US2468741A - Breathing apparatus - Google Patents

Breathing apparatus Download PDF

Info

Publication number
US2468741A
US2468741A US567806A US56780644A US2468741A US 2468741 A US2468741 A US 2468741A US 567806 A US567806 A US 567806A US 56780644 A US56780644 A US 56780644A US 2468741 A US2468741 A US 2468741A
Authority
US
United States
Prior art keywords
pressure
case
aspirator
motor
motor chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US567806A
Inventor
John H Emerson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24268725&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US2468741(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US567806A priority Critical patent/US2468741A/en
Priority to US44659A priority patent/US2481299A/en
Application granted granted Critical
Publication of US2468741A publication Critical patent/US2468741A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M16/0009Accessories therefor, e.g. sensors, vibrators, negative pressure with sub-atmospheric pressure, e.g. during expiration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes

Definitions

  • This invention relates to apparatus of automatic type, wherein gas supplied under pressure acts alternately to inflate and deflate the lungs, designed in particular for treating patients who are unable to breathe normally, as, for example, when suffering from gas asphyxiation, drowning or the like.
  • the principal object of this invention is to provide a small, compact, portable resuscitator which is light and may be conveniently used in the field for first aid purposes, the present application being a continuation-in-part of my copending application for Letters Patent, Serial No. 464,948, filed November 9, 1942, which issued December 12, 1944, as Patent No. 2,364,626.
  • a further object is to provide a resuscitator which may be manipulated by a single attendant.
  • Fig. l is a side elevation of the complete apparatus, with the face mask in place on a patients face;
  • Fig. 2 is a side elevation, partly in diametrical section, showing the case of the resuscitator mechanism, to larger scale, the face mask being removed, and illustrating one form of resuscitator mechanism of the present invention
  • Fig. 3 is a diagrammatic diametrical section with parts in side elevation and broken away, illustrating one embodiment of the present invention in which two controlling valves are employed, the parts being shown as in the inhaling position;
  • Fig. 4 is a fragmentary view generally similar to Fig. 3 but showing the parts in the exhaling position;
  • Fig. 5 is a fragmentary view generally similar to Fig. 3 but illustrating an embodiment of the invention which employs three controlling valves, the parts being in the inhaling position;
  • Fig. 5 is a fragmentary section on a radial plane to the rear of the plane of Fig. 5, showing one of the controlling valves;
  • Fig. 5 is a horizontal section substantially on the lin 5 5' of Fig. 5;
  • Fig. 6 is a view similar to Fig. 5 but showing the parts in the exhaling position
  • Fig. 6 is a view similar to Fig. 5", but with the valve in the exhaling position;
  • Fig. 6 is a horizontal section substantially on the line 6 -6 of Fig. 6;
  • Fig. 7 is a view of the same general type as Fig. 3, but showing an embodiment of the invention in which but a single controlling valve is employed.
  • the apparatus requires a source of gas under super-atmospheric, preferably substantially constant pressure.
  • a source of gas under super-atmospheric pressure is provided by the hand-operated plunger type pump I! (Fig. 1).
  • This pump is provided with a gas storage reservoir H, the compressed gas from the pump Ill being forced through the check valve 12 on each stroke of the plunger and stored in the reservoir II.
  • the pressure gauge l3 indicates the gas pressure in the reservoir ll.
  • Such a pump serves as a convenient light and portable source of gas under positive pressure for field use of the improved resuscitator device. It should be understood, however, that any other source of gas may be used, such as a cylinder of compressed oxygen.
  • the operative parts of the resuscitator B are all contained in the housing l5, l6 (Fig. 2).
  • This housing or casing is hollow and externally shaped and dimensioned to permit it to be held in the palm of one hand, in effect constitutin a handle for the mask M which is attached directly to the housing or casing by a short, preferably rigid tubular connection, thus leaving the other hand free to operate the plunger of the pump.
  • this connection between the face mask M and the resuscitator R is of telescopic type, and such as to permit ready disconnection of the parts.
  • the weight of the resuscitator is so small that when a patient reclines, his head can comfortably support the entire resuscitator (exclusive of the pump), its weight being distributed over the area of his face which is in contact with the face mask M.
  • the two housing parts l5 and I6 are detachably secured together by two screws I! (Fig. 1) which pass through the flange l8 of the member l6 and the edge portion of the member l5 which slidably fits within said flange.
  • a rigid casting 20 within which certain at least of the fluid flow passages and valve seats are conveniently formed.
  • This casting 20 is provided with a depressed portion 2i which forms one wall of a chamber 22 (Fig. 3).
  • the other wall of said chamber is formed by the flexible diaphragm disk 23 constituting the pressure-actuated element of a fluid-pressure motor which is sensitively responsive to lung pressure.
  • the edges of this disk-shaped diaphragm 23 are secured to the casting 28 by a clamping ring which is held in place by screws which pass through the ring and the margin of the diaphragm 23, and into the casting 20.
  • a valve reversing or motor chamber 33 (Figs. 3 and 4) is provided by a rigid cap member N which is detachabl secured leak-tight to the casting 20.
  • a rigid, tubular, externally screwthreaded projection or nipple 37 afiords communication between the motor chamber 35) (Fig. 3) and the interior of the mask M (Fig. 1).
  • a ring 3'1 engages the screw threads of nipple '3'! and clamps the part to the casing member 15.
  • the mask has a tubular member 38 (Fig. 1) which telescopes over the outer surface of the tubular member 31, thus permitting the separation of the mask and casing when desired.
  • the snap-action valv operating mechanism actuated by the diaphragm 23 is arranged within the motor chamber.
  • This mechanism, together with the diaphragm or equivalent pressure-responsive element, is hereinafter referred to for convenience as ap'ressure motor and may be substantially identical with the corresponding mechanism more fully disclosed in my aforesaid copending application or in the patent to Colltt No. 2,268,172, dated December 30, I931.
  • this mechanism comprises a toggle linkage including toggle levers T and 'I having their adjacent ends united by a joint, the joined ends being connected to the central part of the diaphragm 23 by a rigid strut T
  • the remote ends of the toggle levers are guided for movement toward and from the casting Zil and connected by a tension spring S.
  • the end T of the lever T is connected to the stem or stems of the fluid control valve or valves hereinafter described, the pressure motor being so designed that when the diaphragm flexes inwardly, the end T of the lever T sn'ap's suddenly in one direction to 'the full limit of i s throw, and when the diaphragm flexes outwardly the end T of the lever T snaps suddenly in the opposite direction.
  • a housing Q3 which may be a casting, having within it a cavity 43 which communicates by means of a passage M, in the casting 2b, with the chamber 3b.
  • a passage in the part 43 leads from the cavity 43 and opens at 45 to the atmosphere.
  • An asp'irator device A is fixed to the outer end of part 43.
  • This aspirator device comprises a casing within Which is arranged the nozzle 6 designed to discharge a jet of pr'essure fluid, received through "pipe td, intothe delivery throat 63 and thereby to'aspirate fluid from the space'fiil.
  • a pipefi'i conducts fluid discharged from the delivery throat 63 to the space 43
  • the chamber 423 communicates by means of a tube A nowadays with the chamber 39.
  • a valve stem 51 is connected at one end to a bracket T attached to the outer end "of the toggle lever T the stem passing freely through the passage "M and having a valve head 52 secured to its opposite end within the cavity 43
