US20170266109A1 - Rapamycin formulations and methods of their use - Google Patents

Rapamycin formulations and methods of their use Download PDF

Info

Publication number
US20170266109A1
US20170266109A1 US15/611,701 US201715611701A US2017266109A1 US 20170266109 A1 US20170266109 A1 US 20170266109A1 US 201715611701 A US201715611701 A US 201715611701A US 2017266109 A1 US2017266109 A1 US 2017266109A1
Authority
US
United States
Prior art keywords
rapamycin
liquid
variations
formulation
vitreous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/611,701
Inventor
Sreenivasu Mudumba
Philippe JM Dor
Thierry Nivaggioli
David A. Weber
Sidiq Farooq
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santen Pharmaceutical Co Ltd
Original Assignee
Santen Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santen Pharmaceutical Co Ltd filed Critical Santen Pharmaceutical Co Ltd
Priority to US15/611,701 priority Critical patent/US20170266109A1/en
Assigned to SANTEN PHARMACEUTICAL CO., LTD. reassignment SANTEN PHARMACEUTICAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MACUSIGHT, INC.
Assigned to MACUSIGHT, INC. reassignment MACUSIGHT, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FAROOQ, SIDIQ, DOR, PHILIPPE JM, MUDUMBA, SREENIVASU, NIVAGGIOLI, THIERRY, WEBER, DAVID A.
Publication of US20170266109A1 publication Critical patent/US20170266109A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0046Ear
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/436Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having oxygen as a ring hetero atom, e.g. rapamycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/08Mydriatics or cycloplegics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • liquid rapamycin formulations for treatment or prevention of age-related macular degeneration (AMD), by delivery of the liquid rapamycin formulation to the eye of a subject, including but not limited to a human subject.
  • AMD age-related macular degeneration
  • the retina of the eye contains the cones and rods that detect light.
  • the macula lutea which is about 1 ⁇ 3 to 1 ⁇ 2 cm in diameter.
  • the macula provides detailed vision, particularly in the center (the fovea), because the cones are higher in density. Blood vessels, ganglion cells, inner nuclear layer and cells, and the plexiform layers are all displaced to one side (rather than resting above the cones), thereby allowing light a more direct path to the cones.
  • the choroid comprising a collection of blood vessels embedded within a fibrous tissue, and the deeply pigmented epithelium, which overlays the choroid layer.
  • the choroidal blood vessels provide nutrition to the retina (particularly its visual cells).
  • retinal disorders There are a variety of retinal disorders for which there is currently no treatment or for which the current treatment is not optimal. Macular degeneration and choroidal neovascularization are nonlimiting examples of retinal disorders that are difficult to treat with conventional therapies.
  • Age-related macular degeneration is the major cause of severe visual loss in the United States for individuals over the age of 60. AMD occurs in either an atrophic or less commonly an exudative form.
  • the atrophic form of AMD is also called “dry AMD,” and the exudative form of AMD is also called “wet AMD.”
  • Photodynamic therapy is a form of phototherapy, a term encompassing all treatments that use light to produce a beneficial reaction in a subject.
  • PDT destroys unwanted tissue while sparing normal tissue.
  • a compound called a photosensitizer is administered to the subject.
  • the photosensitizer alone has little or no effect on the subject.
  • the photosensitizer When light, often from a laser, is directed onto a tissue containing the photosensitizer, the photosensitizer is activated and begins destroying targeted tissue. Because the light provided to the subject is confined to a particularly targeted area, PDT can be used to selectively target abnormal tissue, thus sparing surrounding healthy tissue.
  • PDT is currently used to treat retinal diseases such as AMD.
  • PDT is currently the mainstay of treatment for subfoveal choroidal neovascularization in subjects with AMD (Photodynamic Therapy for Subfoveal Choroidal Neovascularization in Age Related Macular Degeneration with Verteporfin by TAP Study Group (1999) in Arch. Ophthalmol. 117:1329-1345).
  • Choroidal neovascularization has proven to be recalcitrant to treatment in most cases.
  • Conventional laser treatment can ablate CNV and help to preserve vision in selected cases not involving the center of the retina, but this is limited to only about 10% of the cases.
  • the neovascularization recurs in about 50-70% of eyes (50% over 3 years and >60% at 5 years).
  • Macular Photocoagulation Study Group (1986) in Arch. Ophthalmol. 204:694-701 many subjects who develop CNV are not good candidates for laser therapy because the CNV is too large for laser treatment, or the location cannot be determined so that the physician cannot accurately aim the laser.
  • Photodynamic therapy although utilized in up to 50% of new cases of subfoveal CNV has only marginal benefits over natural history, and generally delays progression of visual loss rather than improving vision which is already decreased secondary to the subfoveal lesion.
  • PDT is neither preventive nor definitive.
  • Several PDT treatments are usually required per subject and additionally, certain subtypes of CNV fare less well than others.
  • compositions, and formulations that may be used to optimally prevent or significantly inhibit choroidal neovascularization and to prevent and treat AMD in its wet and dry forms.
  • choroidal neovascularization is associated with such retinal disorders as presumed ocular histoplasmosis syndrome, myopic degeneration, angioid streaks, idiopathic central serous chorioretinopathy, inflammatory conditions of the retina and or choroid, and ocular trauma.
  • Angiogenic damage associated with neovascularization occurs in a wide range of disorders including diabetic retinopathy, venous occlusions, sickle cell retinopathy, retinopathy of prematurity, retinal detachment, ocular ischemia and trauma.
  • Direct delivery of therapeutic agents to the eye rather than systemic administration may be advantageous because the therapeutic agent concentration at the site of action is increased relative to the therapeutic agent concentration in a subject's circulatory system. Additionally, therapeutic agents may have undesirable side effects when delivered systemically to treat posterior segment disease. Thus, localized drug delivery may promote efficacy while decreasing side effects and systemic toxicity.
  • rapamycin formulations described herein allow delivery of rapamycin to the eye of a subject.
  • the subjects on whom all of the methods of treatment may be performed include human subjects.
  • rapamycin formulations for delivering rapamycin for extended periods of time which can be used for the treatment, prevention, inhibition, delaying onset of, or causing regression of diseases and conditions including CNV, wet AMD, and dry AMD.
  • the methods and liquid rapamycin formulations may also be used for delivery to a subject or to the eye of a subject of therapeutically effective amounts of rapamycin for the treatment, prevention, inhibition, delaying of the onset of, or causing the regression of wet or dry AMD.
  • the methods, compositions, and liquid formulations are used to treat wet AMD.
  • the methods, compositions, and liquid formulations are used to prevent wet AMD.
  • the methods, compositions, and liquid formulations are used to treat dry AMD.
  • the methods, compositions, and liquid formulations are used to prevent dry AMD.
  • the methods, compositions, and liquid formulations are used to prevent transition from dry AMD to wet AMD.
  • the methods, compositions and liquid formulations may also be used for delivery to a subject or to the eye of a subject of therapeutically effective amounts of rapamycin for the treatment, prevention, inhibition, delaying of the onset of, or causing the regression of CNV.
  • the methods, compositions and liquid formulations are used to treat CNV.
  • the methods, compositions and liquid formulations may also be used for delivery to a subject or to the eye of a subject of therapeutically effective amounts of rapamycin for the treatment, prevention, inhibition, delaying of the onset of, or causing the regression of angiogenesis in the eye.
  • the methods, compositions and liquid formulations are used to treat angiogenesis.
  • Other diseases and conditions that may be treated, prevented, inhibited, have onset delayed, or caused to regress using rapamycin are described in the Diseases and Conditions section of the Detailed Description.
  • liquid formulations described herein form a non-dispersed mass when placed into a rabbit eye, including but not limited to the vitreous of a rabbit eye.
  • the liquid rapamycin formulations may generally be administered in any volume that has the desired effect. In some variations a volume of a liquid rapamycin formulation is administered to the vitreous and the liquid formulation is less than one half the volume of the vitreous. In some variations, formation of a non-dispersed mass after placement of the liquid rapamycin formulation in a rabbit eye or a subject depends upon the volume of the liquid rapamycin formulation injected or placed in the rabbit eye or subject.
  • the liquid rapamycin formulations described herein are generally administered intraocularly, periocularly, intravitreally, or between the sclera and conjunctiva.
  • the liquid rapamycin formulations described herein may deliver rapamycin for an extended period of time.
  • an extended release delivery system is a liquid rapamycin formulation that delivers rapamycin to the eye of human a subject in an amount sufficient to treat, prevent, inhibit, delay onset of, or cause regression of wet or dry AMD, or CNV, in a subject for an extended period of time.
  • the liquid rapamycin formulation is used to treat wet or dry AMD or CNV in a human subject.
  • the liquid rapamycin formulation is used to prevent transition of dry AMD to wet AMD in a human subject.
  • the liquid rapamycin formulation delivers an amount of rapamycin effect to treat or prevent wet or dry AMD or CNV for at least about one, about two, about three, about six, about nine, or about twelve months. Other extended periods of release are described in the Detailed Description.
  • a liquid formulation comprising about 2% (w/w) of rapamycin, about 94% (w/w) PEG 400, and about 4% (w/w) of ethanol.
  • a method for treating wet age-related macular degeneration in a human subject comprising administering to the human subject by intraocular or periocular delivery a volume of a liquid formulation comprising about 2% (w/w) of rapamycin, about 94% (w/w) PEG 400, and about 4% (w/w) of ethanol containing an amount of rapamycin effective to treat wet age-related macular degeneration in the human subject.
  • Described herein is a method for preventing wet age-related macular degeneration in a human subject, the method comprising administering to the human subject by intraocular or periocular delivery a volume of a liquid formulation comprising about 2% (w/w) of rapamycin, about 94% (w/w) PEG 400, and about 4% (w/w) of ethanol containing an amount of rapamycin effective to prevent wet age-related macular degeneration in the human subject.
  • the human subject is identified as being at heightened risk of developing wet age-related macular degeneration in the eye to which the liquid formulation is administered.
  • the human subject has dry age-related macular degeneration in at least one eye.
  • the human subject has wet age-related macular degeneration in one eye and the liquid formulation is administered to the eye without wet age-related macular degeneration.
  • Described herein are methods for treating dry age-related macular degeneration in a human subject comprising administering to the human subject by intraocular or periocular delivery a volume of a liquid formulation comprising about 2% (w/w) of rapamycin, about 94% (w/w) PEG 400, and about 4% (w/w) of ethanol.
  • Described herein are methods for preventing wet age-related macular degeneration in a human subject having dry age-related macular degeneration comprising administering to a human subject having dry age-related macular degeneration a volume of a liquid formulation comprising about 2% (w/w) of rapamycin, about 94% (w/w) PEG 400, and about 4% (w/w) of ethanol, wherein the volume is administered by intraocular or periocular delivery.
  • the volume of a liquid formulation is administered to the human subject by placement in the vitreous and the volume of liquid formulation contains less than about 3 mg of rapamycin. In some variations, the volume of liquid formulation contains less than about 2.5 mg of rapamycin. In some variations, the volume of liquid formulation contains less than about 2 mg of rapamycin. In some variations, the volume of liquid formulation contains between about 20 ⁇ g and about 2.5 mg of rapamycin. In some variations, the volume of liquid formulation is administered to the human subject by placement between the sclera and conjunctiva and the volume of liquid formulation contains less than about 5 mg of rapamycin. In some variations, the volume of liquid formulation contains less than about 3.5 mg of rapamycin. In some variations, the volume of liquid formulation contains less than about 3 mg of rapamycin. In some variations, the volume of liquid formulation contains between about 20 ⁇ g and about 5 mg of rapamycin.
  • the volume of liquid formulation is administered to the human subject by placement in the vitreous of the human subject and the volume of liquid formulation contains less than about 100 ⁇ L of PEG 400. In some variations, the volume of liquid formulation contains less than about 50 ⁇ L of PEG 400. In some variations, wherein the volume of liquid formulation contains less than about 30 ⁇ L of PEG 400.
  • the volume of liquid formulation is administered to the human subject by placement between the sclera and conjunctiva and the volume of liquid formulation contains less than about 160 ⁇ L of PEG 400. In some variations, the volume of liquid formulation contains less than about 120 ⁇ L of PEG 400. In some variations, wherein the volume of liquid formulation contains less than about 90 ⁇ L of PEG 400.
  • a volume of a liquid formulation described herein of less than about 50 ⁇ L of liquid formulation is administered to the human subject by placement in the vitreous of the human subject. In some variations, a volume of less than about 20 ⁇ L of liquid formulation is administered to the human subject. In some variations, a volume of less than about 10 ⁇ L of liquid formulation is administered to the human subject. In some variations, a volume of less than about 5 ⁇ L of liquid formulation is administered to the human subject. In some variations, a volume of less than about 1 ⁇ L of liquid formulation is administered to the human subject.
  • a volume of less than about 200 ⁇ L of liquid formulation is administered to the human subject by placement between the sclera and conjunctiva of the human subject. In some variations, a volume of less than about 100 ⁇ L of liquid formulation is administered to the human subject. In some variations, a volume of less than about 50 ⁇ L of liquid formulation is administered to the human subject. In some variations, a volume of less than about 20 ⁇ L of liquid formulation is administered to the human subject. In some variations, a volume of less than about 10 ⁇ L of liquid formulation is administered to the human subject. In some variations, a volume of less than about 5 ⁇ L of liquid formulation is administered to the human subject.
  • a volume of a liquid formulation is administered to the human subject by placement between the sclera and conjunctiva and the human subject to which the volume is administered has visual acuity of at least about 20/40. In some variations, the human subject to which the volume is administered has visual acuity of at least about 20/40 in the eye to which the volume is administered.
  • liquid formulations comprising rapamycin, a non-aqueous liquid component, and optionally a water component, wherein the rapamycin is at least about 0.1% (w/w) of the liquid formulation and the non-aqueous liquid component is at least about 90% (w/w) of the liquid formulation; and wherein the liquid formulation when injected into the vitreous of a rabbit eye delivers an amount of rapamycin sufficient to achieve an average concentration of rapamycin in the retina choroid of the rabbit eye of at least about 0.01 ng/mg for a period of time of at least about 30 or at least about 120 days following administration of the liquid formulation.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers an amount of rapamycin sufficient to achieve an average concentration of rapamycin in the retina choroid of the rabbit eye of at least about 0.1 ng/mg for a period of time of at least about 30 or at least about 90 days following administration of the liquid formulation.
  • liquid formulations comprising rapamycin, a non-aqueous liquid component, and optionally a water component, wherein the rapamycin is at least about 0.1% (w/w) of the liquid formulation and the non-aqueous liquid component is at least about 90% (w/w) of the liquid formulation; and wherein the liquid formulation when injected into the vitreous of a rabbit eye delivers an amount of rapamycin sufficient to achieve an average concentration of rapamycin in the vitreous of the rabbit eye of at least about 1000 ng/ml for a period of time of at least about 30 or at least about 120 days following administration of the liquid formulation.
  • liquid formulations comprising rapamycin, a non-aqueous liquid component, and optionally a water component, wherein the rapamycin is at least about 0.1% (w/w) of the liquid formulation and the non-aqueous liquid component is at least about 90% (w/w) of the liquid formulation; and wherein the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers an amount of rapamycin sufficient to achieve an average concentration of rapamycin in the vitreous of the rabbit eye of at least about 0.01 ng/ml for a period of time of at least about 30 or at least about 120 days following administration of the liquid formulation.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers an amount of rapamycin sufficient to achieve an average concentration of rapamycin in the vitreous of the rabbit eye of at least about 0.1 ng/ml for a period of time of at least about 30 or at least about 120 days following administration of the liquid formulation.
  • liquid formulations comprising rapamycin, a non-aqueous liquid component, and optionally a water component, wherein the rapamycin is at least about 0.1% (w/w) of the liquid formulation and the non-aqueous liquid component is at least about 90% (w/w) of the liquid formulation; and wherein the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers an amount of rapamycin sufficient to achieve an average concentration of rapamycin in the retina choroid of the rabbit eye of at least about 0.001 ng/mg for a period of time of at least about 30 or at least about 120 days following administration of the liquid formulation.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers an amount of rapamycin sufficient to achieve an average concentration of rapamycin in the retina choroid of the rabbit eye of at least about 0.005 ng/mg for a period of time of at least about 30 or at least about 120 days following administration of the liquid formulation.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers an amount of rapamycin sufficient to achieve an average concentration of rapamycin in the retina choroid of the rabbit eye of at least about 0.01 ng/mg for a period of time of at least about 30 days following administration of the liquid formulation.
  • liquid formulations wherein the rapamycin is less than about 6% (w/w) of the liquid formulation, the water component is less than about 5% (w/w) of the liquid formulation, and the non-aqueous liquid component is selected from the group consisting of any one or more of glycerin, dimethylsulfoxide, N-methylpyrrolidone, dimethyl acetamide (DMA), dimethyl formamide, glycerol formal, ethoxy diglycol, triethylene glycol dimethyl ether, triacetin, diacetin, corn oil, acetyl triethyl citrate (ATC), ethyl lactate, polyglycolated capryl glyceride, ⁇ butyrolactone, dimethyl isosorbide, or benzyl alcohol.
  • DMA dimethyl acetamide
  • ATC acetyl triethyl citrate
  • ethyl lactate polyglycolated capryl glyceride
  • unit dosage forms comprising a volume of a liquid formulation as described herein, wherein the volume of liquid formulation contains less than about 4 mg, less than about 3.5 mg, less than about 3 mg, less than about 2.5 mg, less than about 2 mg, between about 20 ⁇ g and about 2.5 mg, or between about 20 ⁇ g and about 5 mg of rapamycin.
  • unit dosage forms comprising a volume of a liquid formulation as described herein, wherein the non-aqueous liquid component is polyethylene glycol and the volume of liquid formulation contains less than about 160 ⁇ L, less than about 120 ⁇ L, less than about 90 ⁇ L, less than about 50 ⁇ L of polyethylene glycol, or less than about 30 ⁇ L of polyethylene glycol.
  • unit dosage forms comprising a volume of less than about 200 ⁇ L, less than about 100 ⁇ L, less than about 50 ⁇ L, less than about 20 ⁇ L, less than about 10 ⁇ L, less than about 5 ⁇ L, or less than about 1 ⁇ L of a liquid formulation described herein.
  • Described herein are methods for treating wet age-related macular degeneration in a human subject, the method comprising administering to the human subject by intraocular or periocular delivery a volume of a liquid formulation described herein containing an amount of rapamycin effective to treat wet age-related macular degeneration in the human subject.
  • Described herein are methods for preventing wet age-related macular degeneration in a human subject the method comprising administering to the human subject by intraocular or periocular delivery a volume of the liquid formulation described herein containing an amount of rapamycin effective to prevent wet age-related macular degeneration in the human subject.
  • the human subject is identified as being at heightened risk of developing wet age-related macular degeneration in the eye to which the liquid formulation is administered.
  • the human subject identified as being at heightened risk of developing wet age-related macular degeneration has dry age-related macular degeneration in at least one eye.
  • the human subject identified as being at heightened risk of developing wet age-related macular degeneration has wet age-related macular degeneration in one eye and the liquid formulation is administered to the eye without wet age-related macular degeneration.
  • Described herein are methods for treating dry age-related macular degeneration in a human subject, the method comprising administering to the human subject by intraocular or periocular delivery a volume of a liquid formulation described herein containing an amount of rapamycin effective to treat dry age-related macular degeneration in the human subject.
  • Described herein are methods for preventing wet age-related macular degeneration in a human subject having dry age-related macular degeneration comprising administering to a human subject having dry age-related macular degeneration a volume of a liquid formulation described herein containing an amount of rapamycin effective to prevent wet age-related macular degeneration in the human subject, wherein the volume of the liquid formulation is administered by intraocular or periocular delivery.
  • FIGS. 1A-1C schematically depict formation of a non-dispersed mass, after injection of a liquid formulation into the vitreous of an eye, as it is believed to occur in some variations.
  • FIG. 2 depicts the level of rapamycin in the vitreous of rabbit eyes (ng/ml) at 5, 30, 60, 90, and 120 days after subconjunctival injection of 20 ⁇ l, 40 ⁇ l, and 60 ⁇ l doses of a 2% solution of rapamycin in ethanol and PEG 400.
  • FIG. 3 depicts the level of rapamycin in the retina choroid tissues of rabbit eyes (ng/mg) at 5, 30, 60, 90, and 120 days after subconjunctival injection of 20 ⁇ l, 40 ⁇ l, and 60 ⁇ l doses of a 2% solution of rapamycin in ethanol and PEG 400.
  • FIG. 4 depicts the level of rapamycin in the vitreous of rabbit eyes (ng/ml) at 5, 30, 60, 90, and 120 days after intravitreal injection of 20 ⁇ l and 40 ⁇ l doses of a 2% solution of rapamycin in ethanol and PEG 400.
  • FIG. 5 depicts the level of rapamycin in the retina choroid tissues of rabbit eyes (ng/mg) at 5, 30, 60, 90, and 120 days after intravitreal injection of 20 ⁇ l and 40 ⁇ l doses of a 2% solution of rapamycin in ethanol and PEG 400.
  • liquid rapamycin formulations and methods relating to delivery of rapamycin to a subject or to the eye of a subject.
  • These liquid rapamycin formulations and methods may be used for the treatment, prevention, inhibition, delaying onset of, or causing regression of diseases and conditions of the eye including but not limited to choroidal neovascularization; macular degeneration and age-related macular degeneration, including wet AMD and dry AMD.
  • the liquid rapamycin formulations and methods are used for treatment of choroidal neovascularization; macular degeneration and age-related macular degeneration, including wet AMD and dry AMD.
  • the liquid rapamycin formulations and methods are used for prevention of choroidal neovascularization; macular degeneration and age-related macular degeneration, including wet AMD and dry AMD.
  • liquid rapamycin formulations (2) extended delivery of rapamycin, (3) routes of administration for delivery of liquid rapamycin formulations, and (4) treatment and prevention of CNV and wet and dry AMD by delivery of rapamycin to a subject or to the eye of a subject for an extended period of time using the described liquid rapamycin formulations.
  • rapamycin and rapa are used interchangeably herein with the term sirolimus.
  • the liquid rapamycin formulations form a non-dispersed mass relative to a surrounding medium when placed in the vitreous of a rabbit eye.
  • liquid formulations described herein contain rapamycin and may generally be any liquid formulation, including but not limited to solutions, suspensions, and emulsions.
  • the liquid rapamycin formulations may generally be administered in any volume that has the desired effect; in some variations a liquid rapamycin formulation is administered to the vitreous and the liquid rapamycin formulation is less than one half the volume of the vitreous of the eye to which it is being administered. In some variations the liquid rapamycin formulation is administered between the sclera and conjunctiva in a volume less than about 50 ⁇ l.
