US2149790A - Treating and packing powdered material - Google Patents

Treating and packing powdered material Download PDF

Info

Publication number
US2149790A
US2149790A US203603A US20360338A US2149790A US 2149790 A US2149790 A US 2149790A US 203603 A US203603 A US 203603A US 20360338 A US20360338 A US 20360338A US 2149790 A US2149790 A US 2149790A
Authority
US
United States
Prior art keywords
container
passages
powdered material
vacuumizing
powdered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US203603A
Inventor
Roesch Christian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PAULA ROESCH
Original Assignee
PAULA ROESCH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PAULA ROESCH filed Critical PAULA ROESCH
Priority to US203603A priority Critical patent/US2149790A/en
Application granted granted Critical
Publication of US2149790A publication Critical patent/US2149790A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B31/00Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
    • B65B31/02Filling, closing, or filling and closing, containers or wrappers in chambers maintained under vacuum or superatmospheric pressure or containing a special atmosphere, e.g. of inert gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S425/00Plastic article or earthenware shaping or treating: apparatus
    • Y10S425/037Perforate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S425/00Plastic article or earthenware shaping or treating: apparatus
    • Y10S425/06Vacuum

Definitions

  • This invention relates to a process for packing powdered material, such as flour, sugar, cocoa,
  • baking powder, powdered milk and similar prodnets in containers and in which the contents in the containers are vacuumized or subjected to selected gas.
  • Thejprincipal object of the present invention is to overcome the above objections by providing, prior to vacuumi'zation, passages or ducts within the material for the flow of air or other gases from the interior of the material to the outside, thus eliminating disturbances and expansion of the powdered material and making its treatment more efiective.
  • Fig. 7 illustrates a sectional plan view on line '
  • Fig. 3 is a sectionalv plan view on line 3-4 of Fig. 4 is a sectioned plan view showing a modified form of the passages in the, material.
  • Fig. 5 is a vertical section through a container,- showing curved passages in the powdered material.
  • Fig. 6 is a vertical section through a filled container, showing another form of passages or ducts in the powdered material and powdered material is made to fiow into the container. Thereafter this material is provided with ducts or passages 3 in a manner to be described hereafter. .A cover or closure 4 is then loosely clinchedto .the container I, or held thereto in' 10 any other suitable manner, leaving gaps or spaces between the closure 4 andthe top of the containe'r I.
  • the container is passed into a vacuumizing chamber'S, or it so desired, may be connected with a conventional exhausting apparatus of known construction.
  • a pipe 6 equipped with a valve 1 and a release valve 8 leads from the chamber 5 to an exhaustion pump (not shown), wherewith to vacuumize this chamber.
  • a pipe 9 is provided on the chamber, having a valve I0, as well as a branch pipe I I, equipped with a valve l2.
  • Pipe 9 leads from 5 chamber-.5 through valve I 0 to the gas supply and also through valve I! to a gas removal mechanism (not shown).
  • valves 1, 8, I0 and i2 are closed. Thereafter valve] is opened, allowing the withdrawal of air or other gases from the chamber and the material, by means of the suction in pipe 6.
  • container I is hermetically sealed by a sealing or closing mechanism 5'. Thereafter valve 1 is closed .and valve 8- opened, establishing atmospheric conditions in chamber 5. and allowing the removal of the container from the chamber.
  • valve 1 the exhausting or vacuumizing operation remains the same.
  • the process comprises first opening valve 1, while the other valves 8, l0 and I2 are closed. After the desired degree 01' 5s exhaustion has been reached, valve l is closed thereafter andvalve It, in the gas supply line 9 is being opened.
  • the selected gas entering the chamber and the powdered material will be thoroughly absorbed by the powder, finding an easy access along the passages 3 and from there into the interior of the material.
  • valve i0 is closed and the gas in chamber 5 is made to pass through pipe H by opening valve I2.
