US2639997A - Metallization of nonmetallic surfaces - Google Patents

Metallization of nonmetallic surfaces Download PDF

Info

Publication number
US2639997A
US2639997A US22700A US2270048A US2639997A US 2639997 A US2639997 A US 2639997A US 22700 A US22700 A US 22700A US 2270048 A US2270048 A US 2270048A US 2639997 A US2639997 A US 2639997A
Authority
US
United States
Prior art keywords
silver
solution
active agent
glass
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US22700A
Inventor
Drake Cyril Francis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Standard Electric Corp
Original Assignee
International Standard Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Standard Electric Corp filed Critical International Standard Electric Corp
Application granted granted Critical
Publication of US2639997A publication Critical patent/US2639997A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • C03C17/10Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents

Description

Patented May 26, 1953 METALLIZATION OF NONMETALLIC SURFACES Cyril Francis Drake, London, England, assignor to International Standard ElectricCorporation, New York, N. Y;, a corporation of Delaware No Drawing. Application April 22, 1948, Serial No. 22,700. In Great Britain April 24, 1947 1 This invention relates to the metallisation of non-metallic surfaces and more particularly to a process of metallising such surfaces whereby only a desired area of asurface may be coated with metal.
The process of silvering glass by immersing the glass in an ammoniacal solution of silver nitrate, it may be after having treated the glass with an activating agent such as a solution of stannous chloride in hydrochloric acid, and thenadding. a reducing agent to the solution, is well 'known.' This process suffers from'the disadvantages that silver is deposited upon areas other than those required to be silvered so that it cannot be used for silvering only a portion of the surface immersed in the solution, and, even if the deposit which occurs upon the sides of the vessel and other unwanted parts can be recovered (w'hidhis not alwayspossible to secure), a considerably larger amount of silver salt must be used than is necessary to form a coating of given thickness on a glass of given area. In addition there is formed a considerable deposit of silver in the solution itself which later settles out.
It is the object of the present invention to provide a process of metallising that does not suffer. from these disadvantages and has in consequence a wider field of application than the known method.
-According to the present invention a process of metallising non-metallic surfaces (other than hydrocarbon polymers) by reduction of a metal salt in solution is characterised in that the reduction of the metal salt in solution is effected in the presence of an anionic surface active agent.
The invention finds its principal application in the silvering of non-metallic surfaces and will accordingly be explained in relation thereto.
In carrying out the invention in relation to the silvering of non-metallic surfaces, an anionic surface active agent is added to an ammoniacal solution of silver nitrate. The preferred surface active agent is a wetting compound in the form of an alkali metal or alkaline-earth-metal salt of a sulphonated long chain fatty alcohol; specifically the sodium salt of sulphonated lauryl alcohol has been found satisfactory and the proportion added was 0.05% by weight of the solution. On now adding a reducing agent such as formaldehyde, no apparent change takes place in the solution.
Metallic silver is formed in the same way as in the absence of the surface active agent but the particles of silver remain of such small dimensions that the liquid is transparent and the silver 7 Claims. (01. 117-35) 2- remains in suspension. Since the silver particles produced by the reduction of a silver salt carry a, negative charge, it is necessary for the production of such a result that the surface active agent should be anionic. The proportion of surface active agent added should not be so great that the silver will be permanently held in suspension nor that the silverwhen deposited will be discoloured. Thus in the case of the sodium salt of sulphonated lauryl alcohol the proportion should not exceed 0.2% by weight.
In order that a non-metallic surface shall be silvered on being immersed in the liquid it is necessary that the surface shall have been activated in known manner, e. g. by immersion in a solution of stannous chloride in hydrochloric acid. If a glass surface so activated be exposed to the liquid above mentioned containing silver in suspension, the silver is deposited immediately upon the activated surface and forms an'adherent mirror coating.