  • a volume of a liquid rapamycin formulation described herein is administered to the vitreous of a human subject's eye that is less than about 500 ⁇ l, less than about 400 ⁇ l, less than about 300 ⁇ l, less than about 200 ⁇ l, less than about 100 ⁇ l, less than about 90 ⁇ l, less than about 80 ⁇ l, less than about 70 ⁇ l, less than about 60 ⁇ l, less than about 50 ⁇ l, less than about 40 ⁇ l, less than about 30 ⁇ l, less than about 20 ⁇ l, less than about 10 ⁇ l, less than about 5 ⁇ l, less than about 3 ⁇ l, or less than about 1 ⁇ l.
  • a volume of a liquid rapamycin formulation described herein is administered to the vitreous of a human subject's eye that is less than about 20 ⁇ l. In some variations, a volume of a liquid rapamycin formulation described herein is administered to the vitreous that is less than about 10 ⁇ l.
  • a volume of a liquid rapamycin formulation described herein is administered to the vitreous of a human subject's eye that is between about 0.1 ⁇ l and about 200 ⁇ l, between about 50 ⁇ l and about 200 ⁇ l, between about 50 ⁇ l and about 150 ⁇ l, between about 0.1 ⁇ l and about 100 ⁇ l, between about 0.1 ⁇ l and about 50 ⁇ l, between about 1 ⁇ l and about 40 ⁇ l, between about 1 ⁇ l and about 30 ⁇ l, between about 1 ⁇ l and about 20 ⁇ l, between about 1 ⁇ l and about 10 ⁇ l, or between about 1 ⁇ l and about 5 ⁇ l.
  • a volume of a liquid rapamycin formulation described herein is administered to the vitreous of a human subject's eye that is between about 1 ⁇ l and about 10 ⁇ l. In some variations, a volume of a liquid rapamycin formulation described herein is administered to the vitreous of a rabbit eye or a subject's eye that is between about 1 ⁇ l and about 5 ⁇ l. In some variations, a volume of a liquid rapamycin formulation described herein is administered to the vitreous of a rabbit eye or a subject's eye that is between about 1 ⁇ l and about 5 ⁇ l. In some variations, a volume of a liquid rapamycin formulation described herein is administered to the vitreous of a human subject's eye that is between about 0.1 ⁇ l and about 200 ⁇ l.
  • a total volume of a liquid rapamycin formulation described herein is subconjunctivally administered to a human subject's eye that is less than about 1000 ⁇ l, less than about 900 ⁇ l, less than about 800 ⁇ l, less than about 700 ⁇ l, less than about 600 ⁇ l, less than about 500 ⁇ l, less than about 400 ⁇ l, less than about 300 ⁇ l, less than about 200 ⁇ l, less than about 100 ⁇ l, less than about 90 ⁇ l, less than about 80 ⁇ l, less than about 70 ⁇ l, less than about 60 ⁇ l, less than about 50 ⁇ l, less than about 40 ⁇ l, less than about 30 ⁇ l, less than about 20 ⁇ l, less than about 10 ⁇ l, less than about 5 ⁇ l, less than about 3 ⁇ l, or less than about 1 ⁇ l.
  • a volume of a liquid rapamycin formulation described herein is subconjunctivally administered to a human subject's eye that is less than about 20 ⁇ l. In some variations, a volume of a liquid rapamycin formulation described herein is subconjunctivally administered to a human subject's eye that is less than about 10 ⁇ l.
  • a volume of a liquid rapamycin formulation described herein is subconjunctivally administered to a human subject's eye that is between about 0.1 ⁇ l and about 200 ⁇ l, between about 50 ⁇ l and about 200 ⁇ l, between about 200 ⁇ l and about 300 ⁇ l, between about 300 ⁇ l and about 400 ⁇ l, between about 400 ⁇ l and about 500 ⁇ l, between about 500 ⁇ l and about 600 ⁇ l, between about 600 ⁇ l and about 700 ⁇ l, between about 700 ⁇ l and about 800 ⁇ l, between about 800 ⁇ l and about 900 ⁇ l, between about 900 ⁇ l and about 1000 ⁇ l, between about 50 ⁇ l and about 150 ⁇ l, between about 0.1 ⁇ l and about 100 ⁇ l, between about 0.1 ⁇ l and about 50 ⁇ l, between about 1 ⁇ l and about 40 ⁇ l, between about 1 ⁇ l and about 30 ⁇ l, between about 1 ⁇ l and about 20 ⁇ l, between about 1 ⁇
  • a volume of a liquid rapamycin formulation described herein is subconjunctivally administered to a human subject's eye that is between about 1 ⁇ l and about 10 ⁇ l. In some variations, a volume of a liquid rapamycin formulation described herein is subconjunctivally administered to a human subject's eye that is between about 1 ⁇ l and about 5 ⁇ l. In some variations, a volume of a liquid rapamycin formulation described herein is administered to subconjunctivally administered to a human subject's eye that is between about 1 ⁇ l and about 5 ⁇ l. In some variations, a volume of a liquid rapamycin formulation described herein is administered to subconjunctivally administered to a human subject's eye that is between about 0.1 ⁇ l and about 200 ⁇ l.
  • liquid rapamycin formulations described herein contain no greater than about 250 ⁇ l of polyethylene glycol. In some variations the liquid rapamycin formulation described herein contain no greater than about 250 ⁇ l, no greater than about 200 ⁇ l, no greater than about 150 ⁇ l, no greater than about 125 ⁇ l, no greater than about 100 ⁇ l, no greater than about 75 ⁇ l, no greater than about 50 ⁇ l, no greater than about 25 ⁇ l, no greater than about 20 ⁇ l, no greater than about 15 ⁇ l, no greater than about 10 ⁇ l, no greater than about 7.5 ⁇ l, no greater than about 5 ⁇ l, no greater than about 2.5 ⁇ l, no greater than about 1.0 ⁇ l, or no greater than about 0.5 ⁇ l of polyethylene glycol.
  • Formulations containing polyethylene glycol may contain, for example, PEG 300 or PEG 400.
  • liquid rapamycin formulation described herein have a viscosity of between 40% and 120% centipoise. In some variations the liquid rapamycin formulations described herein have a viscosity of between 60% and 80% centipoise.
  • liquid rapamycin formulations described herein are administered in multiple subconjunctival locations within a period of time of one another, including but not limited to within an hour of one another. Without being bound by theory, it is thought that such multiple administrations, such as multiple injections, allow for a greater total dose to be administered subconjunctivally than a single dose due to a potentially limited ability of the local ocular tissues to absorb larger volumes.
  • Some liquid rapamycin formulations described herein comprise a non-aqueous liquid component.
  • the non-aqueous liquid component may comprise a single non-aqueous liquid component or a combination of non-aqueous liquid component.
  • the non-aqueous liquid component is glycerin, dimethylsulfoxide, N-methylpyrrolidone, ethanol, isopropyl alcohol, polyethylene glycol of various molecular weights, including but not limited to PEG 300 and PEG 400, or propylene glycol, or a mixture of one or more thereof.
  • Liquid rapamycin formulations may optionally further comprise stabilizers, excipients, gelling agents, adjuvants, antioxidants, and/or other components as described herein.
  • all components in the liquid formulation, other than the therapeutic agent, are liquid at room temperature.
  • the rapamycin in the liquid formulation contains between about 0.01 to about 10% of the total weight of the composition; between about 0.05 to about 10%; between about 0.1 to about 5%; between about 1 to about 5%; or between about 5 to about 15%; between about 8 to about 10%; between about 0.01 to about 1%; between about 0.05 to about 5%; between about 0.1 to about 0.2%; between about 0.2 to about 0.3%; between about 0.3 to about 0.4%; between about 0.4 to about 0.5%; between about 0.5 to about 0.6%; between about 0.6 to about 0.7%; between about 0.7 to about 1%; between about 1 to about 3%; or between about 1.5 to about 2.5%.
  • the liquid formulations described herein contain between about 0.1 to about 5% w/w of rapamycin.
  • non-aqueous liquid component is, by way of nonlimiting example, between about 0.01 to about 99.9% of the total weight of the composition; between about 0.1 to about 99%; between about 75 to about 99.99%; between about 85 to about 99.99%; or between about 55 to about 95% w/w. In some variations the non-aqueous liquid component is between about 85 to about 99.99% w/w.
  • water component there is optionally a water component.
  • the water component is less than about 30%, less than about 25%, less than about 20%, less than about 15%, less than about 10%, less than about 7.5%, less than about 5%, less than about 4%, less than about 3%, less than about 2%, less than about 1%, or less than about 0.5%. In some variations the water component is less than about 5% w/w.
  • liquid formulations includes rapamycin between about 0.01 and about 5% by weight of the total, and a non-aqueous liquid component between about 95% and about 99.99% by weight of the total.
  • formulations further comprise stabilizing agents, excipients, adjuvants, or antioxidants, between about 0 and about 5% by weight of the total.
  • a liquid formulation may contain about 2% w/w rapamycin and about 98% w/w of a non-aqueous liquid component.
  • the non-aqueous liquid component comprises ethanol.
  • the non-aqueous liquid component comprises a liquid polyethylene glycol, including but not limited to PEG 400.
  • Non-aqueous liquid components that may be used include but are not limited to any non-aqueous liquid component as above, including but not limited to any one or more of DMSO, glycerin, ethanol, methanol, isopropyl alcohol; castor oil, propylene glycol, polyvinylpropylene, polysorbate 80, benzyl alcohol, dimethyl acetamide (DMA), dimethyl formamide (DMF), glycerol formal, ethoxy diglycol (Transcutol, Gattefosse), tryethylene glycol dimethyl ether (Triglyme), dimethyl isosorbide (DMI), ⁇ -butyrolactone, N-Methyl-2-pyrrolidinone (NMP), polyethylene glycol of various molecular weights, including but not limited to PEG 300 and PEG 400, and polyglycolated capryl glyceride (Labrasol, Gattefosse).
  • DMSO dimethyl acetamide
  • DMF dimethyl formamide
  • non-aqueous liquid components include but are not limited to C 6 -C 24 fatty acids, oleic acid, Imwitor 742, Capmul, F68, F68 (Lutrol), PLURONICS including but not limited to PLURONICS F108, F127, and F68, Poloxamers, Jeffamines), Tetronics, F127, beta-cyclodextrin, CMC, polysorbitan 20, Cavitron, softigen 767, captisol, and sesame oil.
  • rapamycin can be dissolved in 5% DMSO or methanol in a balanced salt solution.
  • the rapamycin solution can be unsaturated, a saturated or a supersaturated solution of rapamycin.
  • the rapamycin solution can be in contact with solid rapamycin.
  • rapamycin can be dissolved in a concentration of up to about 400 mg/ml. Rapamycin can also, for example, be dissolved in propylene glycol esterified with fatty acids such as oleic, stearic, palmic, capric, linoleic, etc.
  • non-aqueous liquid components are possible. Those of ordinary skill in the art, given the teachings herein will find it routine to identify non-aqueous liquid components for use in the liquid rapamycin formulations described herein.
  • Non-aqueous liquid components for use in the liquid formulations can be determined by a variety of methods known in the art, including but not limited to (1) theoretically estimating their solubility parameter values and choosing the ones that match with the therapeutic agent, using standard equations in the field; and (2) experimentally determining the saturation solubility of therapeutic agent in the non-aqueous liquid components, and choosing the one(s) that exhibit the desired solubility.
  • the liquid rapamycin formulations form a non-dispersed mass when placed into an aqueous medium.
  • a “non-dispersed mass” refers to the structure formed when the liquid formulation is placed into an environment, relative to the environment in which it is placed.
  • a non-dispersed mass of a liquid formulation is anything other than a homogeneous distribution of the liquid formulation in the surrounding medium.
  • the non-dispersed mass may, for instance, be indicated by visually inspecting the administered liquid formulation and characterizing its appearance relative to the surrounding medium.
  • the aqueous medium is water.
  • the water is deionized, distilled, sterile, or tap water, including but not limited to tap water available at the place of business of MacuSight in Union City, Calif.
  • the aqueous medium is an aqueous medium of a subject. In some variations the aqueous medium is an aqueous medium of the eye of a subject, including but not limited to the vitreous of an eye of a subject. In some variations the subject is a human subject. In some variations the aqueous medium is the vitreous of a rabbit eye.
  • the liquid formulations described herein may generally be of any geometry or shape after administration to a subject or the eye of a subject.
  • the non-dispersed mass-forming liquid formulations may, for instance, appear as a compact spherical mass when administered to the vitreous.
  • the liquid formulation may appear as a non-dispersed mass relative to the surrounding medium, wherein the non-dispersed mass is less clearly defined and the geometry is more amorphous than spherical.
  • the non-dispersed mass-forming liquid formulations described herein may form a non-dispersed mass immediately upon placement in the medium or the non-dispersed mass may form some period of time after placement of the liquid formulation. In some variations the non-dispersed mass forms over the course of about 1, about 2, about 3, about 4, about 5, about 6, or about 7 days. In some variations the non-dispersed mass forms over the course of about 1 week, about 2 weeks, or about 3 weeks.
  • liquid formulations described herein form a non-dispersed mass which has the form of a solid depot when the formulation is injected into any or all of water, the vitreous, or between the sclera and the conjunctiva of a rabbit eye.
  • liquid formulations described herein form a non-dispersed mass which has the form of a semi-solid when the formulation is injected into any or all of water, the vitreous, or between the sclera and the conjunctiva of a rabbit eye.
  • the liquid rapamycin formulation forms a non-dispersed mass relative to a surrounding medium where the surrounding medium is aqueous.
  • An “aqueous medium” or “aqueous environment” is one that contains at least about 50% water.
  • aqueous media include but are not limited to water, the vitreous, extracellular fluid, conjunctiva, sclera, between the sclera and the conjunctiva, aqueous humor, gastric fluid, and any tissue or body fluid comprised of at least about 50% of water.
  • Aqueous media include but are not limited to gel structures, including but not limited to those of the conjunctiva and sclera.
  • the liquid rapamycin formulation forms a non-dispersed mass when placed in the vitreous of a rabbit eye.
  • Whether a liquid formulation exhibits a non-dispersed mass relative to a surrounding medium when present in a subject or the eye of a subject may be determined by, for instance, preparing the liquid rapamycin formulation, administering it to the vitreous of a rabbit eye, and comparing the liquid formulation to the surrounding medium.
  • liquid rapamycin formulations described herein may or may not form a non-dispersed mass in the subject.
  • One liquid formulation described herein forms a non-dispersed mass when administered to a subject and forms a non-dispersed mass when administered to a rabbit eye.
  • rapamycin in the vitreous contributes to the formation of a non-dispersed mass by some rapamycin-containing liquid formulations described herein.
  • the vitreous is a clear gel composed almost entirely of water (up to 99%). As rapamycin in an injected formulation contacts the vitreous, the rapamycin precipitates.
  • Factors believed to affect the formation of and geometry of a non-dispersed mass include the concentration of rapamycin in the formulation, the viscosity of the formulation, ethanol content of the formulation, and the volume of injection. It is believed that maintaining a relatively high local concentration of rapamycin during precipitation favors formation of a non-dispersed mass. As volume is increased for a given dose, formation of a non-dispersed mass may become less favorable. Formation of a non-dispersed mass may become more favorable as rapamycin concentration is increased and/or as viscosity is increased. Ethanol content affects both the solubility of the rapamycin in the formulation and the viscosity of the formulation.
  • FIGS. 1A-1C injection of certain volumes of a liquid formulation containing rapamycin, ethanol and polyethylene glycol results in formation of a non-dispersed mass as depicted in FIGS. 1A-1C and described as follows.
  • a solution forms a spherical globule 100 within the vitreous 110 .
  • Ethanol then diffuses out of this globule, resulting in localized precipitation 120 of the rapamycin within the globule.
  • the polyethylene glycol also diffuses out of the globule to leave a solid, compact non-dispersed mass of rapamycin 130 .
  • a non-dispersed mass comprising rapamycin upon formation a non-dispersed mass comprising rapamycin, for example, delivers the drug continuously at approximately a constant rate for an extended period of time. It is believed that delivery of rapamycin from a non-dispersed mass in the vitreous depends on dissolution of the rapamycin in the vitreous, which depends in turn on clearance of the drug from the vitreous to other tissues. This release process is believed to maintain a steady-state concentration of rapamycin in the vitreous.
  • formation of a non-dispersed mass reduces the toxicity of the injected liquid formulation compared to an equivalent dose that did not form a non-dispersed mass.
  • the drug appears to disperse in the vitreous body. This can interfere with vision.
  • liquid formulations will form a visually observable non-dispersed mass when injected into the eye of a subject, including but not limited to a human subject.
  • liquid formulations are believed to form non-dispersed masses when injected subconjunctivally. In some variations it is believed that when subconjunctivally administered the liquid formulation forms a depot in the scleral tissue. That is, it is believed that the therapeutic agent is absorbed into the sclera proximate to the injection site and forms a local concentration of drug in the sclera.
  • compositions and liquid formulations described herein may be used to deliver amounts of rapamycin effective for treating, preventing, inhibiting, delaying on set of, or causing the regression of the diseases and conditions described herein.
  • compositions and liquid formulations described herein deliver one or more therapeutic agents over an extended period of time.
  • an “effective amount,” which is also referred to herein as a “therapeutically effective amount,” of rapamycin for administration as described herein is that amount of rapamycin that provides the therapeutic effect sought when administered to the subject.
  • the achieving of different therapeutic effects may require different effective amounts of rapamycin.
  • the therapeutically effective amount of rapamycin used for preventing a disease or condition may be different from the therapeutically effective amount used for treating, inhibiting, delaying the onset of, or causing the regression of the disease or condition.
  • the therapeutically effective amount may depend on the age, weight, and other health conditions of the subject as is well know to those versed in the disease or condition being addressed. Thus, the therapeutically effective amount may not be the same in every subject to which the rapamycin is administered.
  • An effective amount of rapamycin for treating, preventing, inhibiting, delaying the onset of, or causing the regression of a specific disease or condition is also referred to herein as the amount rapamycin effective to treat, prevent, inhibit, delay the onset of, or cause the regression of the disease or condition.
  • liquid formulations may be administered in animal models for the diseases or conditions of interest, and the effects may be observed. Dose ranging clinical trials may be performed to determine effective amounts.
  • the formulations described herein may further comprise various other components such as stabilizers, adjuvants, anti-oxidants (e.g., tocopherol, BHA, BHT, TBHQ, tocopherol acetate, ascorbyl palmitate, ascorbic acid propyl gallate, and the like), preservatives, or diluents, for example.
  • Other components that may be used in the formulations described herein include but are not limited to agents that will (1) improve the compatibility of excipients with the encapsulating materials such as gelatin, (2) improve the stability (e.g. prevent crystal growth of a therapeutic agent such as rapamycin) of rapamycin, and/or (3) improve formulation stability. Note that there is overlap between components that are stabilizers and those that are non-aqueous liquid components, and the same component can carry out more than one role.
  • the rapamycin may be subjected to conventional pharmaceutical operations, such as sterilization, and compositions containing rapamycin may also contain conventional adjuvants, such as preservatives, stabilizers, wetting agents, emulsifiers, buffers etc.
  • the liquid rapamycin formulation may also be formulated with pharmaceutically acceptable excipients for clinical use to produce a pharmaceutical composition.
  • the liquid rapamycin formulation may be used to prepare a medicament to treat, prevent, inhibit, delay onset, or cause regression of any of the conditions described herein. In some variations, the liquid rapamycin formulation may be used to prepare a medicament to treat any of the conditions described herein.
  • the liquid rapamycin formulations may conveniently be presented in unit dosage form and may be prepared by conventional pharmaceutical techniques. Such techniques include the step of bringing into association the therapeutic agent and the pharmaceutical carrier(s) or excipient(s).
  • the liquid rapamycin formulations may be prepared by uniformly and intimately bringing into associate the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
  • the unit dosage form may be ready for placement or injection into the eye of a subject, or may be diluted in an aqueous or non-aqueous medium prior to injection or placement in the eye of the subject.
  • the formulations described herein are provided in one or more unit dose forms, wherein the unit dose form contains an amount of a liquid rapamycin formulations described herein that is effective to treat or prevent the disease or condition for which it is being administered.
  • the unit dose form is prepared in the concentration at which it will be administered. In some variations, the unit dose form is diluted prior to administration to a subject. In some variations, a liquid formulation described herein is diluted in an aqueous medium prior to administration to a subject, including but not limited to an isotonic aqueous medium. In some variations, a liquid formulation described herein is diluted in a non-aqueous medium prior to administration to a subject.
  • kits comprising one or more unit dose forms as described herein.
  • the kit comprises one or more of packaging and instructions for use to treat one or more diseases or conditions.
  • the kit comprises a diluent which is not in physical contact with the formulation or pharmaceutical formulation.
  • the kit comprises any of one or more unit dose forms described herein in one or more sealed vessels.
  • the kit comprises any of one or more sterile unit dose forms.
  • the unit dose form is in a container, including but not limited to a sterile sealed container.
  • the container is a vial, ampule, or low volume applicator, including but not limited to a syringe.
  • a low-volume applicator is pre-filled with rapamycin for treatment of an ophthalmic disease or condition, including but not limited to a limus compound for treatment of age-related macular degeneration. Described herein is a pre-filled low-volume applicator pre-filled with a formulation comprising rapamycin.
  • a low-volume applicator is pre-filled with a solution comprising rapamycin and a polyethylene glycol, and optionally further comprises one or more additional components including but not limited to ethanol. In some variations a low-volume applicator is pre-filled with a solution comprising about 2% rapamycin, about 94% PEG-400, about 4% ethanol.
  • kits comprising one or more containers.
  • a kit comprises one or more low-volume applicators pre-filled with one or more formulations in liquid form comprising rapamycin, including but not limited to formulations in liquid form comprising rapamycin, formulations in liquid form comprising rapamycin and a polyethylene glycol, and optionally further comprises one or more additional components including but not limited to ethanol, and formulations in liquid form comprising about 2% rapamycin, about 94% PEG-400, about 4% ethanol.
  • the kit comprises one or more containers, including but not limited to pre-filled low-volume applicators, with instructions for its use.
  • a kit comprises one or more low-volume applicators pre-filled with rapamycin, with instructions for its use in treating a disease or condition of the eye.
  • the containers described herein are in a secondary packaging which limits exposure of the liquid rapamycin formulation to light or oxygen.
  • compositions and liquid formulations showing in vivo delivery or clearance profiles with one or more of the following characteristics.
  • the delivery or clearance profiles are for clearance of rapamycin in vivo after injection of the composition or liquid formulations subconjunctivally or into the vitreous of a rabbit eye.
  • the volume of the rabbit vitreous is approximately 30-40% of the volume of the human vitreous.
  • the surface area of the retina choroid of a rabbit eye is approximately 25% of the surface area of the retina choroid of a human eye.