  • valve 12 is closed and valve 8 opened permitting the air to enter. Having thereby established atmos ,pheric conditions in the chamber, it may now be opened for a removal of the container;
  • vacu- -um machine and vacuum-gas machine as well as container and closure for same may be used in connection with my invention.
  • a cam operated shaking device i3 is proe vided at the filling station of the processing line. Compactness of material is especially required so as to prevent the ducts or passwes 3 from being disturbed or demolished during transportation from the piercing device Hi to the vacuumizing chamber 5.
  • a second shaker M will be applied to agitate the sealed material and destroy and 40 elimln'ate the channels 3 therein.
  • Figs. 2 and 3 show the material to possess passages 3 having a circular cross-section. They are made by a piercing device it: provided with individual needles it which are pointed at their lower ends. These needles are guided in a disk l1,- having holes corresponding with the spacings of the needles. A shoulder l8 on disk I! provides a meansfor locating this disk and the piercing device on the container.
  • the disk or guiding element I1 is first placed onto the filled container as shown. Thereafter the needles it of the piercing device-15 pass through the holes l8 of the guiding element and penetrate. the material far enough until their pointed ends substantially reach the bottom of the container.
  • the guiding element l'l serves the purpose to prevent the fiat or levelled surface of the material from being raised by frictional contact at the go circumference of the needles at the time they are withdrawn from the compacted powder.
  • needles l8 may be made to rotate on their holder, in
  • the piercing device 26 of Fig. 5 illustrates the adoption of needles 2!! in form of helixes, rotatably held in a plate or holder 2
  • the guiding element I'I' provided with helical shaped holes or channels 25, permit needles 20 to be screwed into and out of the material in the container I.
  • Figs. 6 and '7 One other method of providing a suitable penetration of the material with outlets or ducts is shown in Figs. 6 and '7.
  • the shape of the ducts or channels 27, produced in the material is in form of a series of continuous lines crossing each other, disclosing in parts sections or columns of angular shaped blocks or prisms made by the piercing device 28 partly shown in Fig. 6.
  • the method of vacuumizing powdered material which comprises providing the material with passages for the flow of gases from within the interior of the material to and through said passages and thereafter vacuumizing the material.
  • the method of treating powdered material which comprises providing the material with passages for the fiow of gases from within the interior of the material to and through said passages, vacuumizing the material and thereafter sealing the same in its vacuumized condition in a container.
  • the method of packing and vacuumizing powdered material which comprises filling the powderedmaterial into a container, compacting the powdered material, providing passages in the compacted material for the flow of gases from within the bulk of the material and thereafter vacuumizing the material.
  • withdrawing Y which comprises providing passages in the material for the flow of gases therethrough and from and to the bulk of the material, vacuumizing the material and its passages and admitting thereafter a selected gas into the passages and the material.
  • the method of treating material in powdered form which comprises providing passages in the material for the fiow of gases therethrough and from and to the bulk of the material, vacuumizing the material and its passages and admitting thereafter a selected gas into the passages and the material, and thereafter hermetically sealing the material in its treated condition in a container.
  • the method of treating powdered material which comprises filling the powdered material into a container, providing passages in the material for the flow of gases therethrough and from and t0 the bulk'of the material, vacuumizing the maa selected gas into the passages and the material, sealing the material airtight in its treated condition in said container and thereafter shaking the sealed container until the passages produced in 5 v the material are substantially destroyed.

