US2671889A - Electrical connector - Google Patents

Electrical connector Download PDF

Info

Publication number
US2671889A
US2671889A US22630A US2263048A US2671889A US 2671889 A US2671889 A US 2671889A US 22630 A US22630 A US 22630A US 2263048 A US2263048 A US 2263048A US 2671889 A US2671889 A US 2671889A
Authority
US
United States
Prior art keywords
sleeve
ferrule
wire
insulation
connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US22630A
Inventor
John R Vickery
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TE Connectivity Corp
Original Assignee
Aircraft Marine Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aircraft Marine Products Inc filed Critical Aircraft Marine Products Inc
Priority to US22630A priority Critical patent/US2671889A/en
Application granted granted Critical
Publication of US2671889A publication Critical patent/US2671889A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/10Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation
    • H01R4/18Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping
    • H01R4/20Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping using a crimping sleeve
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/70Insulation of connections
    • H01R4/72Insulation of connections using a heat shrinking insulating sleeve
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/11End pieces or tapping pieces for wires, supported by the wire and for facilitating electrical connection to some other wire, terminal or conductive member
    • H01R11/12End pieces terminating in an eye, hook, or fork
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/71Processes of shaping by shrinking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S285/00Pipe joints or couplings
    • Y10S285/919Resinous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49863Assembling or joining with prestressing of part
    • Y10T29/49865Assembling or joining with prestressing of part by temperature differential [e.g., shrink fit]

