US2318533A - Apparatus for heating material - Google Patents

Apparatus for heating material Download PDF

Info

Publication number
US2318533A
US2318533A US368815A US36881540A US2318533A US 2318533 A US2318533 A US 2318533A US 368815 A US368815 A US 368815A US 36881540 A US36881540 A US 36881540A US 2318533 A US2318533 A US 2318533A
Authority
US
United States
Prior art keywords
strand
wire
strands
radiant heat
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US368815A
Inventor
John N Selvig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
Western Electric Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Western Electric Co Inc filed Critical Western Electric Co Inc
Priority to US368815A priority Critical patent/US2318533A/en
Application granted granted Critical
Publication of US2318533A publication Critical patent/US2318533A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/30Drying; Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation

Definitions

  • wires of high conductivity copper have recently been provided with an insulating sheath of ielted cellulosic or textile nbres formed directly on the wire as a seamless envelope of wet pulp and then dried.
  • such wires are cov? ered with threads served.
  • braided or knitted int'falseamiess envelope and subsequently coated with'a solid material, e. g. cellulose acetate, in a liquid solvent or vehicle, e. g. acetone, and are then heated to dry out the solvent or vehicle.
  • the sheathed wires have been passed through long vertical chambers or through long horizontal .chambers while being subjected to radiant heat from oven walls, electrical resistance elements or the like.
  • vertical drying chambers there is no diiiiculty in applying the heat uniformly to all sides of the wet sheathed wire, since the wire may hang free in its passage'from one guide sheave to another; but the weight of the iree hanging length of the wire is superimposed on the tension in the wire caused by whatever means is employed to pull the wire through the apparatus, and this weight may be great enough to cause stretching of the heated wire with consequent damage both to the wire and to the sheath thereon.
  • An object of the present invention is to provide apparatus for heating strand material uni formly without any necessity for weight tension on the strand while being heated.
  • the invention may be embodied in an apparatus wherein strands to be heated are advanced horizontally over while being supported on a flat horizontal secondarily radiant surface, and while primary radiant heat is supplied from above to substantially evenly envelope each strand in combined primary and secondary radiant heat.
  • Fig. 2 is an enlarged view thereof in end elevation and partly in section;
  • Fig. 3 is a partial view of the showing of Fig. 2 in longitudinal vertical section;
  • Fig. 4 is an enlarged fragmentary section on the line '4-4 of Fig. 3;
  • Fig. 5 is a further enlarged view similar to Fig. 4 of ⁇ o. modified form
  • Fig. 7 is a corresponding view of still another modified form.
  • strands 2l comprise a core 2
  • 'I'he apparatus comprises a bed or base Il havlng the general form of a long blockvor slab of some suitable material, ⁇ preferably a relatively .good heat insulating substance such as cement,
  • Suitable sources of primary radiant heat such as infrared lamps 4l arefsupported over the channel formed by the trough 3
  • the inner faces of the walls 32 are highly polished and are preferably coated with polished gold to provide as durable and as perfectly refleeting a surface as possible.
  • may be treated in either of two ways, by which the same end result is achieved but in somewhat differing fashions.
  • This surface may also be a reflector, e. g. gold plated and polished, which will reflect a maximum and absorb a minimum of radiant energy falling upon it. Or it may be a black body surface treated to reflect a minimum and absorb a maximum of radiant energy. If the member 3
  • the floor is'treated to have a black body surface and is also provided with a number of spaced, transverse, narrow upstanding ridges whose height is about the same as the thickness of the strands 2l to be treated.
  • These ridges 34 are of practically negligible width along the strands, and are spaced at such distances apart as to support the strands at points close enough together to obviate any material sagging of the strands between ridges as the strands are drawn along over them.
  • the lamps 40 are so placed as to the directions of their rays that the .condition disclosed ln Fig. 4 is substantially achieved, namely, that no part ofthe floor 3
  • - is wholly irradiated by the bundle 42; and the shadow in 42 is wholly irradiated by 4
  • the upper surface of the strand 2li down to the points 23 and 24 is irradiated by primary radiation .either directly from the lamps or reflected from the side walls.
  • being a black body surface, absorbs the radiant energy falling upon it practically entirely and reflects practically none. This absorbed radiant energy is converted in the body of the member 3
  • a number of strands may be simultaneously treated in this manner, as indicated in Fig. 2, by running them over the member 3
  • has the same transverse ridgesV 34 as before, but its top surface is made as nearly totally reflecting as possible. from below in such case, is reflected and comes up from the reflecting surface slanting'the same amount from the perpendicular as the primary radiation, instead of vertically as in Fig. 4.
  • Each wire 20' is again irradiated substantially equally on all sides.
  • the ridges 34 are omitted and the top surface of the member 3
  • the strands are supported at every point of their length along the member 3
  • Fig. 7 shows the case where the ridges 34 are omittedy and the top surface of the member 3
  • there should in theory be an unsatisfactory irradiation of a small portion of the surface of the strand on each side of its line of tangency with the surface of the member 3
  • no metallic surface is truly totally reflecting, and there will be sufflcient black body radiation directly under the strand to supplement the reflected radiation satisfactorily.
  • the same mixed effect will, of course, also characterize the arrangement of Fig. 5.
  • An apparatus for heating material in strand form comprising members to form an open topped channel with vertical side walls and with a horizontal door to support a strand passing over the oor and between the walls, the inner faces of the side walls being polished to reiiect radiant heat and the tloor surface being blackened to radiate secondary radiant heat by black body radiation when irradiated with primary radiant heat, in combination with a plurality of sources of primary radiant heat positioned to irradiate the inner faces of the side walls and the floor surface with primary radiant heat from two angularly diverging directions simultaneously and thereby to irradiate a strand passing'through the channel upon its upper portion with primary radiant heat and upon its lower portion with secondary radiant heat radi-V ated by black body radiation from the iioor lurface.

