US2500092A - Leaching of batted resin bonded glass fibers - Google Patents

Leaching of batted resin bonded glass fibers Download PDF

Info

Publication number
US2500092A
US2500092A US34354A US3435448A US2500092A US 2500092 A US2500092 A US 2500092A US 34354 A US34354 A US 34354A US 3435448 A US3435448 A US 3435448A US 2500092 A US2500092 A US 2500092A
Authority
US
United States
Prior art keywords
batt
roll
acid
glass
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US34354A
Inventor
Parker Leon
Zack Bonnie Jean
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
H I THOMPSON Co
Original Assignee
H I THOMPSON Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by H I THOMPSON Co filed Critical H I THOMPSON Co
Priority to US34354A priority Critical patent/US2500092A/en
Application granted granted Critical
Publication of US2500092A publication Critical patent/US2500092A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/66Chemical treatment, e.g. leaching, acid or alkali treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/66Chemical treatment, e.g. leaching, acid or alkali treatment
    • C03C25/68Chemical treatment, e.g. leaching, acid or alkali treatment by etching

Definitions

  • This invention relates to resin bonded glass fibers, and to an improvement in the process of treating glass fibers with acids for the purpose of extracting the glass-forming oxides, other than silica, in order to produce fibers of very high silica content, containing little or substantially no other glass-forming oxides, to produce a siliceous fiber of very high melting point and approaching, in character, silica fibers.
  • the glass fiber batt After the glass fiber batt has been treated it is removed and washed and fired at about 1400- 1750 F. to burn off the resin and dehydrate the fiber.
  • One of the major uses for such fibers is in batted form in which the fibers are in interlocked arrangement, rather closely packed in random arrangement. The nature of the batt appears from the following:
  • the procedure employed is to immerse the batted fibers in an acid solution (such as referred to above) and to carry the extraction forward until substantially all of the glass-forming oxides, other than silica, are withdrawn.
  • the extraction can be obtained by adjusting the temperature, time, and concentration of the acid for such purpose.
  • a convenient form of acid is HCl and it has been found that acid strengths of from 10 15% and temperatures ranging from about 150-190? F. and time ranging from 4-24 hours will produce useful results.
  • the glass fibers employed are those which are not chemically resistant. They include the high alumina, high lime, relatively low boron oxide. boro-silicate glasses. A typical example (cited only for illustration) is given by the following analysis:
  • the fired, acid extracted batt may have the following composition, this formulation being typical and not any limitation upon the nature of the fibers produced:
  • One 01 the major uses of these batted materials is in insulation to form insulating blankets, in which case it is desirable to maintain the porosity of the batt and to reduce the fragmentation of the fibers. It is therefore desirable that the original shape of the batt be preserved during treatment.
  • the resins employed are well known and usually considered to be acid resistant, water impervious resin coating compositions. It has been found, however, that the films with which the fibers are coated do not constitute a barrier to the penetration of acid or the diffusion of the salts formed on leaching. The fibers are leached without destruction'of the bonding resin films. These films act as a protective coating to in-- crease the strength and reduce the brittleness. of the fibers and the batts and also preserve the shape of the batt during treatment.
  • phenol-formaldehyde phenol-furfural
  • polyvinyl chloride vinylidene chloride
  • polystyrene polyethylene
  • polybutylene methylmethacrylate
  • lignin and rubber and chlorinated rubber phenol-formaldehyde, phenol-furfural, methylmethacrylate resins are attacked by the strong oxidizing acids, such as strong sulfuric acid and strong nitric acid, while the others are not so attacked.
  • the permeability of the resin film to water is greatest in the case of the phenolformaldehyde, phenol-furfural, and methylmethacrylate resin, and least in the case of the polyvinyl chloride, vinylidene chloride, polystyrene, polyethylene, and the rubbers.
  • the acid resistant and highly permeable resins such as the phenol-formaldehyde, phenol-furfural, and methylmethacrylate resins, and employ the non-oxidizing acids when using such resins.
  • the batts are immersed in the acid solution at an elevated temperature and maintained in this acid for a period of time.
  • a number of such batts are placed on top of each other on racks in tanks containing the acid and then the racks are removed from the acid upon completion of the extraction and washed in wash tanks for removal of the excess acid.
  • the batts are then rolled up and placed into a drying oven to remove the superficial moisture by heating them for several hours at a temperature of about 180 F. and then they are placed in furnaces where they are heated at 1600 F. for nine hours to burn off the resinous material and to dehydrate the silica fibers.