  • the amount of rapamycin is measured using techniques as described in Example 3, but without limitation to the formulation described in Example 3.
  • the average concentration of rapamycin in the tissue of a rabbit eye at a given time after administration of a formulation containing rapamycin may be measured according to the following method. Where volumes below 10 ⁇ l are to be injected, a Hamilton syringe is used.
  • the liquid formulations are stored at a temperature of 2-8° C. prior to use.
  • the experimental animals are specific pathogen free (SPF) New Zealand White rabbits.
  • SPF pathogen free
  • a mixed population of about 50% male, about 50% female is used.
  • the rabbits are at least 12 weeks of age, usually at least 14 weeks of age, at the time of dosing.
  • the rabbits each weigh at least 2.2 kg, usually at least 2.5 kg, at the time of dosing.
  • Prior to the study the animals are quarantined for at least one week and examined for general health parameters. Any unhealthy animals are not used in the study. At least 6 eyes are measured and averaged for a given time point.
  • Housing and sanitation are performed according to standard procedures used in the industry.
  • the animals are provided approximately 150 grams of Teklad Certified Hi-Fiber Rabbit Diet daily, and are provided tap water ad libitum. No contaminants are known to exist in the water and no additional analysis outside that provided by the local water district is performed. Environmental Conditions are monitored.
  • Gentamicin ophthalmic drops are placed into both eyes of each animal twice daily on the day prior to dosing, on the day of dosing (Day 1), and on the day after dosing (Day 2). Dosing is performed in two phases, the first including one set of animals and the second including the other animals. Animals are randomized separately into masked treatment groups prior to each phase of dosing according to modified Latin squares. Animals are fasted at least 8 hours prior to injection. The start time of the fast and time of injection are recorded.
  • ketamine/xylazine cocktail (87 mg/mL ketamine, 13 mg/mL xylazine) at a volume of 0.1-0.2 mL/kg. Both eyes of each animal are prepared for injection as follows: approximately five minutes prior to injection, eyes are moistened with an ophthalmic Betadine solution. After five minutes, the Betadine is washed out of the eyes with sterile saline. Proparacaine hydrochloride 0.5% (1-2 drops) is delivered to each eye. For eyes to be intravitreally injected, 1% Tropicamide (1 drop) is delivered to each eye.
  • both eyes of each animal receive an injection of test or control article. Animals in selected groups are dosed a second time on Day 90 ⁇ 1. Dosing is subconjunctival or intravitreal. Actual treatments, injection locations, and dose volumes are masked and revealed at the end of the study.
  • Subconjunctival injections are given using an insulin syringe and 30 gauge ⁇ 1 ⁇ 2-inch needle.
  • the bulbar conjunctiva in the dorsotemporal quadrant is elevated using forceps.
  • Test article is injected into the subconjunctival space.
  • Intravitreal injections are given using an Insulin syringe and 30 gauge ⁇ 1 ⁇ 2-inch needle.
  • the needle is introduced through the ventral-nasal quadrant of the eye, approximately 2-3 mm posterior to the limbus, with the bevel of the needle directed downward and posteriorly to avoid the lens.
  • Test article is injected in a single bolus in the vitreous near the retina.
  • Animals are weighed at randomization, on Day 1 prior to dosing, and prior to euthanasia.
  • Ophthalmic observations are performed on all animals on Days 5 ⁇ 1, 30 ⁇ 1, 60 ⁇ 1, 90 ⁇ 1, and at later dates in some variations. Observations are performed by a board certified veterinary ophthalmologist. For animals to be dosed on Day 90 ⁇ 1, ophthalmic observations are performed prior to dosing. Ocular findings are scored according to the McDonald and Shadduck scoring system as described in Dermatoxicology, F. N. Marzulli and H. I. Maibach, 1977 “Eye Irritation”, T. O. McDonald and J. A. Shadduck (pages 579-582) and observations are recorded using a standardized data collection sheet.
  • Euthanasia Animals are euthanized with an intravenous injection of commercial euthanasia solution. Euthanasia is performed according to standard procedures used in the industry.
  • Frozen samples submitted for pharmacokinetic analysis are dissected with disposable instruments. One set of instruments is used per eye, and then discarded. The samples are thawed at room temperature for 1 to 2 minutes to ensure that the frost around the tissue has been removed.
  • the sclera is dissected into 4 quadrants, and the vitreous is removed. If a non-dispersed mass (NDM) is clearly visible within the vitreous, the vitreous is separated into two sections. The section with the NDM is approximately two-thirds of the vitreous. The section without the NDM is the portion of the vitreous that is the most distant from the NDM.
  • the aqueous humor, lens, iris, and cornea are separated. The retina choroid tissue is removed using a forceps and collected for analysis. The conjunctiva is separated from the sclera.
  • the various tissue types are collected into separate individual pre-weighed vials which are then capped and weighed.
  • the vials of tissue are stored at ⁇ 80° C. until analyzed.
  • the sirolimus content of the retina choroid, sclera, vitreous humor, and whole anti-coagulated blood is determined by high-pressure liquid chromatography/tandem mass spectroscopy (HPLC/MS/MS) using 32-O-desmethoxyrapamycin as an internal standard. Where an NDM was observed in the vitreous, the section of the vitreous containing the NDM and the section of the vitreous not containing the NDM are analyzed separately.
  • the average concentration of rapamycin over a period of time means for representative timepoints over the period of time the average concentration at each time point. For example, if the time period is 30 days, the average concentration may be measured at 5 day intervals: for the average concentration at day 5, the average of a number of measurements of concentration at day 5 would be calculated; for the average concentration at day 10, the average of a number of measurements of the concentration at day 10 would be calculated, etc.
  • the liquid formulations described herein may have in vivo delivery to the vitreous profiles with the following described characteristics, where the delivery profiles are for delivery of rapamycin in vivo after injection of the liquid formulation between the sclera and the conjunctiva of a rabbit eye.
  • the delivery profiles are for delivery of rapamycin in vivo after injection of the liquid formulation between the sclera and the conjunctiva of a rabbit eye.
  • FIG. 2 One nonlimiting variation of in vivo delivery to the vitreous profiles is shown in FIG. 2 .
  • Approximately constant means that the average level does not vary by more than one order of magnitude over the extended period of time, i.e., the difference between the maximum and minimum is less than a 10-fold difference for measurements of the average concentration at times in the relevant period of time.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye of at least 0.001 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye of at least 0.01 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye of at least 0.1 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye of at least 0.5 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye of between 0.001 ng/mL and 10.0 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye of between 0.01 ng/mL and 10 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye of between 0.1 ng/mL and 10 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye of between 0.5 ng/mL and 10.0 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the vitreous of a rabbit eye to a minimum average concentration of rapamycin in the vitreous of a rabbit eye less than 100 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the vitreous of a rabbit eye to a minimum average concentration of rapamycin in the vitreous of a rabbit eye less than 50 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the vitreous of a rabbit eye to a minimum average concentration of rapamycin in the vitreous of a rabbit eye less than 10 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the vitreous of a rabbit eye to a minimum average concentration of rapamycin in the vitreous of a rabbit eye less than 5 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of a rabbit eye that is approximately constant at a value greater than 0.001 ng/mL for days 30 to at least 60, at least 90, or at least 120 days after administration of the solution to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of a rabbit eye that is approximately constant at a value greater than 0.01 ng/mL for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of a rabbit eye that is approximately constant at a value greater than 0.1 ng/mL for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of a rabbit eye that is approximately constant at a value of 1.0 ng/mL for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of at least 0.001 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of at least 0.005 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of at least 0.01 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of between 0.001 ng/mg and 1.0 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of between 0.001 ng/mg and 0.50 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of between 0.001 ng/mg and 0.15 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of between 0.001 ng/mg and 0.1 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of between 0.005 ng/mg and 1.0 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of between 0.005 ng/mg and 0.50 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of between 0.005 ng/mg and 0.15 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of between 0.005 ng/mg and 0.1 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of between 0.01 ng/mg and 1.0 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of between 0.01 ng/mg and 0.50 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of between 0.01 ng/mg and 0.15 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of between 0.01 ng/mg and 0.1 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the retina choroid tissues of a rabbit eye to a minimum average concentration of rapamycin in the retina choroid tissues of a rabbit eye less than 100 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the retina choroid tissues of a rabbit eye to a minimum average concentration of rapamycin in the retina choroid tissues of a rabbit eye less than 50 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the retina choroid tissues of a rabbit eye to a minimum average concentration of rapamycin in the retina choroid tissues of a rabbit eye less than 10 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the retina choroid tissues of a rabbit eye to a minimum average concentration of rapamycin in the retina choroid tissues of a rabbit eye less than 5 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of a rabbit eye that is approximately constant at a value greater than 0.001 ng/mg for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of a rabbit eye that is approximately constant at a value greater than 0.005 ng/mg for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of a rabbit eye that is approximately constant at a value greater than 0.01 ng/mg for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye of at least 100 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye of at least 1000 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye of at least 10,000 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye between 100 ng/mL and 100,000 ng/mL for day 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye between 100 ng/mL and 50,000 ng/mL for day 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye between 1000 ng/mL and 100,000 ng/mL for day 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye between 1000 ng/mL and 50,000 ng/mL for day 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the vitreous of the rabbit eye to a minimum average concentration of rapamycin in the vitreous of the rabbit eye less than 100 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the vitreous of the rabbit eye to a minimum average concentration of rapamycin in the vitreous of the rabbit eye less than 50 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the vitreous of the rabbit eye to a minimum average concentration of rapamycin in the vitreous of the rabbit eye less than 10 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye that is approximately constant at a value greater than 100 ng/mL for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye that is approximately constant at a value greater than 1000 ng/mL for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye that is approximately constant at a value greater than 10,000 ng/mL for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of at least 0.001 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of at least 0.01 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of at least 0.05 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of at least 0.10 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye between 0.001 ng/mg and 10.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye between 0.001 ng/mg and 5.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye between 0.001 ng/mg and 1.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye between 0.01 ng/mg and 10.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye between 0.01 ng/mg and 5.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye between 0.01 ng/mg and 1.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye between 0.05 ng/mg and 10.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye between 0.05 ng/mg and 5.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye between 0.05 ng/mg and 1.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye between 0.10 ng/mg and 10.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye between 0.10 ng/mg and 5.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye between 0.10 ng/mg and 1.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the retina choroid tissues of the rabbit eye to a minimum average concentration of rapamycin in the retina choroid tissues of the rabbit eye less than 100 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the retina choroid tissues of the rabbit eye to a minimum average concentration of rapamycin in the retina choroid tissues of the rabbit eye less than 50 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • the ratio of the base ten logarithms of the average levels of rapamycin in the vitreous and the retina choroid tissues is approximately constant over an extended period of time. Put another way, as the level of rapamycin in the vitreous rises, the level of rapamycin in the retina choroid tissues rises to a similar degree when considered on the logarithmic scale, and vice versa.
  • the ratio of the base ten logarithms of the average levels of rapamycin in the vitreous versus the retina choroid tissues is approximately constant over an extended period of time of 7, 30, 60, or 90 days.
  • rapamycin for treatment, prevention, inhibition, delaying the onset of, or causing the regression of certain diseases or conditions, it may be desirable to maintain delivery of a therapeutically effective amount of rapamycin for an extended period of time.
  • this extended period of time may be at least about 1 week, at least about 2 weeks, at least about 3 weeks, at least about 1 month, at least about 3 months, at least about 6 months, at least about 9 months, or at least about 1 year.
  • a therapeutically effective amount of agent may be delivered for an extended period by a liquid formulation or composition that maintains for the extended period a concentration of agent in a subject or an eye of a subject sufficient to deliver a therapeutically effective amount of agent for the extended time.
  • Delivery of a therapeutically effective amount of rapamycin for an extended period may be achieved via a single administration of a liquid rapamycin formulation or may be achieved by administration of two or more doses of a liquid rapamycin formulation.
  • maintenance of the therapeutic amount of rapamycin for 3 months for treatment, prevention, inhibition, delay of onset, or cause of regression of wet AMD may be achieved by administration of one dose of a liquid rapamycin formulation delivering a therapeutic amount for 3 months or by sequential application of a plurality of doses of a liquid rapamycin formulation.
  • the optimal dosage regime will depend on the therapeutic amount of rapamycin needing to be delivered, the period over which it need be delivered, and the delivery kinetics of the liquid formulation. Those versed in such extended therapeutic agent delivery dosing will understand how to identify dosing regimes that may be used based on the teachings described herein.
  • rapamycin When using rapamycin for the treatment, prevention, inhibition, delaying the onset of, or causing the regression of certain diseases, it may be desirable for delivery of the rapamycin not to commence immediately upon placement of the liquid formulation or composition into the eye region, but for delivery to commence after some delay.
  • delayed release may be useful where the rapamycin inhibits or delays wound healing and delayed release is desirable to allow healing of any wounds occurring upon placement of the liquid formulation or composition.
  • this period of delay before delivery of rapamycin commences may be about 1 hour, about 6 hours, about 12 hours, about 18 hours, about 1 day, about 2 days, about 3 days, about 4 days, about 5 days, about 6 days, about 7 days, about 8 days, about 9 days, about 10 days, about 11 days, about 12 days, about 13 days, about 14 days, about 21 days, about 28 days, about 35 days, or about 42 days. Other delay periods may be possible. Delayed release formulations that may be used are known to people versed in the technology.
  • Retina choroid and “retina choroid tissues,” as used herein, are synonymous and refer to the combined retina and choroid tissues of the eye.
  • Subconjunctival placement or injection refers to placement or injection, respectively, between the sclera and conjunctiva. Subconjunctival is sometimes referred to herein as “sub-conj” administration.
  • the liquid rapamycin formulation described herein may be administered to the vitreous, aqueous humor, sclera, conjunctiva, between the sclera and conjunctiva, the retina choroid tissues, macula, or other area in or proximate to the eye of a human subject, in amounts and for a duration effective to treat, prevent, inhibit, delay the onset of, or cause the regression of CNV and wet AMD.
  • Periocular routes of delivery may deliver rapamycin to the retina without some of the risks of intravitreal delivery.
  • Periocular routes include but are not limited to subconjunctival, subtenon, retrobulbar, peribulbar and posterior juxtascleral delivery.
  • a “periocular” route of administration means placement near or around the eye.
  • liquid formulations described herein are administered intraocularly.
  • Intraocular administration includes placement or injection within the eye, including in the vitreous.
  • an effective amount of rapamycin is placed intravitreally or subconjunctivally to treat, prevent, inhibit, delay the onset of, or cause the regression of CNV, wet AMD, or dry AMD.
  • Intravitreal administration is more invasive than some other types of ocular procedures. Because of the potential risks of adverse effects, intravitreal administration may not be optimal for treatment of relatively healthy eyes. By contrast, periocular administration, such as subconjunctival administration, is much less invasive than intravitreal administration. When rapamycin is delivered by a periocular route, it may be possible to treat patients with healthier eyes than could be treated using intravitreal administration. In some variations, subconjunctival injection is used to prevent or delay onset of a disease or condition of the eye, where the eye of the subject has visual acuity of 20/40 or better.
  • Routes of administration that may be used to administer a liquid formulation include but are not limited to placement of the liquid formulation, for example by injection, into an aqueous medium in the subject, including but not limited to subconjunctival and intravitreal placement, including but not limited to injection.
  • compositions and liquid formulations comprising rapamycin can be administered directly to the eye using a variety of procedures, including but not limited to procedures in which (1) rapamycin is administered by injection, including but not limited to administration by using a syringe and hypodermic needle, an insulin needle, or a Hamilton HPLC-type needle, or (2) a specially designed device is used to inject rapamycin.
  • to “prevent” a disease or condition by administration of rapamycin means that the detectable physical characteristics or symptom of the disease or condition do not develop following administration of rapamycin.
  • rapamycin delay onset of a disease or condition by administration of rapamycin means that at least one detectable physical characteristic or symptom of the disease or condition develops later in time following administration of rapamycin as compared to the progress of the disease or condition without administration of rapamycin.
  • to “treat” a disease or condition by administration of rapamycin means that the progress of at least one detectable physical characteristic or symptom of the disease or condition is slowed, stopped, or reversed following administration of rapamycin as compared to the progress of the disease or condition without administration of rapamycin.
  • a subject having a predisposition for or in need of prevention may be identified by the skilled practitioner by established methods and criteria in the field given the teachings herein.
  • the skilled practitioner may also readily diagnose individuals as in need of inhibition or treatment based upon established criteria in the field for identifying angiogenesis and/or neovascularization given the teachings herein.
  • a “subject” is generally any animal that may benefit from administration of rapamycin as described herein.
  • the rapamycin may be administered to a mammal subject. Unless the context appears otherwise, all of the methods described herein may be performed on a human subject.
  • the rapamycin may be administered to a veterinary animal subject.
  • the rapamycin may be administered to a model experimental animal subject.
  • a solution comprising rapamycin is delivered subconjunctivally or to the vitreous of an eye of a subject, including but not limited to a human subject, to prevent, treat, inhibit, delay onset of, or cause regression of angiogenesis in the eye, including but not limited to treating CNV as observed, for example, in AMD.
  • the solution is used to treat angiogenesis in the eye, including but not limited to treating CNV as observed, for example, in AMD.
  • Rapamycin has been shown to inhibit CNV in rat and mice models, as described in U.S. application Ser. No. 10/665,203, which is incorporated herein by reference in its entirety. Rapamycin has been observed to inhibit MATRIGELTM and laser-induced CNV when administered systemically and subretinally.
  • the formulations and pharmaceutical formulations described herein are used to prevent or delay onset of a disease or condition of the eye where the subject, including but not limited to a human subject, is at heightened risk of developing the disease or condition of the eye.
  • a subject with a heightened risk of developing a disease or condition is a subject with one or more indications that the disease or condition is likely to develop in the particular subject.
  • the subject with a heightened risk of developing wet AMD is a subject with dry AMD in at least one eye.
  • the subject with a heightened risk of developing wet AMD in a fellow eye is a subject with wet AMD in the other eye.
  • the formulations and pharmaceutical formulations described herein are used to prevent or delay onset of CNV in a subject at heightened risk of developing CNV, including but not limited to prevention or delaying onset of CNV in the fellow eye of a subject, including but not limited to a human subject with AMD in one eye.
  • the formulations and pharmaceutical formulations described herein are used to prevent or delay onset of CNV in the fellow eye of a subject with wet AMD in one eye.
  • the formulations and pharmaceutical formulations comprise a limus compound, including but not limited to rapamycin.
  • the formulations and pharmaceutical formulations are administered subconjunctivally to an eye with vision of 20/40 or better.
  • tissue concentrations of rapamycin expressed in units of mass per volume generally refer to tissues that are primarily aqueous such as the vitreous, for example.
  • Tissue concentrations of rapamycin expressed in unit of mass per mass generally refer to other tissues such as the sclera or retina choroid tissues, for example.
  • the liquid rapamycin formulations described herein may deliver rapamycin for an extended period of time.
  • an extended release delivery system is a liquid rapamycin formulation that delivers rapamycin to a subject or to the eye of a subject in an amount sufficient to treat, prevent, inhibit, delay onset of, or cause regression of wet age-related macular degeneration for an extended period of time.
  • the liquid formulation is used to treat wet age-related macular degeneration for an extended period of time.
  • the liquid formulation is used to prevent wet age-related macular degeneration for an extended period of time.
  • the liquid formulation is used to prevent transition of dry AMD to wet AMD for an extended period of time.
  • One concentration of rapamycin that may be used in the methods described herein is one that provides to a subject about 0.01 pg/ml or pg/mg or more of rapamycin at the tissue level. Another concentration that may be used is one that provides to a subject about 0.1 pg/ml or ng/mg or more at the tissue level. Another concentration that may be used is one that provides to a subject about 1 pg/ml or ng/mg or more at the tissue level. Another concentration that may be used is one that provides to a subject about 0.01 ng/ml or ng/mg or more at the tissue level.
  • Another concentration that may be used is one that provides to a subject about 0.1 ng/ml or ng/mg or more at the tissue level. Another concentration that may be used is one that provides to a subject about 0.5 ng/ml or ng/mg or more at the tissue level. Another concentration that may be used is one that provides to a subject about 1 ng/ml or more at the tissue level. Another concentration that may be used is one that provides to a subject about 2 ng/ml or more at the tissue level. Another concentration that may be used is one that provides to a subject about 3 ng/ml or more at the tissue level. Another concentration that may be used is one that provides to a subject about 5 ng/ml or more at the tissue level.
  • Another concentration that may be used is one that provides to a subject about 10 ng/ml or more at the tissue level. Another concentration that may be used is one that provides to a subject about 15 ng/ml or more at the tissue level. Another concentration that may be used is one that provides to a subject about 20 ng/ml or more at the tissue level. Another concentration that may be used is one that provides to a subject about 30 ng/ml or more at the tissue level. Another concentration that may be used is one that provides to a subject about 50 ng/ml or more at the tissue level.
  • One of ordinary skill in the art would know how to arrive at an appropriate concentration depending on the route and duration of administration utilized, given the teachings herein.
  • the amount of rapamycin administered in a liquid formulation is an amount sufficient to treat, prevent, inhibit, delay the onset, or cause regression of the disease or condition of the eye for the required amount of time.
  • the amount of rapamycin administered in the liquid formulation is an amount sufficient to treat the disease or condition of the eye for the required amount of time.
  • a total amount of rapamycin less than about 5 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 5.0 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 4.5 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 4.0 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 3.5 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 3.0 mg is administered subconjunctivally.
  • a total amount of rapamycin less than about 2.5 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 2 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 1.2 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 1.0 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 0.8 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 0.6 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 0.4 mg is administered subconjunctivally. In some variations, a volume of a formulation is administered that contains an amount of rapamycin described herein.
  • a total amount of rapamycin less than about 200 ⁇ g is administered intravitreally. In some variations, a total amount of rapamycin less than about 200 ⁇ g is administered intravitreally. In some variations, a total amount of rapamycin less than about 300 ⁇ g is administered intravitreally. In some variations, a total amount of rapamycin less than about 400 ⁇ g is administered intravitreally. In some variations, a total amount of rapamycin less than about 500 ⁇ g is administered intravitreally. In some variations, a total amount of rapamycin less than about 600 ⁇ g is administered intravitreally. In some variations, a total amount of rapamycin less than about 800 ⁇ g is administered intravitreally.
  • a total amount of rapamycin less than about 1 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 2 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 2.5 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 3 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 3.5 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 4 mg is administered intravitreally. In some variations, a volume of a formulation is administered that contains an amount of rapamycin described herein.