The surfaces of other non-metallic substances may be equally well silvered in this manner, provided that the surface has polar groups present. Thus surfaces of glass, mica, quartz and some synthetic resins such as those of the acrylic acid group may be silvered in this way, but adherent deposits are not formed on the surface of hydrocarbon polymers such as polystyrene or solid polymers or ethylene.
It is clear that the activated surface to be silvered can be placed in the ammoniacal solution of silver nitrate containing the surface active agent either before or after the reducing agent has been added thereto. It is, however, generally convenient to add the reducing agent to the solution before exposing the surface to be silvered thereto. It is clear also that it is not necessary to add all at once an amount of reducing agent sufficient to reduce all the silver salt in solution, but that it is possible to add first only sufiicient formaldehyde to precipitate the silver required to silver a certain number of surfaces and then to expose those surfaces to the liquid, after which a further amount of formaldehyde may be added and further surfaces silvered.
Since silver is only deposited upon areas that have been activated the invention can be used for silvering only a required area on a surface. Thus electrodes of any desired shape and area can be formed upon plates of quartz piezo-electric crystals by activating only the parts of the quartz desired to be silvered.
The thickness of silver coating obtained can be varied from a transparent coating upwards to any desired thickness according to the time of immersion, though it is obviously desirable if very thick coatings are required, e. g. sufficient for solderin or connecting lead, to immerse the surface being silvered in more than one successive bath.
The present invention provides the only means known to us of uniformly silvering the interior surface of a narrow core or long length cylindrical tube of glass or similar material. By washing the interior surface of the tube with is 5.01 tion of stannous chloride in hydrochloric acidand then drawing through the tube a solution corrtaining finely divided silver in suspension as described above, a uniform and adherent silver deposit is formed on the interior surface of the tube only.
What is claimed is:
1. Process for producing an adherent coating of metallic silver upon a surface of an article formed of a non-metallic substance chosen from the class consisting of glass, mica, quartz, and synthetic resins having polar groups present in the molecule, that comprises applying then removing, a solution of stannous chloride hydrochloric acid to the surface to be coated, then treating the surface with an ammoniacal solution of silver nitrate containing an anionic surface active agent in the presence of a reducing agent.
'2. Process as claimed in claim 1 wherein the surface active agent is a substance chosen vfrom the class consisting of the alkali-metal salts and the alkaline-\earth-metal salts of a sulphonated long chain fatty alcohol.
,3. Process as claimed in claim ,1 wherein the surface active agent is the sodium salt of sulphonated lauryl alcohol.
.4.- Process of silvering a surface of an electrical insulating material having polar groups present which comprises activating the surface by treatment with a solution of stannous chloride in hydrochloric acid and thereafter immersing the surface in a liquid containing silver in suspension and an anionic surface active agent.
5. Process of silvering a given area of a nonmetallic surface Of the kind thathaspolar groups 'on :the surface which comprises treating that given area with a solution of stannous chloride in hydrochloric acid to activate it, then treating it with an ammoniacal solution of silver nitrate med thereto a small percentage of the sadium salt of sulphonated lauryl alcohol together withformaldehyde in an amount sufllcient to reduce the silver nitrate to silver.
6. Pmocess-of rsilvering the interior surface 01 a glass tube that comprises activating the said suniace by treatment with a hydrochloric acid solution of stannous chloride and thereafter drawing through the said tube an ammoniacal solution of silver nitrate containing a reducing agent and a small percentage of an anionic surface active agent of the class consisting of alkali metal and alkaline earth-metal salts of 's'ulionaied long-chain aliphatic alcohols.
7. Process according to claim 3, in which the sodium salt ,of sulphonated lauryl alcohol comprises'0.0 5% to 0.2% by'weight of theammoniacal solution.
CYRIL FRANCIS References Cited in the file .9! this UNITED cram mums I Date

Claims (1)