Definitions

  • This invention relates to insulating terminals of the type broadly described and claimed in an application of William S. Watts, Serial No. 732,469, led October 28, 1947, now Re. 23,688, and particularly to connectors and connections and methods of making the same wherein the insulating sleeve on the exterior of the connector is expanded to receive an insulation of larger diameter than the exterior diameter of a metal ferrule on which the insulating sleeve is mounted.
  • these insulated connectors have proven highly satisfactory where the insulation was no larger than the exterior of the metal ferrule so that it could be inserted into the insulating sleeve on the connector, e. g. as shown in said patent.
  • This condition of elastic memory may be desirable in many cases since it makes possible the gripping of the insulation on a wire merely by application of heat, e. g. with radiant infra red lamps or by passing through a blast of hot gas or into a high frequency field. It alsofacilitates mechanical crimping or pressure forming of the expanded portion of the sleeve onto the insulated portion of the wire.
  • the sleeve may be initially formed with a diameter suiiiciently large to receive the insulation, and the portion over the metal ferrule of the connector may be cold molded by pressure so as to grip the ferrule while the extended end is left uncompressed and therefore capable of receiving the insulating portion of the wire.
  • FIG. 1 is a longitudinal section through a terminal connector provided with an insulating sleeve of tough plastic material.
  • Fig. 2 is a similar axial section showing the extended portion of the sleeve expanded by means of an anvil or pin which is shown in its final position within the sleeve.
  • Fig. 3 is a similar axial section showing a connector and insulating sleeve in preliminary assembled relation.
  • Fig. 4 is a corresponding view of the same showing the sleeve of Fig. 3 compressed onto the ferrule.
  • Fig. 5 shows a complete connection made by use of either of the connectors of Fig. 2 or Fig. 4.
  • Fig. 6 shows another type of splicing connector with an insulating sleeve in process of being applied.
  • Fig. 7 is a View of the same after application is complete.
  • Fig. 8 is a similar cross-sectional view of another terminal connector with the insulating sleeve initially positioned thereon;
  • Fig. 9 is a similar View of the same after expansion of the insulating supporting portion.
  • the metal portion of the terminal lll may be made by any of the manufacturing methods as well understood in this art, e. g. from copper tubing by flattening and expanding one end, or from sheet metal by stamping and rolling the lateral portions into a cylindrical ferrule or by deep drawing methods.
  • the ferrule forming portion l2 is made adjacent the tongue portion if: and over this ferrule forming portion a plastic sleeve i5 is applied.
  • the sleeve as applied may be a standard vinylite tubing consisting. for example of vinyl chloride vinyl acetate copolymer having about 3-5% acetate and plasticized to a exible and stretchable condition.
  • the tubing may be applied over the ferrule much as a rubber hose would be applied over a nipple with a slight constrictive fit so that it can readily be slid in place for subsequent operation.
  • the tubing is then cut off at a distance beyond the end of the metal ferrule portion I2, e. g. as shown in Fig. 1.
  • the terminal is then baked in an oven with forced convection whereby the plasticizer is volatilized and removed from the sleeve leaving the latter in a very tough and stiff condition. While still hot, after removal from the oven, or after re-heating, e. g. by exposure to infra red radiation, these terminals are driven onto an expanding mandril or pin I8 as shown in Fig. 2, so that it enters into the extended portion II, and thus the desired expansion of the interior bore of the tube is obtained.
  • the pin I8 is cooled sufficiently during and/or between the stretching operations so that while it is pushed into the sleeve it quickly extracts heat from the sleeve and after a few seconds, e. g. 1A to 1A; minute, the connector may be discharged from the pin in a suniciently cooled condition to hold its expanded condition.
  • the terminals upon discharge from the pins the terminals are immersed in cold water so as to assure that they are well below the temperature at which elastic memory would result in objectionable return toward the smaller diameter.
  • the invention may practice the invention by using a heated pin and driving it more slowly into the extended end of the plastic sleeve so that its heat may be transmitted into the plastic as it is expanded or the plastic may be spun to the larger diameter using a heated iron to work the plastic outward or exposing it and heating externally or internally in other manner while the spinning progresses.