Description

May 4, 1943- J. N. sELvlG 2,318,533
` APPARATUS FOR HEATING MATERIAL Filed Dec. 6, 1940 'lllllll/I.
maa
NI/ENTOR J. N. SLVG A T TORNEY May 4, 1943 i UNITED; STATES PATENT ko1-*Fics t 2.31am Y .A
. arrasa'rus Foa mismo Marsman .una N; servis, wensen, N. J., mim: u wen- Eiactric Company, Incorporated, New York, N. Y., a corporation oi New York al wire coated with one or another form of elec-l trically insulating or otherwise protecting material has long been practised by methods and apparatus involving exposures to radiant heat from oven surfaces, electrically heated resistance elements, and the like. There are three fundamental ends to beaimedk at in all such methods and apparatus, namely, to apply heat to the strand equally from all sides at each point of the exposed portion, to apply the heat along the strand without excessive temperatures at any part of the portion exposed to the heat, and to minimize tensional stresses in the heated portion. This last point is one whose importance is not always appreciated. especially in the case of electrical conductor wires oi' copper or of aluminum or of other metals or metallic alloys of highv conductivity but sometimes also of high malleability and relatively low tensile strength especially when heated. In a particular case, wires of high conductivity copper have recently been provided with an insulating sheath of ielted cellulosic or textile nbres formed directly on the wire as a seamless envelope of wet pulp and then dried. Inv f ther instance, auch wires are cov? ered with threads served. braided or knitted int'falseamiess envelope and subsequently coated with'a solid material, e. g. cellulose acetate, in a liquid solvent or vehicle, e. g. acetone, and are then heated to dry out the solvent or vehicle. In such cases the sheathed wires have been passed through long vertical chambers or through long horizontal .chambers while being subiected to radiant heat from oven walls, electrical resistance elements or the like. When passed through vertical drying chambers, there is no diiiiculty in applying the heat uniformly to all sides of the wet sheathed wire, since the wire may hang free in its passage'from one guide sheave to another; but the weight of the iree hanging length of the wire is superimposed on the tension in the wire caused by whatever means is employed to pull the wire through the apparatus, and this weight may be great enough to cause stretching of the heated wire with consequent damage both to the wire and to the sheath thereon. A similar difficulty arises in the case eatenary practicably shallow may well exceed the tension due to the weight of the wire in a vertical chamber. Attempts have been made to utilize a horizontal chamber in which such superadded tensions are avoided by supporting the wire dur- 5 ing its passage through the heated acne. This,
of course, avoids theweight tensions; but obviously introduces problems of applying heat equally to all sides of the wire because of obstruction by the supporting means employed.
An object of the present invention is to provide apparatus for heating strand material uni formly without any necessity for weight tension on the strand while being heated.
With the above and other .objects in view, the invention may be embodied in an apparatus wherein strands to be heated are advanced horizontally over while being supported on a flat horizontal secondarily radiant surface, and while primary radiant heat is supplied from above to substantially evenly envelope each strand in combined primary and secondary radiant heat.
Other objects and features of the invention will appear from the following detailed description of one embodiment of the invention in an apparatus constructed in accordance with the invention, taken in connection with the accompanying drawing in which the same referencenumerals are applied toY identical parts in the several ngures and in which Fig. l is a generalby diagrammatic view of a part of the apparatus in side elevation and partly in section;
Fig. 2 is an enlarged view thereof in end elevation and partly in section;
Fig. 3 is a partial view of the showing of Fig. 2 in longitudinal vertical section;
Fig. 4 is an enlarged fragmentary section on the line '4-4 of Fig. 3;
Fig. 5 is a further enlarged view similar to Fig. 4 of `o. modified form;
Fig. dis a corresponding view of another modified form; and
Fig. 7 is a corresponding view of still another modified form.
As herein disclosed, strands 2l comprise a core 2| and a covering, coating or sheath 22 and are to be uniformly heated while passing through the apparatus shown, being advanced by means not shown.
'I'he apparatus comprises a bed or base Il havlng the general form of a long blockvor slab of some suitable material,` preferably a relatively .good heat insulating substance such as cement,
concrete, ceramic blocks or bricks, or the like. la Preferably inset into the fiat horizontal top surface of the base is a wide. shallow troughrll of sheet metal having a generally nat bottom and vertically upturned side flanges.G Vertical .side wall members 32 of sheet metal are backed along their lower edges against these upturned danses and are supported by suitable posts 33 positioned at intervals against their outside faces and on the bed 30.
Suitable sources of primary radiant heat auch as infrared lamps 4l arefsupported over the channel formed by the trough 3| and walls 32 to direct substantially parallel bundles of rays of primary radiant heat down into the channel. These lamps are preferably arranged in pairs transversely opposite each other so that one lamp of each pair directs its rays 4| slantingly down against the right hand wall 32 (Fig. 2) and not less than half the width of the floor of the channel, while the other lamp of the pair similarly directs its rays 42 slantingly down against the left hand wall 32 and not less than half the width of the floor.A Radiation thus directed against the floor of the channel either directlyV from the lamps or by reection from the walls 22 will be termed primary radiation; while radiaticn coming up from the floor member whether by reflection or otherwiserwill be termed secondary radiation.
The inner faces of the walls 32 are highly polished and are preferably coated with polished gold to provide as durable and as perfectly refleeting a surface as possible.