  • the difiiculty can be cured by wrapping the resin bonded batt before treatment with a porous diaphragm which is permeable to the acid and is resistant to acid attack. This is done by rolling the resin bonded batt into a roll and then rolling the roll inside of the blanket to completely cover the batt.
  • the blanket should preferably extend to the ends and also may extend beyond the ends of the roll. The roll ends need not be covered, although this is not an undesirable procedure.
  • the batt may be enclosed inside a foraminous blanket and immersed in the acid solution. The acid permeates the blanket and causes the extraction and the wrapped batt may then be washed without removing the foraminous blanket to remove the acid and may then be dried, preferably below the fusion temperature'of the resin binder.
  • the batt may then be removed from the covering blanket and fired.
  • the acid and has sumcient structural strength to be used as a blanket.
  • a blanket For example, we may use a previously extracted and fired silica fiber cloth or batt. We may employ acid resistant fiber glass cloth. We may use foraminous sheet rubber which contains a multiplicity of fine holes, such as is used for the filtration of corrosive acid material. If the temperature used in acid leaching is not too excessive (i. e., in the range of 100 to 200 F.) we may use either a polyvinylidine resin woven cloth or such cloth of suitable resinous textile material which is resistant to acid.
  • a highly useful wrapping may be a sheet of chemically resistant glass fiber cloth. Such cloths have been used as filter cloths in ordinary filtration of acid liquors.
  • This glass cloth may be generally defined as a low alumina, high lime, low boron-boro-silicate glass, in contradistinction to the high alumina, high lime, low boron-boro-silicate employed for extraction of the glass.
  • a typical analysis of the glass used in the fiber of the sheet material is as follows:
  • a process of forming batts of silica fibres which comprises, forming a roll of resin bonded glass fibre batt, wrapping said roll in an envelope of an acid resistant and acid permeable sheath, immersing said wrapped roll in a solution of an acid for a time sufiicient to extract th glass forming oxides, other than silica, of said roll, removing said roll from said envelope, and heating said extracted fibres to an elevated temperature sufficient to dehydrate said batt and re move said resin.
  • a process of forming batts of silica fibres which comprises, forming a roll of resin bonded glass fibre batt, wrapping said roll in an envelope of an acid resistant and acid permeable sheath to cover the said roll, immersin said wrapped roll in a solution of an acid for a time suificient to extract the glass forming oxides, other than silica, of said roll, washing said rolled batt while in said envelope to remove excess acid, removing said roll from said envelope, and heating said extracted fibres to an elevated temperature suilicient to dehydrate said batt and remove said resin.
  • a process of forming batts of silica fibre which comprises coating a batt of glass fibres with rubber latex to coat said batt with rubber, forming a roll of resin bonded glass fibre batt, and enclosing said roll in said rubber coated batt to cover the said roll, immersing said wrapped roll in a solution of an acid, extracting the glass forming oxides, other than silica, of said roll, removing said roll from said enclosing latex covercd batt, and heating said extracted fibres to an elevated temperature suificient to dehydrate said batt and remove said resin.
  • a process of forming batts of silica fibre which comprises coating a batt of glass fibres with rubber latex to coat said batt with rubber,
  • a process of forming batts of silica fibre which comprises coating a batt of glass fibres with rubber latex to coat said batt with rubber, curing said rubber coating, forming a roll of resin bonded glass fibre batt and enclosing said roll in said rubber coated batt to cover the said roll, immersing said wrapped roll in a solution of an acid for a time sufiicient to extract the glass forming oxides, other than silica, of said roll, removing said roll from said enclosing latex rubber coated butt, and heating said extracted fibres to an elevated temperature suificient to dehydrate said batt and remove said resin.
  • a process of forming batts of silica fibre which comprises, coating a batt of glass fibres with rubber latex to coat said batt with rubber, curing said rubber coating, forming a roll of resin bonded glass fibre batt and GIICIOSll'lgSflid roll in said rubber coated batt, immersing said wrapped roll in a solution of an acid for a time sufiicient to extract the glass forming oxides, other than silica, of said roll, washing said rolled batt while in said enclosing rubber coated batt to remove excess acid, removing said roll from said enclosing batt, and heating said extracted fibres to an elevated temperature suflicient to dehydrate said batt and remove said resin.