  • the insulating sleeve I6a is of larger diameter than the ferrule forming portion I2 and instead of expanding portion I'I and the portion I5a over the ferrule, portion I2 is compressed from its normal diameter as shown in Fig. 3 to a smaller diameter as shown in Fig. 4 wherein it grips the ferrule portion I2.
  • the plastic can be more severely deformed under compression than under tension without failure, this compression can often be done as a cold molding operation. It can be done in confined compression dies or it can be done by spinning. In the latter case, however, heating the tool or the sleeve will facilitate the compression.
  • This compression of the sleeve onto the ferrule portion may also be combined with a stretching of the extended portion and this in particular enables one to effect the necessary deformation of the sleeve without heat since the limited expansion which may be safely permitted as cold deformation may be given to the extended portion I'I while the portion I5 is compressing a limited safe amount to engage the ferrule portion I2.
  • the terminal may be applied to an insulated Wire as shown in Figure 5.
  • the end of the wire is first bared by stripping part of the insulation from the Wire and the bared end of the central connector 22 is inserted into the ferrule portion I2 while the end of the insulation 24 is inserted into the expanded portion II of the insulating sleeve.
  • Both portions II and I5 are then compressed, advantageously in a fully confined compression die, so that the plastic sleeve and the ferrule portion are tightly pressed into permanent engagement with the wire and the wire itself is compressed and to some extent extruded to give a solid and low resistance connection.
  • a splice connector of the type used to connect wires of different sizes In this case the metal portion of the connector is formed with ferrules of four different sizes, two to receive the insulation of the two different sized wires and two central ferrule portions for receiving the bared wires.
  • an insulating sleeve has been used of inside diameter approximating the outside diameter of the smaller of the insulation supporting sleeves and the insulating sleeve
  • the intermediate portion of the sleeve IBb is pressed, as in the case described in connection with Figures 3 and 4, so as to substantially fit the exterior of the central wire-receiving ferrules as illustrated in Figure '7, It is not necessary that the interior metal connector member have ferrules for the insulation support portions of the connector and in such case, if only the central ferrules are used the sleeve I6b may be made to fit the larger of the two ferrules. In this case a cold expansion may be suicient with the smaller insulation support and this may be effected at the same time that the compression to the smaller wire receiving ferrule is made.
  • An electrical connector of the type adapted to be crimped onto a bared portion of an insu lated wire which comprises a malleable metal ferrule adapted to have said bared wire portion inserted therein; and a tough malleable extruded plastic insulating sleeve tightly fitted around the outside of said ferrule; said plastic sleeve also extending for a substantial distance beyond an end of said ferrule; said sleeve being composed of a stifiiy flexible plastic which is a copolymer of vinyl chloride and vinyl acetate and as originally extruded, being of uniform bore throughout, said extended portion of said sleeve being expanded after extrusion to an internal bore substantially greater than the bore of said sleeve portion fitted over the ferrule whereby to snugly encompass the insulation of said wire ad jacent to the bared wire portion; said expanded portion of said sleeve having been formed by stretching an end part of said sleeve while it is maintained at an
  • An electrical connector of the type adapted to be crimped onto a bared portion of an insulated Wire which comprises a malleable metal ferrule adapted to have inserted therein said bared Wire portion; a tough malleable extruded plastic insulating sleeve tightly embracing the outside of said ferrule; said plastic sleeve being composed of a stiiily flexible copolymer of vinyl chloride and vinyl acetate and as originally extruded, being of uniform bore throughout, said sleeve extending for a substantial distance beyond an end of said ferrule; said extended portion of said sleeve being of a substantially larger internal bore than the bore of said sleeve portion embracing the ferrule in order to have inserted therein the insulation of the wire adjacent to said bared Wire portion; said extended portion of said sleeve having been expanded after extrusion to its larger bore by stretching said extended portion While it is maintained at an elevated temperature over a forming pin, then cooling said extended portion While still stretched