  • a second valve head 53 is arranged within the cavity 43, being mounted on the stem 5N and being operative at times to close the port 56 at the point where the passage &4 enters the cavity 43.
  • the valve head i2 is designed at times to close the port 54 where the passage 45 leaves the cavity 43*.
  • the casing 3i is provided with a port 59 leading to the outer atmosphere, this .port being normally closed by a spring pressed outlet or safety valve fill.
  • the case 3! is also preferably provided witha second port 6! normally closed by a spring pressed inlet valve '62.
  • the delivery pressure at the throat 63 is such as gradually to build up pressure in the chamber 30., thus inflating the lungs.
  • any further increase causes thediaphragm-to assume the position shown in Fig. 1, thus .moving the valve head 52 to uncover theJ-port 154 while at the same time causing the valveheaid 53 to close the passage '64.
  • the gas now passing through the aspirator nozzle causes a partial'vacuum in the space ll ⁇ , thus withdrawin gaseous material through the tube 49 from the chamber 30 and thus from the lungs of thejpatient, the mingled gas and material exhausted from the lungs passing through the tube 64 to the cavity 43 and thence through the open port 54 and passages 4-5 and 15 to the atmosphere.
  • the pressure in the chamber 38 has thus been reduced to a predetermined amount, the diaphragm moves in the other direction, thus restoring the parts to th position of Fig. 3 for the resumption of inhalation.
  • Figs. 5 and 6 The arrangement illustrated in Figs. 5 and 6 is in general similar to that shown in Figs. 3 and 4 and just described, corresponding parts being similarly numbered. However, in the arrangement of Figs. 5 and 6 the passage 45 connects the cavity "43 with the inlet-l ef the aspirator. The asp-irator device discharges directly :to the atmosphere through the delivery throat 6-3. In
  • a valve head :5] is :connected (Fig. 5 by a stem 58 to the end T of the lever T and at times closes the port .51 between the recess 56 and the chamber 230.
  • the nozzle 46 In passing through the nozzle 46 it produces a partial vacuum in the space 48, thus inducing th flow of gaseous material through the tube 49 from the recess 59 and thence from the chamber 3!! and thus drom the mask and from the patients :lungs.
  • This gaseous material mingles with the gas supplied from the pipe 40 and is discharged to the atmosphere from the divergent delivery throat 63 of the aspirator.
  • Fig. '7 employs but a single moving valve part. Similarly numbered parts in this view correspond to those of Fig. 3.
  • the chamber 22 is connected by a tube 49 to the suction space 48 of the aspirator.
  • the delivery throat 63 of this aspirator is aligned with a port or passage 44 in the part 20, the passage 44 opening into the chamber 30 and being controlled by a valve head 52 secured to a stem 5
  • the toggle linkage is similar to that previously described, but instead of connecting the valve stem 5
  • Air or gas under pressure entering through the pipe 40 causes a partial vacuum in the suction space 48 of the aspirator, thus withdrawing air from the lungs through the mask M, the tubular connection 31, the chamber 22 and the tube 49', and delivering this mixture through the delivery throat of the aspirator nozzle and through the passage 44* into the chamber 30 from which it is discharged to the atmosphere through the open port 42 in casing I.
  • the diaphragm moves to the right as viewed in Fig.
  • An artificial resuscitatoroi the kind which includes a face mask, a case which houses a pressure motor including a movable element which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a single, rigid tubular connection uniting the mask and case, said connection having a single constantly open passage afiording communication between the interior of the mask and said motor chamber, an aspirator device within the case, said aspirator device having a nozzle and a.
  • the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, and means within the case defining flow passages controlled by the aforesaid valves, one of said passages being so arranged as to deliver gaseous medium from the source of supply directly to the motor chamber, and another pasbeing so arranged as'to deliver gaseous medium from the source of supply to the inlet of the aspirator nozzle, the passages, valves and motion-transmitting mechanism being so constructed and arranged that during inhalation fluid medium flows through said motor chamber in one direction and during exhalation fluid medium flows through the motor chamber
  • An artificial resuscitator of the kind which includes a face mask, a case which houses a pres sure motor including a diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage alfording communication between the interior of the mask and said motor chamber, an aspirator device within the case, said aspirator device having a nozzle and a delivery throat, a conduit leading to the interior of the case for supplying pressure fluid, the case also'housing reciprocating valves and snap-action means for transmitting motion from said diaphragm to the valves, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motiontransmitting means is of a size such that it may be held in the palm of one hand, means providing a cavity within the case
  • An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a movable element which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage afiording communication between the interior of the mask and said motor chamber, an aspirator device, said aspirator device having a nozzle and a delivery throat, a conduit for supplying pressure fluid, the case also housing reciprocating valves and snap-action means for transmitting motion from said movable motor element to the valves, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, means within the case defining a cavity to which gas is supplied from the source under pressure
  • An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage affording communication between the interior of the mask and said motor chamber, an aspirator device, said aspirator device having a nozzle and a delivery throat, a conduit for supplying pressure fluid, the case also housing reciprocating valves and snap-action means for transmitting motion from said diaphragm to the valves, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motiontransmitting means is of a size such that it may be held in the palm of one hand, means within the case defining a cavity to which gas under pressure is constantly delivered, means providing a duct
  • An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a flexible diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage afiording communication between the interior of the mask and said motor chamber, an aspirator device within the case, said aspirator device having a nozzle and a delivery throat, a conduit leading to the interior of the case for supplying pressure fluid, the case also housing reciprocating valves and means for transmitting motion from said flexible diaphragm to the valves, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, means defining a cavity to which gas
  • An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage afiording communication between the interior of the mask and said motor chamber, an aspirator device within the case, said aspirator device having a nozzle and a delivery throat, a conduit leading to the interior of the case for supplying pressure fluid, the case also housing reciprocating valves and means for transmitting motion from said diaphragm to the valves, the
  • resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, means defining a cavity to which pressure fluid is constantly delivered, means providing a duct connecting said cavity with the motor chamber, means defining a passage leading from said cavity to the inlet to the aspirator nozzle, said duct and passage entering the cavity at opposite sides of the latter and being coaxial where they enter the cavity, a valve stem extending loosely through the duct from the cavity to the motor chamber, the aforesaid valves including valve heads mounted on said stem within the cavity, one of said heads being operative at times to close the passage and the other head being operative at times to.