  • a liquid formulation containing a concentration of rapamycin by weight of the total of between about 0.5% and about 6% is subconjunctivally administered to a human subject by administering between about 0.1 ⁇ l and about 200 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing a concentration of rapamycin by weight of the total of between about 0.5% and about 4% is subconjunctivally administered to a human subject by administering between about 1 ⁇ l and about 50 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing a concentration of rapamycin by weight of the total of between about 1.5% and about 3.5% is subconjunctivally administered to a human subject by administering between about 1 ⁇ l and about 15 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing a concentration of rapamycin by weight of the total of about 2% is subconjunctivally administered to a human subject by administering between about 1 ⁇ l and about 15 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing an amount of rapamycin of between about 0.2 ⁇ g and about 4 mg is subconjunctivally administered to a human subject by administering between about 0.1 ⁇ l and about 200 ⁇ l of a liquid formulation described herein. In some variations, a liquid formulation containing an amount of rapamycin of between about 20 ⁇ g and about 2 mg is subconjunctivally administered to a human subject by administering between about 1 ⁇ l and about 100 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing an amount of rapamycin of between about 5 ⁇ g and about 1 mg is subconjunctivally administered to a human subject by administering between about 1 ⁇ l and about 50 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing an amount of rapamycin of between about 20 ⁇ g and about 500 ⁇ g is subconjunctivally administered to a human subject by administering between about 1 ⁇ l and about 25 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing an amount of rapamycin of between about 20 ⁇ g and about 300 ⁇ g is subconjunctivally administered to a human subject by administering between about 1 ⁇ l and about 15 ⁇ l of a liquid formulation described herein.
  • a total amount of rapamycin less than about 200 ⁇ g is administered intravitreally. In some variations, a total amount of rapamycin less than about 200 ⁇ g is administered intravitreally. In some variations, a total amount of rapamycin less than about 300 ⁇ g is administered intravitreally. In some variations, a total amount of rapamycin less than about 400 ⁇ g is administered intravitreally. In some variations, a total amount of rapamycin less than about 500 ⁇ g is administered intravitreally. In some variations, a total amount of rapamycin less than about 600 ⁇ g is administered intravitreally. In some variations, a total amount of rapamycin less than about 800 ⁇ g is administered intravitreally.
  • a total amount of rapamycin less than about 1 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 2 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 2.5 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 3 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 3.5 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 4 mg is administered intravitreally. In some variations, a volume of a formulation is administered that contains an amount of rapamycin described herein.
  • a liquid formulation containing a concentration of rapamycin by weight of the total of between about 0.5% and about 6% is intravitreally administered to a human subject by administering between about 0.1 ⁇ l and about 200 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing a concentration of rapamycin by weight of the total of between about 0.5% and about 4% is intravitreally administered to a human subject by administering between about 1 ⁇ l and about 50 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing a concentration of rapamycin by weight of the total of between about 1.5% and about 3.5% is intravitreally administered to a human subject by administering between about 1 ⁇ l and about 15 ⁇ l of a liquid formulation described herein. In some variations, a liquid formulation containing a concentration of rapamycin by weight of the total of about 2% is intravitreally administered to a human subject by administering between about 1 ⁇ l and about 15 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing an amount of rapamycin of between about 0.2 ⁇ g and about 4 mg is intravitreally administered to a human subject by administering between about 0.1 ⁇ l and about 200 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing an amount of rapamycin of between about 20 ⁇ g and about 2 mg is intravitreally administered to a human subject by administering between about 1 ⁇ l and about 100 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing an amount of rapamycin of between about 20 ⁇ g and about 1 mg is intravitreally administered to a human subject by administering between about 1 ⁇ l and about 50 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing an amount of rapamycin of between about 20 ⁇ g and about 500 ⁇ g is intravitreally administered to a human subject by administering between about 1 ⁇ l and about 25 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing an amount of rapamycin of between about 20 ⁇ g and about 300 ⁇ g is intravitreally administered to a human subject by administering between about 1 ⁇ l and about 15 ⁇ l of a liquid formulation described herein.
  • a formulation as described herein containing an amount of rapamycin of between about 1 ⁇ g and about 5 mg is administered to a human subject for treatment of wet AMD. In some variations a formulation as described herein containing an amount of rapamycin of between about 20 ⁇ g and about 4 mg is administered to a human subject for treatment of wet AMD. In some variations a liquid formulation as described herein containing an amount of rapamycin of between about 20 ⁇ g and about 1.2 mg is administered to a human subject for treatment of wet AMD. In some variations an amount of rapamycin of between about 10 ⁇ g and about 0.5 mg is administered to a human subject for treatment of wet AMD.
  • an amount of rapamycin of between about 10 ⁇ g and 90 ⁇ g is administered to a human subject for treatment of wet AMD. In some variations, an amount of rapamycin of between about 60 ⁇ g and 120 ⁇ g is administered to a human subject for treatment of wet AMD. In some variations, an amount of rapamycin of between about 100 ⁇ g and 400 ⁇ g is administered to a human subject for treatment of wet AMD. In some variations, an amount of rapamycin of between about 400 ⁇ g and 1 mg is administered to a human subject for treatment of wet AMD. In some variations, an amount of rapamycin of between about 1 mg and 5 mg is administered to a human subject for treatment of wet AMD.
  • an amount of rapamycin of between about 3 mg and 7 mg is administered to a human subject for treatment of wet AMD. In some variations, an amount of rapamycin of between about 5 mg and 10 mg is administered to a human subject for treatment of wet AMD.
  • a formulation as described herein containing an amount of rapamycin of between about 1 ⁇ g and about 5 mg is administered to a human subject for prevention of wet AMD. In some variations a formulation as described herein containing an amount of rapamycin of between about 20 ⁇ g and about 4 mg is administered to a human subject for prevention of wet AMD. In some variations a liquid formulation as described herein containing an amount of rapamycin of between about 20 ⁇ g and about 1.2 mg is administered to a human subject for prevention of wet AMD. In some variations an amount of rapamycin of between about 10 ⁇ g and about 0.5 mg is administered to a human subject for prevention of wet AMD.
  • an amount of rapamycin of between about 10 ⁇ g and 90 ⁇ g is administered to a human subject for prevention of wet AMD. In some variations, an amount of rapamycin of between about 60 ⁇ g and 120 ⁇ g is administered to a human subject for prevention of wet AMD. In some variations, an amount of rapamycin of between about 100 ⁇ g and 400 ⁇ g is administered to a human subject for prevention of wet AMD. In some variations, an amount of rapamycin of between about 400 ⁇ g and 1 mg is administered to a human subject for prevention of wet AMD. In some variations, an amount of rapamycin of between about 1 mg and 5 mg is administered to a human subject for prevention of wet AMD.
  • an amount of rapamycin of between about 3 mg and 7 mg is administered to a human subject for prevention of wet AMD. In some variations, an amount of rapamycin of between about 5 mg and 10 mg is administered to a human subject for prevention of wet AMD. In some variations, prevention of wet AMD is prevention of the transition from dry AMD to wet AMD.
  • a formulation as described herein containing an amount of rapamycin of between about 1 ⁇ g and about 5 mg is administered to a human subject for treatment of dry AMD. In some variations a formulation as described herein containing an amount of rapamycin of between about 20 ⁇ g and about 4 mg is administered to a human subject for treatment of dry AMD. In some variations a liquid formulation as described herein containing an amount of rapamycin of between about 20 ⁇ g and about 1.2 mg is administered to a human subject for treatment of dry AMD. In some variations an amount of rapamycin of between about 10 ⁇ g and about 0.5 mg is administered to a human subject for treatment of dry AMD.
  • an amount of rapamycin of between about 10 ⁇ g and 90 ⁇ g is administered to a human subject for treatment of dry AMD. In some variations, an amount of rapamycin of between about 60 ⁇ g and 120 ⁇ g is administered to a human subject for treatment of dry AMD. In some variations, an amount of rapamycin of between about 100 ⁇ g and 400 ⁇ g is administered to a human subject for treatment of dry AMD. In some variations, an amount of rapamycin of between about 400 ⁇ g and 1 mg is administered to a human subject for treatment of dry AMD. In some variations, an amount of rapamycin of between about 1 mg and 5 mg is administered to a human subject for treatment of dry AMD.
  • an amount of rapamycin of between about 3 mg and 7 mg is administered to a human subject for treatment of dry AMD. In some variations, an amount of rapamycin of between about 5 mg and 10 mg is administered to a human subject for treatment of dry AMD.
  • a liquid formulation as described herein containing an amount of rapamycin of between about 1 ⁇ g and about 5 mg is administered to a human subject for treatment of angiogenesis, including but not limited to choroidal neovascularization.
  • a formulation as described herein containing an amount of rapamycin of between about 1 ⁇ g and about 5 mg is administered to a human subject.
  • a formulation as described herein containing an amount of rapamycin of between about 20 ⁇ g and about 4 mg, between about 20 ⁇ g and about 1.2 mg, between about 10 ⁇ g and about 0.5 mg, between about 10 ⁇ g and 90 ⁇ g between about 60 ⁇ g and 120 ⁇ g, between about 100 ⁇ g and 400 ⁇ g, between about 400 ⁇ g and 1 mg, or between about 1 mg and 5 mg is administered to the human subject.
  • any one or more of the rapamycin formulations described herein are administered intravitreally every 3 or more months, every 6 or more months, every 9 or more months, or every 12 or more months, or longer, to treat one or more of choroidal neovascularization, wet AMD, dry AMD, to prevent wet AMD, or to prevent progression of dry AMD to wet AMD.
  • any one or more of the rapamycin formulations described herein are administered subconjunctivally every 3 or more months, every 6 or more months, every 9 or more months, or every 12 or more months, or longer, to treat one or more of choroidal neovascularization, wet AMD, dry AMD, to prevent wet AMD, or to prevent progression of dry AMD to wet AMD.
  • the effect of the rapamycin persists beyond the period during which it is present in the ocular tissues.
  • any one or more of the formulations described herein are administered intravitreally every 3 or more months, every 6 or more months, every 9 or more months, or every 12 or more months, or longer, to prevent one or more of choroidal neovascularization, wet AMD, dry AMD, or to prevent wet AMD.
  • any one or more of the formulations described herein are administered subconjunctivally every 3 or more months, every 6 or more months, every 9 or more months, or every 12 or more months, or longer, to prevent one or more of choroidal neovascularization, wet AMD, dry AMD, or to prevent wet AMD.
  • Rapamycin may, for example, be delivered at a dosage range between about 1 ng/day and about 100 ⁇ g/day, or at dosages higher or lower than this range, depending on the route and duration of administration. In some variations of liquid formulation or composition used in the methods described herein, rapamycin is delivered at a dosage range of between about 0.1 ⁇ g/day and about 10 ⁇ g/day. In some variations of liquid formulation or composition used in the methods described herein, rapamycin is delivered at a dosage range of between about 1 ⁇ g/day and about 5 ⁇ g/day. Dosages of rapamycin for treatment, prevention, inhibition, delay of onset, or cause of regression of various diseases and conditions described herein can be refined by the use of clinical trials.
  • liquid formulations and compositions described herein may be used for delivery to the eye, as one nonlimiting example by ocular or periocular administration, of therapeutically effective amounts of rapamycin for extended periods of time to treat, prevent, inhibit, delay the onset of, or cause regression of CNV, and thus may be used to treat, prevent, inhibit, delay the onset of, or cause regression of wet AMD.
  • the liquid formulations and compositions described herein may be used to deliver therapeutically effective amounts of rapamycin to the eye for a variety of extended time periods including delivery of therapeutic amounts for greater than about 1 week, for greater than about 2 weeks, for greater than about 3 weeks, for greater than about 1 month, for greater than about 3 months, for greater than about 6 months, for greater than about 9 months, for greater than about 1 year.
  • rapamycin When a therapeutically effective amount of rapamycin is administered to a subject suffering from wet AMD, the rapamycin may treat, inhibit, or cause regression of the wet AMD. Different therapeutically effective amounts may be required for treatment, inhibition or causing regression.
  • a subject suffering from wet AMD may have CNV lesions, and it is believed that administration of a therapeutically effective amount of rapamycin may have a variety of effects, including but not limited to causing regression of the CNV lesions, stabilizing the CNV lesion, and preventing progression of an active CNV lesion.
  • rapamycin When a therapeutically effective amount of rapamycin is administered to a subject suffering from dry AMD, it is believed that the rapamycin may prevent or slow the progression of the dry AMD.
  • a liquid rapamycin formulation described herein is administered in combination with other therapeutic agents and therapies, including but not limited to agents and therapies useful for the treatment, prevention, inhibition, delaying onset of, or causing regression of angiogenesis or neovascularization, particularly CNV.
  • agents and therapies useful for the treatment, prevention, inhibition, delaying onset of, or causing regression of angiogenesis or neovascularization, particularly CNV.
  • additional agent or therapy is used to treat regression of angiogenesis or neovascularization, particularly CNV.
  • Non-limiting examples of such additional agents and therapies include pyrrolidine, dithiocarbamate (NF ⁇ B inhibitor); squalamine; TPN 470 analogue and fumagillin; PKC (protein kinase C) inhibitors; Tie-1 and Tie-2 kinase inhibitors; inhibitors of VEGF receptor kinase; proteosome inhibitors such as VELCADETM (bortezomib, for injection; ranibuzumab (LUCENTISTM) and other antibodies directed to the same target; pegaptanib (MACUGENTM); vitronectin receptor antagonists, such as cyclic peptide antagonists of vitronectin receptor-type integrins; ⁇ -v/ ⁇ -3 integrin antagonists; ⁇ -v/ ⁇ -1 integrin antagonists; thiazolidinediones such as rosiglitazone or troglitazone; interferon, including ⁇ -interferon or interferon targeted to CNV by use of dextran and metal coordination
  • ethanol About 320 g of ethanol was sparged with N 2 for about 10 minutes, and then about 40 g of sirolimus was added to the ethanol. The mixture was sonicated for about 20 minutes, by the end of which all of the sirolimus had gone into solution to form a sirolimus stock solution.
  • a diluent non-aqueous liquid component was prepared by sonicating about 1880 g of PEG 400 for about 60 minutes, and then sparging the non-aqueous liquid component with nitrogen for about 10 minutes.
  • sirolimus stock solution and the PEG 400 were then rotated at about room temperature in a rotary evaporator for about 10 minutes to mix the stock solution with the diluent non-aqueous liquid component. After mixing, the solution was sparged with nitrogen for about 10 minutes and blanketed with nitrogen for about 5 minutes. After the solution was sparged and filled with nitrogen, about 240 g of excess ethanol was evaporated from the solution by increasing the solution temperature, maintaining a temperature that did not exceed 40° C. for an extended period of time and continuing to rotate the solution for about 2.5 hours.
  • the resulting solution comprised about 40 g of sirolimus (about 2% w/w), about 80 g of ethanol (about 4% w/w), and about 1880 g of PEG 400 (about 94% w/w).
  • This solution was sparged with nitrogen for about 10 minutes and blanketed with nitrogen for about 5 minutes.
  • the solution was then filtered through a 0.2 micron filter.
  • HPLC vials were filled with 2 ml each of the filtered solution to leave a head space in each container of about 400 ⁇ l. This head space was filled with nitrogen gas and capped.
  • Rapamycin, ethanol and PEG 400 were placed in a container to give final concentrations by weight of about 2.00% w/w rapamycin, about 4.00% w/w ethanol, and about 94.00% w/w PEG 400.
  • the mixture was capped and sonicated for 1-2 hours. The sonication generated heat, with temperatures of up to about 40 or 50° C. Volumes of 1 ⁇ l, 3 ⁇ l, 20 ⁇ l, and 40 ⁇ l formed a non-dispersed mass in the vitreous of rabbit eyes.
  • FIG. 2 depicts the level of rapamycin in the vitreous on a logarithmic scale at 5, 30, 60, 90, and 120 days after injection.
  • FIG. 3 depicts the level of rapamycin in the retina choroid on a logarithmic scale at the same time points.
  • FIG. 2 and FIG. 3 also depict results of similar studies, performed with 40 ⁇ l and 60 ⁇ l injections, described below in Example 4 and Example 5.
  • LCMS liquid chromatography mass spectroscopy
  • the average concentration of rapamycin was calculated by adding the concentrations of rapamycin obtained for each eye from each rabbit, and dividing the total by the number of eyes analyzed.
  • the full vitreous was homogenized and analyzed.
  • the average concentration of the vitreous was calculated by dividing the mass of rapamycin measured by the volume of vitreous analyzed. Where injection is intravitreal, for samples other than the vitreous, the sample did not include the site of administration; thus, this measurement indicated the level of rapamycin delivered to the vitreous via the solution. Where injection was intravitreal, for vitreous samples, the sample is thought to include the site of administration; thus, this measurement indicated the level of rapamycin cleared from the vitreous.
  • the full retina choroid was homogenized and analyzed.
  • the average concentration of the retina choroid was calculated by dividing the mass of rapamycin measured by the mass of retina choroid analyzed.
  • the sample did not include the site of administration; thus, this measurement indicated the level of rapamycin delivered to the retina choroid via the solution.
  • the retina choroid was homogenized and analyzed as described in Example 3, with the samples taken as described for the vitreous above.
  • the retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 5, 30, 60, 90, and 120 days after subconjunctival injection was about 0.14, 0.03, 0.02, 0.02, and 0.01 ng/mg, respectively.
  • FIG. 2 depicts the level of rapamycin in the vitreous on a logarithmic scale at 5, 30, 60, 90, and 120 days after injection.
  • FIG. 3 depicts the level of rapamycin in the retina choroid on a logarithmic scale at the same time points.
  • the vitreous was homogenized and analyzed as described in Example 3. Between two and five rabbit eyes were analyzed at each time point. The vitreous sample did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the vitreous. The average level of rapamycin in the vitreous at 5, 30, 60, 90, and 120 days after subconjunctival injection was about 2.39, 0.65, 0.54, 2.07, and 1.92 ng/ml, respectively.
  • the retina choroid was homogenized and analyzed as described in Example 3, with the samples taken as described for the vitreous above.
  • the retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 5, 30, 60, 90, and 120 days after subconjunctival injection was about 0.47, 0.04, 0.01, 0.05, and 0.0 ng/mg, respectively.
  • FIG. 2 depicts the level of rapamycin in the vitreous on a logarithmic scale at 5, 30, 60, 90, and 120 days after injection.
  • FIG. 3 depicts the level of rapamycin in the retina choroid on a logarithmic scale at the same time points.
  • the vitreous was homogenized and analyzed as described in Example 3. Between two and five rabbit eyes were analyzed at each time point. The vitreous sample did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the vitreous. The average level of rapamycin in the vitreous at 5, 30, 60, 90, and 120 days after subconjunctival injection was about 8.65, 0.29, 0.18, 2.00, 1.41 ng/ml, respectively.
  • the retina choroid was homogenized and analyzed as described in Example 3, with the samples taken as described for the vitreous above.
  • the retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 5, 30, 60, 90, and 120 days after subconjunctival injection was about 0.63, 0.02, 0.02, 0.06, and 0.01 ng/mg, respectively.
  • FIG. 4 depicts the level of rapamycin in the vitreous on a logarithmic scale 5, 30, 60, 90, and 120 days after injection.
  • FIG. 5 depicts the level of rapamycin in the retina choroid on a logarithmic scale at the same time points. For comparison, FIG. 4 and FIG. 5 also depict results of other studies described below in Example 28 and Example 30.
  • the vitreous was homogenized and analyzed as described in Example 3. Between two and five rabbit eyes were analyzed at each time point. The vitreous sample may have included the site of administration. The average level of rapamycin in the vitreous at 5, 30, 60, 90, and 120 days after intravitreal injection was about 162,100; 18,780; 57,830; 94,040; and 13,150 ng/ml, respectively.
  • the retina choroid was homogenized and analyzed as described in Example 3, with the samples taken as described for the vitreous above.
  • the retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 5, 30, 60, 90, and 120 days after intravitreal injection was about 2.84, 2.26, 0.17, 0.22, and 0.05 ng/mg, respectively.
  • FIG. 4 depicts the level of rapamycin in the vitreous on a logarithmic scale 5, 30, 60, 90, and 120 days after injection.
  • FIG. 5 depicts the level of rapamycin in the retina choroid on a logarithmic scale at the same time points.
  • the vitreous was homogenized and analyzed as described in Example 3. Between two and five rabbit eyes were analyzed at each time point. The vitreous sample may have included the site of administration. The average level of rapamycin in the vitreous at 5, 30, 60, 90, and 120 days after intravitreal injection was about 415,600; 4,830; 74,510; 301,300; and 7,854 ng/ml respectively.
  • the retina choroid was homogenized and analyzed as described in Example 3, with the samples taken as described for the vitreous above.
  • the retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 5, 30, 60, 90, and 120 days after intravitreal injection was about 5.36, 0.23, 1.27, 1.08, and 0.08 ng/mg, respectively.

Abstract

Described herein are liquid rapamycin formulations. Described herein are methods of treating or preventing diseases or conditions, such as choroidal neovascularization, wet AMD and dry AMD, and preventing transition of dry AMD to wet AMD, using the liquid rapamycin formulations described herein.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • The present application is a continuation of U.S. patent application Ser. No. 14/151,647, filed Jan. 9, 2014, which is a divisional of U.S. patent application Ser. No. 11/352,092, filed Feb. 9, 2006, now U.S. Pat. No. 8,637,070, which is related to and claims priority from U.S. Provisional Patent Application No. 60/664,040, filed Mar. 21, 2005, U.S. Provisional Patent Application No. 60/664,306, filed Mar. 21, 2005, and U.S. Provisional Patent Application No. 60/651,790, filed Feb. 9, 2005, each of which is incorporated herein by reference in its entirety for all purposes.
  • FIELD
  • Described herein are liquid rapamycin formulations for treatment or prevention of age-related macular degeneration (AMD), by delivery of the liquid rapamycin formulation to the eye of a subject, including but not limited to a human subject.
  • BACKGROUND
  • The retina of the eye contains the cones and rods that detect light. In the center of the retina is the macula lutea, which is about ⅓ to ½ cm in diameter. The macula provides detailed vision, particularly in the center (the fovea), because the cones are higher in density. Blood vessels, ganglion cells, inner nuclear layer and cells, and the plexiform layers are all displaced to one side (rather than resting above the cones), thereby allowing light a more direct path to the cones.
  • Under the retina are the choroid, comprising a collection of blood vessels embedded within a fibrous tissue, and the deeply pigmented epithelium, which overlays the choroid layer. The choroidal blood vessels provide nutrition to the retina (particularly its visual cells).
  • There are a variety of retinal disorders for which there is currently no treatment or for which the current treatment is not optimal. Macular degeneration and choroidal neovascularization are nonlimiting examples of retinal disorders that are difficult to treat with conventional therapies.