Description

March 9, 1954 1 R, VlCKERY 2,671,889
ELECTRICAL CONNECTOR Filed April 22, 1948 /4 INVENTOR ATTOR Y Patented Mar. 9, 1954 ELECTRICAL CONNECTOR John R. Vickery, York, Pa., assigner to Aircraft- Marine Products Inc., Harrisburg, Pa.
Application April 22, 1948, Serial N o. 22,630
z claims. 1
This invention relates to insulating terminals of the type broadly described and claimed in an application of William S. Watts, Serial No. 732,469, led October 28, 1947, now Re. 23,688, and particularly to connectors and connections and methods of making the same wherein the insulating sleeve on the exterior of the connector is expanded to receive an insulation of larger diameter than the exterior diameter of a metal ferrule on which the insulating sleeve is mounted. As heretofore made, these insulated connectors have proven highly satisfactory where the insulation was no larger than the exterior of the metal ferrule so that it could be inserted into the insulating sleeve on the connector, e. g. as shown in said patent. It has also been the practice to stretch these sleeves to a moderate extent in order to receive somewhat larger insulation. However, because of the requirements of the insulating sleeve and particularly the necessity of having a very tough plastic resistant to cold plastic flow so that it can transmit without failure suiiicient pressure to crimp the metal ferrule securely onto a wire, there has been a limit to the amount of stretching or expansion which can be eiected without breakage of the insulating sleeves. Thus, it had been found that this could be made only in limited sizes with lightly or moderately insulated wire and more expensive types of connectors have been required for heavily insulated wire.
We have now found that it is possible to introduce any required amount of expansion and stretch into the extended portion of the insulation without loosening the insulation on the metal ferrule of the connector by heating this extended portion of the ferrule substantially to a temperature at which it is softened suiciently to be stretched without danger of cracking. At this temperature, however, the stretched condition is not retained but the plastic returns rapidly to a smaller diameter and therefore, upon initial trial, this method appears to have no promise. According' to the present invention it has been found that if the sleeve is cooled the rate of return is gradually decreased and, if cooled to atmospheric temperatures, the expanded form is, for practical purposes, stable, although it retains its elastic memory and the sleeve will shrink again upon heating to a temperature at which softening begins. This condition of elastic memory may be desirable in many cases since it makes possible the gripping of the insulation on a wire merely by application of heat, e. g. with radiant infra red lamps or by passing through a blast of hot gas or into a high frequency field. It alsofacilitates mechanical crimping or pressure forming of the expanded portion of the sleeve onto the insulated portion of the wire.
Where this stretching is undesirable for any reason, it has been found that according to the present invention the sleeve may be initially formed with a diameter suiiiciently large to receive the insulation, and the portion over the metal ferrule of the connector may be cold molded by pressure so as to grip the ferrule while the extended end is left uncompressed and therefore capable of receiving the insulating portion of the wire.
In the accompanying drawings Fig. 1 is a longitudinal section through a terminal connector provided with an insulating sleeve of tough plastic material.
Fig. 2 is a similar axial section showing the extended portion of the sleeve expanded by means of an anvil or pin which is shown in its final position within the sleeve.
Fig. 3 is a similar axial section showing a connector and insulating sleeve in preliminary assembled relation.
Fig. 4 is a corresponding view of the same showing the sleeve of Fig. 3 compressed onto the ferrule.
Fig. 5 shows a complete connection made by use of either of the connectors of Fig. 2 or Fig. 4.
Fig. 6 shows another type of splicing connector with an insulating sleeve in process of being applied.
Fig. 7 is a View of the same after application is complete.
Fig. 8 is a similar cross-sectional view of another terminal connector with the insulating sleeve initially positioned thereon; and
Fig. 9 is a similar View of the same after expansion of the insulating supporting portion.