Description

Patented Mar. 7,. 1950 UNITED STATES PATENT OFFICE LEACHIN G OF BATTED RESIN BONDED GLASS FIBERS Leon Parker, Glendale, and Bonnie Jean Zack,
Compton, CaliL, assignors to The H. I. Thompson Company, Los An tion of California geles, Calif., a corpora- No Drawing. Application June 21, 1948,
Serial No. 84,354
6 Claims.
This invention relates to resin bonded glass fibers, and to an improvement in the process of treating glass fibers with acids for the purpose of extracting the glass-forming oxides, other than silica, in order to produce fibers of very high silica content, containing little or substantially no other glass-forming oxides, to produce a siliceous fiber of very high melting point and approaching, in character, silica fibers.
After the glass fiber batt has been treated it is removed and washed and fired at about 1400- 1750 F. to burn off the resin and dehydrate the fiber. One of the major uses for such fibers is in batted form in which the fibers are in interlocked arrangement, rather closely packed in random arrangement. The nature of the batt appears from the following:
70 F., 60% R. E.
It has been found possible to treat glass fibers with dilute acids, such as hydrochloric, sulfuric, nitric, acetic, chloro acetic or trichloroacetic acid and to extract from the glass the glass-forming oxides other than silica and to produce a glass material containing from 90% or more silica and as high as 99% silica at melting points in excess of from above 1500 F. and as high as 3000 F.
The procedure employed is to immerse the batted fibers in an acid solution (such as referred to above) and to carry the extraction forward until substantially all of the glass-forming oxides, other than silica, are withdrawn. The extraction can be obtained by adjusting the temperature, time, and concentration of the acid for such purpose.
A convenient form of acid is HCl and it has been found that acid strengths of from 10 15% and temperatures ranging from about 150-190? F. and time ranging from 4-24 hours will produce useful results.
The glass fibers employed are those which are not chemically resistant. They include the high alumina, high lime, relatively low boron oxide. boro-silicate glasses. A typical example (cited only for illustration) is given by the following analysis:
Per cent SiOz 53.04 A1203 15.72 F8203 .36 CaO 15.43 MgO 4.48 B203 10.65
The fired, acid extracted batt may have the following composition, this formulation being typical and not any limitation upon the nature of the fibers produced:
Per cent SiOz 98.59 A1203 and F6203 1.07
CaO .2
While it is possible in producing such batts to treat batted glass fibers, they tend to become lumpy and mushy and disintegrate due to the handling of the batt during treating, washing, drying, and firing.
One 01 the major uses of these batted materials is in insulation to form insulating blankets, in which case it is desirable to maintain the porosity of the batt and to reduce the fragmentation of the fibers. It is therefore desirable that the original shape of the batt be preserved during treatment.
It has therefore been found desirable to employ batts whose fibers have been bonded with resin. This form of batted glass fibers is well known.
The resins employed are well known and usually considered to be acid resistant, water impervious resin coating compositions. It has been found, however, that the films with which the fibers are coated do not constitute a barrier to the penetration of acid or the diffusion of the salts formed on leaching. The fibers are leached without destruction'of the bonding resin films. These films act as a protective coating to in-- crease the strength and reduce the brittleness. of the fibers and the batts and also preserve the shape of the batt during treatment.
Various resins may be employed as bonding agents. Thus, the following resins have excellent acid resistant properties: phenol-formaldehyde; phenol-furfural; polyvinyl chloride; vinylidene chloride; polystyrene; polyethylene; and polybutylene; methylmethacrylate; lignin and rubber and chlorinated rubber. Of the above resins, the phenol-formaldehyde, phenol-furfural, methylmethacrylate resins are attacked by the strong oxidizing acids, such as strong sulfuric acid and strong nitric acid, while the others are not so attacked. The permeability of the resin film to water is greatest in the case of the phenolformaldehyde, phenol-furfural, and methylmethacrylate resin, and least in the case of the polyvinyl chloride, vinylidene chloride, polystyrene, polyethylene, and the rubbers. In order to cut down the time of leaching, it is preferable to employ the acid resistant and highly permeable resins, such as the phenol-formaldehyde, phenol-furfural, and methylmethacrylate resins, and employ the non-oxidizing acids when using such resins.