  • the motiontransmitting means including a toggle arranged within the motor chamber and actuable by the movable motor part to move the valve stem, thereby alternatively to move one or the other of the valve heads to closed position, the valves and motion-transmitting means being so constructed and arranged that during exhalation gaseous medium is withdrawn from the motor chamber by the aspirator nozzle and during inhalation gaseous medium is delivered directly to the motor chamber.
  • An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a flexible diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a tubular connection uniting, the mask and case, said connection having a single constantly open passage affording communication between the interior of the mask and said motor chamher, an aspirator device, said aspirator device having a nozzle and a delivery throat, a conduit for supplying pressure fluid, the case also housing reciprocating valves and means for transmitting motion from said diaphragm to the valves, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, means within the case defining a cavity which at all times communicates with the supply conduit and from which passage
  • An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage affording communication between the interior of the mask and said motor chamber, an aspirator device within the case, said aspirator device having a nozzle and a delivery throat, a conduit leading to the interior of the case for supplying pressure fluid, the case also housing reciprocating valves and snap-action means for transmitting motion from said diaphragm to the valves, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and'ior deflating, the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, means within the case defining a cavity
  • An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a movable element which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage afiording communication between the interior of the mask and said motor chamber, an aspirator device, said aspirator device having a nozzle and a delivery throat, a conduit for supplyin pressure iiuid, the case also housing at least one reciprocating valve and snap-action means for transmitting motion from said movable motor element to said valve, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, means within the casing definin a cavity which is
  • An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage affording communication between the interior of the mask and said motor chamber, an aspirator device, said aspirator device having a nozzle and a delivery throat, a conduit for supplyin pressure fluid, the case also housing reciprocating valves and snap-action means for transmitting motion from said diaphragm to the valves, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, and means defining a cavity which receives pressure fluid from the supply, a duct providing communication between
  • An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a flexible diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage aflording communication between the interior of the mask and said motor chamber, an aspirator device within the case, said aspirator device havin a nozzle, a suction space and a delivery throat, a conduit leading to the interior of the case for supplying pressure fluid, the case also housing at least one reciprocating valve and means for transmitting motion from said flexible diaphragm to said valve, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, means within
  • An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection havin a single constantly open passage afiording communication between the interior of the mask and said motor chamber, an aspirator device within the case, said aspirator device having a nozzle, a suction space and a delivery throat, a conduit leading to the interior of the case for supplying pressure fluid, the case also housing at least one reciprocating valve and means for transmitting motion from said diaphragm to said valve, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, means defining
  • An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a flexible diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a tubular connection uniting the mask and case, said connection having a single constantly open passage aflording communication between the interior of the mask and said motor chamber, an aspirator device, said aspirator device having a nozzle and a delivery throat, a conduit for supplying pressure fluid, the case also housin reciprocating valves and means for transmitting motion from said diaphragm to the valves, the resuscitator being of the kind wherein gas under pressure suppliesthe energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motiontransmitting means is of a size such that it may be held in the palm of one hand, means defining a duct providing communication between the motor chamber and the suction side of the
  • An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a movable element which is sensitively responsive to lungpressure and which defines one wall of a-motor chamber, a single, rigid tubular connection uniting the mask and case, said connection having a single constantly open passage afiording communication between the interior of the mask andsaid motor chamber, an aspirator device within the case, said aspirator device having a nozzle and a delivery throat, a conduit leading to the interior of the case for supplying pressure fluid, the case also housing reciprocating valves and snap-action means for transmitting motion from said movable motor element to the valves, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, means defining a
  • An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage affording communication between the interior of the mask and said motor chamber, an aspirator device within the case, said aspirator device having a nozzle and a delivery throat, a conduit leading to the interior of the case for supplying pressure fluid, the case also housing reciprocating valves and snap-action means for transmitting motion :from said diaphragm to the valves, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflatin and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, means defining a duct providing communication between the
  • An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a movable element which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage afiording communication between the interior of the mask and said motor chamber, an aspirator device, said aspirator device having a nozzle and a delivery throat, a conduit for supplying pressure fluid, the case also housing reciprocating valves and snap-action means for transmitting motion from said movable motor element to the valves, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, means providing a cavity with which the fluid supply conduit communicates, passages leading from said
  • An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage afiording communication between the interior of the mask and said motor chamber, an aspirator device, said aspirator device having a nozzle and a delivery throat, a conduit for supplying pressure fluid, the case also housing reciprocating valves and snap-action means for transmitting motion from said diaphragm to the valves, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, means providing a cavity which at all times communicates with the fluid supply conduit, means
  • An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a flexible diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage afiording communication between the interior of the mask and said motor chamber, an aspirator device within the case, said aspirator device having a nozzle and a delivery 15 throat, a conduit leading to the interior of the casev for supplying pressure fluid, the case also housing reciprocating valves and means for transmitting motion from said flexible dia-' phragm to the valves, the resuscitator being of thekind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating'the pressure motor, character.- izedin that the case which houses the aspirator, pressure motor, and motion-transmitting means is of asize such that it may be held in the palm of one hand, means
  • valves and motion-transmitting means being so constructed and arranged that during, exhalation gaseous medium is, withdrawn from. the motor chamber by the aspirator and during inhalation gaseous medium under pres.- sure is delivered from said cavity to the motor chamber.