  • Age-related macular degeneration (AMD) is the major cause of severe visual loss in the United States for individuals over the age of 60. AMD occurs in either an atrophic or less commonly an exudative form. The atrophic form of AMD is also called “dry AMD,” and the exudative form of AMD is also called “wet AMD.”
  • In exudative AMD, blood vessels grow from the choriocapillaris through defects in Bruch's membrane, and in some cases the underlying retinal pigment epithelium. Organization of serous or hemorrhagic exudates escaping from these vessels results in fibrovascular scarring of the macular region with attendant degeneration of the neuroretina, detachment and tears of the retinal pigment epithelium, vitreous hemorrhage and permanent loss of central vision. This process is responsible for more than 80% of cases of significant visual loss in subjects with AMD. Current or forthcoming treatments include laser photocoagulation, photodynamic therapy, treatment with pegylated aptamers, treatment with VEGF antibody fragments, and treatment with certain small molecule agents.
  • Several studies have recently described the use of laser photocoagulation in the treatment of initial or recurrent neovascular lesions associated with AMD (Macular Photocoagulation Study Groups (1991) in Arch. Ophthal. 109:1220; Arch. Ophthal. 109:1232; and Arch. Ophthal. 109:1242). Unfortunately, AMD subjects with subfoveal lesions subjected to laser treatment experienced a rather precipitous reduction in visual acuity (mean 3 lines) at 3 months follow-up. Moreover, at two years post-treatment treated eyes had only marginally better visual acuity than their untreated counterparts (means of 20/320 and 20/400, respectively). Another drawback of the procedure is that vision after surgery is immediately worse.
  • Photodynamic therapy (PDT) is a form of phototherapy, a term encompassing all treatments that use light to produce a beneficial reaction in a subject. Optimally, PDT destroys unwanted tissue while sparing normal tissue. Typically, a compound called a photosensitizer is administered to the subject. Usually, the photosensitizer alone has little or no effect on the subject. When light, often from a laser, is directed onto a tissue containing the photosensitizer, the photosensitizer is activated and begins destroying targeted tissue. Because the light provided to the subject is confined to a particularly targeted area, PDT can be used to selectively target abnormal tissue, thus sparing surrounding healthy tissue. PDT is currently used to treat retinal diseases such as AMD. PDT is currently the mainstay of treatment for subfoveal choroidal neovascularization in subjects with AMD (Photodynamic Therapy for Subfoveal Choroidal Neovascularization in Age Related Macular Degeneration with Verteporfin by TAP Study Group (1999) in Arch. Ophthalmol. 117:1329-1345).
  • Choroidal neovascularization (CNV) has proven to be recalcitrant to treatment in most cases. Conventional laser treatment can ablate CNV and help to preserve vision in selected cases not involving the center of the retina, but this is limited to only about 10% of the cases. Unfortunately, even with successful conventional laser photocoagulation, the neovascularization recurs in about 50-70% of eyes (50% over 3 years and >60% at 5 years). (Macular Photocoagulation Study Group (1986) in Arch. Ophthalmol. 204:694-701). In addition, many subjects who develop CNV are not good candidates for laser therapy because the CNV is too large for laser treatment, or the location cannot be determined so that the physician cannot accurately aim the laser. Photodynamic therapy, although utilized in up to 50% of new cases of subfoveal CNV has only marginal benefits over natural history, and generally delays progression of visual loss rather than improving vision which is already decreased secondary to the subfoveal lesion. PDT is neither preventive nor definitive. Several PDT treatments are usually required per subject and additionally, certain subtypes of CNV fare less well than others.
  • Thus, there remains a need for methods, compositions, and formulations that may be used to optimally prevent or significantly inhibit choroidal neovascularization and to prevent and treat AMD in its wet and dry forms.
  • In addition to AMD, choroidal neovascularization is associated with such retinal disorders as presumed ocular histoplasmosis syndrome, myopic degeneration, angioid streaks, idiopathic central serous chorioretinopathy, inflammatory conditions of the retina and or choroid, and ocular trauma. Angiogenic damage associated with neovascularization occurs in a wide range of disorders including diabetic retinopathy, venous occlusions, sickle cell retinopathy, retinopathy of prematurity, retinal detachment, ocular ischemia and trauma.
  • There have been many attempts to treat CNV and its related diseases and conditions, as well as other conditions such as macular edema and chronic inflammation, with pharmaceuticals. For example, use of rapamycin to inhibit CNV and wet AMD has been described in U.S. application Ser. No. 10/665,203, which is incorporated herein by reference in its entirety. The use of rapamycin to treat inflammatory diseases of the eye has been described in U.S. Pat. No. 5,387,589, the content of which is incorporated herein by reference in its entirety. U.S. Patent Application No. 60/503,840 and Ser. No. 10/945,682 are further incorporated herein by reference in their respective entireties. Another reference whose content is incorporated herein by reference in its entirety is U.S. Pat. No. 6,376,517.
  • Particularly for chronic diseases, including those described herein, there is a great need for long acting methods for delivering therapeutic agents to the eye, such as to the posterior segment to treat CNV in such diseases as AMD. Formulations with extended delivery of therapeutic agent are more comfortable and convenient for a subject, due to a diminished frequency of ocular injections of the therapeutic agent.
  • Direct delivery of therapeutic agents to the eye rather than systemic administration may be advantageous because the therapeutic agent concentration at the site of action is increased relative to the therapeutic agent concentration in a subject's circulatory system. Additionally, therapeutic agents may have undesirable side effects when delivered systemically to treat posterior segment disease. Thus, localized drug delivery may promote efficacy while decreasing side effects and systemic toxicity.
  • SUMMARY
  • The methods and liquid rapamycin formulations described herein allow delivery of rapamycin to the eye of a subject. Unless the context indicates otherwise, it is envisioned that the subjects on whom all of the methods of treatment may be performed include human subjects.
  • Described herein are methods and liquid rapamycin formulations for delivering rapamycin for extended periods of time which can be used for the treatment, prevention, inhibition, delaying onset of, or causing regression of diseases and conditions including CNV, wet AMD, and dry AMD.
  • As described in further detail in the Detailed Description section, the methods and liquid rapamycin formulations may also be used for delivery to a subject or to the eye of a subject of therapeutically effective amounts of rapamycin for the treatment, prevention, inhibition, delaying of the onset of, or causing the regression of wet or dry AMD. In some variations, the methods, compositions, and liquid formulations are used to treat wet AMD. In some variations, the methods, compositions, and liquid formulations are used to prevent wet AMD. In some variations, the methods, compositions, and liquid formulations are used to treat dry AMD. In some variations, the methods, compositions, and liquid formulations are used to prevent dry AMD. In some variations, the methods, compositions, and liquid formulations are used to prevent transition from dry AMD to wet AMD. The methods, compositions and liquid formulations may also be used for delivery to a subject or to the eye of a subject of therapeutically effective amounts of rapamycin for the treatment, prevention, inhibition, delaying of the onset of, or causing the regression of CNV. In some variations, the methods, compositions and liquid formulations are used to treat CNV. The methods, compositions and liquid formulations may also be used for delivery to a subject or to the eye of a subject of therapeutically effective amounts of rapamycin for the treatment, prevention, inhibition, delaying of the onset of, or causing the regression of angiogenesis in the eye. In some variations, the methods, compositions and liquid formulations are used to treat angiogenesis. Other diseases and conditions that may be treated, prevented, inhibited, have onset delayed, or caused to regress using rapamycin are described in the Diseases and Conditions section of the Detailed Description.
  • In some variations, the liquid formulations described herein form a non-dispersed mass when placed into a rabbit eye, including but not limited to the vitreous of a rabbit eye.
  • The liquid rapamycin formulations may generally be administered in any volume that has the desired effect. In some variations a volume of a liquid rapamycin formulation is administered to the vitreous and the liquid formulation is less than one half the volume of the vitreous. In some variations, formation of a non-dispersed mass after placement of the liquid rapamycin formulation in a rabbit eye or a subject depends upon the volume of the liquid rapamycin formulation injected or placed in the rabbit eye or subject. The liquid rapamycin formulations described herein are generally administered intraocularly, periocularly, intravitreally, or between the sclera and conjunctiva.
  • The liquid rapamycin formulations described herein may deliver rapamycin for an extended period of time. One nonlimiting example of such an extended release delivery system is a liquid rapamycin formulation that delivers rapamycin to the eye of human a subject in an amount sufficient to treat, prevent, inhibit, delay onset of, or cause regression of wet or dry AMD, or CNV, in a subject for an extended period of time. In some variations, the liquid rapamycin formulation is used to treat wet or dry AMD or CNV in a human subject. In some variations, the liquid rapamycin formulation is used to prevent transition of dry AMD to wet AMD in a human subject. In some variations, the liquid rapamycin formulation delivers an amount of rapamycin effect to treat or prevent wet or dry AMD or CNV for at least about one, about two, about three, about six, about nine, or about twelve months. Other extended periods of release are described in the Detailed Description.
  • Described herein is a liquid formulation comprising about 2% (w/w) of rapamycin, about 94% (w/w) PEG 400, and about 4% (w/w) of ethanol. Described herein is a method for treating wet age-related macular degeneration in a human subject, the method comprising administering to the human subject by intraocular or periocular delivery a volume of a liquid formulation comprising about 2% (w/w) of rapamycin, about 94% (w/w) PEG 400, and about 4% (w/w) of ethanol containing an amount of rapamycin effective to treat wet age-related macular degeneration in the human subject. Described herein is a method for preventing wet age-related macular degeneration in a human subject, the method comprising administering to the human subject by intraocular or periocular delivery a volume of a liquid formulation comprising about 2% (w/w) of rapamycin, about 94% (w/w) PEG 400, and about 4% (w/w) of ethanol containing an amount of rapamycin effective to prevent wet age-related macular degeneration in the human subject. In some variations the human subject is identified as being at heightened risk of developing wet age-related macular degeneration in the eye to which the liquid formulation is administered. In some variations the human subject has dry age-related macular degeneration in at least one eye. In some variations the human subject has wet age-related macular degeneration in one eye and the liquid formulation is administered to the eye without wet age-related macular degeneration.
  • Described herein are methods for treating dry age-related macular degeneration in a human subject comprising administering to the human subject by intraocular or periocular delivery a volume of a liquid formulation comprising about 2% (w/w) of rapamycin, about 94% (w/w) PEG 400, and about 4% (w/w) of ethanol.
  • Described herein are methods for preventing wet age-related macular degeneration in a human subject having dry age-related macular degeneration, the method comprising administering to a human subject having dry age-related macular degeneration a volume of a liquid formulation comprising about 2% (w/w) of rapamycin, about 94% (w/w) PEG 400, and about 4% (w/w) of ethanol, wherein the volume is administered by intraocular or periocular delivery.
  • In some variations, the volume of a liquid formulation is administered to the human subject by placement in the vitreous and the volume of liquid formulation contains less than about 3 mg of rapamycin. In some variations, the volume of liquid formulation contains less than about 2.5 mg of rapamycin. In some variations, the volume of liquid formulation contains less than about 2 mg of rapamycin. In some variations, the volume of liquid formulation contains between about 20 μg and about 2.5 mg of rapamycin. In some variations, the volume of liquid formulation is administered to the human subject by placement between the sclera and conjunctiva and the volume of liquid formulation contains less than about 5 mg of rapamycin. In some variations, the volume of liquid formulation contains less than about 3.5 mg of rapamycin. In some variations, the volume of liquid formulation contains less than about 3 mg of rapamycin. In some variations, the volume of liquid formulation contains between about 20 μg and about 5 mg of rapamycin.
  • In some variations, the volume of liquid formulation is administered to the human subject by placement in the vitreous of the human subject and the volume of liquid formulation contains less than about 100 μL of PEG 400. In some variations, the volume of liquid formulation contains less than about 50 μL of PEG 400. In some variations, wherein the volume of liquid formulation contains less than about 30 μL of PEG 400.
  • In some variations, the volume of liquid formulation is administered to the human subject by placement between the sclera and conjunctiva and the volume of liquid formulation contains less than about 160 μL of PEG 400. In some variations, the volume of liquid formulation contains less than about 120 μL of PEG 400. In some variations, wherein the volume of liquid formulation contains less than about 90 μL of PEG 400.
  • In some variations, a volume of a liquid formulation described herein of less than about 50 μL of liquid formulation is administered to the human subject by placement in the vitreous of the human subject. In some variations, a volume of less than about 20 μL of liquid formulation is administered to the human subject. In some variations, a volume of less than about 10 μL of liquid formulation is administered to the human subject. In some variations, a volume of less than about 5 μL of liquid formulation is administered to the human subject. In some variations, a volume of less than about 1 μL of liquid formulation is administered to the human subject.
  • In some variations, a volume of less than about 200 μL of liquid formulation is administered to the human subject by placement between the sclera and conjunctiva of the human subject. In some variations, a volume of less than about 100 μL of liquid formulation is administered to the human subject. In some variations, a volume of less than about 50 μL of liquid formulation is administered to the human subject. In some variations, a volume of less than about 20 μL of liquid formulation is administered to the human subject. In some variations, a volume of less than about 10 μL of liquid formulation is administered to the human subject. In some variations, a volume of less than about 5 μL of liquid formulation is administered to the human subject.
  • In some variations, a volume of a liquid formulation is administered to the human subject by placement between the sclera and conjunctiva and the human subject to which the volume is administered has visual acuity of at least about 20/40. In some variations, the human subject to which the volume is administered has visual acuity of at least about 20/40 in the eye to which the volume is administered.
  • Described herein are liquid formulations comprising rapamycin, a non-aqueous liquid component, and optionally a water component, wherein the rapamycin is at least about 0.1% (w/w) of the liquid formulation and the non-aqueous liquid component is at least about 90% (w/w) of the liquid formulation; and wherein the liquid formulation when injected into the vitreous of a rabbit eye delivers an amount of rapamycin sufficient to achieve an average concentration of rapamycin in the retina choroid of the rabbit eye of at least about 0.01 ng/mg for a period of time of at least about 30 or at least about 120 days following administration of the liquid formulation. In some variations, the liquid formulation when injected into the vitreous of a rabbit eye delivers an amount of rapamycin sufficient to achieve an average concentration of rapamycin in the retina choroid of the rabbit eye of at least about 0.1 ng/mg for a period of time of at least about 30 or at least about 90 days following administration of the liquid formulation.
  • Described herein are liquid formulations comprising rapamycin, a non-aqueous liquid component, and optionally a water component, wherein the rapamycin is at least about 0.1% (w/w) of the liquid formulation and the non-aqueous liquid component is at least about 90% (w/w) of the liquid formulation; and wherein the liquid formulation when injected into the vitreous of a rabbit eye delivers an amount of rapamycin sufficient to achieve an average concentration of rapamycin in the vitreous of the rabbit eye of at least about 1000 ng/ml for a period of time of at least about 30 or at least about 120 days following administration of the liquid formulation.
  • Described herein are liquid formulations comprising rapamycin, a non-aqueous liquid component, and optionally a water component, wherein the rapamycin is at least about 0.1% (w/w) of the liquid formulation and the non-aqueous liquid component is at least about 90% (w/w) of the liquid formulation; and wherein the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers an amount of rapamycin sufficient to achieve an average concentration of rapamycin in the vitreous of the rabbit eye of at least about 0.01 ng/ml for a period of time of at least about 30 or at least about 120 days following administration of the liquid formulation. In some variations, the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers an amount of rapamycin sufficient to achieve an average concentration of rapamycin in the vitreous of the rabbit eye of at least about 0.1 ng/ml for a period of time of at least about 30 or at least about 120 days following administration of the liquid formulation.
  • Described herein are liquid formulations comprising rapamycin, a non-aqueous liquid component, and optionally a water component, wherein the rapamycin is at least about 0.1% (w/w) of the liquid formulation and the non-aqueous liquid component is at least about 90% (w/w) of the liquid formulation; and wherein the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers an amount of rapamycin sufficient to achieve an average concentration of rapamycin in the retina choroid of the rabbit eye of at least about 0.001 ng/mg for a period of time of at least about 30 or at least about 120 days following administration of the liquid formulation. In some variations, the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers an amount of rapamycin sufficient to achieve an average concentration of rapamycin in the retina choroid of the rabbit eye of at least about 0.005 ng/mg for a period of time of at least about 30 or at least about 120 days following administration of the liquid formulation. In some variations, the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers an amount of rapamycin sufficient to achieve an average concentration of rapamycin in the retina choroid of the rabbit eye of at least about 0.01 ng/mg for a period of time of at least about 30 days following administration of the liquid formulation.
  • Described herein are liquid formulations wherein the rapamycin is less than about 6% (w/w) of the liquid formulation, the water component is less than about 5% (w/w) of the liquid formulation, and the non-aqueous liquid component is selected from the group consisting of any one or more of glycerin, dimethylsulfoxide, N-methylpyrrolidone, dimethyl acetamide (DMA), dimethyl formamide, glycerol formal, ethoxy diglycol, triethylene glycol dimethyl ether, triacetin, diacetin, corn oil, acetyl triethyl citrate (ATC), ethyl lactate, polyglycolated capryl glyceride, γ butyrolactone, dimethyl isosorbide, or benzyl alcohol.
  • Described herein are unit dosage forms comprising a volume of a liquid formulation as described herein, wherein the volume of liquid formulation contains less than about 4 mg, less than about 3.5 mg, less than about 3 mg, less than about 2.5 mg, less than about 2 mg, between about 20 μg and about 2.5 mg, or between about 20 μg and about 5 mg of rapamycin.
  • Described herein are unit dosage forms comprising a volume of a liquid formulation as described herein, wherein the non-aqueous liquid component is polyethylene glycol and the volume of liquid formulation contains less than about 160 μL, less than about 120 μL, less than about 90 μL, less than about 50 μL of polyethylene glycol, or less than about 30 μL of polyethylene glycol.
  • Described herein are unit dosage forms comprising a volume of less than about 200 μL, less than about 100 μL, less than about 50 μL, less than about 20 μL, less than about 10 μL, less than about 5 μL, or less than about 1 μL of a liquid formulation described herein.
  • Described herein are methods for treating wet age-related macular degeneration in a human subject, the method comprising administering to the human subject by intraocular or periocular delivery a volume of a liquid formulation described herein containing an amount of rapamycin effective to treat wet age-related macular degeneration in the human subject.
  • Described herein are methods for preventing wet age-related macular degeneration in a human subject, the method comprising administering to the human subject by intraocular or periocular delivery a volume of the liquid formulation described herein containing an amount of rapamycin effective to prevent wet age-related macular degeneration in the human subject. In some variations the human subject is identified as being at heightened risk of developing wet age-related macular degeneration in the eye to which the liquid formulation is administered. In some variations the human subject identified as being at heightened risk of developing wet age-related macular degeneration has dry age-related macular degeneration in at least one eye. In some variations the human subject identified as being at heightened risk of developing wet age-related macular degeneration has wet age-related macular degeneration in one eye and the liquid formulation is administered to the eye without wet age-related macular degeneration.
  • Described herein are methods for treating dry age-related macular degeneration in a human subject, the method comprising administering to the human subject by intraocular or periocular delivery a volume of a liquid formulation described herein containing an amount of rapamycin effective to treat dry age-related macular degeneration in the human subject.
  • Described herein are methods for preventing wet age-related macular degeneration in a human subject having dry age-related macular degeneration, the method comprising administering to a human subject having dry age-related macular degeneration a volume of a liquid formulation described herein containing an amount of rapamycin effective to prevent wet age-related macular degeneration in the human subject, wherein the volume of the liquid formulation is administered by intraocular or periocular delivery.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A-1C schematically depict formation of a non-dispersed mass, after injection of a liquid formulation into the vitreous of an eye, as it is believed to occur in some variations.
  • FIG. 2 depicts the level of rapamycin in the vitreous of rabbit eyes (ng/ml) at 5, 30, 60, 90, and 120 days after subconjunctival injection of 20 μl, 40 μl, and 60 μl doses of a 2% solution of rapamycin in ethanol and PEG 400.
  • FIG. 3 depicts the level of rapamycin in the retina choroid tissues of rabbit eyes (ng/mg) at 5, 30, 60, 90, and 120 days after subconjunctival injection of 20 μl, 40 μl, and 60 μl doses of a 2% solution of rapamycin in ethanol and PEG 400.
  • FIG. 4 depicts the level of rapamycin in the vitreous of rabbit eyes (ng/ml) at 5, 30, 60, 90, and 120 days after intravitreal injection of 20 μl and 40 μl doses of a 2% solution of rapamycin in ethanol and PEG 400.
  • FIG. 5 depicts the level of rapamycin in the retina choroid tissues of rabbit eyes (ng/mg) at 5, 30, 60, 90, and 120 days after intravitreal injection of 20 μl and 40 μl doses of a 2% solution of rapamycin in ethanol and PEG 400.
  • DETAILED DESCRIPTION
  • Described in this section are liquid rapamycin formulations and methods relating to delivery of rapamycin to a subject or to the eye of a subject. These liquid rapamycin formulations and methods may be used for the treatment, prevention, inhibition, delaying onset of, or causing regression of diseases and conditions of the eye including but not limited to choroidal neovascularization; macular degeneration and age-related macular degeneration, including wet AMD and dry AMD. In some variations, the liquid rapamycin formulations and methods are used for treatment of choroidal neovascularization; macular degeneration and age-related macular degeneration, including wet AMD and dry AMD. In some variations, the liquid rapamycin formulations and methods are used for prevention of choroidal neovascularization; macular degeneration and age-related macular degeneration, including wet AMD and dry AMD.
  • In this detailed description section are described (1) liquid rapamycin formulations, (2) extended delivery of rapamycin, (3) routes of administration for delivery of liquid rapamycin formulations, and (4) treatment and prevention of CNV and wet and dry AMD by delivery of rapamycin to a subject or to the eye of a subject for an extended period of time using the described liquid rapamycin formulations.
  • The term “about,” as used herein, generally refers to the level of accuracy that is obtained when the methods described herein, such as the methods in the examples, are used. However, by “about” a certain amount of a component of a formulation is meant 90-110% of the amount stated.
  • Liquid Rapamycin Formulations
  • The terms rapamycin and rapa are used interchangeably herein with the term sirolimus. In some variations the liquid rapamycin formulations form a non-dispersed mass relative to a surrounding medium when placed in the vitreous of a rabbit eye.
  • The liquid formulations described herein contain rapamycin and may generally be any liquid formulation, including but not limited to solutions, suspensions, and emulsions.
  • The liquid rapamycin formulations may generally be administered in any volume that has the desired effect; in some variations a liquid rapamycin formulation is administered to the vitreous and the liquid rapamycin formulation is less than one half the volume of the vitreous of the eye to which it is being administered. In some variations the liquid rapamycin formulation is administered between the sclera and conjunctiva in a volume less than about 50 μl.