In carrying out this process the batts are immersed in the acid solution at an elevated temperature and maintained in this acid for a period of time. As a practical Operation a number of such batts are placed on top of each other on racks in tanks containing the acid and then the racks are removed from the acid upon completion of the extraction and washed in wash tanks for removal of the excess acid. The batts are then rolled up and placed into a drying oven to remove the superficial moisture by heating them for several hours at a temperature of about 180 F. and then they are placed in furnaces where they are heated at 1600 F. for nine hours to burn off the resinous material and to dehydrate the silica fibers.
It has been found that in this operation the ends of the batts are brittle and discolored. Their color varies from white to black, and no degree of firing and no prolongation of the firing can burn out the black material. Apparently the black color, which may be carbonaceous material, is sealed inside the fiber. It has therefore been necessary, because of the discolored and brittle ends, to cut off the ends and discard them and a considerable loss is thus entailed. In fact, the theoretical loss due to extraction and shrinkage on dehydration amounts to about 40%, and it has been found, as a practical matter, that the additional loss in the discarding of the brittle ends can raise the total loss to as high as 65%.
We have discovered that the difiiculty can be cured by wrapping the resin bonded batt before treatment with a porous diaphragm which is permeable to the acid and is resistant to acid attack. This is done by rolling the resin bonded batt into a roll and then rolling the roll inside of the blanket to completely cover the batt. The blanket should preferably extend to the ends and also may extend beyond the ends of the roll. The roll ends need not be covered, although this is not an undesirable procedure. Thus, the batt may be enclosed inside a foraminous blanket and immersed in the acid solution. The acid permeates the blanket and causes the extraction and the wrapped batt may then be washed without removing the foraminous blanket to remove the acid and may then be dried, preferably below the fusion temperature'of the resin binder. Un-
iii)
stable temperature is from -200 F. The batt may then be removed from the covering blanket and fired.
We may employ any suitable sheet material which is chemically resistant, but permeable, to
the acid and has sumcient structural strength to be used as a blanket. For example, we may use a previously extracted and fired silica fiber cloth or batt. We may employ acid resistant fiber glass cloth. We may use foraminous sheet rubber which contains a multiplicity of fine holes, such as is used for the filtration of corrosive acid material. If the temperature used in acid leaching is not too excessive (i. e., in the range of 100 to 200 F.) we may use either a polyvinylidine resin woven cloth or such cloth of suitable resinous textile material which is resistant to acid.
We find, however, that a satisfactory wrapping is formed of the resin bonded glass fiber material which is employed as raw material for extraction. In order to prepare such a material for use in the process to increase the structural strength and its resistance to acid attack, we coat the batt of resin bonded glass fibers heavily with a rubber sheath by spraying the batt with a latex of said rubber. We may employ for this purpose either ordinary rubber latex or may employ a synthetic rubber elastomer latex such as chloroprene or butadiene or isoprene rubber latex. We prefer to use the chloroprene latex. The batt when so covered with the latex is then cured at about 200 F. for approximately one-half hour to cut down the adhesive qualities of the latex, in order to prevent the latex from softening in the treatment operation or during the subsequent drying-out operation and to prevent the wrapped rolls from sticking to each other. We also find that the dusting of the latex covered batt, before wrapping of th batts to be extracted, with talcum powder or any other fine powdered material will cut down the tendency of the latex covered batt to stick to any surface coming in contact therewith.
We also find that a highly useful wrapping may be a sheet of chemically resistant glass fiber cloth. Such cloths have been used as filter cloths in ordinary filtration of acid liquors. This glass cloth may be generally defined as a low alumina, high lime, low boron-boro-silicate glass, in contradistinction to the high alumina, high lime, low boron-boro-silicate employed for extraction of the glass.
A typical analysis of the glass used in the fiber of the sheet material is as follows:
In employing such a blanket we roll the resin bonded batt to be extracted into a roll and then roll the roll inside the blanket. We immerse several of such rolls into a tank containing hydrochloric acid of about 13% strength and allow the digestion to proceed at a temperature of about F. for a period of 6-24 hours. The rolls while still inside their blanket are removed from superficial moisture. The batts are unrolled from their blankets and wrapped with an interliner of Kraft paper and introduced into an oven where they are fired to burn off the paper, resin binder, and dehydrate the silica, as previously described.
As a result of this treatment we have substantially completely eliminated the tendency of the ends of the batts from becoming brittle and have eliminated the blackening thereof, the batts after firing being of uniform quality and pure white throughout.
We have thus been able to reduce the loss from 65% to about 45%; that is, we have reduced it to substantially the theoretical value.
While w have described a particular embodiment of our invention for the purpose of illustration, it should be understood that various modifications and adaptations thereof may be made within the spirit of the invention as set forth in the appended claims.
We claim:
1. A process of forming batts of silica fibres, which comprises, forming a roll of resin bonded glass fibre batt, wrapping said roll in an envelope of an acid resistant and acid permeable sheath, immersing said wrapped roll in a solution of an acid for a time sufiicient to extract th glass forming oxides, other than silica, of said roll, removing said roll from said envelope, and heating said extracted fibres to an elevated temperature sufficient to dehydrate said batt and re move said resin.
2. A process of forming batts of silica fibres, which comprises, forming a roll of resin bonded glass fibre batt, wrapping said roll in an envelope of an acid resistant and acid permeable sheath to cover the said roll, immersin said wrapped roll in a solution of an acid for a time suificient to extract the glass forming oxides, other than silica, of said roll, washing said rolled batt while in said envelope to remove excess acid, removing said roll from said envelope, and heating said extracted fibres to an elevated temperature suilicient to dehydrate said batt and remove said resin.
3. A process of forming batts of silica fibre, which comprises coating a batt of glass fibres with rubber latex to coat said batt with rubber, forming a roll of resin bonded glass fibre batt, and enclosing said roll in said rubber coated batt to cover the said roll, immersing said wrapped roll in a solution of an acid, extracting the glass forming oxides, other than silica, of said roll, removing said roll from said enclosing latex covercd batt, and heating said extracted fibres to an elevated temperature suificient to dehydrate said batt and remove said resin.
6 4. A process of forming batts of silica fibre, which comprises coating a batt of glass fibres with rubber latex to coat said batt with rubber,
forming a roll of resin bonded glass fibre batt.
and enclosing said roll in said rubber coated batt, immersing said wrapped roll in a solution of an acid, extracting the glass forming oxides, other than silica, of said roll, washing said rolled batt While enclosed in said rubber coated batt to remove excess acid, removing said roll from said rubber coated batt, and heating said extracted fibres to an elevated temperature sufiicient to dehydrate said batt and remove said resin.
5. A process of forming batts of silica fibre, which comprises coating a batt of glass fibres with rubber latex to coat said batt with rubber, curing said rubber coating, forming a roll of resin bonded glass fibre batt and enclosing said roll in said rubber coated batt to cover the said roll, immersing said wrapped roll in a solution of an acid for a time sufiicient to extract the glass forming oxides, other than silica, of said roll, removing said roll from said enclosing latex rubber coated butt, and heating said extracted fibres to an elevated temperature suificient to dehydrate said batt and remove said resin.
6. A process of forming batts of silica fibre, which comprises, coating a batt of glass fibres with rubber latex to coat said batt with rubber, curing said rubber coating, forming a roll of resin bonded glass fibre batt and GIICIOSll'lgSflid roll in said rubber coated batt, immersing said wrapped roll in a solution of an acid for a time sufiicient to extract the glass forming oxides, other than silica, of said roll, washing said rolled batt while in said enclosing rubber coated batt to remove excess acid, removing said roll from said enclosing batt, and heating said extracted fibres to an elevated temperature suflicient to dehydrate said batt and remove said resin.
LEON PARKER. BONNIE JEAN ZACK.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 2,124,330 Pascoe July 19, 1938 2,146,870 Whiteley Feb. 14, 1939 2,184,316 Plummer Dec. 26, 1939 2,184,320 Simpson Dec. 26, 1939 2,311,704 Simison Feb. 23, 1943 2,375,585 Rimer May 8, 1945