Description

May 3, 1949.
Fqlled Dec. 12, 1944 J. H. EMERSON BREATHING APPARATUS 3 Sheets-Sheet l jg 1a Mama JZMJZ M21502 y 1949. v J. H. EMERSON 2,468,741
BREATHING APPARATUS Filed Dec. 12, 1944. s Shets-Sheet 2 "May 3, 1949.
J- 'H. EMERSON 2,468,741
BREATHING APPARATUS Filed Dec. 12, 1944 if J0 fizz/157060) fikmfi 1726719070 3 @4 64% 5 Sheets-Sheet s Patented May 3, 1949 UNITED STATES PATENT OFFICE BREATHING APPARATUS John H. Emerson, Cambridge, Mass.
Application December 12, 1944, Serial No. 567,806
18 Claims.
This invention relates to apparatus of automatic type, wherein gas supplied under pressure acts alternately to inflate and deflate the lungs, designed in particular for treating patients who are unable to breathe normally, as, for example, when suffering from gas asphyxiation, drowning or the like. The principal object of this invention is to provide a small, compact, portable resuscitator which is light and may be conveniently used in the field for first aid purposes, the present application being a continuation-in-part of my copending application for Letters Patent, Serial No. 464,948, filed November 9, 1942, which issued December 12, 1944, as Patent No. 2,364,626.
A further object is to provide a resuscitator which may be manipulated by a single attendant.
Other objects relate to the construction and mode of operation and will be apparent from a consideration of the following description and the accompanying drawings which exemplify one embodiment of the invention chosen for the purpose of illustration.
In the drawings:
Fig. l is a side elevation of the complete apparatus, with the face mask in place on a patients face;
Fig. 2 is a side elevation, partly in diametrical section, showing the case of the resuscitator mechanism, to larger scale, the face mask being removed, and illustrating one form of resuscitator mechanism of the present invention;
Fig. 3 is a diagrammatic diametrical section with parts in side elevation and broken away, illustrating one embodiment of the present invention in which two controlling valves are employed, the parts being shown as in the inhaling position;
Fig. 4 is a fragmentary view generally similar to Fig. 3 but showing the parts in the exhaling position;
Fig. 5 is a fragmentary view generally similar to Fig. 3 but illustrating an embodiment of the invention which employs three controlling valves, the parts being in the inhaling position;
Fig. 5 is a fragmentary section on a radial plane to the rear of the plane of Fig. 5, showing one of the controlling valves;
Fig. 5 is a horizontal section substantially on the lin 5 5' of Fig. 5;
Fig. 6 is a view similar to Fig. 5 but showing the parts in the exhaling position;
Fig. 6 is a view similar to Fig. 5", but with the valve in the exhaling position;
Fig. 6 is a horizontal section substantially on the line 6 -6 of Fig. 6; and
Fig. 7 is a view of the same general type as Fig. 3, but showing an embodiment of the invention in which but a single controlling valve is employed.
For effective operation the apparatus requires a source of gas under super-atmospheric, preferably substantially constant pressure. When herein reference is made to a gas, gaseous fluid or the like, such terms are used without limiting intent, being broadly inclusive of pure gases, for example 02, mixtures of gases, for example atmospheric air; water vapor, etc. As here illustrated, a source of gas under super-atmospheric pressure is provided by the hand-operated plunger type pump I!) (Fig. 1). This pump is provided with a gas storage reservoir H, the compressed gas from the pump Ill being forced through the check valve 12 on each stroke of the plunger and stored in the reservoir II. The pressure gauge l3 indicates the gas pressure in the reservoir ll. Such a pump serves as a convenient light and portable source of gas under positive pressure for field use of the improved resuscitator device. It should be understood, however, that any other source of gas may be used, such as a cylinder of compressed oxygen.
The operative parts of the resuscitator B (Fig. 1) are all contained in the housing l5, l6 (Fig. 2). This housing or casing is hollow and externally shaped and dimensioned to permit it to be held in the palm of one hand, in effect constitutin a handle for the mask M which is attached directly to the housing or casing by a short, preferably rigid tubular connection, thus leaving the other hand free to operate the plunger of the pump. Preferably this connection between the face mask M and the resuscitator R is of telescopic type, and such as to permit ready disconnection of the parts. The weight of the resuscitator is so small that when a patient reclines, his head can comfortably support the entire resuscitator (exclusive of the pump), its weight being distributed over the area of his face which is in contact with the face mask M.
The two housing parts l5 and I6 are detachably secured together by two screws I! (Fig. 1) which pass through the flange l8 of the member l6 and the edge portion of the member l5 which slidably fits within said flange.
All of the operative mechanism of the device is supported by a rigid casting 20 within which certain at least of the fluid flow passages and valve seats are conveniently formed. This casting 20 is provided with a depressed portion 2i which forms one wall of a chamber 22 (Fig. 3).
The other wall of said chamber is formed by the flexible diaphragm disk 23 constituting the pressure-actuated element of a fluid-pressure motor which is sensitively responsive to lung pressure. The edges of this disk-shaped diaphragm 23 are secured to the casting 28 by a clamping ring which is held in place by screws which pass through the ring and the margin of the diaphragm 23, and into the casting 20. I
A valve reversing or motor chamber 33 (Figs. 3 and 4) is provided by a rigid cap member N which is detachabl secured leak-tight to the casting 20. A rigid, tubular, externally screwthreaded projection or nipple 37 afiords communication between the motor chamber 35) (Fig. 3) and the interior of the mask M (Fig. 1). A ring 3'1 engages the screw threads of nipple '3'! and clamps the part to the casing member 15. The mask has a tubular member 38 (Fig. 1) which telescopes over the outer surface of the tubular member 31, thus permitting the separation of the mask and casing when desired.
Within the motor chamber the snap-action valv operating mechanism actuated by the diaphragm 23 is arranged. This mechanism, together with the diaphragm or equivalent pressure-responsive element, is hereinafter referred to for convenience as ap'ressure motor and may be substantially identical with the corresponding mechanism more fully disclosed in my aforesaid copending application or in the patent to Sinnett No. 2,268,172, dated December 30, I931.
Briefly this mechanism comprises a toggle linkage including toggle levers T and 'I having their adjacent ends united by a joint, the joined ends being connected to the central part of the diaphragm 23 by a rigid strut T The remote ends of the toggle levers are guided for movement toward and from the casting Zil and connected by a tension spring S. In the embodiments of the invention illustrated in Figs, 3 and 5, the end T of the lever T is connected to the stem or stems of the fluid control valve or valves hereinafter described, the pressure motor being so designed that when the diaphragm flexes inwardly, the end T of the lever T sn'ap's suddenly in one direction to 'the full limit of i s throw, and when the diaphragm flexes outwardly the end T of the lever T snaps suddenly in the opposite direction.
One desirable embodiment of the automatic flow controlling mechanism is illustrated in Figs. 3 and 4. In this arrangement the casting 2b is provided with an open port 32 leading from the chamber 22 to the outer atmosphere. To the outer surface, that is to say, the right-hand surface, as viewed in Figs. 3 and 4, of the casting 28. there is attached in any "suitable manner, 'for instance by Welding, a housing Q3, which may be a casting, having within it a cavity 43 which communicates by means of a passage M, in the casting 2b, with the chamber 3b. A passage in the part 43 leads from the cavity 43 and opens at 45 to the atmosphere. An asp'irator device A is fixed to the outer end of part 43. This aspirator device comprises a casing within Which is arranged the nozzle 6 designed to discharge a jet of pr'essure fluid, received through "pipe td, intothe delivery throat 63 and thereby to'aspirate fluid from the space'fiil. A pipefi'i conducts fluid discharged from the delivery throat 63 to the space 43 The chamber 423 communicates by means of a tube A?! with the chamber 39. A valve stem 51 is connected at one end to a bracket T attached to the outer end "of the toggle lever T the stem passing freely through the passage "M and having a valve head 52 secured to its opposite end within the cavity 43 A second valve head 53 is arranged within the cavity 43, being mounted on the stem 5N and being operative at times to close the port 56 at the point where the passage &4 enters the cavity 43. The valve head i2 is designed at times to close the port 54 where the passage 45 leaves the cavity 43*. The casing 3i is provided with a port 59 leading to the outer atmosphere, this .port being normally closed by a spring pressed outlet or safety valve fill. The case 3! is also preferably provided witha second port 6! normally closed by a spring pressed inlet valve '62.
During the inhalation period the parts occupy the position shown in Fig. 3, the valve 52 being seated and the valve 53 being unseated. Gas or air under pressure, supplied through the conduit til, enters the nozzle 46 of the aspirator, is delivered into the tube 64 and thence through cavity it and passage 44 into the chamber 36. Since the tube '49 leads from the chamber 39 to the suction space 48 of the aspirator a circulation of air through this tube 49 may result, but
; the delivery pressure at the throat 63 is such as gradually to build up pressure in the chamber 30., thus inflating the lungs. When the lung pressure has reached a predetermined value, any further increase causes thediaphragm-to assume the position shown in Fig. 1, thus .moving the valve head 52 to uncover theJ-port 154 while at the same time causing the valveheaid 53 to close the passage '64. The gas now passing through the aspirator nozzle causes a partial'vacuum in the space ll}, thus withdrawin gaseous material through the tube 49 from the chamber 30 and thus from the lungs of thejpatient, the mingled gas and material exhausted from the lungs passing through the tube 64 to the cavity 43 and thence through the open port 54 and passages 4-5 and 15 to the atmosphere. When the pressure in the chamber 38 has thus been reduced to a predetermined amount, the diaphragm moves in the other direction, thus restoring the parts to th position of Fig. 3 for the resumption of inhalation.