  • When a certain volume is administered, it is understood that there is some imprecision in the accuracy of various devices that may be used to administer the liquid formulation. Where a certain volume is specified, it is understood that this is the target volume. However, certain devices such as insulin syringes are inaccurate to greater than 10%, and sometimes inaccurate to greater than 20% or more. Hamilton HPLC type syringes are generally considered precise to within 10%, and are recommended for volumes at or below 10 μl.
  • In some variations, a volume of a liquid rapamycin formulation described herein is administered to the vitreous of a human subject's eye that is less than about 500 μl, less than about 400 μl, less than about 300 μl, less than about 200 μl, less than about 100 μl, less than about 90 μl, less than about 80 μl, less than about 70 μl, less than about 60 μl, less than about 50 μl, less than about 40 μl, less than about 30 μl, less than about 20 μl, less than about 10 μl, less than about 5 μl, less than about 3 μl, or less than about 1 μl. In some variations, a volume of a liquid rapamycin formulation described herein is administered to the vitreous of a human subject's eye that is less than about 20 μl. In some variations, a volume of a liquid rapamycin formulation described herein is administered to the vitreous that is less than about 10 μl. In some variations, a volume of a liquid rapamycin formulation described herein is administered to the vitreous of a human subject's eye that is between about 0.1 μl and about 200 μl, between about 50 μl and about 200 μl, between about 50 μl and about 150 μl, between about 0.1 μl and about 100 μl, between about 0.1 μl and about 50 μl, between about 1 μl and about 40 μl, between about 1 μl and about 30 μl, between about 1 μl and about 20 μl, between about 1 μl and about 10 μl, or between about 1 μl and about 5 μl. In some variations, a volume of a liquid rapamycin formulation described herein is administered to the vitreous of a human subject's eye that is between about 1 μl and about 10 μl. In some variations, a volume of a liquid rapamycin formulation described herein is administered to the vitreous of a rabbit eye or a subject's eye that is between about 1 μl and about 5 μl. In some variations, a volume of a liquid rapamycin formulation described herein is administered to the vitreous of a rabbit eye or a subject's eye that is between about 1 μl and about 5 μl. In some variations, a volume of a liquid rapamycin formulation described herein is administered to the vitreous of a human subject's eye that is between about 0.1 μl and about 200 μl.
  • In some variations, a total volume of a liquid rapamycin formulation described herein is subconjunctivally administered to a human subject's eye that is less than about 1000 μl, less than about 900 μl, less than about 800 μl, less than about 700 μl, less than about 600 μl, less than about 500 μl, less than about 400 μl, less than about 300 μl, less than about 200 μl, less than about 100 μl, less than about 90 μl, less than about 80 μl, less than about 70 μl, less than about 60 μl, less than about 50 μl, less than about 40 μl, less than about 30 μl, less than about 20 μl, less than about 10 μl, less than about 5 μl, less than about 3 μl, or less than about 1 μl. In some variations, a volume of a liquid rapamycin formulation described herein is subconjunctivally administered to a human subject's eye that is less than about 20 μl. In some variations, a volume of a liquid rapamycin formulation described herein is subconjunctivally administered to a human subject's eye that is less than about 10 μl. In some variations, a volume of a liquid rapamycin formulation described herein is subconjunctivally administered to a human subject's eye that is between about 0.1 μl and about 200 μl, between about 50 μl and about 200 μl, between about 200 μl and about 300 μl, between about 300 μl and about 400 μl, between about 400 μl and about 500 μl, between about 500 μl and about 600 μl, between about 600 μl and about 700 μl, between about 700 μl and about 800 μl, between about 800 μl and about 900 μl, between about 900 μl and about 1000 μl, between about 50 μl and about 150 μl, between about 0.1 μl and about 100 μl, between about 0.1 μl and about 50 μl, between about 1 μl and about 40 μl, between about 1 μl and about 30 μl, between about 1 μl and about 20 μl, between about 1 μl and about 10 μl, or between about 1 μl and about 5 μl. In some variations, a volume of a liquid rapamycin formulation described herein is subconjunctivally administered to a human subject's eye that is between about 1 μl and about 10 μl. In some variations, a volume of a liquid rapamycin formulation described herein is subconjunctivally administered to a human subject's eye that is between about 1 μl and about 5 μl. In some variations, a volume of a liquid rapamycin formulation described herein is administered to subconjunctivally administered to a human subject's eye that is between about 1 μl and about 5 μl. In some variations, a volume of a liquid rapamycin formulation described herein is administered to subconjunctivally administered to a human subject's eye that is between about 0.1 μl and about 200 μl.
  • In some variations the liquid rapamycin formulations described herein contain no greater than about 250 μl of polyethylene glycol. In some variations the liquid rapamycin formulation described herein contain no greater than about 250 μl, no greater than about 200 μl, no greater than about 150 μl, no greater than about 125 μl, no greater than about 100 μl, no greater than about 75 μl, no greater than about 50 μl, no greater than about 25 μl, no greater than about 20 μl, no greater than about 15 μl, no greater than about 10 μl, no greater than about 7.5 μl, no greater than about 5 μl, no greater than about 2.5 μl, no greater than about 1.0 μl, or no greater than about 0.5 μl of polyethylene glycol. Formulations containing polyethylene glycol may contain, for example, PEG 300 or PEG 400.
  • In some variations, the liquid rapamycin formulation described herein have a viscosity of between 40% and 120% centipoise. In some variations the liquid rapamycin formulations described herein have a viscosity of between 60% and 80% centipoise.
  • In some variations the liquid rapamycin formulations described herein are administered in multiple subconjunctival locations within a period of time of one another, including but not limited to within an hour of one another. Without being bound by theory, it is thought that such multiple administrations, such as multiple injections, allow for a greater total dose to be administered subconjunctivally than a single dose due to a potentially limited ability of the local ocular tissues to absorb larger volumes.
  • Some liquid rapamycin formulations described herein comprise a non-aqueous liquid component. The non-aqueous liquid component may comprise a single non-aqueous liquid component or a combination of non-aqueous liquid component. In some variations, the non-aqueous liquid component is glycerin, dimethylsulfoxide, N-methylpyrrolidone, ethanol, isopropyl alcohol, polyethylene glycol of various molecular weights, including but not limited to PEG 300 and PEG 400, or propylene glycol, or a mixture of one or more thereof.
  • Liquid rapamycin formulations may optionally further comprise stabilizers, excipients, gelling agents, adjuvants, antioxidants, and/or other components as described herein.
  • In some variations all components in the liquid formulation, other than the therapeutic agent, are liquid at room temperature.
  • In some variations the rapamycin in the liquid formulation contains between about 0.01 to about 10% of the total weight of the composition; between about 0.05 to about 10%; between about 0.1 to about 5%; between about 1 to about 5%; or between about 5 to about 15%; between about 8 to about 10%; between about 0.01 to about 1%; between about 0.05 to about 5%; between about 0.1 to about 0.2%; between about 0.2 to about 0.3%; between about 0.3 to about 0.4%; between about 0.4 to about 0.5%; between about 0.5 to about 0.6%; between about 0.6 to about 0.7%; between about 0.7 to about 1%; between about 1 to about 3%; or between about 1.5 to about 2.5%. In some variations the liquid formulations described herein contain between about 0.1 to about 5% w/w of rapamycin.
  • In some variations the non-aqueous liquid component is, by way of nonlimiting example, between about 0.01 to about 99.9% of the total weight of the composition; between about 0.1 to about 99%; between about 75 to about 99.99%; between about 85 to about 99.99%; or between about 55 to about 95% w/w. In some variations the non-aqueous liquid component is between about 85 to about 99.99% w/w.
  • In some variations there is optionally a water component. In some variations the water component is less than about 30%, less than about 25%, less than about 20%, less than about 15%, less than about 10%, less than about 7.5%, less than about 5%, less than about 4%, less than about 3%, less than about 2%, less than about 1%, or less than about 0.5%. In some variations the water component is less than about 5% w/w.
  • Some variations of liquid formulations includes rapamycin between about 0.01 and about 5% by weight of the total, and a non-aqueous liquid component between about 95% and about 99.99% by weight of the total. In some variations the formulations further comprise stabilizing agents, excipients, adjuvants, or antioxidants, between about 0 and about 5% by weight of the total.
  • In some variations, a liquid formulation may contain about 2% w/w rapamycin and about 98% w/w of a non-aqueous liquid component. In some variations, the non-aqueous liquid component comprises ethanol. In some variations, the non-aqueous liquid component comprises a liquid polyethylene glycol, including but not limited to PEG 400.
  • Non-aqueous liquid components that may be used include but are not limited to any non-aqueous liquid component as above, including but not limited to any one or more of DMSO, glycerin, ethanol, methanol, isopropyl alcohol; castor oil, propylene glycol, polyvinylpropylene, polysorbate 80, benzyl alcohol, dimethyl acetamide (DMA), dimethyl formamide (DMF), glycerol formal, ethoxy diglycol (Transcutol, Gattefosse), tryethylene glycol dimethyl ether (Triglyme), dimethyl isosorbide (DMI), γ-butyrolactone, N-Methyl-2-pyrrolidinone (NMP), polyethylene glycol of various molecular weights, including but not limited to PEG 300 and PEG 400, and polyglycolated capryl glyceride (Labrasol, Gattefosse).
  • Further non-aqueous liquid components include but are not limited to C6-C24 fatty acids, oleic acid, Imwitor 742, Capmul, F68, F68 (Lutrol), PLURONICS including but not limited to PLURONICS F108, F127, and F68, Poloxamers, Jeffamines), Tetronics, F127, beta-cyclodextrin, CMC, polysorbitan 20, Cavitron, softigen 767, captisol, and sesame oil.
  • Other methods that may be used to dissolve rapamycin are described in Solubilization of Rapamycin, Int'l J. Pharma 213 (2001) 25-29, the content of which is incorporated herein in its entirety.
  • As a nonlimiting example, rapamycin can be dissolved in 5% DMSO or methanol in a balanced salt solution. The rapamycin solution can be unsaturated, a saturated or a supersaturated solution of rapamycin. The rapamycin solution can be in contact with solid rapamycin. In one nonlimiting example, rapamycin can be dissolved in a concentration of up to about 400 mg/ml. Rapamycin can also, for example, be dissolved in propylene glycol esterified with fatty acids such as oleic, stearic, palmic, capric, linoleic, etc.
  • Many other non-aqueous liquid components are possible. Those of ordinary skill in the art, given the teachings herein will find it routine to identify non-aqueous liquid components for use in the liquid rapamycin formulations described herein.
  • Non-aqueous liquid components for use in the liquid formulations can be determined by a variety of methods known in the art, including but not limited to (1) theoretically estimating their solubility parameter values and choosing the ones that match with the therapeutic agent, using standard equations in the field; and (2) experimentally determining the saturation solubility of therapeutic agent in the non-aqueous liquid components, and choosing the one(s) that exhibit the desired solubility.
  • In some variations, the liquid rapamycin formulations form a non-dispersed mass when placed into an aqueous medium. As used herein, a “non-dispersed mass” refers to the structure formed when the liquid formulation is placed into an environment, relative to the environment in which it is placed. Generally, a non-dispersed mass of a liquid formulation is anything other than a homogeneous distribution of the liquid formulation in the surrounding medium. The non-dispersed mass may, for instance, be indicated by visually inspecting the administered liquid formulation and characterizing its appearance relative to the surrounding medium.
  • In some variations, the aqueous medium is water. In some variations, the water is deionized, distilled, sterile, or tap water, including but not limited to tap water available at the place of business of MacuSight in Union City, Calif.
  • In some variations, the aqueous medium is an aqueous medium of a subject. In some variations the aqueous medium is an aqueous medium of the eye of a subject, including but not limited to the vitreous of an eye of a subject. In some variations the subject is a human subject. In some variations the aqueous medium is the vitreous of a rabbit eye.
  • The liquid formulations described herein may generally be of any geometry or shape after administration to a subject or the eye of a subject. The non-dispersed mass-forming liquid formulations may, for instance, appear as a compact spherical mass when administered to the vitreous. In other instances, the liquid formulation may appear as a non-dispersed mass relative to the surrounding medium, wherein the non-dispersed mass is less clearly defined and the geometry is more amorphous than spherical.
  • The non-dispersed mass-forming liquid formulations described herein may form a non-dispersed mass immediately upon placement in the medium or the non-dispersed mass may form some period of time after placement of the liquid formulation. In some variations the non-dispersed mass forms over the course of about 1, about 2, about 3, about 4, about 5, about 6, or about 7 days. In some variations the non-dispersed mass forms over the course of about 1 week, about 2 weeks, or about 3 weeks.
  • In some variations the liquid formulations described herein form a non-dispersed mass which has the form of a solid depot when the formulation is injected into any or all of water, the vitreous, or between the sclera and the conjunctiva of a rabbit eye. In some variations the liquid formulations described herein form a non-dispersed mass which has the form of a semi-solid when the formulation is injected into any or all of water, the vitreous, or between the sclera and the conjunctiva of a rabbit eye.
  • In some variations described herein the liquid rapamycin formulation forms a non-dispersed mass relative to a surrounding medium where the surrounding medium is aqueous. An “aqueous medium” or “aqueous environment” is one that contains at least about 50% water. Examples of aqueous media include but are not limited to water, the vitreous, extracellular fluid, conjunctiva, sclera, between the sclera and the conjunctiva, aqueous humor, gastric fluid, and any tissue or body fluid comprised of at least about 50% of water. Aqueous media include but are not limited to gel structures, including but not limited to those of the conjunctiva and sclera. In some variations described herein the liquid rapamycin formulation forms a non-dispersed mass when placed in the vitreous of a rabbit eye.
  • Whether a liquid formulation exhibits a non-dispersed mass relative to a surrounding medium when present in a subject or the eye of a subject may be determined by, for instance, preparing the liquid rapamycin formulation, administering it to the vitreous of a rabbit eye, and comparing the liquid formulation to the surrounding medium.
  • The liquid rapamycin formulations described herein may or may not form a non-dispersed mass in the subject. One liquid formulation described herein forms a non-dispersed mass when administered to a subject and forms a non-dispersed mass when administered to a rabbit eye.
  • It is believed that the low solubility of rapamycin in the vitreous contributes to the formation of a non-dispersed mass by some rapamycin-containing liquid formulations described herein. The vitreous is a clear gel composed almost entirely of water (up to 99%). As rapamycin in an injected formulation contacts the vitreous, the rapamycin precipitates.
  • Factors believed to affect the formation of and geometry of a non-dispersed mass include the concentration of rapamycin in the formulation, the viscosity of the formulation, ethanol content of the formulation, and the volume of injection. It is believed that maintaining a relatively high local concentration of rapamycin during precipitation favors formation of a non-dispersed mass. As volume is increased for a given dose, formation of a non-dispersed mass may become less favorable. Formation of a non-dispersed mass may become more favorable as rapamycin concentration is increased and/or as viscosity is increased. Ethanol content affects both the solubility of the rapamycin in the formulation and the viscosity of the formulation.
  • Without being bound by theory, in some variations it is hypothesized that injection of certain volumes of a liquid formulation containing rapamycin, ethanol and polyethylene glycol results in formation of a non-dispersed mass as depicted in FIGS. 1A-1C and described as follows. Upon injection, due to its viscosity a solution forms a spherical globule 100 within the vitreous 110. Ethanol then diffuses out of this globule, resulting in localized precipitation 120 of the rapamycin within the globule. Eventually, the polyethylene glycol also diffuses out of the globule to leave a solid, compact non-dispersed mass of rapamycin 130.
  • In some variations, upon formation a non-dispersed mass comprising rapamycin, for example, delivers the drug continuously at approximately a constant rate for an extended period of time. It is believed that delivery of rapamycin from a non-dispersed mass in the vitreous depends on dissolution of the rapamycin in the vitreous, which depends in turn on clearance of the drug from the vitreous to other tissues. This release process is believed to maintain a steady-state concentration of rapamycin in the vitreous.
  • In some variations, formation of a non-dispersed mass reduces the toxicity of the injected liquid formulation compared to an equivalent dose that did not form a non-dispersed mass. In variations in which a liquid formulation injected into the vitreous does not form a non-dispersed mass, the drug appears to disperse in the vitreous body. This can interfere with vision.
  • In some variations, it is believed that the liquid formulations will form a visually observable non-dispersed mass when injected into the eye of a subject, including but not limited to a human subject.
  • In some variations, liquid formulations are believed to form non-dispersed masses when injected subconjunctivally. In some variations it is believed that when subconjunctivally administered the liquid formulation forms a depot in the scleral tissue. That is, it is believed that the therapeutic agent is absorbed into the sclera proximate to the injection site and forms a local concentration of drug in the sclera.
  • The compositions and liquid formulations described herein may be used to deliver amounts of rapamycin effective for treating, preventing, inhibiting, delaying on set of, or causing the regression of the diseases and conditions described herein. In some variations the compositions and liquid formulations described herein deliver one or more therapeutic agents over an extended period of time.
  • An “effective amount,” which is also referred to herein as a “therapeutically effective amount,” of rapamycin for administration as described herein is that amount of rapamycin that provides the therapeutic effect sought when administered to the subject. The achieving of different therapeutic effects may require different effective amounts of rapamycin. For example, the therapeutically effective amount of rapamycin used for preventing a disease or condition may be different from the therapeutically effective amount used for treating, inhibiting, delaying the onset of, or causing the regression of the disease or condition. In addition, the therapeutically effective amount may depend on the age, weight, and other health conditions of the subject as is well know to those versed in the disease or condition being addressed. Thus, the therapeutically effective amount may not be the same in every subject to which the rapamycin is administered.
  • An effective amount of rapamycin for treating, preventing, inhibiting, delaying the onset of, or causing the regression of a specific disease or condition is also referred to herein as the amount rapamycin effective to treat, prevent, inhibit, delay the onset of, or cause the regression of the disease or condition.
  • To determine whether a level of rapamycin is a therapeutically effective amount to treat, prevent, inhibit, delay on set of, or cause the regression of the diseases and conditions described in the Diseases and Conditions section, liquid formulations may be administered in animal models for the diseases or conditions of interest, and the effects may be observed. Dose ranging clinical trials may be performed to determine effective amounts.
  • The formulations described herein may further comprise various other components such as stabilizers, adjuvants, anti-oxidants (e.g., tocopherol, BHA, BHT, TBHQ, tocopherol acetate, ascorbyl palmitate, ascorbic acid propyl gallate, and the like), preservatives, or diluents, for example. Other components that may be used in the formulations described herein include but are not limited to agents that will (1) improve the compatibility of excipients with the encapsulating materials such as gelatin, (2) improve the stability (e.g. prevent crystal growth of a therapeutic agent such as rapamycin) of rapamycin, and/or (3) improve formulation stability. Note that there is overlap between components that are stabilizers and those that are non-aqueous liquid components, and the same component can carry out more than one role.
  • The rapamycin may be subjected to conventional pharmaceutical operations, such as sterilization, and compositions containing rapamycin may also contain conventional adjuvants, such as preservatives, stabilizers, wetting agents, emulsifiers, buffers etc. The liquid rapamycin formulation may also be formulated with pharmaceutically acceptable excipients for clinical use to produce a pharmaceutical composition. The liquid rapamycin formulation may be used to prepare a medicament to treat, prevent, inhibit, delay onset, or cause regression of any of the conditions described herein. In some variations, the liquid rapamycin formulation may be used to prepare a medicament to treat any of the conditions described herein.
  • The liquid rapamycin formulations may conveniently be presented in unit dosage form and may be prepared by conventional pharmaceutical techniques. Such techniques include the step of bringing into association the therapeutic agent and the pharmaceutical carrier(s) or excipient(s). The liquid rapamycin formulations may be prepared by uniformly and intimately bringing into associate the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product. The unit dosage form may be ready for placement or injection into the eye of a subject, or may be diluted in an aqueous or non-aqueous medium prior to injection or placement in the eye of the subject.
  • In some variations, the formulations described herein are provided in one or more unit dose forms, wherein the unit dose form contains an amount of a liquid rapamycin formulations described herein that is effective to treat or prevent the disease or condition for which it is being administered.
  • In some variations, the unit dose form is prepared in the concentration at which it will be administered. In some variations, the unit dose form is diluted prior to administration to a subject. In some variations, a liquid formulation described herein is diluted in an aqueous medium prior to administration to a subject, including but not limited to an isotonic aqueous medium. In some variations, a liquid formulation described herein is diluted in a non-aqueous medium prior to administration to a subject.
  • In some variations provided herein are kits comprising one or more unit dose forms as described herein. In some embodiments, the kit comprises one or more of packaging and instructions for use to treat one or more diseases or conditions. In some embodiments, the kit comprises a diluent which is not in physical contact with the formulation or pharmaceutical formulation. In some embodiments, the kit comprises any of one or more unit dose forms described herein in one or more sealed vessels. In some embodiments, the kit comprises any of one or more sterile unit dose forms.
  • In some variations, the unit dose form is in a container, including but not limited to a sterile sealed container. In some variations the container is a vial, ampule, or low volume applicator, including but not limited to a syringe. In some variations, a low-volume applicator is pre-filled with rapamycin for treatment of an ophthalmic disease or condition, including but not limited to a limus compound for treatment of age-related macular degeneration. Described herein is a pre-filled low-volume applicator pre-filled with a formulation comprising rapamycin. In some variations a low-volume applicator is pre-filled with a solution comprising rapamycin and a polyethylene glycol, and optionally further comprises one or more additional components including but not limited to ethanol. In some variations a low-volume applicator is pre-filled with a solution comprising about 2% rapamycin, about 94% PEG-400, about 4% ethanol.
  • Described herein are kits comprising one or more containers. In some variations a kit comprises one or more low-volume applicators pre-filled with one or more formulations in liquid form comprising rapamycin, including but not limited to formulations in liquid form comprising rapamycin, formulations in liquid form comprising rapamycin and a polyethylene glycol, and optionally further comprises one or more additional components including but not limited to ethanol, and formulations in liquid form comprising about 2% rapamycin, about 94% PEG-400, about 4% ethanol. In some variations the kit comprises one or more containers, including but not limited to pre-filled low-volume applicators, with instructions for its use. In a further variation a kit comprises one or more low-volume applicators pre-filled with rapamycin, with instructions for its use in treating a disease or condition of the eye.
  • In some variations, the containers described herein are in a secondary packaging which limits exposure of the liquid rapamycin formulation to light or oxygen.
  • The following references, each of which is incorporated herein by reference in its entirety, show one or more formulations, including but not limited to rapamycin formulations, and which describe use of rapamycin at various doses and other therapeutic agents for treating various diseases or conditions: U.S. 60/651,790, filed Feb. 9, 2005; U.S. 60/664,040, filed Feb. 9, 2005; U.S. 60/664,119, filed Mar. 21, 2005; U.S. 60/664,306, filed Mar. 21, 2005; U.S. Ser. No. 11/351,844, filed Feb. 9, 2006; U.S. Ser. No. 11/351,761, filed Feb. 9, 2006; US 2005/0187241, and US 2005/0064010.