The upper surface of the floor member 3| may be treated in either of two ways, by which the same end result is achieved but in somewhat differing fashions. This surface may also be a reflector, e. g. gold plated and polished, which will reflect a maximum and absorb a minimum of radiant energy falling upon it. Or it may be a black body surface treated to reflect a minimum and absorb a maximum of radiant energy. If the member 3| be made of iron or steel and its top surface phosphatiaed to produce the familiar minutely rough, matt, substantially black surface characteristic of surfaces rust proofed by phosphatizing, a substantially black body surface is created, suitable for the present use.
In the preferred embodiment, shown in Figs. 1 through 4, the floor is'treated to have a black body surface and is also provided with a number of spaced, transverse, narrow upstanding ridges whose height is about the same as the thickness of the strands 2l to be treated. These ridges 34 are of practically negligible width along the strands, and are spaced at such distances apart as to support the strands at points close enough together to obviate any material sagging of the strands between ridges as the strands are drawn along over them.
The lamps 40 are so placed as to the directions of their rays that the .condition disclosed ln Fig. 4 is substantially achieved, namely, that no part ofthe floor 3| is wholly shaded by a strand 20 from both lamps. The shadow in the bundle of rays 4|- is wholly irradiated by the bundle 42; and the shadow in 42 is wholly irradiated by 4|. Thus the upper surface of the strand 2li down to the points 23 and 24 is irradiated by primary radiation .either directly from the lamps or reflected from the side walls.
The top surface of the bottom member 3| being a black body surface, absorbs the radiant energy falling upon it practically entirely and reflects practically none. This absorbed radiant energy is converted in the body of the member 3| into kinetic heat energy and raises the temperature of its substance to a point where there is equilibrium between energy falling upon it and energy re-radiated from the black body surface. Thisre-radiated energy is radiated vertically up from the horizontal top surface ofthe member 3| as indicatedrat 43 in Fig. 4 and thus irradiates the under` surface of the wire 2B.' 'I'hus the wire is subjected to `substantially.uniform radiant energy on aIlsides due to the combined primary and secondary radiationV thus provided.
A number of strands may be simultaneously treated in this manner, as indicated in Fig. 2, by running them over the member 3| parallel to each other, and spaced from each other a distanceV apart preferably not less than their own diameters.
In the modification shown in Fig. 5,*the memy ber 3| has the same transverse ridgesV 34 as before, but its top surface is made as nearly totally reflecting as possible. from below in such case, is reflected and comes up from the reflecting surface slanting'the same amount from the perpendicular as the primary radiation, instead of vertically as in Fig. 4. Each wire 20', however, is again irradiated substantially equally on all sides.
As modified in Fig. 6, the ridges 34 are omitted and the top surface of the member 3| is treated to be a black body surface. In this case the strands are supported at every point of their length along the member 3|. Since each strand 2|| thus lies directly tangent to the surface of the member 3|, Va portion of the surface directly under the strand will be shadowed by the strand from the primary radiation. However, there are portions of this surface between the strands and wider than the distance between the strands which will be irradiated with primary radiation and will absorb energy. Since the member 3| is of metal this energy will be distributed substantially evenly throughout its substance and will be re-radiated as secondary radiation directly up under each strand from the portion of surface under the same. Thus a satisfactory result is achieved in this case also.
Fig. 7 shows the case where the ridges 34 are omittedy and the top surface of the member 3| is made reflecting. Here there should in theory be an unsatisfactory irradiation of a small portion of the surface of the strand on each side of its line of tangency with the surface of the member 3|. However, in practise no metallic surface is truly totally reflecting, and there will be sufflcient black body radiation directly under the strand to supplement the reflected radiation satisfactorily. The same mixed effect will, of course, also characterize the arrangement of Fig. 5.
Only so much of the apparatus is herein disclosed as is needed to describe and delimit the invention. In practice there may be required means to remove and carry away water vapors, solvent fumes and the like liberated from the strand by the heat applied in the manner described. Also means are required to propel the strands, preferably at a uniform rate, longitudinally through the apparatus. vSuch means are no part of the invention and so are not shown. The specific structure and mode of operation of the heat radiating means 40 are also no part of the invention, it being merely required for the purposes'of the inventionthat these means or lamps project radiant heat in bundles of substantially parallel rays. Details of a suitable radiant heat projector for the lpresent purposesr The secondary radiation' may be found, if desired, however, in U. S. Patent 2,057,776 of October 20, 1936 to F. J. Groven.
'I'he embodiments of the invention herein disclosed are illustrative and may be variously modifled and departed from without departing from the spirit and scope oi the invention as pointed out in the appended claim.
What is claimed is:
An apparatus for heating material in strand form and comprising members to form an open topped channel with vertical side walls and with a horizontal door to support a strand passing over the oor and between the walls, the inner faces of the side walls being polished to reiiect radiant heat and the tloor surface being blackened to radiate secondary radiant heat by black body radiation when irradiated with primary radiant heat, in combination with a plurality of sources of primary radiant heat positioned to irradiate the inner faces of the side walls and the floor surface with primary radiant heat from two angularly diverging directions simultaneously and thereby to irradiate a strand passing'through the channel upon its upper portion with primary radiant heat and upon its lower portion with secondary radiant heat radi-V ated by black body radiation from the iioor lurface.
JOHN N. SELVIG.
US368815A 1940-12-06 1940-12-06 Apparatus for heating material Expired - Lifetime US2318533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US368815A US2318533A (en) 1940-12-06 1940-12-06 Apparatus for heating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US368815A US2318533A (en) 1940-12-06 1940-12-06 Apparatus for heating material