The arrangement illustrated in Figs. 5 and 6 is in general similar to that shown in Figs. 3 and 4 and just described, corresponding parts being similarly numbered. However, in the arrangement of Figs. 5 and 6 the passage 45 connects the cavity "43 with the inlet-l ef the aspirator. The asp-irator device discharges directly :to the atmosphere through the delivery throat 6-3. In
" this case the tube '49i-leads irom'thesuctionspace 48 to a recess 50 (Fig. 5 in the part 43., the recess 5G opening by means of a port 5| into the chamber 39.
In this device, a valve head :5] is :connected (Fig. 5 by a stem 58 to the end T of the lever T and at times closes the port .51 between the recess 56 and the chamber 230.
Assuming that the parts are in the relative positions shown in Figs-i5 and 15 and that :pressure fluid, for example atmospheric .air or oxygen,
is being supplied by the tube '40 to the space 43 this air or gas will pass through the'port "5'6 and passage is into the chamber 30 and thence through the tubular connection 32! to the mask Pressure is thus built up in the lungs to a predetermined amount, whereupon any further increase in pressure causes the diaphragm to assurne the position shownin Fig. 6. In moving to thisposition, the valve st-em'member s5 i ismoved to the left so that the Waive head 52 "uncovers the port 54 and carries .the valve head 53 into a position where it closes the port 56. By the same movement of the lever T the valve stem 58 (Fig. 6 is actuated to move the valve head 51 away from the port 51. Air or gas under pressure now passes from the space 43 through pa"- sage 45 and into the convergent inlet throat ll of the aspirator. In passing through the nozzle 46 it produces a partial vacuum in the space 48, thus inducing th flow of gaseous material through the tube 49 from the recess 59 and thence from the chamber 3!! and thus drom the mask and from the patients :lungs. This gaseous material mingles with the gas supplied from the pipe 40 and is discharged to the atmosphere from the divergent delivery throat 63 of the aspirator. This aspirating action continues until the pressure in the lungs and in the chamber 30 has dropped to a predetermined amount, whereupon any further decrease in pressure in the chamber 30 results in a movement of the diaphragm 23 back to the position shown in Fig. 3, thus returning the several valves to the positions shown in the latter figure and re-establishing the inhalation period.
The arrangement shown in Fig. '7 employs but a single moving valve part. Similarly numbered parts in this view correspond to those of Fig. 3. In this arrangement the chamber 22 is connected by a tube 49 to the suction space 48 of the aspirator. The delivery throat 63 of this aspirator is aligned with a port or passage 44 in the part 20, the passage 44 opening into the chamber 30 and being controlled by a valve head 52 secured to a stem 5|. In this arrangement the toggle linkage is similar to that previously described, but instead of connecting the valve stem 5| directly to one of the toggle levers, it is connected to the end 'I' of a motion-reversing lever '1 fulcrumed at "I and connected to the toggle link T at point T During exhalation, the diaphragm 23 and the valve 52' occupy the position shown in Fig. '7, Air or gas under pressure entering through the pipe 40, causes a partial vacuum in the suction space 48 of the aspirator, thus withdrawing air from the lungs through the mask M, the tubular connection 31, the chamber 22 and the tube 49', and delivering this mixture through the delivery throat of the aspirator nozzle and through the passage 44* into the chamber 30 from which it is discharged to the atmosphere through the open port 42 in casing I. When the pressure has dropped sufficiently in the chamber 22, the diaphragm moves to the right as viewed in Fig. 7, thus causing the toggle linkage toswing the lever T clockwise and thus seat the valve head 52 to close the passage 44 There is now no outlet through the delivery throat 63 of the aspirator nozzle, and consequently the gas supplied through the tube 40 backs up in the space 48 of the aspirator and passes through the tube 49* into the chamber 22 and thence through the tubular connection 31 to the mask M so as to inflate the lungs. When the lung pressure reaches a predetermined amount, the diaphragm again reverses its position, the valve 52 is opened, and the exhalation period begins.
While I have shown and described certain desirable embodiments of the invention, it is to be understood that this disclosure is for the purpose of illustration only and that various changes in shape, proportion and arrangement of parts and the substitution of equivalent elements may be made without departing from the spirit and scope of the invention as set forth in the appended claims.
I claim:
1. An artificial resuscitatoroi the kind which includes a face mask, a case which houses a pressure motor including a movable element which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a single, rigid tubular connection uniting the mask and case, said connection having a single constantly open passage afiording communication between the interior of the mask and said motor chamber, an aspirator device within the case, said aspirator device having a nozzle and a. delivery throat, a conduit leading to the interior of the case for supplying pressure fluid, the case also housing reciprocating valves and snap-action means for transmitting motion from said movable motor element to the valves, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflatingthe lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, and means within the case defining flow passages controlled by the aforesaid valves, one of said passages being so arranged as to deliver gaseous medium from the source of supply directly to the motor chamber, and another pasbeing so arranged as'to deliver gaseous medium from the source of supply to the inlet of the aspirator nozzle, the passages, valves and motion-transmitting mechanism being so constructed and arranged that during inhalation fluid medium flows through said motor chamber in one direction and during exhalation fluid medium flows through the motor chamber in the opposite direction.
2. An artificial resuscitator of the kind which includes a face mask, a case which houses a pres sure motor including a diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage alfording communication between the interior of the mask and said motor chamber, an aspirator device within the case, said aspirator device having a nozzle and a delivery throat, a conduit leading to the interior of the case for supplying pressure fluid, the case also'housing reciprocating valves and snap-action means for transmitting motion from said diaphragm to the valves, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motiontransmitting means is of a size such that it may be held in the palm of one hand, means providing a cavity within the case from which gaseous medium from the supply may flow alternatively directly to the motor chamber or to the inlet of the aspirator nozzle, certain of the aforesaid valves being operative to control the outlets from said cavity, the passages, valves, and motiontransmitting mechanism being so constructed and arranged that when the pressure in the motor chamber is positive to a predetermined amount, gaseous medium is withdrawn by the aspirator from the motor chamber and from the lungs and when the pressure in the motor chamber reaches a predetermined negative, gaseous medium is delivered to said'chamber and to the lungs.
3. An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a movable element which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage afiording communication between the interior of the mask and said motor chamber, an aspirator device, said aspirator device having a nozzle and a delivery throat, a conduit for supplying pressure fluid, the case also housing reciprocating valves and snap-action means for transmitting motion from said movable motor element to the valves, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, means within the case defining a cavity to which gas is supplied from the source under pressure, means within the caseproviding a duct connecting said cavity and the motor chamber, and means within the case defining a discharge passage leading from said cavity to the aspirator nozzle, the aforesaid valves being operative to control communication between said cavity and the duct and discharge passage respectively, the valves, passages. and motion-transmitting means being so constructed and arranged that during exhalation gaseous medium is withdrawn from said motor chamber by the aspirator nozzle and during inhalation gaseous medium under pressure is delivered directly to the motor chamber.
4. An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage affording communication between the interior of the mask and said motor chamber, an aspirator device, said aspirator device having a nozzle and a delivery throat, a conduit for supplying pressure fluid, the case also housing reciprocating valves and snap-action means for transmitting motion from said diaphragm to the valves, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motiontransmitting means is of a size such that it may be held in the palm of one hand, means within the case defining a cavity to which gas under pressure is constantly delivered, means providing a duct connecting said cavity with the motor chamber, means defining a passage leading from said cavity to the inlet to the aspirator nozzle, a pair of the aforesaid valves being operative alternatively to close communication between the case and the duct and passage respectively, said valves and the motion-transmitting means being so constructed and arranged that during exhalation gaseous medium is withdrawn from the motor chamber by the aspirator nozzle and during inhalation gaseous medium under pressure is delivered directly to the motor chamber.