  • Extended Delivery of Rapamycin
  • Described herein are compositions and liquid formulations showing in vivo delivery or clearance profiles with one or more of the following characteristics. The delivery or clearance profiles are for clearance of rapamycin in vivo after injection of the composition or liquid formulations subconjunctivally or into the vitreous of a rabbit eye. The volume of the rabbit vitreous is approximately 30-40% of the volume of the human vitreous. Not being bound by theory, it is estimated that the surface area of the retina choroid of a rabbit eye is approximately 25% of the surface area of the retina choroid of a human eye. The amount of rapamycin is measured using techniques as described in Example 3, but without limitation to the formulation described in Example 3.
  • The average concentration of rapamycin in the tissue of a rabbit eye at a given time after administration of a formulation containing rapamycin may be measured according to the following method. Where volumes below 10 μl are to be injected, a Hamilton syringe is used.
  • The liquid formulations are stored at a temperature of 2-8° C. prior to use.
  • The experimental animals are specific pathogen free (SPF) New Zealand White rabbits. A mixed population of about 50% male, about 50% female is used. The rabbits are at least 12 weeks of age, usually at least 14 weeks of age, at the time of dosing. The rabbits each weigh at least 2.2 kg, usually at least 2.5 kg, at the time of dosing. Prior to the study, the animals are quarantined for at least one week and examined for general health parameters. Any unhealthy animals are not used in the study. At least 6 eyes are measured and averaged for a given time point.
  • Housing and sanitation are performed according to standard procedures used in the industry. The animals are provided approximately 150 grams of Teklad Certified Hi-Fiber Rabbit Diet daily, and are provided tap water ad libitum. No contaminants are known to exist in the water and no additional analysis outside that provided by the local water district is performed. Environmental Conditions are monitored.
  • Each animal undergoes a pre-treatment ophthalmic examination (slit lamp and ophthalmoscopy), performed by a board certified veterinary ophthalmologist. Ocular findings are scored according to the McDonald and Shadduck scoring system as described in Dermatoxicology, F. N. Marzulli and H. I. Maibach, 1977 “Eye Irritation,” T. O. McDonald and J. A. Shadduck (pages 579-582). Observations are recorded using a standardized data collection sheet. Acceptance criteria for placement on study are as follows: scores of ≦1 for conjunctival congestion and swelling; scores of 0 for all other observation variables.
  • Gentamicin ophthalmic drops are placed into both eyes of each animal twice daily on the day prior to dosing, on the day of dosing (Day 1), and on the day after dosing (Day 2). Dosing is performed in two phases, the first including one set of animals and the second including the other animals. Animals are randomized separately into masked treatment groups prior to each phase of dosing according to modified Latin squares. Animals are fasted at least 8 hours prior to injection. The start time of the fast and time of injection are recorded.
  • Animals are weighed and anesthetized with an intravenous injection of a ketamine/xylazine cocktail (87 mg/mL ketamine, 13 mg/mL xylazine) at a volume of 0.1-0.2 mL/kg. Both eyes of each animal are prepared for injection as follows: approximately five minutes prior to injection, eyes are moistened with an ophthalmic Betadine solution. After five minutes, the Betadine is washed out of the eyes with sterile saline. Proparacaine hydrochloride 0.5% (1-2 drops) is delivered to each eye. For eyes to be intravitreally injected, 1% Tropicamide (1 drop) is delivered to each eye.
  • On Day 1, both eyes of each animal receive an injection of test or control article. Animals in selected groups are dosed a second time on Day 90±1. Dosing is subconjunctival or intravitreal. Actual treatments, injection locations, and dose volumes are masked and revealed at the end of the study.
  • Subconjunctival injections are given using an insulin syringe and 30 gauge×½-inch needle. The bulbar conjunctiva in the dorsotemporal quadrant is elevated using forceps. Test article is injected into the subconjunctival space.
  • Intravitreal injections are given using an Insulin syringe and 30 gauge×½-inch needle. For each injection, the needle is introduced through the ventral-nasal quadrant of the eye, approximately 2-3 mm posterior to the limbus, with the bevel of the needle directed downward and posteriorly to avoid the lens. Test article is injected in a single bolus in the vitreous near the retina.
  • Animals are observed for mortality/morbidity twice daily. An animal determined to be moribund is euthanized with an intravenous injection of commercial euthanasia solution. Both eyes are removed and stored frozen at −70° C. for possible future evaluation. If an animal is found dead prior to onset of rigor mortis, both eyes are removed and stored frozen at −70° C. for possible future evaluation. Animals found after the onset of rigor mortis are not necropsied.
  • Animals are weighed at randomization, on Day 1 prior to dosing, and prior to euthanasia.
  • Ophthalmic observations (slit lamp and indirect ophthalmoscopy) are performed on all animals on Days 5±1, 30±1, 60±1, 90±1, and at later dates in some variations. Observations are performed by a board certified veterinary ophthalmologist. For animals to be dosed on Day 90±1, ophthalmic observations are performed prior to dosing. Ocular findings are scored according to the McDonald and Shadduck scoring system as described in Dermatoxicology, F. N. Marzulli and H. I. Maibach, 1977 “Eye Irritation”, T. O. McDonald and J. A. Shadduck (pages 579-582) and observations are recorded using a standardized data collection sheet.
  • Whole blood samples (1-3 mL per sample) are collected from each animal prior to necropsy in vacutainer tubes containing EDTA. Each tube is filled at least ⅔ full and thoroughly mixed for at least 30 seconds. Tubes are stored frozen until shipped on dry ice.
  • Animals are euthanized with an intravenous injection of commercial euthanasia solution. Euthanasia is performed according to standard procedures used in the industry.
  • For treatment groups dosed intravitreally or subconjunctivally with placebo, all eyes from each of these groups are placed into Davidsons solution for approximately 24 hours. Following the 24-hour period, the eyes are transferred to 70% ethanol; these globes are submitted for masked histopathological evaluation by a board certified veterinary pathologist. The time that eyes are placed into Davidsons and the time of removal are recorded.
  • For treatment groups dosed intravitreally or subconjunctivally with test article, some eyes from each of these groups are frozen at −70° C. and submitted for pharmacokinetic analysis. The remaining eyes from each of these groups are placed into Davidsons solution for approximately 24 hours. Following the 24-hour period, the eyes are transferred to 70% ethanol; these globes are submitted for masked histopathological evaluation by a board certified veterinary pathologist. The time that eyes are placed into Davidsons and the time of removal are recorded.
  • Frozen samples submitted for pharmacokinetic analysis are dissected with disposable instruments. One set of instruments is used per eye, and then discarded. The samples are thawed at room temperature for 1 to 2 minutes to ensure that the frost around the tissue has been removed. The sclera is dissected into 4 quadrants, and the vitreous is removed. If a non-dispersed mass (NDM) is clearly visible within the vitreous, the vitreous is separated into two sections. The section with the NDM is approximately two-thirds of the vitreous. The section without the NDM is the portion of the vitreous that is the most distant from the NDM. The aqueous humor, lens, iris, and cornea are separated. The retina choroid tissue is removed using a forceps and collected for analysis. The conjunctiva is separated from the sclera.
  • The various tissue types are collected into separate individual pre-weighed vials which are then capped and weighed. The vials of tissue are stored at −80° C. until analyzed.
  • The sirolimus content of the retina choroid, sclera, vitreous humor, and whole anti-coagulated blood is determined by high-pressure liquid chromatography/tandem mass spectroscopy (HPLC/MS/MS) using 32-O-desmethoxyrapamycin as an internal standard. Where an NDM was observed in the vitreous, the section of the vitreous containing the NDM and the section of the vitreous not containing the NDM are analyzed separately.
  • The average concentration of rapamycin over a period of time means for representative timepoints over the period of time the average concentration at each time point. For example, if the time period is 30 days, the average concentration may be measured at 5 day intervals: for the average concentration at day 5, the average of a number of measurements of concentration at day 5 would be calculated; for the average concentration at day 10, the average of a number of measurements of the concentration at day 10 would be calculated, etc.
  • In some variations, the liquid formulations described herein may have in vivo delivery to the vitreous profiles with the following described characteristics, where the delivery profiles are for delivery of rapamycin in vivo after injection of the liquid formulation between the sclera and the conjunctiva of a rabbit eye. One nonlimiting variation of in vivo delivery to the vitreous profiles is shown in FIG. 2.
  • “Approximately constant,” as used herein, means that the average level does not vary by more than one order of magnitude over the extended period of time, i.e., the difference between the maximum and minimum is less than a 10-fold difference for measurements of the average concentration at times in the relevant period of time.
  • In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye of at least 0.001 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye of at least 0.01 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye of at least 0.1 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye of at least 0.5 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye of between 0.001 ng/mL and 10.0 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye of between 0.01 ng/mL and 10 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye of between 0.1 ng/mL and 10 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye of between 0.5 ng/mL and 10.0 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the vitreous of a rabbit eye to a minimum average concentration of rapamycin in the vitreous of a rabbit eye less than 100 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the vitreous of a rabbit eye to a minimum average concentration of rapamycin in the vitreous of a rabbit eye less than 50 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the vitreous of a rabbit eye to a minimum average concentration of rapamycin in the vitreous of a rabbit eye less than 10 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the vitreous of a rabbit eye to a minimum average concentration of rapamycin in the vitreous of a rabbit eye less than 5 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of a rabbit eye that is approximately constant at a value greater than 0.001 ng/mL for days 30 to at least 60, at least 90, or at least 120 days after administration of the solution to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of a rabbit eye that is approximately constant at a value greater than 0.01 ng/mL for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of a rabbit eye that is approximately constant at a value greater than 0.1 ng/mL for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of a rabbit eye that is approximately constant at a value of 1.0 ng/mL for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of at least 0.001 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of at least 0.005 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of at least 0.01 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of between 0.001 ng/mg and 1.0 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of between 0.001 ng/mg and 0.50 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of between 0.001 ng/mg and 0.15 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of between 0.001 ng/mg and 0.1 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of between 0.005 ng/mg and 1.0 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of between 0.005 ng/mg and 0.50 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of between 0.005 ng/mg and 0.15 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of between 0.005 ng/mg and 0.1 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of between 0.01 ng/mg and 1.0 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of between 0.01 ng/mg and 0.50 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of between 0.01 ng/mg and 0.15 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of between 0.01 ng/mg and 0.1 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the retina choroid tissues of a rabbit eye to a minimum average concentration of rapamycin in the retina choroid tissues of a rabbit eye less than 100 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the retina choroid tissues of a rabbit eye to a minimum average concentration of rapamycin in the retina choroid tissues of a rabbit eye less than 50 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the retina choroid tissues of a rabbit eye to a minimum average concentration of rapamycin in the retina choroid tissues of a rabbit eye less than 10 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the retina choroid tissues of a rabbit eye to a minimum average concentration of rapamycin in the retina choroid tissues of a rabbit eye less than 5 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of a rabbit eye that is approximately constant at a value greater than 0.001 ng/mg for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of a rabbit eye that is approximately constant at a value greater than 0.005 ng/mg for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected between the sclera and conjunctiva of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of a rabbit eye that is approximately constant at a value greater than 0.01 ng/mg for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye of at least 100 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye of at least 1000 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye of at least 10,000 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye between 100 ng/mL and 100,000 ng/mL for day 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye between 100 ng/mL and 50,000 ng/mL for day 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye between 1000 ng/mL and 100,000 ng/mL for day 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye between 1000 ng/mL and 50,000 ng/mL for day 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the vitreous of the rabbit eye to a minimum average concentration of rapamycin in the vitreous of the rabbit eye less than 100 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the vitreous of the rabbit eye to a minimum average concentration of rapamycin in the vitreous of the rabbit eye less than 50 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the vitreous of the rabbit eye to a minimum average concentration of rapamycin in the vitreous of the rabbit eye less than 10 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye that is approximately constant at a value greater than 100 ng/mL for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye that is approximately constant at a value greater than 1000 ng/mL for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the vitreous of the rabbit eye that is approximately constant at a value greater than 10,000 ng/mL for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of at least 0.001 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of at least 0.01 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of at least 0.05 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye of at least 0.10 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye between 0.001 ng/mg and 10.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye between 0.001 ng/mg and 5.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye between 0.001 ng/mg and 1.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye between 0.01 ng/mg and 10.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye between 0.01 ng/mg and 5.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye between 0.01 ng/mg and 1.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye between 0.05 ng/mg and 10.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye between 0.05 ng/mg and 5.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye between 0.05 ng/mg and 1.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye between 0.10 ng/mg and 10.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye between 0.10 ng/mg and 5.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving an average concentration of rapamycin in the retina choroid tissues of the rabbit eye between 0.10 ng/mg and 1.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the retina choroid tissues of the rabbit eye to a minimum average concentration of rapamycin in the retina choroid tissues of the rabbit eye less than 100 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes. In some variations, the liquid rapamycin formulation when injected into the vitreous of a rabbit eye delivers rapamycin giving a ratio of a maximum average concentration of rapamycin in the retina choroid tissues of the rabbit eye to a minimum average concentration of rapamycin in the retina choroid tissues of the rabbit eye less than 50 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid rapamycin formulation to the rabbit eyes.
  • In some variations, the ratio of the base ten logarithms of the average levels of rapamycin in the vitreous and the retina choroid tissues is approximately constant over an extended period of time. Put another way, as the level of rapamycin in the vitreous rises, the level of rapamycin in the retina choroid tissues rises to a similar degree when considered on the logarithmic scale, and vice versa.
  • In some variations, the ratio of the base ten logarithms of the average levels of rapamycin in the vitreous versus the retina choroid tissues is approximately constant over an extended period of time of 7, 30, 60, or 90 days.
  • For treatment, prevention, inhibition, delaying the onset of, or causing the regression of certain diseases or conditions, it may be desirable to maintain delivery of a therapeutically effective amount of rapamycin for an extended period of time. Depending on the disease or condition being treated, prevented, inhibited, having onset delayed, or being caused to regress this extended period of time may be at least about 1 week, at least about 2 weeks, at least about 3 weeks, at least about 1 month, at least about 3 months, at least about 6 months, at least about 9 months, or at least about 1 year. Generally, however, any extended period of delivery may be possible. A therapeutically effective amount of agent may be delivered for an extended period by a liquid formulation or composition that maintains for the extended period a concentration of agent in a subject or an eye of a subject sufficient to deliver a therapeutically effective amount of agent for the extended time.
  • Delivery of a therapeutically effective amount of rapamycin for an extended period may be achieved via a single administration of a liquid rapamycin formulation or may be achieved by administration of two or more doses of a liquid rapamycin formulation. As a non-limiting example of such multiple applications, maintenance of the therapeutic amount of rapamycin for 3 months for treatment, prevention, inhibition, delay of onset, or cause of regression of wet AMD may be achieved by administration of one dose of a liquid rapamycin formulation delivering a therapeutic amount for 3 months or by sequential application of a plurality of doses of a liquid rapamycin formulation. The optimal dosage regime will depend on the therapeutic amount of rapamycin needing to be delivered, the period over which it need be delivered, and the delivery kinetics of the liquid formulation. Those versed in such extended therapeutic agent delivery dosing will understand how to identify dosing regimes that may be used based on the teachings described herein.
  • When using rapamycin for the treatment, prevention, inhibition, delaying the onset of, or causing the regression of certain diseases, it may be desirable for delivery of the rapamycin not to commence immediately upon placement of the liquid formulation or composition into the eye region, but for delivery to commence after some delay. For example, but in no way limiting, such delayed release may be useful where the rapamycin inhibits or delays wound healing and delayed release is desirable to allow healing of any wounds occurring upon placement of the liquid formulation or composition. Depending on the therapeutic agent being delivered and/or the diseases and conditions being treated, prevented, inhibited, onset delayed, and regression caused this period of delay before delivery of rapamycin commences may be about 1 hour, about 6 hours, about 12 hours, about 18 hours, about 1 day, about 2 days, about 3 days, about 4 days, about 5 days, about 6 days, about 7 days, about 8 days, about 9 days, about 10 days, about 11 days, about 12 days, about 13 days, about 14 days, about 21 days, about 28 days, about 35 days, or about 42 days. Other delay periods may be possible. Delayed release formulations that may be used are known to people versed in the technology.
  • Routes of Administration
  • “Retina choroid” and “retina choroid tissues,” as used herein, are synonymous and refer to the combined retina and choroid tissues of the eye.
  • “Subconjunctival” placement or injection, as used herein, refers to placement or injection, respectively, between the sclera and conjunctiva. Subconjunctival is sometimes referred to herein as “sub-conj” administration.
  • By way of nonlimiting example, the liquid rapamycin formulation described herein may be administered to the vitreous, aqueous humor, sclera, conjunctiva, between the sclera and conjunctiva, the retina choroid tissues, macula, or other area in or proximate to the eye of a human subject, in amounts and for a duration effective to treat, prevent, inhibit, delay the onset of, or cause the regression of CNV and wet AMD.
  • Periocular routes of delivery may deliver rapamycin to the retina without some of the risks of intravitreal delivery. Periocular routes include but are not limited to subconjunctival, subtenon, retrobulbar, peribulbar and posterior juxtascleral delivery. A “periocular” route of administration means placement near or around the eye. For a description of exemplary periocular routes for retinal drug delivery, see Periocular routes for retinal drug delivery, Raghava et al. (2004), Expert Opin. Drug Deliv. 1(1):99-114, which is incorporated herein by reference in its entirety.
  • In some variations the liquid formulations described herein are administered intraocularly. Intraocular administration includes placement or injection within the eye, including in the vitreous.
  • In some variations, an effective amount of rapamycin is placed intravitreally or subconjunctivally to treat, prevent, inhibit, delay the onset of, or cause the regression of CNV, wet AMD, or dry AMD.
  • Intravitreal administration is more invasive than some other types of ocular procedures. Because of the potential risks of adverse effects, intravitreal administration may not be optimal for treatment of relatively healthy eyes. By contrast, periocular administration, such as subconjunctival administration, is much less invasive than intravitreal administration. When rapamycin is delivered by a periocular route, it may be possible to treat patients with healthier eyes than could be treated using intravitreal administration. In some variations, subconjunctival injection is used to prevent or delay onset of a disease or condition of the eye, where the eye of the subject has visual acuity of 20/40 or better.
  • Routes of administration that may be used to administer a liquid formulation include but are not limited to placement of the liquid formulation, for example by injection, into an aqueous medium in the subject, including but not limited to subconjunctival and intravitreal placement, including but not limited to injection.
  • Compositions and liquid formulations comprising rapamycin can be administered directly to the eye using a variety of procedures, including but not limited to procedures in which (1) rapamycin is administered by injection, including but not limited to administration by using a syringe and hypodermic needle, an insulin needle, or a Hamilton HPLC-type needle, or (2) a specially designed device is used to inject rapamycin.
  • Intravitreal and Subconjunctival Delivery of Rapamycin for Treatment, Prevention, Inhibition, Delay of Onset, or Cause of Regression of AMD
  • As used herein, to “prevent” a disease or condition by administration of rapamycin means that the detectable physical characteristics or symptom of the disease or condition do not develop following administration of rapamycin.
  • As used herein, to “delay onset of” a disease or condition by administration of rapamycin means that at least one detectable physical characteristic or symptom of the disease or condition develops later in time following administration of rapamycin as compared to the progress of the disease or condition without administration of rapamycin.
  • As used herein, to “treat” a disease or condition by administration of rapamycin means that the progress of at least one detectable physical characteristic or symptom of the disease or condition is slowed, stopped, or reversed following administration of rapamycin as compared to the progress of the disease or condition without administration of rapamycin.
  • A subject having a predisposition for or in need of prevention may be identified by the skilled practitioner by established methods and criteria in the field given the teachings herein. The skilled practitioner may also readily diagnose individuals as in need of inhibition or treatment based upon established criteria in the field for identifying angiogenesis and/or neovascularization given the teachings herein.
  • As used herein, a “subject” is generally any animal that may benefit from administration of rapamycin as described herein. The rapamycin may be administered to a mammal subject. Unless the context appears otherwise, all of the methods described herein may be performed on a human subject. The rapamycin may be administered to a veterinary animal subject. The rapamycin may be administered to a model experimental animal subject.
  • In some variations described herein, a solution comprising rapamycin is delivered subconjunctivally or to the vitreous of an eye of a subject, including but not limited to a human subject, to prevent, treat, inhibit, delay onset of, or cause regression of angiogenesis in the eye, including but not limited to treating CNV as observed, for example, in AMD. In some variations, the solution is used to treat angiogenesis in the eye, including but not limited to treating CNV as observed, for example, in AMD. Rapamycin has been shown to inhibit CNV in rat and mice models, as described in U.S. application Ser. No. 10/665,203, which is incorporated herein by reference in its entirety. Rapamycin has been observed to inhibit MATRIGEL™ and laser-induced CNV when administered systemically and subretinally.
  • In some variations, the formulations and pharmaceutical formulations described herein are used to prevent or delay onset of a disease or condition of the eye where the subject, including but not limited to a human subject, is at heightened risk of developing the disease or condition of the eye. A subject with a heightened risk of developing a disease or condition is a subject with one or more indications that the disease or condition is likely to develop in the particular subject. In some variations the subject with a heightened risk of developing wet AMD is a subject with dry AMD in at least one eye. In some variations the subject with a heightened risk of developing wet AMD in a fellow eye is a subject with wet AMD in the other eye. In some variations, the formulations and pharmaceutical formulations described herein are used to prevent or delay onset of CNV in a subject at heightened risk of developing CNV, including but not limited to prevention or delaying onset of CNV in the fellow eye of a subject, including but not limited to a human subject with AMD in one eye. In some variations, the formulations and pharmaceutical formulations described herein are used to prevent or delay onset of CNV in the fellow eye of a subject with wet AMD in one eye. In some variations, the formulations and pharmaceutical formulations comprise a limus compound, including but not limited to rapamycin. In some variations the formulations and pharmaceutical formulations are administered subconjunctivally to an eye with vision of 20/40 or better.
  • As described herein, the dosage of rapamycin will depend on the condition being addressed, whether the condition is to be treated, prevented, inhibited, have onset delayed, or be caused to regress, the particular therapeutic agent, and other clinical factors such as weight and condition of the subject and the route of administration of the therapeutic agent. It is to be understood that the methods, liquid formulations, and compositions described herein have application for both human and veterinary use, as well as uses in other possible animals. As described herein, tissue concentrations of rapamycin expressed in units of mass per volume generally refer to tissues that are primarily aqueous such as the vitreous, for example. Tissue concentrations of rapamycin expressed in unit of mass per mass generally refer to other tissues such as the sclera or retina choroid tissues, for example.