Referring rst to Figures 1 and 2, the metal portion of the terminal lll, as there shown, may be made by any of the manufacturing methods as well understood in this art, e. g. from copper tubing by flattening and expanding one end, or from sheet metal by stamping and rolling the lateral portions into a cylindrical ferrule or by deep drawing methods. In any case, the ferrule forming portion l2 is made adjacent the tongue portion if: and over this ferrule forming portion a plastic sleeve i5 is applied.
In a preferred example the sleeve as applied may be a standard vinylite tubing consisting. for example of vinyl chloride vinyl acetate copolymer having about 3-5% acetate and plasticized to a exible and stretchable condition. In this condition the tubing may be applied over the ferrule much as a rubber hose would be applied over a nipple with a slight constrictive fit so that it can readily be slid in place for subsequent operation. The tubing is then cut off at a distance beyond the end of the metal ferrule portion I2, e. g. as shown in Fig. 1.
The terminal is then baked in an oven with forced convection whereby the plasticizer is volatilized and removed from the sleeve leaving the latter in a very tough and stiff condition. While still hot, after removal from the oven, or after re-heating, e. g. by exposure to infra red radiation, these terminals are driven onto an expanding mandril or pin I8 as shown in Fig. 2, so that it enters into the extended portion II, and thus the desired expansion of the interior bore of the tube is obtained.
The pin I8 is cooled sufficiently during and/or between the stretching operations so that while it is pushed into the sleeve it quickly extracts heat from the sleeve and after a few seconds, e. g. 1A to 1A; minute, the connector may be discharged from the pin in a suniciently cooled condition to hold its expanded condition. Advantageously, upon discharge from the pins the terminals are immersed in cold water so as to assure that they are well below the temperature at which elastic memory would result in objectionable return toward the smaller diameter.
Instead of pre-heating the extended portion I1 of the insulating sleeve and forming it on a cold pin, one may practice the invention by using a heated pin and driving it more slowly into the extended end of the plastic sleeve so that its heat may be transmitted into the plastic as it is expanded or the plastic may be spun to the larger diameter using a heated iron to work the plastic outward or exposing it and heating externally or internally in other manner while the spinning progresses.
In the case illustrated in Figures 3 and 4 the insulating sleeve I6a is of larger diameter than the ferrule forming portion I2 and instead of expanding portion I'I and the portion I5a over the ferrule, portion I2 is compressed from its normal diameter as shown in Fig. 3 to a smaller diameter as shown in Fig. 4 wherein it grips the ferrule portion I2.
ISince the plastic can be more severely deformed under compression than under tension without failure, this compression can often be done as a cold molding operation. It can be done in confined compression dies or it can be done by spinning. In the latter case, however, heating the tool or the sleeve will facilitate the compression. This compression of the sleeve onto the ferrule portion may also be combined with a stretching of the extended portion and this in particular enables one to effect the necessary deformation of the sleeve without heat since the limited expansion which may be safely permitted as cold deformation may be given to the extended portion I'I while the portion I5 is compressing a limited safe amount to engage the ferrule portion I2.
In any case the terminal may be applied to an insulated Wire as shown in Figure 5. The end of the wire is first bared by stripping part of the insulation from the Wire and the bared end of the central connector 22 is inserted into the ferrule portion I2 while the end of the insulation 24 is inserted into the expanded portion II of the insulating sleeve. Both portions II and I5 are then compressed, advantageously in a fully confined compression die, so that the plastic sleeve and the ferrule portion are tightly pressed into permanent engagement with the wire and the wire itself is compressed and to some extent extruded to give a solid and low resistance connection.