Publications (1)

Publication Number Publication Date
US2318533A true US2318533A (en) 1943-05-04

Family

ID=23452855

Family Applications (1)

Application Number Title Priority Date Filing Date
US368815A Expired - Lifetime US2318533A (en) 1940-12-06 1940-12-06 Apparatus for heating material

Country Status (1)

Country Link
US (1) US2318533A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2432106A (en) * 1943-03-27 1947-12-09 Edwin F Wesely Radiant heat ironer and drier
US2456804A (en) * 1944-01-11 1948-12-21 Universal Winding Co Thread finishing machine
US2479541A (en) * 1942-12-29 1949-08-16 American Optical Corp Apparatus for treating surfaces
US2548306A (en) * 1946-01-19 1951-04-10 Gora Lee Corp Method and apparatus for molding articles
US2571651A (en) * 1947-07-12 1951-10-16 Patelhold Patentverwertung Method of and apparatus for growing crystals
US2603741A (en) * 1946-12-12 1952-07-15 Goodrich Co B F High-frequency heating
US2718658A (en) * 1952-12-22 1955-09-27 Dow Chemical Co Film stretching device
US2908039A (en) * 1956-07-25 1959-10-13 Pastushin Aviat Corp Apparatus for producing objects of cured plastic material
US3015292A (en) * 1957-05-13 1962-01-02 Northrop Corp Heated draw die
US3066211A (en) * 1959-06-04 1962-11-27 Vogt Edmund Method and apparatus for heating thermoplastic sheets
US3137547A (en) * 1959-06-10 1964-06-16 Preformed Line Products Co Rotary drying machine
US3310653A (en) * 1963-11-12 1967-03-21 American Can Co Apparatus for treating fibre container bodies
US3961651A (en) * 1974-07-24 1976-06-08 Balentine Jr George H Apparatus for heat treating fabric at the loom
US3975618A (en) * 1974-02-14 1976-08-17 Heidenreich & Harbeck Zweingniederlassung Der Gildemeister Ag Method and apparatus for heating synthetic plastic components
US4650950A (en) * 1984-12-14 1987-03-17 Hy-Bec Corporation Soldering apparatus
US4720617A (en) * 1985-07-18 1988-01-19 Hy-Bec Corporation Apparatus for continuous processing in the directions of x- and y-coordinates
US5155336A (en) * 1990-01-19 1992-10-13 Applied Materials, Inc. Rapid thermal heating apparatus and method
US5930456A (en) * 1998-05-14 1999-07-27 Ag Associates Heating device for semiconductor wafers
US5960158A (en) * 1997-07-11 1999-09-28 Ag Associates Apparatus and method for filtering light in a thermal processing chamber
US5970214A (en) * 1998-05-14 1999-10-19 Ag Associates Heating device for semiconductor wafers
US6016383A (en) * 1990-01-19 2000-01-18 Applied Materials, Inc. Rapid thermal heating apparatus and method including an infrared camera to measure substrate temperature
US6072160A (en) * 1996-06-03 2000-06-06 Applied Materials, Inc. Method and apparatus for enhancing the efficiency of radiant energy sources used in rapid thermal processing of substrates by energy reflection
US20020137311A1 (en) * 2000-12-21 2002-09-26 Mattson Technology, Inc. System and process for heating semiconductor wafers by optimizing absorption of electromagnetic energy
US20040018008A1 (en) * 2000-12-21 2004-01-29 Mattson Technology, Inc. Heating configuration for use in thermal processing chambers
US20140150225A1 (en) * 2011-08-05 2014-06-05 Voith Patent Gmbh Loom for producing paper machine clothing