5. An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a flexible diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage afiording communication between the interior of the mask and said motor chamber, an aspirator device within the case, said aspirator device having a nozzle and a delivery throat, a conduit leading to the interior of the case for supplying pressure fluid, the case also housing reciprocating valves and means for transmitting motion from said flexible diaphragm to the valves, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, means defining a cavity to which gaseous medium under pressure is constantly supplied, means providing a duct connecting said cavity and motor chamber, means defining a discharge passage leading from said cavity to the inlet of the aspirator nozzle, the aforesaid valves including a pair of axially arranged valve heads operative respectively to close communication between the cavity and the duct and the discharge passage respectively, said valves moving in opposite directions in approaching their closed positions, and a stem on which said valve heads are mounted, the motion-transmitting means being arranged to move said valve stem axially, movement of the stem in one direction disposing one valve head in closed position and movement of the stem in the opposite direction disposing the other valve head in closed position, and means providing a duct leading from the motor chamber to the suction side of the nozzle the parts being so constructed and arranged that during exhalation gaseous medium is withdrawn from the motor chamber by the aspirator nozzle and during inhalation gaseous medium under pressure is delivered to the motor chamber.
6. An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage afiording communication between the interior of the mask and said motor chamber, an aspirator device within the case, said aspirator device having a nozzle and a delivery throat, a conduit leading to the interior of the case for supplying pressure fluid, the case also housing reciprocating valves and means for transmitting motion from said diaphragm to the valves, the
resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, means defining a cavity to which pressure fluid is constantly delivered, means providing a duct connecting said cavity with the motor chamber, means defining a passage leading from said cavity to the inlet to the aspirator nozzle, said duct and passage entering the cavity at opposite sides of the latter and being coaxial where they enter the cavity, a valve stem extending loosely through the duct from the cavity to the motor chamber, the aforesaid valves including valve heads mounted on said stem within the cavity, one of said heads being operative at times to close the passage and the other head being operative at times to. close the duct, the motiontransmitting means including a toggle arranged within the motor chamber and actuable by the movable motor part to move the valve stem, thereby alternatively to move one or the other of the valve heads to closed position, the valves and motion-transmitting means being so constructed and arranged that during exhalation gaseous medium is withdrawn from the motor chamber by the aspirator nozzle and during inhalation gaseous medium is delivered directly to the motor chamber.
7. An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a flexible diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a tubular connection uniting, the mask and case, said connection having a single constantly open passage affording communication between the interior of the mask and said motor chamher, an aspirator device, said aspirator device having a nozzle and a delivery throat, a conduit for supplying pressure fluid, the case also housing reciprocating valves and means for transmitting motion from said diaphragm to the valves, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, means within the case defining a cavity which at all times communicates with the supply conduit and from which passages lead to the motor chamber and to the inlet of the as pirator nozzle, respectively, means defining a duct providing communication between the motor chamber and the suction side of the nozzle, and means defining an educt passage which receives the pres-sure medium discharged by the delivery end of the nozzle and which leads to the atmosphere, one of the aforesaid valves being operative to determine whether or not pressure medium from the supply shall discharge to the atmosphere through said educt passage, the valves and passages being so constructed and arranged that during exhalation gaseous medium is withdrawn from the motor chamber by the aspirator nozzle and during inhalation gaseous medium under pressure is delivered to the motor chamber.
8. An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage affording communication between the interior of the mask and said motor chamber, an aspirator device within the case, said aspirator device having a nozzle and a delivery throat, a conduit leading to the interior of the case for supplying pressure fluid, the case also housing reciprocating valves and snap-action means for transmitting motion from said diaphragm to the valves, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and'ior deflating, the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, means within the case defining a cavity Which at all times communicates with the supply conduit and from which passages lead to the motor chamber and to the inlet of the aspirator nozzle, respectively, means defining a duct providing communication I between the motor chamber and the suction side of the nozzle, means defining an educt passage which receives the pressure medium discharge by the delivery and of the nozzle and whichopens to'the atmosphere, the aforesaid valves including a valve operative to control the delivery of pressure fluid to the motor chamber, the motion-transmitting mechanism including a toggle actuated motion-reversing lever operative by the movable member of the lever to move said last-named valve to and from closed position, the parts being so constructed and arranged that during exhalation gaseous medium is withdrawn from the motor chamber by the aspirator nozzle and during inhalation gaseous medium under pressure is delivered directly from said cavity to the motor chamber.
9. An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a movable element which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage afiording communication between the interior of the mask and said motor chamber, an aspirator device, said aspirator device having a nozzle and a delivery throat, a conduit for supplyin pressure iiuid, the case also housing at least one reciprocating valve and snap-action means for transmitting motion from said movable motor element to said valve, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, means within the casing definin a cavity which is in constant communication with the supply conduit, a duct leading therefrom to the motor chamber, a tube, one end of which is fixed in an opening in the wall of the suction space of the nozzle, and the other end of which is fixed in an opening in the wall of the motor chamber, the aforesaid reciprocating valve being operative to determine whether the pressure medium shall flow from said cavity to the motor chamber, said valve and motion-transmitting means being so constructed and arranged that during exhalation gaseous medium is withdrawn from the motor chamber by the aspirator nozzle and during inhalation gaseous medium under pressure is delivered directly from said cavity to the motor chamber.
10. An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage affording communication between the interior of the mask and said motor chamber, an aspirator device, said aspirator device having a nozzle and a delivery throat, a conduit for supplyin pressure fluid, the case also housing reciprocating valves and snap-action means for transmitting motion from said diaphragm to the valves, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, and means defining a cavity which receives pressure fluid from the supply, a duct providing communication between the motor chamber and the suction side of the nozzle, a valve controlled port providing direct communication between said cavity and the motor chamber, a valve controlled passage providing communication between said cavity and the inlet of the aspirator nozzle, the aforesaid valves including valves operative to determine whether pressure medium shall flow through said duct or through said port, the valves and motion-transmitting means being so constructed and arranged that during exhalation gaseous medium is withdrawn from the motor chamber by the aspirator nozzle and during in halation gaseous medium under pressure is delivered directly from said cavity to the motor chamber.
11. An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a flexible diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage aflording communication between the interior of the mask and said motor chamber, an aspirator device within the case, said aspirator device havin a nozzle, a suction space and a delivery throat, a conduit leading to the interior of the case for supplying pressure fluid, the case also housing at least one reciprocating valve and means for transmitting motion from said flexible diaphragm to said valve, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, means within the casing defining a cavity which receives pressure fluid from the supply conduit, valve controlled passages leading from said cavity to the motor chamber and to the inlet of the aspirator nozzle respectively, a duct providing communication between the motor chamber and the suction space of the nozzle, the aforesaid reciprocating valve being operative to determine whether or not the nozzle shall discharge g-aseous medium from its delivery throat, the valve and motion-transmitting means being so constructed and arranged that during exhalation gaseous medium is withdrawn from the motor chamber by the aspirator nozzle and during inhalation atmospheric pressure subsists in the suction space of the nozzle while gaseous medium under pressure is delivered to the motor chamber from the supply.