Description

7,1939. (ZROESCTLH v TREATING AND PACKING POWDERED MATERIAL Filed April 22, 1938 INVENTOR Patented Mar. 7, 1939 T OFFICE TREATING AND racxme rownnaan MATERIAL Christian Roesch, Jamaica, N. Y., assignor to Pan la Roesch, Jamaicm'N. Y.
Application April 22, 1938, Serial No. 203,603
8Claims.
This invention relates to a process for packing powdered material, such as flour, sugar, cocoa,
. baking powder, powdered milk and similar prodnets in containers, and in which the contents in the containers are vacuumized or subjected to selected gas.
During the process of packing powdered material in cansand similar containers, certain difiiculties arise when vacuumizing the material and before the containers are hermetically sealed. When withdrawing air or other gases from the powdered material in a container, disturbances are created in the powdered material, so that part of the powder is withdrawn during the exhausting process. This results inwaste of the powdered material; develops an imperfect closure of the container; clogs the strainers and interferes with the proper operation of the vacuumizing and closing mechanisms.
Furthermore, because the powdered material expands during the vacuumizing process, an extra space or headroom has to be provided above the powder in the container, resulting therefore into a larger size container, requiring more material and thereby making it more expensive than one wherein the powder can reach substantially to the top.
Thejprincipal object of the present invention is to overcome the above objections by providing, prior to vacuumi'zation, passages or ducts within the material for the flow of air or other gases from the interior of the material to the outside, thus eliminating disturbances and expansion of the powdered material and making its treatment more efiective.
This and other objects will appear evident in this specification in connection with the drawing and particularly in the subjoined claims.
treating powdered material;
Fig. 7 illustrates a sectional plan view on line '|1 of Fig. 6.
Referring to Fig. 1, the container I in th processing line is first placed under a filling device 2 from which a predetermined amount of 5 Fig. 3 is a sectionalv plan view on line 3-4 of Fig. 4 is a sectioned plan view showing a modified form of the passages in the, material.
Fig. 5 is a vertical section through a container,- showing curved passages in the powdered material.
Fig. 6 is a vertical section through a filled container, showing another form of passages or ducts in the powdered material and powdered material is made to fiow into the container. Thereafter this material is provided with ducts or passages 3 in a manner to be described hereafter. .A cover or closure 4 is then loosely clinchedto .the container I, or held thereto in' 10 any other suitable manner, leaving gaps or spaces between the closure 4 andthe top of the containe'r I.
To vacuumize the material, the container is passed into a vacuumizing chamber'S, or it so desired, may be connected with a conventional exhausting apparatus of known construction.
In the illustration a pipe 6, equipped with a valve 1 and a release valve 8, leads from the chamber 5 to an exhaustion pump (not shown), wherewith to vacuumize this chamber. Should it be desired to treat the powdered material with a selected gas, a pipe 9 is provided on the chamber, having a valve I0, as well as a branch pipe I I, equipped with a valve l2. Pipe 9 leads from 5 chamber-.5 through valve I 0 to the gas supply and also through valve I! to a gas removal mechanism (not shown). v
During the exhausting process the filled container is held in chamber 5, which is closed to the atmosphere. In the initial stage all the valves 1, 8, I0 and i2 are closed. Thereafter valve] is opened, allowing the withdrawal of air or other gases from the chamber and the material, by means of the suction in pipe 6.
It is evident, that the provision of ductsor V passages 3 in the material permits the withdrawal of substantially all the air or other gases fromwithin the bulk of the material to the passages and from there out.
Since the distance for the travel 'of air or gases from the material to the passages 3 is very short, the thereby ofiered resistance is insufiicient to cause fiufiing and expansion of the powder.
After the material has'thus been vacuumized, container I is hermetically sealed by a sealing or closing mechanism 5'. Thereafter valve 1 is closed .and valve 8- opened, establishing atmospheric conditions in chamber 5. and allowing the removal of the container from the chamber.
Should the material have to be treated with a selected gas, the exhausting or vacuumizing operation remains the same. The process comprises first opening valve 1, while the other valves 8, l0 and I2 are closed. After the desired degree 01' 5s exhaustion has been reached, valve l is closed thereafter andvalve It, in the gas supply line 9 is being opened. The selected gas entering the chamber and the powdered material, will be thoroughly absorbed by the powder, finding an easy access along the passages 3 and from there into the interior of the material.
It is understood that this same process may be repeated and that the material may be vacuumized and gassed a number of times, so as to eliminate substantially'all the air, a result not attainable with only one treatment.
After the gas has thus found its way into the previously vacuumized powder, the closure or cover 4 is then hermetically sealed to the container by' a revolving sealing mechanism 5 of knownconstruction. Thereafter valve i0 is closed and the gas in chamber 5 is made to pass through pipe H by opening valve I2. After the gas has been withdrawn from the chamber, valve 12 is closed and valve 8 opened permitting the air to enter. Having thereby established atmos ,pheric conditions in the chamber, it may now be opened for a removal of the container;