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2479541A (en) * 1942-12-29 1949-08-16 American Optical Corp Apparatus for treating surfaces
US2432106A (en) * 1943-03-27 1947-12-09 Edwin F Wesely Radiant heat ironer and drier
US2456804A (en) * 1944-01-11 1948-12-21 Universal Winding Co Thread finishing machine
US2548306A (en) * 1946-01-19 1951-04-10 Gora Lee Corp Method and apparatus for molding articles
US2603741A (en) * 1946-12-12 1952-07-15 Goodrich Co B F High-frequency heating
US2571651A (en) * 1947-07-12 1951-10-16 Patelhold Patentverwertung Method of and apparatus for growing crystals
US2718658A (en) * 1952-12-22 1955-09-27 Dow Chemical Co Film stretching device
US2908039A (en) * 1956-07-25 1959-10-13 Pastushin Aviat Corp Apparatus for producing objects of cured plastic material
US3015292A (en) * 1957-05-13 1962-01-02 Northrop Corp Heated draw die
US3066211A (en) * 1959-06-04 1962-11-27 Vogt Edmund Method and apparatus for heating thermoplastic sheets
US3137547A (en) * 1959-06-10 1964-06-16 Preformed Line Products Co Rotary drying machine
US3310653A (en) * 1963-11-12 1967-03-21 American Can Co Apparatus for treating fibre container bodies
US3975618A (en) * 1974-02-14 1976-08-17 Heidenreich & Harbeck Zweingniederlassung Der Gildemeister Ag Method and apparatus for heating synthetic plastic components
US3961651A (en) * 1974-07-24 1976-06-08 Balentine Jr George H Apparatus for heat treating fabric at the loom
US4650950A (en) * 1984-12-14 1987-03-17 Hy-Bec Corporation Soldering apparatus
US4720617A (en) * 1985-07-18 1988-01-19 Hy-Bec Corporation Apparatus for continuous processing in the directions of x- and y-coordinates
US5790751A (en) * 1990-01-19 1998-08-04 Applied Materials, Inc. Rapid thermal heating apparatus including a plurality of light pipes and a pyrometer for measuring substrate temperature
US5840125A (en) * 1990-01-19 1998-11-24 Applied Materials, Inc. Rapid thermal heating apparatus including a substrate support and an external drive to rotate the same
US5487127A (en) * 1990-01-19 1996-01-23 Applied Materials, Inc. Rapid thermal heating apparatus and method utilizing plurality of light pipes
US5683173A (en) * 1990-01-19 1997-11-04 Applied Materials, Inc. Cooling chamber for a rapid thermal heating apparatus
US5689614A (en) * 1990-01-19 1997-11-18 Applied Materials, Inc. Rapid thermal heating apparatus and control therefor
US5708755A (en) * 1990-01-19 1998-01-13 Applied Materials, Inc. Rapid thermal heating apparatus and method
US5743643A (en) * 1990-01-19 1998-04-28 Applied Materials, Inc. Rapid thermal heating apparatus and method
US5767486A (en) * 1990-01-19 1998-06-16 Applied Materials, Inc. Rapid thermal heating apparatus including a plurality of radiant energy sources and a source of processing gas
US5155336A (en) * 1990-01-19 1992-10-13 Applied Materials, Inc. Rapid thermal heating apparatus and method
US5317492A (en) * 1990-01-19 1994-05-31 Applied Materials, Inc. Rapid thermal heating apparatus and method
US6434327B1 (en) 1990-01-19 2002-08-13 Applied Materials, Inc. Rapid thermal heating apparatus and method including an infrared camera to measure substrate temperature