1. PROCESS FOR PRODUCING AN ADHERENT COATING OF METALLIC SILVER UPON A SURFACE OF AN ARTICLE FORMED OF A NON-METALLIC SUBSTANCE CHOSEN FROM THE CLASS CONSISTING OF GLASS, MICA, QUARTZ, AND SYNTHETIC RESINS HAVING POLAR GROUPS PRESENT IN THE MOLECULE, THAT COMPRISES APPLYING, THEN REMOVING, A SOLUTION OF STANNOUS CHLORIDE IN HYDROCHLORIC ACID TO THE SURFACE TO BE COATED, THEN TREATING THE SURFACE WITH AN AMMONIACAL SOLUTION OF SILVER NITRATE CONTAINING AN ANIONIC SURFACE ACTIVE AGENT IN THE PRESENCE OF A REDUCING AGENT.
US22700A 1947-04-24 1948-04-22 Metallization of nonmetallic surfaces Expired - Lifetime US2639997A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB10985/47A GB646921A (en) 1947-04-24 1947-04-24 Metallisation of non-metallic surfaces

Publications (1)

Publication Number Publication Date
US2639997A true US2639997A (en) 1953-05-26

Family

ID=9977923

Family Applications (1)

Application Number Title Priority Date Filing Date
US22700A Expired - Lifetime US2639997A (en) 1947-04-24 1948-04-22 Metallization of nonmetallic surfaces

Country Status (2)

Country Link
US (1) US2639997A (en)
GB (1) GB646921A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5395651A (en) * 1989-05-04 1995-03-07 Ad Tech Holdings Limited Deposition of silver layer on nonconducting substrate
US6716895B1 (en) 1999-12-15 2004-04-06 C.R. Bard, Inc. Polymer compositions containing colloids of silver salts
US20040116551A1 (en) * 1999-12-15 2004-06-17 Terry Richard N. Antimicrobial compositions containing colloids of oligodynamic metals
US20050064176A1 (en) * 2001-12-03 2005-03-24 Terry Richard N. Microbe-resistant medical device, microbe-resistant polymeric coating and methods for producing same
US9454365B2 (en) 2013-09-10 2016-09-27 Duo Security, Inc. System and method for determining component version compatibility across a device ecosystem
US9455988B2 (en) 2013-02-22 2016-09-27 Duo Security, Inc. System and method for verifying status of an authentication device
US9454656B2 (en) 2013-08-08 2016-09-27 Duo Security, Inc. System and method for verifying status of an authentication device through a biometric profile
US9532222B2 (en) 2010-03-03 2016-12-27 Duo Security, Inc. System and method of notifying mobile devices to complete transactions after additional agent verification
US9544143B2 (en) 2010-03-03 2017-01-10 Duo Security, Inc. System and method of notifying mobile devices to complete transactions
US9607156B2 (en) 2013-02-22 2017-03-28 Duo Security, Inc. System and method for patching a device through exploitation
US9608814B2 (en) 2013-09-10 2017-03-28 Duo Security, Inc. System and method for centralized key distribution
US9641341B2 (en) 2015-03-31 2017-05-02 Duo Security, Inc. Method for distributed trust authentication
US9762590B2 (en) 2014-04-17 2017-09-12 Duo Security, Inc. System and method for an integrity focused authentication service
US9774448B2 (en) 2013-10-30 2017-09-26 Duo Security, Inc. System and methods for opportunistic cryptographic key management on an electronic device
US9774579B2 (en) 2015-07-27 2017-09-26 Duo Security, Inc. Method for key rotation
US9979719B2 (en) 2015-01-06 2018-05-22 Duo Security, Inc. System and method for converting one-time passcodes to app-based authentication
US10013548B2 (en) 2013-02-22 2018-07-03 Duo Security, Inc. System and method for integrating two-factor authentication in a device
US10412113B2 (en) 2017-12-08 2019-09-10 Duo Security, Inc. Systems and methods for intelligently configuring computer security
US11251970B2 (en) * 2016-10-18 2022-02-15 Cybernetica As Composite digital signatures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1644798A (en) * 1925-08-26 1927-10-11 American Optical Corp Ophthalmic lens
US2147415A (en) * 1937-05-11 1939-02-14 Eastman Kodak Co Electroplating
US2273613A (en) * 1939-02-17 1942-02-17 Rohm & Haas Process for preparing mirrors
US2303871A (en) * 1939-05-03 1942-12-01 Metaplast Corp Metal coated plastic material and method of producing the same
US2315852A (en) * 1940-06-12 1943-04-06 Remington Arms Co Inc Method of inhibiting corrosion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1644798A (en) * 1925-08-26 1927-10-11 American Optical Corp Ophthalmic lens
US2147415A (en) * 1937-05-11 1939-02-14 Eastman Kodak Co Electroplating
US2273613A (en) * 1939-02-17 1942-02-17 Rohm & Haas Process for preparing mirrors
US2303871A (en) * 1939-05-03 1942-12-01 Metaplast Corp Metal coated plastic material and method of producing the same
US2315852A (en) * 1940-06-12 1943-04-06 Remington Arms Co Inc Method of inhibiting corrosion