It is of course understood, that any type vacu- -um machine and vacuum-gas machine, as well as container and closure for same may be used in connection with my invention.
To compact or densify the material in the container, a cam operated shaking device i3 is proe vided at the filling station of the processing line. Compactness of material is especially required so as to prevent the ducts or passwes 3 from being disturbed or demolished during transportation from the piercing device Hi to the vacuumizing chamber 5. I
After the containers have been sealed and left the chamber, a second shaker M will be applied to agitate the sealed material and destroy and 40 elimln'ate the channels 3 therein.
Figs. 2 and 3 show the material to possess passages 3 having a circular cross-section. They are made by a piercing device it: provided with individual needles it which are pointed at their lower ends. These needles are guided in a disk l1,- having holes corresponding with the spacings of the needles. A shoulder l8 on disk I! provides a meansfor locating this disk and the piercing device on the container.
During operation the disk or guiding element I1 is first placed onto the filled container as shown. Thereafter the needles it of the piercing device-15 pass through the holes l8 of the guiding element and penetrate. the material far enough until their pointed ends substantially reach the bottom of the container.
The guiding element l'l serves the purpose to prevent the fiat or levelled surface of the material from being raised by frictional contact at the go circumference of the needles at the time they are withdrawn from the compacted powder.
Since the degree of frictional contact between the needles and the material varies with the nature of the latter--as for instance the'coarseness 55 of the granules-a guiding element I! may not be required in every case.
In.order to reduce the frictional contact, needles l8 may be made to rotate on their holder, in
a manner similar to that shown in Fig. 5 to be de- 70 scribed'hereafter. Instead of .using needles with a circular cross-section, other formations, as for instance needles shaped for producing elliptical ducts I9, Fig. 4, or similar shaped passages may also be used.
75 The piercing device 26 of Fig. 5 illustrates the adoption of needles 2!! in form of helixes, rotatably held in a plate or holder 2| and turned by suitable gearing 22 from a center shaft 23. The guiding element I'I', provided with helical shaped holes or channels 25, permit needles 20 to be screwed into and out of the material in the container I.
One other method of providing a suitable penetration of the material with outlets or ducts is shown in Figs. 6 and '7. Here the shape of the ducts or channels 27, produced in the material, is in form of a series of continuous lines crossing each other, disclosing in parts sections or columns of angular shaped blocks or prisms made by the piercing device 28 partly shown in Fig. 6.
From the foregoing it is apparent, that my invention provides an efiicient and comparatively simple method or plan of procedure for vacuumizing powdered material substantially throughout its bulk and for treating its mass and admitting These new features shown and described are set forth in the appended claims, it being understood, that I do not restrict myself 'to the way and arrangement shown when making practical use of my invention.
What I claim and desire to secure by Letters Patent is:
1. The method of vacuumizing powdered material which comprises providing the material with passages for the flow of gases from within the interior of the material to and through said passages and thereafter vacuumizing the material.
2'. The method of treating powdered material which comprises providing the material with passages for the fiow of gases from within the interior of the material to and through said passages, vacuumizing the material and thereafter sealing the same in its vacuumized condition in a container.
3. The method of packing and vacuumizing powdered material which comprises filling the powderedmaterial into a container, compacting the powdered material, providing passages in the compacted material for the flow of gases from within the bulk of the material and thereafter vacuumizing the material.
- terial to and through said passages, withdrawing Y which comprises providing passages in the material for the flow of gases therethrough and from and to the bulk of the material, vacuumizing the material and its passages and admitting thereafter a selected gas into the passages and the material.
6. The method of claim 5 in which the steps of v uumizihg' the material and admitting a seted gas to the material are repeated a plurality of times.
7. The method of treating material in powdered form which comprises providing passages in the material for the fiow of gases therethrough and from and to the bulk of the material, vacuumizing the material and its passages and admitting thereafter a selected gas into the passages and the material, and thereafter hermetically sealing the material in its treated condition in a container.
8. The method of treating powdered material which comprises filling the powdered material into a container, providing passages in the material for the flow of gases therethrough and from and t0 the bulk'of the material, vacuumizing the maa selected gas into the passages and the material, sealing the material airtight in its treated condition in said container and thereafter shaking the sealed container until the passages produced in 5 v the material are substantially destroyed.
CHRISTIAN ROESCH.
US203603A 1938-04-22 1938-04-22 Treating and packing powdered material Expired - Lifetime US2149790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US203603A US2149790A (en) 1938-04-22 1938-04-22 Treating and packing powdered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US203603A US2149790A (en) 1938-04-22 1938-04-22 Treating and packing powdered material