In Figures 6 and '7, I have shown a splice connector of the type used to connect wires of different sizes. In this case the metal portion of the connector is formed with ferrules of four different sizes, two to receive the insulation of the two different sized wires and two central ferrule portions for receiving the bared wires. In this case an insulating sleeve has been used of inside diameter approximating the outside diameter of the smaller of the insulation supporting sleeves and the insulating sleeve |61) is then driven over the larger sleeve either with or without heat, depending upon the extent of expansion required. Subsequently the intermediate portion of the sleeve IBb is pressed, as in the case described in connection with Figures 3 and 4, so as to substantially fit the exterior of the central wire-receiving ferrules as illustrated in Figure '7, It is not necessary that the interior metal connector member have ferrules for the insulation support portions of the connector and in such case, if only the central ferrules are used the sleeve I6b may be made to fit the larger of the two ferrules. In this case a cold expansion may be suicient with the smaller insulation support and this may be effected at the same time that the compression to the smaller wire receiving ferrule is made. In this case, however, expansion with the larger insulation support end of the sleeve would probably be too great for cold expansion, and therefore the heating and chilling as described above in connection with Figures l and 2 should be resorted to. The smaller insulation supporting end may also be expanded at the same time in the same manner by such heating, but in that case such expansion is most advantageously effected before the compression onto the smaller ferrule.
It should be understood that the selection and use of suitable plastic sleeves for insulating connectors of this type and their treatment by baking or other methods to produce the desired stiffness and toughness, and the materials and form of the connector and particularly of the ferrule forming portion Whether completely cylindrical or partially cylindrical or U-shaped, etc., are all matters previously invented and disclosed to the art, and may be varied as desired without departing from the scope of the present invention.
What is claimed is:
1. An electrical connector of the type adapted to be crimped onto a bared portion of an insu lated wire which comprises a malleable metal ferrule adapted to have said bared wire portion inserted therein; and a tough malleable extruded plastic insulating sleeve tightly fitted around the outside of said ferrule; said plastic sleeve also extending for a substantial distance beyond an end of said ferrule; said sleeve being composed of a stifiiy flexible plastic which is a copolymer of vinyl chloride and vinyl acetate and as originally extruded, being of uniform bore throughout, said extended portion of said sleeve being expanded after extrusion to an internal bore substantially greater than the bore of said sleeve portion fitted over the ferrule whereby to snugly encompass the insulation of said wire ad jacent to the bared wire portion; said expanded portion of said sleeve having been formed by stretching an end part of said sleeve while it is maintained at an elevated temperature over a forming pin, thereafter cooling said end part while still stretched over the pin and nally Withdrawing the pin, to thereby produce an expanded end having an elastic memory of its original extruded bore.
2. An electrical connector of the type adapted to be crimped onto a bared portion of an insulated Wire which comprises a malleable metal ferrule adapted to have inserted therein said bared Wire portion; a tough malleable extruded plastic insulating sleeve tightly embracing the outside of said ferrule; said plastic sleeve being composed of a stiiily flexible copolymer of vinyl chloride and vinyl acetate and as originally extruded, being of uniform bore throughout, said sleeve extending for a substantial distance beyond an end of said ferrule; said extended portion of said sleeve being of a substantially larger internal bore than the bore of said sleeve portion embracing the ferrule in order to have inserted therein the insulation of the wire adjacent to said bared Wire portion; said extended portion of said sleeve having been expanded after extrusion to its larger bore by stretching said extended portion While it is maintained at an elevated temperature over a forming pin, then cooling said extended portion While still stretched over the pin and iinally withdrawing the pin, to thereby produce an expanded sleeve portion which has an elastic memory of its smaller original extruded bore and will tend to shrink more tightly about said Wire insulation.
JOHN R. VICKERY.
References Cited in the le of this patent UNITED STATES PATENTS Number Name Date 2,110,783 Walker Mar. 8, 1938 20 2,158,044 Haller May 9, 1939 2,379,567 Buchanan July 3, 1945 2,429,585 Rogoi Oct. 21, 1947
US22630A 1948-04-22 1948-04-22 Electrical connector Expired - Lifetime US2671889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US22630A US2671889A (en) 1948-04-22 1948-04-22 Electrical connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US22630A US2671889A (en) 1948-04-22 1948-04-22 Electrical connector