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5395651A (en) * 1989-05-04 1995-03-07 Ad Tech Holdings Limited Deposition of silver layer on nonconducting substrate
US5747178A (en) * 1989-05-04 1998-05-05 Adtech Holding Deposition of silver layer on nonconducting substrate
US5965204A (en) * 1989-05-04 1999-10-12 Ad Tech Holdings Limited Deposition of silver layer on nonconducting substrate
US6224983B1 (en) * 1989-05-04 2001-05-01 Ad Tech Holdings Limited Deposition of silver layer on nonconducting substrate
US20090293882A1 (en) * 1999-12-15 2009-12-03 C.R. Bard, Inc. Antimicrobial compositions containing colloids of oligodynamic metals
US20040116551A1 (en) * 1999-12-15 2004-06-17 Terry Richard N. Antimicrobial compositions containing colloids of oligodynamic metals
US7179849B2 (en) 1999-12-15 2007-02-20 C. R. Bard, Inc. Antimicrobial compositions containing colloids of oligodynamic metals
US20080199623A1 (en) * 1999-12-15 2008-08-21 C.R. Bard. Inc. Antimicrobial compositions containing colloids of oligodynamic materials
US20080199536A1 (en) * 1999-12-15 2008-08-21 C.R. Bard, Inc. Antimicrobial compositions containing colloids of oligodynamic metals
US6716895B1 (en) 1999-12-15 2004-04-06 C.R. Bard, Inc. Polymer compositions containing colloids of silver salts
US8034454B2 (en) 1999-12-15 2011-10-11 C.R. Bard, Inc. Antimicrobial compositions containing colloids of oligodynamic metals
US20050064176A1 (en) * 2001-12-03 2005-03-24 Terry Richard N. Microbe-resistant medical device, microbe-resistant polymeric coating and methods for producing same
US7820284B2 (en) 2001-12-03 2010-10-26 C.R. Bard Inc. Microbe-resistant medical device, microbe-resistant polymeric coating and methods for producing same
US11832099B2 (en) 2010-03-03 2023-11-28 Cisco Technology, Inc. System and method of notifying mobile devices to complete transactions
US11341475B2 (en) 2010-03-03 2022-05-24 Cisco Technology, Inc System and method of notifying mobile devices to complete transactions after additional agent verification
US11172361B2 (en) 2010-03-03 2021-11-09 Cisco Technology, Inc. System and method of notifying mobile devices to complete transactions
US9532222B2 (en) 2010-03-03 2016-12-27 Duo Security, Inc. System and method of notifying mobile devices to complete transactions after additional agent verification
US9544143B2 (en) 2010-03-03 2017-01-10 Duo Security, Inc. System and method of notifying mobile devices to complete transactions
US9992194B2 (en) 2010-03-03 2018-06-05 Duo Security, Inc. System and method of notifying mobile devices to complete transactions
US10706421B2 (en) 2010-03-03 2020-07-07 Duo Security, Inc. System and method of notifying mobile devices to complete transactions after additional agent verification
US10445732B2 (en) 2010-03-03 2019-10-15 Duo Security, Inc. System and method of notifying mobile devices to complete transactions after additional agent verification
US10129250B2 (en) 2010-03-03 2018-11-13 Duo Security, Inc. System and method of notifying mobile devices to complete transactions
US9607156B2 (en) 2013-02-22 2017-03-28 Duo Security, Inc. System and method for patching a device through exploitation
US10013548B2 (en) 2013-02-22 2018-07-03 Duo Security, Inc. System and method for integrating two-factor authentication in a device
US9455988B2 (en) 2013-02-22 2016-09-27 Duo Security, Inc. System and method for verifying status of an authentication device
US9454656B2 (en) 2013-08-08 2016-09-27 Duo Security, Inc. System and method for verifying status of an authentication device through a biometric profile
US9608814B2 (en) 2013-09-10 2017-03-28 Duo Security, Inc. System and method for centralized key distribution
US10248414B2 (en) 2013-09-10 2019-04-02 Duo Security, Inc. System and method for determining component version compatibility across a device ecosystem
US9454365B2 (en) 2013-09-10 2016-09-27 Duo Security, Inc. System and method for determining component version compatibility across a device ecosystem
US9774448B2 (en) 2013-10-30 2017-09-26 Duo Security, Inc. System and methods for opportunistic cryptographic key management on an electronic device
US9762590B2 (en) 2014-04-17 2017-09-12 Duo Security, Inc. System and method for an integrity focused authentication service
US9979719B2 (en) 2015-01-06 2018-05-22 Duo Security, Inc. System and method for converting one-time passcodes to app-based authentication
US9641341B2 (en) 2015-03-31 2017-05-02 Duo Security, Inc. Method for distributed trust authentication
US9825765B2 (en) 2015-03-31 2017-11-21 Duo Security, Inc. Method for distributed trust authentication
US9774579B2 (en) 2015-07-27 2017-09-26 Duo Security, Inc. Method for key rotation
US11251970B2 (en) * 2016-10-18 2022-02-15 Cybernetica As Composite digital signatures
US10412113B2 (en) 2017-12-08 2019-09-10 Duo Security, Inc. Systems and methods for intelligently configuring computer security