US6122439A (en) * 1990-01-19 2000-09-19 Applied Materials, Inc. Rapid thermal heating apparatus and method
US6016383A (en) * 1990-01-19 2000-01-18 Applied Materials, Inc. Rapid thermal heating apparatus and method including an infrared camera to measure substrate temperature
US6072160A (en) * 1996-06-03 2000-06-06 Applied Materials, Inc. Method and apparatus for enhancing the efficiency of radiant energy sources used in rapid thermal processing of substrates by energy reflection
US5960158A (en) * 1997-07-11 1999-09-28 Ag Associates Apparatus and method for filtering light in a thermal processing chamber
US5970214A (en) * 1998-05-14 1999-10-19 Ag Associates Heating device for semiconductor wafers
US5930456A (en) * 1998-05-14 1999-07-27 Ag Associates Heating device for semiconductor wafers
US20020137311A1 (en) * 2000-12-21 2002-09-26 Mattson Technology, Inc. System and process for heating semiconductor wafers by optimizing absorption of electromagnetic energy
US7847218B2 (en) 2000-12-21 2010-12-07 Mattson Technology, Inc. System and process for heating semiconductor wafers by optimizing absorption of electromagnetic energy
US20050213949A1 (en) * 2000-12-21 2005-09-29 Zion Koren Heating configuration for use in thermal processing chambers
US6970644B2 (en) 2000-12-21 2005-11-29 Mattson Technology, Inc. Heating configuration for use in thermal processing chambers
US7015422B2 (en) 2000-12-21 2006-03-21 Mattson Technology, Inc. System and process for heating semiconductor wafers by optimizing absorption of electromagnetic energy
US7269343B2 (en) 2000-12-21 2007-09-11 Mattson Technology, Inc. Heating configuration for use in thermal processing chambers
US20070297775A1 (en) * 2000-12-21 2007-12-27 Zion Koren Heating Configuration for Use in Thermal Processing Chambers
US8669496B2 (en) 2000-12-21 2014-03-11 Mattson Technology, Inc. System and process for heating semiconductor wafers by optimizing absorption of electromagnetic energy
US8222570B2 (en) 2000-12-21 2012-07-17 Mattson Technology, Inc. System and process for heating semiconductor wafers by optimizing absorption of electromagnetic energy
US20090098742A1 (en) * 2000-12-21 2009-04-16 Mattson Technology, Inc. System and Process for Heating Semiconductor Wafers by Optimizing Absorption of Electromagnetic Energy
US20040018008A1 (en) * 2000-12-21 2004-01-29 Mattson Technology, Inc. Heating configuration for use in thermal processing chambers
US7949237B2 (en) 2000-12-21 2011-05-24 Mattson Technology, Inc. Heating configuration for use in thermal processing chambers
US20110222840A1 (en) * 2000-12-21 2011-09-15 Zion Koren Heating Configuration For Use in Thermal Processing Chambers
US7453051B2 (en) 2001-11-07 2008-11-18 Mattson Technology, Inc. System and process for heating semiconductor wafers by optimizing absorption of electromagnetic energy
US20080008460A1 (en) * 2001-11-07 2008-01-10 Timans Paul J System and process for heating semiconductor wafers by optimizing absorption of electromagnetic energy
US20140150225A1 (en) * 2011-08-05 2014-06-05 Voith Patent Gmbh Loom for producing paper machine clothing