Publications (1)

Publication Number Publication Date
US2671889A true US2671889A (en) 1954-03-09

Family

ID=21810589

Family Applications (1)

Application Number Title Priority Date Filing Date
US22630A Expired - Lifetime US2671889A (en) 1948-04-22 1948-04-22 Electrical connector

Country Status (1)

Country Link
US (1) US2671889A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2802257A (en) * 1949-02-01 1957-08-13 Amp Inc Method of forming an electrical connection
US2815124A (en) * 1953-03-31 1957-12-03 Burndy Corp Electrical connector supporting feed strip
US2846659A (en) * 1953-10-14 1958-08-05 Nuclear Chicago Corp Soldering terminal assembly
US2863132A (en) * 1944-10-28 1958-12-02 Amp Inc Electrical connector with insulated ferrule
US2881479A (en) * 1954-09-27 1959-04-14 Whitney Blake Co Electrical connector and process of manufacture
US2901822A (en) * 1955-12-15 1959-09-01 Robert B Hayden Method of forming a harness cord end terminal
US2938238A (en) * 1954-05-04 1960-05-31 Baxter Laboratories Inc Plastic collar secured to a member and method of attaching same
US2994933A (en) * 1956-04-04 1961-08-08 Sheemon A Wolfe Grommet
US3083347A (en) * 1961-01-09 1963-03-26 Joslyn Mfg & Supply Co Receptacle
US3093448A (en) * 1959-11-25 1963-06-11 Grace W R & Co Encapsulation of electrical components and other articles
US3158423A (en) * 1962-06-11 1964-11-24 Radiation Inc Subminiature electronic connector
US3163692A (en) * 1955-05-02 1964-12-29 Amp Inc Method for making high voltage high altitude bushing
US3193792A (en) * 1962-12-03 1965-07-06 Inter State Electronics Corp Connector-contact adapter
US3220807A (en) * 1962-02-14 1965-11-30 Jr Alfred W Schmitz Electrical terminals
US3656092A (en) * 1970-08-07 1972-04-11 Amp Inc Terminal device for welded termination of electrical leads
US3673299A (en) * 1970-02-27 1972-06-27 Amp Inc Method of applying sleeves to electrical connectors
US3851298A (en) * 1973-04-06 1974-11-26 Rca Corp Wrapped wire connection
US4143112A (en) * 1974-05-30 1979-03-06 Johnson & Johnson Method for making probe covers for electronic thermometers
US4468083A (en) * 1981-12-17 1984-08-28 Monster Cable Products, Inc. Crimped banana-type electrical connector and method thereof
US4551293A (en) * 1984-03-05 1985-11-05 Jamak, Inc. Method of forming spark plug boots
US4648684A (en) * 1983-12-09 1987-03-10 Raychem Corporation Secure connector for coaxial cable
US4772235A (en) * 1986-05-16 1988-09-20 Israel Aircraft Industries, Inc. Electrical connector
EP0704110A1 (en) * 1994-04-15 1996-04-03 Panduit Corp. Insulated terminal with integral dual flared barrel
DE19845098A1 (en) * 1998-09-30 2000-04-06 Grote & Hartmann Electrical contact element, has contact point in form of connecting region with adjacent regions of insulation enveloped by protective material in which sealant adheres permanently to contact point
FR2844643A1 (en) * 2002-09-18 2004-03-19 Centre Nat Rech Scient Electrical wiring connector element having conductor element inserted gripping electrical conductor and maintenance piece gripping part fixed.
US7611392B2 (en) 2007-09-17 2009-11-03 Thomas & Betts International, Inc. Terminal with integral strain relief
US8519267B2 (en) 2009-02-16 2013-08-27 Carlisle Interconnect Technologies, Inc. Terminal having integral oxide breaker
US9985362B2 (en) 2015-10-22 2018-05-29 Carlisle Interconnect Technologies, Inc. Arc resistant power terminal
US10164348B2 (en) 2009-02-16 2018-12-25 Carlisle Interconnect Technologies, Inc. Terminal/connector having integral oxide breaker element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2110783A (en) * 1936-04-25 1938-03-08 Albert R Teare Resilient bushing and method and apparatus for making same
US2158044A (en) * 1929-05-18 1939-05-09 Hygrade Sylvanla Corp Method of making contactor bases for electric lamps, tubes, and the like
US2379567A (en) * 1941-12-03 1945-07-03 Aircraft Marine Prod Inc Electrical connector
US2429585A (en) * 1944-06-06 1947-10-21 Burndy Engineering Co Inc Pressed insulated connector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2158044A (en) * 1929-05-18 1939-05-09 Hygrade Sylvanla Corp Method of making contactor bases for electric lamps, tubes, and the like
US2110783A (en) * 1936-04-25 1938-03-08 Albert R Teare Resilient bushing and method and apparatus for making same
US2379567A (en) * 1941-12-03 1945-07-03 Aircraft Marine Prod Inc Electrical connector
US2429585A (en) * 1944-06-06 1947-10-21 Burndy Engineering Co Inc Pressed insulated connector