Also Published As

Publication number Publication date
GB646921A (en) 1950-11-29

Similar Documents

Publication Publication Date Title
US2639997A (en) Metallization of nonmetallic surfaces
US3437507A (en) Plating of substrates
US3690921A (en) Method for strongly adhering a metal film on ceramic substrates
US3532518A (en) Colloidal metal activating solutions for use in chemically plating nonconductors,and process of preparing such solutions
US2690402A (en) Processes of chemical nickel plating of nonmetallic bodies
US3011920A (en) Method of electroless deposition on a substrate and catalyst solution therefor
US2734837A (en) Surface treatment of titanium or
US2243429A (en) Electroplating of nonconductive surfaces
US3438798A (en) Electroless plating process
US3219471A (en) Process of depositing ferromagnetic compositions
US3485725A (en) Method of increasing the deposition rate of electroless solutions
US3202529A (en) Disposition of nickel-cobalt alloy on aluminum substrates
US3674675A (en) Platinized plastic electrodes
US3423226A (en) Plating of non-metallic bodies
US2879175A (en) Method for producing a silver coating on a non metallic material
US3178311A (en) Electroless plating process
US3467540A (en) Method of increasing the adhesion of metal to a subsurface
US3537878A (en) Electroless plating process
US3249467A (en) Method of forming metallic films on glass
US3877981A (en) Method of electroless plating
JPS63137178A (en) Aqueous bath for no-current precipitation of metal
US3697296A (en) Electroless gold plating bath and process
US3274022A (en) Palladium deposition
US3053741A (en) Deposition of metals
US3235392A (en) Electroless deposition of palladium