Claims (1)

1. A PROCESS OF FORMING BATTS OF SILICA FIBRES, WHICH COMPRISES, FORMING A ROLL OF RESIN BONDED GLASS FIBRE BATT, WRAPPING SAID ROLL IN AN ENVELOPE OF AN ACID RESISTANT AND ACID PERMEABLE SHEATH, IMMERSING SAID WRAPPED ROLL IN A SOLUTION OF AN ACID FOR A TIME SUFFICIENT TO EXTRACT THE GLASS FORMING OXIDES, OTHER THAN SILICA, OF SAID ROLL, REMOVING SAID ROLL FROM SAID ENVELOPE, AND HEATING SAID EXTRACTED FIBRES TO AN ELEVATED TEMPERATURE SUFFICIENT TO DEHYDRATE SAID BATT AND REMOVE SAID RESIN.
US34354A 1948-06-21 1948-06-21 Leaching of batted resin bonded glass fibers Expired - Lifetime US2500092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US34354A US2500092A (en) 1948-06-21 1948-06-21 Leaching of batted resin bonded glass fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US34354A US2500092A (en) 1948-06-21 1948-06-21 Leaching of batted resin bonded glass fibers

Publications (1)

Publication Number Publication Date
US2500092A true US2500092A (en) 1950-03-07

Family

ID=21875897

Family Applications (1)

Application Number Title Priority Date Filing Date
US34354A Expired - Lifetime US2500092A (en) 1948-06-21 1948-06-21 Leaching of batted resin bonded glass fibers

Country Status (1)

Country Link
US (1) US2500092A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2635390A (en) * 1949-12-19 1953-04-21 H I Thompson Company Method of forming batts of silica fibers
US2834738A (en) * 1954-08-25 1958-05-13 Ici Ltd Production of skeletal glass catalysts
US2835637A (en) * 1953-12-18 1958-05-20 Ici Ltd Production of alumina/silica catalysts
US2863838A (en) * 1954-08-25 1958-12-09 Ici Ltd Production of catalysts containing vanadium
US3012930A (en) * 1956-09-24 1961-12-12 Johns Manville Fiber Glass Inc Method of wet felting and leaching mineral fibers and resultant felted product
US3116991A (en) * 1959-05-30 1964-01-07 Saint Gobain Desalkalinisation of glass
US3188066A (en) * 1960-06-20 1965-06-08 H I Thompson Fiber Glass Compa Apparatus for heat treatment of vitreous fibers
US4046948A (en) * 1975-04-09 1977-09-06 Ppg Industries, Inc. Acid resistant glass fibers
US4657875A (en) * 1984-07-31 1987-04-14 Miyazaki Prefecture Articles of porous glass and process for preparing the same
US4748121A (en) * 1984-11-30 1988-05-31 Ppg Industries, Inc. Porous glass fibers with immobilized biochemically active material
US4853001A (en) * 1986-06-06 1989-08-01 Ppg Industries, Inc. Porous inorganic siliceous-containing gas enriching material and process of manufacture and use
US4966613A (en) * 1984-11-30 1990-10-30 Ppg Industries, Inc. Method of producing effective porous glass shapes
US11069885B2 (en) 2017-09-13 2021-07-20 Unifrax I Llc Silicon-based anode material for lithium ion battery
US11766662B2 (en) 2020-09-21 2023-09-26 Unifrax I Llc Homogeneous catalytic fiber coatings and methods of preparing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2124330A (en) * 1935-01-23 1938-07-19 Cellovis Inc Surfacing felted fibrous material
US2146870A (en) * 1937-07-26 1939-02-14 Whiteley Edward Oldroyd Upholstery stuffing treatment and product
US2184316A (en) * 1937-11-04 1939-12-26 Owens Corning Fiberglass Corp Mineral fiber binder
US2184320A (en) * 1937-03-10 1939-12-26 Owens Corning Fiberglass Corp Treatment of glass fibers
US2311704A (en) * 1940-09-03 1943-02-23 Owens Corning Fiberglass Corp Method of making parallel fiber units
US2375585A (en) * 1943-05-14 1945-05-08 James H Rhodes & Company Plastic abrasive pad