12. An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection havin a single constantly open passage afiording communication between the interior of the mask and said motor chamber, an aspirator device within the case, said aspirator device having a nozzle, a suction space and a delivery throat, a conduit leading to the interior of the case for supplying pressure fluid, the case also housing at least one reciprocating valve and means for transmitting motion from said diaphragm to said valve, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, means defining a duct providing communication between the motor chamber and the suction space of the nozzle, the aforesaid reciprocating valve being operative to determine whether or not the nozzle shall function as an aspirator, the valve and motion-transmitting means being so constructed and arranged that during exhalation gaseous medium is withdrawn from said chamber by the aspirator nozzle and durin inhalation atmospheric pressure subsists in the suction space of the nozzle while gaseous medium under pressure is delivered to the motor chamber from the supply.
13. An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a flexible diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a tubular connection uniting the mask and case, said connection having a single constantly open passage aflording communication between the interior of the mask and said motor chamber, an aspirator device, said aspirator device having a nozzle and a delivery throat, a conduit for supplying pressure fluid, the case also housin reciprocating valves and means for transmitting motion from said diaphragm to the valves, the resuscitator being of the kind wherein gas under pressure suppliesthe energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motiontransmitting means is of a size such that it may be held in the palm of one hand, means defining a duct providing communication between the motor chamber and the suction side of the nozzle, one of the aforesaid valves being operative at times to close said duct, means providing a cavity to which pressure medium is constantly supplied, there being ports affording communication between said cavity and the motor chamber and the inlet end or the nozzle respectively, certain of the aforesaid valves being operative alternatively to close said ports, the valves and motion-transmitting means being so constructed and arranged that during exhalation gaseous medium is withdrawn from the motor chamber by the aspirator nozzle and during inhalation gaseous medium under pressure is delivered directly to the motor chamber.
14. An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a movable element which is sensitively responsive to lungpressure and which defines one wall of a-motor chamber, a single, rigid tubular connection uniting the mask and case, said connection having a single constantly open passage afiording communication between the interior of the mask andsaid motor chamber, an aspirator device within the case, said aspirator device having a nozzle and a delivery throat, a conduit leading to the interior of the case for supplying pressure fluid, the case also housing reciprocating valves and snap-action means for transmitting motion from said movable motor element to the valves, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, means defining a duct providing communication between the motor chamber and the suction side of the nozzle, one of the aforesaid valves being operative at times to close said duct, certain of the aforesaid valves constituting distributing means operative to determine whether pressure medium shall enter the inlet of the nozzle or pass directly into the motor chamber respectively, the motion-transmitting means being operative so to actuate said valves that during exhalation gaseous medium is Withdrawn from the motor chamber and during inhalation gaseous medium is delivered directly to the motor chamber.
15. An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage affording communication between the interior of the mask and said motor chamber, an aspirator device within the case, said aspirator device having a nozzle and a delivery throat, a conduit leading to the interior of the case for supplying pressure fluid, the case also housing reciprocating valves and snap-action means for transmitting motion :from said diaphragm to the valves, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflatin and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, means defining a duct providing communication between the inlet chamber and the suction side of the nozzle, one of the aforesaid valves being operative at times to close said duct, a pair of the aforesaid valves being operative to determine whether the pressure medium supplied by the conduit shall enter the inlet chamber directly or flow into the inlet end of the nozzle, the motion transmitting means being operative to move the valves so that when the first-named valve is closed the valve which controls the nozzle inlet is also closed while the valve controlling communication with the motor chamber is open, the parts being so constructed and arranged that durin exhalation gaseous medium is withdrawn from the motor chamber and during inhalation gaseous medium under pressure is delivered directly to the motor chamber.
16. An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a movable element which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage afiording communication between the interior of the mask and said motor chamber, an aspirator device, said aspirator device having a nozzle and a delivery throat, a conduit for supplying pressure fluid, the case also housing reciprocating valves and snap-action means for transmitting motion from said movable motor element to the valves, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, means providing a cavity with which the fluid supply conduit communicates, passages leading from said cavity to the motor chamber and to the inlet of the aspirator nozzle respectively, certain of the aforesaid valves being arranged to close said passages alternatively, means providing a passage connecting the motor chamber with the suction side of the aspirator, and another of the aforesaid valves being arranged to close said latter passage at times, the parts being so constructed and arranged that when the last-named valve is open the passage leading from said cavity to the motor chamber is closed.
17. An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage afiording communication between the interior of the mask and said motor chamber, an aspirator device, said aspirator device having a nozzle and a delivery throat, a conduit for supplying pressure fluid, the case also housing reciprocating valves and snap-action means for transmitting motion from said diaphragm to the valves, the resuscitator being of the kind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating the pressure motor, characterized in that the case which houses the aspirator, pressure motor, and motion-transmitting means is of a size such that it may be held in the palm of one hand, means providing a cavity which at all times communicates with the fluid supply conduit, means providing a passage leading from said cavity to the motor chamber, means providing a passage leading from said cavity to the inlet of the aspirator nozzle, certain of the aforesaid valves being operative alternatively to close said passages, means providing a duct connecting the motor chamber with the suction side of the aspirator, the valves and motion-transmitting means being so constructed and arranged that during exhalation gaseous medium is withdrawn from the motor chamber by the aspirator nozzle and during inhalation gaseous medium under pressure is delivered from said cavity to the motor chamber.
18. An artificial resuscitator of the kind which includes a face mask, a case which houses a pressure motor including a flexible diaphragm which is sensitively responsive to lung pressure and which defines one wall of a motor chamber, a rigid tubular connection uniting the mask and case, said connection having a single constantly open passage afiording communication between the interior of the mask and said motor chamber, an aspirator device within the case, said aspirator device having a nozzle and a delivery 15 throat, a conduit leading to the interior of the casev for supplying pressure fluid, the case also housing reciprocating valves and means for transmitting motion from said flexible dia-' phragm to the valves, the resuscitator being of thekind wherein gas under pressure supplies the energy for inflating and for deflating the lungs and for operating'the pressure motor, character.- izedin that the case which houses the aspirator, pressure motor, and motion-transmitting means is of asize such that it may be held in the palm of one hand, means providing a cavity whichat all times communicates with the fluid supply conduit, means providinga passage leading from said cavity to the motor chamber, means providing a passage leading from said chamber tov the inlet of the aspirator nozzle, two of the aforesaid valves being located within said cavity and operative alternatively to close therespectivepassages, means providing, a duct connecting the motor chamber with the suction. side of the aspirator, the valves and motion-transmitting means being so constructed and arranged that during, exhalation gaseous medium is, withdrawn from. the motor chamber by the aspirator and during inhalation gaseous medium under pres.- sure is delivered from said cavity to the motor chamber.
J OHN' I-I. EMERSON- 16 REFERENCES CITED The following referencessare of record in the file of this patent:
UNITED STATES PATENTS.
Number Name Date 1,044,031 Drager Nov. 12; 1912 1,136,517 Drager Apr; 20, 1915' 1,150,508 Drager Aug. 17', 1915 1,214,941 Morris et a1 Feb.;6, 191? 2,268,172 Sennett Dec. 30, 1941" 2,273,790 Raymond Feb; 17, 1942 2,364,626 Emerson Dec. 12, 1944 FOREIGN PATENTS Number Country Date 146,862 Great Britain Feb. 24; 1921' 588,091 Germany Nov; 14, 1933 OTHER REFERENCES Science, Dec. 24', 1943, V01. 93, #2556; pp. 547m 551.
Science, June 9, 1944, vol. 99, #2580, pp. 469-to 471.
US567806A 1944-12-12 1944-12-12 Breathing apparatus Expired - Lifetime US2468741A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US567806A US2468741A (en) 1944-12-12 1944-12-12 Breathing apparatus
US44659A US2481299A (en) 1944-12-12 1948-08-17 Breathing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US567806A US2468741A (en) 1944-12-12 1944-12-12 Breathing apparatus