Similar Documents

Publication Publication Date Title
US2318533A (en) Apparatus for heating material
US2658984A (en) Optical radiator
JP2000514592A (en) Electromagnetic radiation transmitter / reflector device, apparatus and method for implementing such a device
JP2018527171A (en) Radiator modules and use of radiator modules
US2023665A (en) Method and means for continuous vulcanizing of rubber goods
US3203831A (en) Process and apparatus for coating and sintering of strip material for electrodes
US2156352A (en) Heating device
SE7607041L (en) PROCEDURE FOR CONTINUOUS VULCANIZATION OF LONG-TERM VUCANIZED PRODUCTS AND FACILITIES FOR APPLYING THIS PROCEDURE
US2610280A (en) Infrared oven construction
US5310979A (en) Microwave ovens with infrared rays heating units
US2747070A (en) Electric heating element
KR100644489B1 (en) Infrared heater having means for adjusting distribution of hot wire
US1762325A (en) Heating apparatus
US1999751A (en) Means for continuous vulcanization of rubber goods
US2987603A (en) Radiant heating
US3604894A (en) Electrical infrared radiation system
US3089940A (en) Radiant heater
JP2514180B2 (en) drying furnace
JP3187926B2 (en) Infrared heating device
USRE21979E (en) peterson
JP3200174B2 (en) Heating equipment
RU2809470C1 (en) High temperature modular infrared heating block
KR100737612B1 (en) Apparatus and method for crosslinking using infrared-ray heater
JPH06339931A (en) Vulcanizing vessel for rubber product
JPS6366333B2 (en)