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2124330A (en) * 1935-01-23 1938-07-19 Cellovis Inc Surfacing felted fibrous material
US2184320A (en) * 1937-03-10 1939-12-26 Owens Corning Fiberglass Corp Treatment of glass fibers
US2146870A (en) * 1937-07-26 1939-02-14 Whiteley Edward Oldroyd Upholstery stuffing treatment and product
US2184316A (en) * 1937-11-04 1939-12-26 Owens Corning Fiberglass Corp Mineral fiber binder
US2311704A (en) * 1940-09-03 1943-02-23 Owens Corning Fiberglass Corp Method of making parallel fiber units
US2375585A (en) * 1943-05-14 1945-05-08 James H Rhodes & Company Plastic abrasive pad

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2635390A (en) * 1949-12-19 1953-04-21 H I Thompson Company Method of forming batts of silica fibers
US2835637A (en) * 1953-12-18 1958-05-20 Ici Ltd Production of alumina/silica catalysts
US2834738A (en) * 1954-08-25 1958-05-13 Ici Ltd Production of skeletal glass catalysts
US2863838A (en) * 1954-08-25 1958-12-09 Ici Ltd Production of catalysts containing vanadium
US3012930A (en) * 1956-09-24 1961-12-12 Johns Manville Fiber Glass Inc Method of wet felting and leaching mineral fibers and resultant felted product
US3116991A (en) * 1959-05-30 1964-01-07 Saint Gobain Desalkalinisation of glass
US3188066A (en) * 1960-06-20 1965-06-08 H I Thompson Fiber Glass Compa Apparatus for heat treatment of vitreous fibers
US4046948A (en) * 1975-04-09 1977-09-06 Ppg Industries, Inc. Acid resistant glass fibers
US4657875A (en) * 1984-07-31 1987-04-14 Miyazaki Prefecture Articles of porous glass and process for preparing the same
US4748121A (en) * 1984-11-30 1988-05-31 Ppg Industries, Inc. Porous glass fibers with immobilized biochemically active material
US4966613A (en) * 1984-11-30 1990-10-30 Ppg Industries, Inc. Method of producing effective porous glass shapes
US4853001A (en) * 1986-06-06 1989-08-01 Ppg Industries, Inc. Porous inorganic siliceous-containing gas enriching material and process of manufacture and use
US11069885B2 (en) 2017-09-13 2021-07-20 Unifrax I Llc Silicon-based anode material for lithium ion battery
US11652201B2 (en) 2017-09-13 2023-05-16 Unifrax I Llc Silicon-based anode material for lithium ion battery
US11766662B2 (en) 2020-09-21 2023-09-26 Unifrax I Llc Homogeneous catalytic fiber coatings and methods of preparing same

Similar Documents

Publication Publication Date Title
US2500092A (en) Leaching of batted resin bonded glass fibers
US2491761A (en) Method of producing silica fibers and fibrous articles produced thereby
US2494259A (en) Fibrous glass articles
US3687850A (en) High temperature insulating fiber
US2730475A (en) Method of forming felted silica fibers
US3305315A (en) Process for manufacturing flexible carbonaceous textile material
US4063001A (en) Method of preparing acid resistant glass fibers
KR860001770A (en) Ceramic product consisting of a non-porous center and a porous outer layer
DE106246T1 (en) INSULATING MATERIAL FROM EXPANDED PERLITE AND ALKALI METAL SILICATE AND METHOD FOR THE PRODUCTION THEREOF.
EP0623567A1 (en) Process for preparing microporous bodies with thermal insulating properties
US2901379A (en) High temperature resistant vitreous material
CA1325141C (en) Boric acid treated asbestos fiber
US1856475A (en) Metal impregnated fiber article and process of making same
US2068219A (en) Water-resistant product and method of making the same
US3736160A (en) Fibrous zirconia cement composites
US3879211A (en) Ceramic product and method of making same
US2823117A (en) Glass paper-calcium silicate
US3092531A (en) Process of making essentially pure silica fiber bats
US2839424A (en) Method of providing glass fibers with plural superimposed different oxide coatings and products thereby produced
US2320099A (en) Vapor-glazed ceramic product and method for producing the same
US2996106A (en) Method of manufacturing inorganically bonded micaceous sheet
US2170434A (en) Article of manufacture and method of making the same
US2179453A (en) Binder and coating materials and method of producing the same
US3188231A (en) Process of making crucibles
US2419357A (en) Smoke pot cover