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2863132A (en) * 1944-10-28 1958-12-02 Amp Inc Electrical connector with insulated ferrule
US2802257A (en) * 1949-02-01 1957-08-13 Amp Inc Method of forming an electrical connection
US2815124A (en) * 1953-03-31 1957-12-03 Burndy Corp Electrical connector supporting feed strip
US2846659A (en) * 1953-10-14 1958-08-05 Nuclear Chicago Corp Soldering terminal assembly
US2938238A (en) * 1954-05-04 1960-05-31 Baxter Laboratories Inc Plastic collar secured to a member and method of attaching same
US2881479A (en) * 1954-09-27 1959-04-14 Whitney Blake Co Electrical connector and process of manufacture
US3163692A (en) * 1955-05-02 1964-12-29 Amp Inc Method for making high voltage high altitude bushing
US2901822A (en) * 1955-12-15 1959-09-01 Robert B Hayden Method of forming a harness cord end terminal
US2994933A (en) * 1956-04-04 1961-08-08 Sheemon A Wolfe Grommet
US3093448A (en) * 1959-11-25 1963-06-11 Grace W R & Co Encapsulation of electrical components and other articles
US3083347A (en) * 1961-01-09 1963-03-26 Joslyn Mfg & Supply Co Receptacle
US3220807A (en) * 1962-02-14 1965-11-30 Jr Alfred W Schmitz Electrical terminals
US3158423A (en) * 1962-06-11 1964-11-24 Radiation Inc Subminiature electronic connector
US3193792A (en) * 1962-12-03 1965-07-06 Inter State Electronics Corp Connector-contact adapter
US3673299A (en) * 1970-02-27 1972-06-27 Amp Inc Method of applying sleeves to electrical connectors
US3656092A (en) * 1970-08-07 1972-04-11 Amp Inc Terminal device for welded termination of electrical leads
US3851298A (en) * 1973-04-06 1974-11-26 Rca Corp Wrapped wire connection
US4143112A (en) * 1974-05-30 1979-03-06 Johnson & Johnson Method for making probe covers for electronic thermometers
US4468083A (en) * 1981-12-17 1984-08-28 Monster Cable Products, Inc. Crimped banana-type electrical connector and method thereof
US4648684A (en) * 1983-12-09 1987-03-10 Raychem Corporation Secure connector for coaxial cable
US4551293A (en) * 1984-03-05 1985-11-05 Jamak, Inc. Method of forming spark plug boots
US4772235A (en) * 1986-05-16 1988-09-20 Israel Aircraft Industries, Inc. Electrical connector
EP0704110A1 (en) * 1994-04-15 1996-04-03 Panduit Corp. Insulated terminal with integral dual flared barrel
US5522739A (en) * 1994-04-15 1996-06-04 Panduit Corp. Insulated terminal with integral dual flared barrel
EP0704110A4 (en) * 1994-04-15 1996-08-14 Panduit Corp Insulated terminal with integral dual flared barrel
DE19845098A1 (en) * 1998-09-30 2000-04-06 Grote & Hartmann Electrical contact element, has contact point in form of connecting region with adjacent regions of insulation enveloped by protective material in which sealant adheres permanently to contact point
FR2844643A1 (en) * 2002-09-18 2004-03-19 Centre Nat Rech Scient Electrical wiring connector element having conductor element inserted gripping electrical conductor and maintenance piece gripping part fixed.
US7611392B2 (en) 2007-09-17 2009-11-03 Thomas & Betts International, Inc. Terminal with integral strain relief
US8519267B2 (en) 2009-02-16 2013-08-27 Carlisle Interconnect Technologies, Inc. Terminal having integral oxide breaker
US10164348B2 (en) 2009-02-16 2018-12-25 Carlisle Interconnect Technologies, Inc. Terminal/connector having integral oxide breaker element
US9985362B2 (en) 2015-10-22 2018-05-29 Carlisle Interconnect Technologies, Inc. Arc resistant power terminal

Similar Documents

Publication Publication Date Title
US2671889A (en) Electrical connector
US2863132A (en) Electrical connector with insulated ferrule
US2410321A (en) Electrical connector
US2974400A (en) Method of making an insulated electrical connector
US3146519A (en) Method of making electrical connections
US2429585A (en) Pressed insulated connector
US3708611A (en) Heat shrinkable preinsulated electrical connector and method of fabrication thereof
US4283597A (en) Wide-range insulating/sealing sleeve
US2654873A (en) Insulated electric connector
US3548472A (en) Ignition plug and method for manufacturing a center electrode for the same
US1886086A (en) Connecter for cables
US4208788A (en) Splicing electrical wires
US2596528A (en) Electrical connector having coaxial barrels of different diameters
US2873482A (en) Method of making a plastic encased article
US2297785A (en) Terminal for electrical conductors
US2681439A (en) Insulated electrical connector
US4171499A (en) Electric lamp and socket construction, particularly infrared, elongated, high-power radiator for photo copy apparatus, and method of its manufacture
ES369058A1 (en) Thermoformed plastic covered connectors
US2997411A (en) Closed end connector
US3246393A (en) Process for removing a fitting from a hose
US4195902A (en) Electrical connector having an extensible, collapsible insulative sleeve
US2927150A (en) Insulation piercing crimp
EP1253377B1 (en) Heater, glow plug and water heater
CN110061399A (en) General-purpose aircraft component harness compression bonding method
US3220807A (en) Electrical terminals