shell Oil Co Process for lubricating diesel engines having dual lubricating systems
US3676342A (en) * 1969-12-01 1972-07-11 Exxon Research Engineering Co Lubricant for textile machinery
US3819521A (en) * 1971-06-07 1974-06-25 Chevron Res Lubricant containing dispersed borate and a polyol
US4172803A (en) * 1976-10-21 1979-10-30 Terumo Corporation Liquid separating composition and apparatus for applying said composition
US4230584A (en) * 1976-10-21 1980-10-28 Terumo Corporation Liquid separating composition and apparatus for applying said composition
US4410446A (en) * 1979-06-07 1983-10-18 Petrolite Corporation Zinc oxide dispersions by decomposition of zinc acetate
US4755308A (en) * 1986-02-10 1988-07-05 Dow Corning Gmbh High temperature screw lubricating paste
WO2003044138A2 (en) * 2001-06-29 2003-05-30 The Lubrizol Corporation Lubricant based on a water in oil emulsion with a suspended solid base
WO2003089550A2 (en) * 2001-06-29 2003-10-30 The Lubrizol Corporation Stable dispersions of oil-insoluble compounds in hydrocarbons for use in lubricants
WO2003044138A3 (en) * 2001-06-29 2003-11-06 Lubrizol Corp Lubricant based on a water in oil emulsion with a suspended solid base
WO2003089550A3 (en) * 2001-06-29 2004-02-19 Lubrizol Corp Stable dispersions of oil-insoluble compounds in hydrocarbons for use in lubricants
US20040235684A1 (en) * 2001-06-29 2004-11-25 Cook Stephen J. Lubricant from water in oil emulsion with suspended solid base
US7651984B2 (en) 2001-06-29 2010-01-26 The Lubrizol Corporation Lubricant from water in oil emulsion with suspended solid base

Also Published As

Publication number Publication date
BE505425A (en)
GB718714A (en) 1954-11-17
DE1002491B (en) 1957-02-14
NL82973C (en)

Similar Documents

Publication Publication Date Title
US2676925A (en) Method of dispersing metal oxides and hydroxides in lubricating oils
US3282835A (en) Carbonated bright stock sulfonates and lubricants containing them
US2956018A (en) Metal containing organic compositions and method of preparing the same
US2680096A (en) Process for preparing sulfurized polyvalent metal phenates
US2418894A (en) Compounded lubricating oil
US2861951A (en) Method of dispersing barium carbonate in a non-volatile carrier
US4203854A (en) Stable lubricant composition containing molybdenum disulfide and method of preparing same
US3655558A (en) Mineral lubricating oil compositions containing alkaline earth metal sulfonates and phosphites and process producing same
DE1035299B (en) Lubricating oil for internal combustion engines with a high compression ratio
US2969324A (en) Phosphosulfurized detergent-inhibitor additive
US2658062A (en) Mineral oil additive
US2640053A (en) Compounded lubricating oil
DE863980C (en) Mineral lubricating oils
US2636858A (en) Mineral oil additive
US2931773A (en) Method of dispersing calcium carbonate in lubricating oil
US2866694A (en) Anti-clogging fuel oil compositions
US2944023A (en) Anticorrosive marine diesel lubricant
US2483505A (en) Compounded lubricating oil
CA1101829B (en) Molybdenum disulphide-containing lubricant composition and method of preparing same
DE2138569B2 (en) Use of urea derivatives as additives for lubricating oils and fuels
US2766291A (en) Metal salts of alkyl phenol sulfides
US3127348A (en) Table i
US2480664A (en) Lubricating oil composition
US2916451A (en) Oil-soluble carbonated metallo alkylated aryl sulfonates and compositions containing the same
US2889279A (en) Metal-containing organic compositions and method of preparing same