Publications (1)

Publication Number Publication Date
US2149790A true US2149790A (en) 1939-03-07

Family

ID=22754623

Family Applications (1)

Application Number Title Priority Date Filing Date
US203603A Expired - Lifetime US2149790A (en) 1938-04-22 1938-04-22 Treating and packing powdered material

Country Status (1)

Country Link
US (1) US2149790A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2423358A (en) * 1944-09-21 1947-07-01 Owens Illinois Glass Co Method of packaging granular materials
US2508107A (en) * 1940-02-08 1950-05-16 Tabor Olney Corp Desiccation
US2541441A (en) * 1948-01-17 1951-02-13 Golden State Company Ltd Method of preserving spray dried food products
US2795908A (en) * 1954-09-30 1957-06-18 Anthony S Ostoich Dicer for canned tuna
US2820489A (en) * 1954-11-09 1958-01-21 Crown Cork & Seal Co Gassing head
US2939494A (en) * 1950-09-27 1960-06-07 Haver Fritz Method of treating filling material and an apparatus for carrying out this method
US2949710A (en) * 1958-09-16 1960-08-23 Airkem Inc Gel packaging method and resulting package
US2949715A (en) * 1957-10-08 1960-08-23 Gen Electric Machines for making heat-insulating units
US2959900A (en) * 1956-10-12 1960-11-15 S G Leoffler Packaging finely divided materials
US3220153A (en) * 1961-07-10 1965-11-30 Continental Can Co Container vacuum capping method
US3632247A (en) * 1970-07-16 1972-01-04 Degussa Compression and deaeration of powders
US4579714A (en) * 1983-05-09 1986-04-01 Pestcon Systems, Inc. Method for fumigating bulk-stored commodities

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2508107A (en) * 1940-02-08 1950-05-16 Tabor Olney Corp Desiccation
US2423358A (en) * 1944-09-21 1947-07-01 Owens Illinois Glass Co Method of packaging granular materials
US2541441A (en) * 1948-01-17 1951-02-13 Golden State Company Ltd Method of preserving spray dried food products
US2939494A (en) * 1950-09-27 1960-06-07 Haver Fritz Method of treating filling material and an apparatus for carrying out this method
US2795908A (en) * 1954-09-30 1957-06-18 Anthony S Ostoich Dicer for canned tuna
US2820489A (en) * 1954-11-09 1958-01-21 Crown Cork & Seal Co Gassing head
US2959900A (en) * 1956-10-12 1960-11-15 S G Leoffler Packaging finely divided materials
US2949715A (en) * 1957-10-08 1960-08-23 Gen Electric Machines for making heat-insulating units
US2949710A (en) * 1958-09-16 1960-08-23 Airkem Inc Gel packaging method and resulting package
US3220153A (en) * 1961-07-10 1965-11-30 Continental Can Co Container vacuum capping method
US3632247A (en) * 1970-07-16 1972-01-04 Degussa Compression and deaeration of powders
US4579714A (en) * 1983-05-09 1986-04-01 Pestcon Systems, Inc. Method for fumigating bulk-stored commodities

Similar Documents

Publication Publication Date Title
US2149790A (en) Treating and packing powdered material
US2516908A (en) Apparatus for lining can ends
GB1130802A (en) Method and apparatus for filling containers
US2506769A (en) Method of filling and sealing a container punctured at two spaced points for introduction of inert gas and discharge of internal air
CA969901A (en) Process and apparatus for filling, sealing and dispensing bags
US2540120A (en) Apparatus for filling and sealing containers
US2413194A (en) Filling valve
US2706589A (en) Syruping apparatus for use in the canning of fruit
US2111892A (en) Transfer valve for sterilization apparatus
ES200881A1 (en) Improvements in or relating to apparatus and method for making and filling containers
US682572A (en) Process of curing meats.
US2842916A (en) Device for vacuum sealing containers
DE836159C (en) Process and device for increasing the density of powdery substances
US2091666A (en) Means for heat treatment of metal
US1220160A (en) Apparatus for treating grain.
US2583866A (en) Apparatus for vacuumizing, gassing, and closing containers
US1643990A (en) Canning apparatus
US1467746A (en) Method or process for preserving fruit and the like
US3016666A (en) Apparatus for preserving food products in sealed containers of vitreous material
US2130761A (en) Package treating machine
DE428536C (en) Smoldering device
AT326626B (en) METHOD AND DEVICE FOR THE DISTILLATIONAL SEPARATION OF A MIXTURE CONTAINING AT LEAST TWO HYDROCARBONS FROM NEIGHBORING SEPARATION LOCATIONS
US1121007A (en) Process for treating pineapples.
US522396A (en) bartelt
US1983648A (en) Method of gas treating articles