Publications (1)

Publication Number Publication Date
US2468741A true US2468741A (en) 1949-05-03

Family

ID=24268725

Family Applications (1)

Application Number Title Priority Date Filing Date
US567806A Expired - Lifetime US2468741A (en) 1944-12-12 1944-12-12 Breathing apparatus

Country Status (1)

Country Link
US (1) US2468741A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2758594A (en) * 1952-12-16 1956-08-14 Conitech Ltd Artificial respiration apparatus
US2774352A (en) * 1952-03-28 1956-12-18 John H Emerson Breathing assistor valve
DE1215869B (en) * 1958-03-24 1966-05-05 Philip Lockland Stanton Ventilator
US3385295A (en) * 1966-02-07 1968-05-28 Puritan Compressed Gas Corp Apparatus for use in administering intermittent positive pressure breathing therapy
US20050039749A1 (en) * 2003-09-08 2005-02-24 Emerson George P. Insufflation-exsufflation system for removal of broncho-pulmonary secretions with automatic triggering of inhalation phase
US20050051174A1 (en) * 2003-09-08 2005-03-10 Emerson George P. Insufflation-exsufflation system with percussive assist for removal of broncho-pulmonary secretions
US20090014001A1 (en) * 2007-06-29 2009-01-15 Helge Myklebust Method and apparatus for providing ventilation and perfusion

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1044031A (en) * 1908-10-01 1912-11-12 Johann Heinrich Draeger Method of causing artificial respiration.
US1136517A (en) * 1908-10-01 1915-04-20 Draegerwerk Ag Artificial-breathing apparatus.
US1150508A (en) * 1913-10-22 1915-08-17 Alexander Bernhard Draeger Mask, helmet, or the like for use with respiratory apparatus.
US1214941A (en) * 1915-12-24 1917-02-06 Draegerwerk Heinr And Bernh Draeger Resuscitating device.
GB146862A (en) * 1916-04-10 1921-02-24 Draegerwerk Ag Improvements in or relating to artificial respiration apparatus
DE588091C (en) * 1930-09-20 1933-11-14 Draegerwerk Heinr U Bernh Drae Device for the resuscitation of the seemingly dead through artificial breathing
US2268172A (en) * 1941-06-12 1941-12-30 John H Emerson Resuscitator
US2273790A (en) * 1939-04-26 1942-02-17 William H Stephenson Mechanical resuscitator for combating asphyxia
US2364626A (en) * 1942-11-09 1944-12-12 John H Emerson Resuscitator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1044031A (en) * 1908-10-01 1912-11-12 Johann Heinrich Draeger Method of causing artificial respiration.
US1136517A (en) * 1908-10-01 1915-04-20 Draegerwerk Ag Artificial-breathing apparatus.
US1150508A (en) * 1913-10-22 1915-08-17 Alexander Bernhard Draeger Mask, helmet, or the like for use with respiratory apparatus.
US1214941A (en) * 1915-12-24 1917-02-06 Draegerwerk Heinr And Bernh Draeger Resuscitating device.
GB146862A (en) * 1916-04-10 1921-02-24 Draegerwerk Ag Improvements in or relating to artificial respiration apparatus
DE588091C (en) * 1930-09-20 1933-11-14 Draegerwerk Heinr U Bernh Drae Device for the resuscitation of the seemingly dead through artificial breathing
US2273790A (en) * 1939-04-26 1942-02-17 William H Stephenson Mechanical resuscitator for combating asphyxia
US2268172A (en) * 1941-06-12 1941-12-30 John H Emerson Resuscitator
US2364626A (en) * 1942-11-09 1944-12-12 John H Emerson Resuscitator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2774352A (en) * 1952-03-28 1956-12-18 John H Emerson Breathing assistor valve
US2758594A (en) * 1952-12-16 1956-08-14 Conitech Ltd Artificial respiration apparatus
DE1215869B (en) * 1958-03-24 1966-05-05 Philip Lockland Stanton Ventilator
US3385295A (en) * 1966-02-07 1968-05-28 Puritan Compressed Gas Corp Apparatus for use in administering intermittent positive pressure breathing therapy
US20050039749A1 (en) * 2003-09-08 2005-02-24 Emerson George P. Insufflation-exsufflation system for removal of broncho-pulmonary secretions with automatic triggering of inhalation phase
US6860265B1 (en) * 2003-09-08 2005-03-01 J.H. Emerson Company Insufflation-exsufflation system for removal of broncho-pulmonary secretions with automatic triggering of inhalation phase
US20050051174A1 (en) * 2003-09-08 2005-03-10 Emerson George P. Insufflation-exsufflation system with percussive assist for removal of broncho-pulmonary secretions
US6929007B2 (en) 2003-09-08 2005-08-16 J.H. Emerson Company Insufflation-exsufflation system with percussive assist for removal of broncho-pulmonary secretions
US20090014001A1 (en) * 2007-06-29 2009-01-15 Helge Myklebust Method and apparatus for providing ventilation and perfusion

Similar Documents

Publication Publication Date Title
US3834383A (en) Respiration apparatus with flow responsive control valve
USRE25871E (en) Lung ventilators and control mechanism therefor
US2408136A (en) Resuscitator insufflator aspirator
US4044763A (en) Ventilator and method
US3537448A (en) Therapeutic intermittent positive pressure respirator
US4045835A (en) Power deflator mechanism for scuba buoyancy vests
US3730180A (en) Pneumatically operated ventilator
US2695609A (en) Breathing apparatus
US2268172A (en) Resuscitator
US2364626A (en) Resuscitator
GB1582368A (en) Ventilator
US3251359A (en) Automatic intermittent positive pressure ventilators
US2468741A (en) Breathing apparatus
US3307542A (en) Lung ventilating equipment
NO753195L (en)
US2747572A (en) Breathing apparatus
US3292617A (en) Closed circuit breathing apparatus
US2378047A (en) Oxygen flow regulator
US2269904A (en) Resuscitator-aspirator-insufflator
US2737177A (en) Life-restoring apparatus
US3468307A (en) Intermittent positive pressure breathing apparatus
US2870763A (en) Pressure breathing therapy apparatus
US2774352A (en) Breathing assistor valve
US2737176A (en) Breathing machine
US2452670A (en) Breathing apparatus