  • The liquid rapamycin formulations described herein may deliver rapamycin for an extended period of time. One nonlimiting example of such an extended release delivery system is a liquid rapamycin formulation that delivers rapamycin to a subject or to the eye of a subject in an amount sufficient to treat, prevent, inhibit, delay onset of, or cause regression of wet age-related macular degeneration for an extended period of time. In some variations, the liquid formulation is used to treat wet age-related macular degeneration for an extended period of time. In some variations, the liquid formulation is used to prevent wet age-related macular degeneration for an extended period of time. In some variations, the liquid formulation is used to prevent transition of dry AMD to wet AMD for an extended period of time.
  • One concentration of rapamycin that may be used in the methods described herein is one that provides to a subject about 0.01 pg/ml or pg/mg or more of rapamycin at the tissue level. Another concentration that may be used is one that provides to a subject about 0.1 pg/ml or ng/mg or more at the tissue level. Another concentration that may be used is one that provides to a subject about 1 pg/ml or ng/mg or more at the tissue level. Another concentration that may be used is one that provides to a subject about 0.01 ng/ml or ng/mg or more at the tissue level. Another concentration that may be used is one that provides to a subject about 0.1 ng/ml or ng/mg or more at the tissue level. Another concentration that may be used is one that provides to a subject about 0.5 ng/ml or ng/mg or more at the tissue level. Another concentration that may be used is one that provides to a subject about 1 ng/ml or more at the tissue level. Another concentration that may be used is one that provides to a subject about 2 ng/ml or more at the tissue level. Another concentration that may be used is one that provides to a subject about 3 ng/ml or more at the tissue level. Another concentration that may be used is one that provides to a subject about 5 ng/ml or more at the tissue level. Another concentration that may be used is one that provides to a subject about 10 ng/ml or more at the tissue level. Another concentration that may be used is one that provides to a subject about 15 ng/ml or more at the tissue level. Another concentration that may be used is one that provides to a subject about 20 ng/ml or more at the tissue level. Another concentration that may be used is one that provides to a subject about 30 ng/ml or more at the tissue level. Another concentration that may be used is one that provides to a subject about 50 ng/ml or more at the tissue level. One of ordinary skill in the art would know how to arrive at an appropriate concentration depending on the route and duration of administration utilized, given the teachings herein.
  • Generally, the amount of rapamycin administered in a liquid formulation is an amount sufficient to treat, prevent, inhibit, delay the onset, or cause regression of the disease or condition of the eye for the required amount of time. In some variations the amount of rapamycin administered in the liquid formulation is an amount sufficient to treat the disease or condition of the eye for the required amount of time.
  • In some variations, a total amount of rapamycin less than about 5 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 5.0 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 4.5 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 4.0 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 3.5 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 3.0 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 2.5 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 2 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 1.2 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 1.0 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 0.8 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 0.6 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 0.4 mg is administered subconjunctivally. In some variations, a volume of a formulation is administered that contains an amount of rapamycin described herein.
  • In some variations, a total amount of rapamycin less than about 200 μg is administered intravitreally. In some variations, a total amount of rapamycin less than about 200 μg is administered intravitreally. In some variations, a total amount of rapamycin less than about 300 μg is administered intravitreally. In some variations, a total amount of rapamycin less than about 400 μg is administered intravitreally. In some variations, a total amount of rapamycin less than about 500 μg is administered intravitreally. In some variations, a total amount of rapamycin less than about 600 μg is administered intravitreally. In some variations, a total amount of rapamycin less than about 800 μg is administered intravitreally. In some variations, a total amount of rapamycin less than about 1 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 2 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 2.5 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 3 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 3.5 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 4 mg is administered intravitreally. In some variations, a volume of a formulation is administered that contains an amount of rapamycin described herein.
  • In some variations, a liquid formulation containing a concentration of rapamycin by weight of the total of between about 0.5% and about 6% is subconjunctivally administered to a human subject by administering between about 0.1 μl and about 200 μl of a liquid formulation described herein. In some variations, a liquid formulation containing a concentration of rapamycin by weight of the total of between about 0.5% and about 4% is subconjunctivally administered to a human subject by administering between about 1 μl and about 50 μl of a liquid formulation described herein. In some variations, a liquid formulation containing a concentration of rapamycin by weight of the total of between about 1.5% and about 3.5% is subconjunctivally administered to a human subject by administering between about 1 μl and about 15 μl of a liquid formulation described herein. In some variations, a liquid formulation containing a concentration of rapamycin by weight of the total of about 2% is subconjunctivally administered to a human subject by administering between about 1 μl and about 15 μl of a liquid formulation described herein.
  • In some variations, a liquid formulation containing an amount of rapamycin of between about 0.2 μg and about 4 mg is subconjunctivally administered to a human subject by administering between about 0.1 μl and about 200 μl of a liquid formulation described herein. In some variations, a liquid formulation containing an amount of rapamycin of between about 20 μg and about 2 mg is subconjunctivally administered to a human subject by administering between about 1 μl and about 100 μl of a liquid formulation described herein. In some variations, a liquid formulation containing an amount of rapamycin of between about 5 μg and about 1 mg is subconjunctivally administered to a human subject by administering between about 1 μl and about 50 μl of a liquid formulation described herein. In some variations, a liquid formulation containing an amount of rapamycin of between about 20 μg and about 500 μg is subconjunctivally administered to a human subject by administering between about 1 μl and about 25 μl of a liquid formulation described herein. In some variations, a liquid formulation containing an amount of rapamycin of between about 20 μg and about 300 μg is subconjunctivally administered to a human subject by administering between about 1 μl and about 15 μl of a liquid formulation described herein.
  • In some variations, a total amount of rapamycin less than about 200 μg is administered intravitreally. In some variations, a total amount of rapamycin less than about 200 μg is administered intravitreally. In some variations, a total amount of rapamycin less than about 300 μg is administered intravitreally. In some variations, a total amount of rapamycin less than about 400 μg is administered intravitreally. In some variations, a total amount of rapamycin less than about 500 μg is administered intravitreally. In some variations, a total amount of rapamycin less than about 600 μg is administered intravitreally. In some variations, a total amount of rapamycin less than about 800 μg is administered intravitreally. In some variations, a total amount of rapamycin less than about 1 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 2 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 2.5 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 3 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 3.5 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 4 mg is administered intravitreally. In some variations, a volume of a formulation is administered that contains an amount of rapamycin described herein.
  • In some variations, a liquid formulation containing a concentration of rapamycin by weight of the total of between about 0.5% and about 6% is intravitreally administered to a human subject by administering between about 0.1 μl and about 200 μl of a liquid formulation described herein. In some variations, a liquid formulation containing a concentration of rapamycin by weight of the total of between about 0.5% and about 4% is intravitreally administered to a human subject by administering between about 1 μl and about 50 μl of a liquid formulation described herein. In some variations, a liquid formulation containing a concentration of rapamycin by weight of the total of between about 1.5% and about 3.5% is intravitreally administered to a human subject by administering between about 1 μl and about 15 μl of a liquid formulation described herein. In some variations, a liquid formulation containing a concentration of rapamycin by weight of the total of about 2% is intravitreally administered to a human subject by administering between about 1 μl and about 15 μl of a liquid formulation described herein.
  • In some variations, a liquid formulation containing an amount of rapamycin of between about 0.2 μg and about 4 mg is intravitreally administered to a human subject by administering between about 0.1 μl and about 200 μl of a liquid formulation described herein. In some variations, a liquid formulation containing an amount of rapamycin of between about 20 μg and about 2 mg is intravitreally administered to a human subject by administering between about 1 μl and about 100 μl of a liquid formulation described herein. In some variations, a liquid formulation containing an amount of rapamycin of between about 20 μg and about 1 mg is intravitreally administered to a human subject by administering between about 1 μl and about 50 μl of a liquid formulation described herein. In some variations, a liquid formulation containing an amount of rapamycin of between about 20 μg and about 500 μg is intravitreally administered to a human subject by administering between about 1 μl and about 25 μl of a liquid formulation described herein. In some variations, a liquid formulation containing an amount of rapamycin of between about 20 μg and about 300 μg is intravitreally administered to a human subject by administering between about 1 μl and about 15 μl of a liquid formulation described herein.
  • In some variations a formulation as described herein containing an amount of rapamycin of between about 1 μg and about 5 mg is administered to a human subject for treatment of wet AMD. In some variations a formulation as described herein containing an amount of rapamycin of between about 20 μg and about 4 mg is administered to a human subject for treatment of wet AMD. In some variations a liquid formulation as described herein containing an amount of rapamycin of between about 20 μg and about 1.2 mg is administered to a human subject for treatment of wet AMD. In some variations an amount of rapamycin of between about 10 μg and about 0.5 mg is administered to a human subject for treatment of wet AMD. In some variations, an amount of rapamycin of between about 10 μg and 90 μg is administered to a human subject for treatment of wet AMD. In some variations, an amount of rapamycin of between about 60 μg and 120 μg is administered to a human subject for treatment of wet AMD. In some variations, an amount of rapamycin of between about 100 μg and 400 μg is administered to a human subject for treatment of wet AMD. In some variations, an amount of rapamycin of between about 400 μg and 1 mg is administered to a human subject for treatment of wet AMD. In some variations, an amount of rapamycin of between about 1 mg and 5 mg is administered to a human subject for treatment of wet AMD. In some variations, an amount of rapamycin of between about 3 mg and 7 mg is administered to a human subject for treatment of wet AMD. In some variations, an amount of rapamycin of between about 5 mg and 10 mg is administered to a human subject for treatment of wet AMD.
  • In some variations a formulation as described herein containing an amount of rapamycin of between about 1 μg and about 5 mg is administered to a human subject for prevention of wet AMD. In some variations a formulation as described herein containing an amount of rapamycin of between about 20 μg and about 4 mg is administered to a human subject for prevention of wet AMD. In some variations a liquid formulation as described herein containing an amount of rapamycin of between about 20 μg and about 1.2 mg is administered to a human subject for prevention of wet AMD. In some variations an amount of rapamycin of between about 10 μg and about 0.5 mg is administered to a human subject for prevention of wet AMD. In some variations, an amount of rapamycin of between about 10 μg and 90 μg is administered to a human subject for prevention of wet AMD. In some variations, an amount of rapamycin of between about 60 μg and 120 μg is administered to a human subject for prevention of wet AMD. In some variations, an amount of rapamycin of between about 100 μg and 400 μg is administered to a human subject for prevention of wet AMD. In some variations, an amount of rapamycin of between about 400 μg and 1 mg is administered to a human subject for prevention of wet AMD. In some variations, an amount of rapamycin of between about 1 mg and 5 mg is administered to a human subject for prevention of wet AMD. In some variations, an amount of rapamycin of between about 3 mg and 7 mg is administered to a human subject for prevention of wet AMD. In some variations, an amount of rapamycin of between about 5 mg and 10 mg is administered to a human subject for prevention of wet AMD. In some variations, prevention of wet AMD is prevention of the transition from dry AMD to wet AMD.
  • In some variations a formulation as described herein containing an amount of rapamycin of between about 1 μg and about 5 mg is administered to a human subject for treatment of dry AMD. In some variations a formulation as described herein containing an amount of rapamycin of between about 20 μg and about 4 mg is administered to a human subject for treatment of dry AMD. In some variations a liquid formulation as described herein containing an amount of rapamycin of between about 20 μg and about 1.2 mg is administered to a human subject for treatment of dry AMD. In some variations an amount of rapamycin of between about 10 μg and about 0.5 mg is administered to a human subject for treatment of dry AMD. In some variations, an amount of rapamycin of between about 10 μg and 90 μg is administered to a human subject for treatment of dry AMD. In some variations, an amount of rapamycin of between about 60 μg and 120 μg is administered to a human subject for treatment of dry AMD. In some variations, an amount of rapamycin of between about 100 μg and 400 μg is administered to a human subject for treatment of dry AMD. In some variations, an amount of rapamycin of between about 400 μg and 1 mg is administered to a human subject for treatment of dry AMD. In some variations, an amount of rapamycin of between about 1 mg and 5 mg is administered to a human subject for treatment of dry AMD. In some variations, an amount of rapamycin of between about 3 mg and 7 mg is administered to a human subject for treatment of dry AMD. In some variations, an amount of rapamycin of between about 5 mg and 10 mg is administered to a human subject for treatment of dry AMD.
  • In some variations, a liquid formulation as described herein containing an amount of rapamycin of between about 1 μg and about 5 mg is administered to a human subject for treatment of angiogenesis, including but not limited to choroidal neovascularization. In some variations for treatment of angiogenesis, including but not limited to choroidal neovascularization, a formulation as described herein containing an amount of rapamycin of between about 1 μg and about 5 mg is administered to a human subject. In some variations for treatment of angiogenesis, including but not limited to choroidal neovascularization, a formulation as described herein containing an amount of rapamycin of between about 20 μg and about 4 mg, between about 20 μg and about 1.2 mg, between about 10 μg and about 0.5 mg, between about 10 μg and 90 μg between about 60 μg and 120 μg, between about 100 μg and 400 μg, between about 400 μg and 1 mg, or between about 1 mg and 5 mg is administered to the human subject.
  • In some variations, any one or more of the rapamycin formulations described herein are administered intravitreally every 3 or more months, every 6 or more months, every 9 or more months, or every 12 or more months, or longer, to treat one or more of choroidal neovascularization, wet AMD, dry AMD, to prevent wet AMD, or to prevent progression of dry AMD to wet AMD. In some variations, any one or more of the rapamycin formulations described herein are administered subconjunctivally every 3 or more months, every 6 or more months, every 9 or more months, or every 12 or more months, or longer, to treat one or more of choroidal neovascularization, wet AMD, dry AMD, to prevent wet AMD, or to prevent progression of dry AMD to wet AMD. In some variations, the effect of the rapamycin persists beyond the period during which it is present in the ocular tissues.
  • In some variations, any one or more of the formulations described herein are administered intravitreally every 3 or more months, every 6 or more months, every 9 or more months, or every 12 or more months, or longer, to prevent one or more of choroidal neovascularization, wet AMD, dry AMD, or to prevent wet AMD. In some variations, any one or more of the formulations described herein are administered subconjunctivally every 3 or more months, every 6 or more months, every 9 or more months, or every 12 or more months, or longer, to prevent one or more of choroidal neovascularization, wet AMD, dry AMD, or to prevent wet AMD.
  • Rapamycin may, for example, be delivered at a dosage range between about 1 ng/day and about 100 μg/day, or at dosages higher or lower than this range, depending on the route and duration of administration. In some variations of liquid formulation or composition used in the methods described herein, rapamycin is delivered at a dosage range of between about 0.1 μg/day and about 10 μg/day. In some variations of liquid formulation or composition used in the methods described herein, rapamycin is delivered at a dosage range of between about 1 μg/day and about 5 μg/day. Dosages of rapamycin for treatment, prevention, inhibition, delay of onset, or cause of regression of various diseases and conditions described herein can be refined by the use of clinical trials.
  • The liquid formulations and compositions described herein may be used for delivery to the eye, as one nonlimiting example by ocular or periocular administration, of therapeutically effective amounts of rapamycin for extended periods of time to treat, prevent, inhibit, delay the onset of, or cause regression of CNV, and thus may be used to treat, prevent, inhibit, delay the onset of, or cause regression of wet AMD. It is believed that by changing certain characteristics of the liquid formulations and compositions described herein, including but not limited to the volume, positioning and components of the liquid formulations, the liquid formulations and compositions described herein may be used to deliver therapeutically effective amounts of rapamycin to the eye for a variety of extended time periods including delivery of therapeutic amounts for greater than about 1 week, for greater than about 2 weeks, for greater than about 3 weeks, for greater than about 1 month, for greater than about 3 months, for greater than about 6 months, for greater than about 9 months, for greater than about 1 year.
  • When a therapeutically effective amount of rapamycin is administered to a subject suffering from wet AMD, the rapamycin may treat, inhibit, or cause regression of the wet AMD. Different therapeutically effective amounts may be required for treatment, inhibition or causing regression. A subject suffering from wet AMD may have CNV lesions, and it is believed that administration of a therapeutically effective amount of rapamycin may have a variety of effects, including but not limited to causing regression of the CNV lesions, stabilizing the CNV lesion, and preventing progression of an active CNV lesion.
  • When a therapeutically effective amount of rapamycin is administered to a subject suffering from dry AMD, it is believed that the rapamycin may prevent or slow the progression of the dry AMD.
  • In some variations, a liquid rapamycin formulation described herein is administered in combination with other therapeutic agents and therapies, including but not limited to agents and therapies useful for the treatment, prevention, inhibition, delaying onset of, or causing regression of angiogenesis or neovascularization, particularly CNV. In some variations the additional agent or therapy is used to treat regression of angiogenesis or neovascularization, particularly CNV. Non-limiting examples of such additional agents and therapies include pyrrolidine, dithiocarbamate (NFκB inhibitor); squalamine; TPN 470 analogue and fumagillin; PKC (protein kinase C) inhibitors; Tie-1 and Tie-2 kinase inhibitors; inhibitors of VEGF receptor kinase; proteosome inhibitors such as VELCADE™ (bortezomib, for injection; ranibuzumab (LUCENTIS™) and other antibodies directed to the same target; pegaptanib (MACUGEN™); vitronectin receptor antagonists, such as cyclic peptide antagonists of vitronectin receptor-type integrins; α-v/β-3 integrin antagonists; α-v/β-1 integrin antagonists; thiazolidinediones such as rosiglitazone or troglitazone; interferon, including γ-interferon or interferon targeted to CNV by use of dextran and metal coordination; pigment epithelium derived factor (PEDF); endostatin; angiostatin; tumistatin; canstatin; anecortave acetate; acetonide; triamcinolone; tetrathiomolybdate; RNA silencing or RNA interference (RNAi) of angiogenic factors, including ribozymes that target VEGF expression; ACCUTANE™ (13-cis retinoic acid); ACE inhibitors, including but not limited to quinopril, captopril, and perindozril; inhibitors of mTOR (mammalian target of rapamycin); 3-aminothalidomide; pentoxifylline; 2-methoxyestradiol; colchicines; AMG-1470; cyclooxygenase inhibitors such as nepafenac, rofecoxib, diclofenac, rofecoxib, NS398, celecoxib, vioxx, and (E)-2-alkyl-2(4-methanesulfonylphenyl)-1-phenylethene; t-RNA synthase modulator; metalloprotease 13 inhibitor; acetylcholinesterase inhibitor; potassium channel blockers; endorepellin; purine analog of 6-thioguanine; cyclic peroxide ANO-2; (recombinant) arginine deiminase; epigallocatechin-3-gallate; cerivastatin; analogues of suramin; VEGF trap molecules; inhibitors of hepatocyte growth factor (antibodies to the growth factor or its receptors, small molecular inhibitors of the c-met tyrosine kinase, truncated versions of HGF e.g. NK4); apoptosis inhibiting agents; VISUDYNE™, snET2 and other photo sensitizers with photodynamic therapy (PDT); and laser photocoagulation.
  • EXAMPLES
  • Unless the context indicates otherwise, the error bars in the charts show one standard deviation. Where ethanol is used, it is 200 proof ethanol from Gold Shield Distributors, Hayward, Calif. Where rapamycin is used, it is from LC laboratories, Woburn, Mass., or Chunghwa Chemical Synthesis & Biotech Co., LTD (CCSB), Taipei Hsien, Taiwan, ROC. Where PEG 400 is used, it is from The Dow Chemical Company, New Milford, Conn. As used herein, “% w/w” means the weight of the component divided by the total formulation weight. Some of the graphs use the expression “uL” or “ug” to refer to μL or μg, respectively.
  • Example 1—Preparation and Characterization of a Rapamycin-Containing Solution
  • About 320 g of ethanol was sparged with N2 for about 10 minutes, and then about 40 g of sirolimus was added to the ethanol. The mixture was sonicated for about 20 minutes, by the end of which all of the sirolimus had gone into solution to form a sirolimus stock solution. A diluent non-aqueous liquid component was prepared by sonicating about 1880 g of PEG 400 for about 60 minutes, and then sparging the non-aqueous liquid component with nitrogen for about 10 minutes.
  • The sirolimus stock solution and the PEG 400 were then rotated at about room temperature in a rotary evaporator for about 10 minutes to mix the stock solution with the diluent non-aqueous liquid component. After mixing, the solution was sparged with nitrogen for about 10 minutes and blanketed with nitrogen for about 5 minutes. After the solution was sparged and filled with nitrogen, about 240 g of excess ethanol was evaporated from the solution by increasing the solution temperature, maintaining a temperature that did not exceed 40° C. for an extended period of time and continuing to rotate the solution for about 2.5 hours.
  • The resulting solution comprised about 40 g of sirolimus (about 2% w/w), about 80 g of ethanol (about 4% w/w), and about 1880 g of PEG 400 (about 94% w/w). This solution was sparged with nitrogen for about 10 minutes and blanketed with nitrogen for about 5 minutes. The solution was then filtered through a 0.2 micron filter. HPLC vials were filled with 2 ml each of the filtered solution to leave a head space in each container of about 400 μl. This head space was filled with nitrogen gas and capped.
  • Example 2—Preparation and Characterization of a Rapamycin-Containing Solution
  • Rapamycin, ethanol and PEG 400 were placed in a container to give final concentrations by weight of about 2.00% w/w rapamycin, about 4.00% w/w ethanol, and about 94.00% w/w PEG 400. The mixture was capped and sonicated for 1-2 hours. The sonication generated heat, with temperatures of up to about 40 or 50° C. Volumes of 1 μl, 3 μl, 20 μl, and 40 μl formed a non-dispersed mass in the vitreous of rabbit eyes.
  • Example 3—Subconjunctival Injection of a Rapamycin-Containing Solution
  • 20 μl of the solution described in Example 2 were injected between the sclera and the conjunctiva of the eye of New Zealand white rabbits. FIG. 2 depicts the level of rapamycin in the vitreous on a logarithmic scale at 5, 30, 60, 90, and 120 days after injection. FIG. 3 depicts the level of rapamycin in the retina choroid on a logarithmic scale at the same time points. For comparison, FIG. 2 and FIG. 3 also depict results of similar studies, performed with 40 μl and 60 μl injections, described below in Example 4 and Example 5.
  • In FIGS. 2-5, discussed in this and following examples, some outlier points have been omitted. Individual data points from the same study at the same time point were compared to each other. When the arithmetic mean of the data points was lower than their standard deviation, the data points that were higher or lower by an order of magnitude were considered as outliers.
  • The analysis was by liquid chromatography mass spectroscopy (LCMS) using an internal standard.
  • At each time point, the average concentration of rapamycin was calculated by adding the concentrations of rapamycin obtained for each eye from each rabbit, and dividing the total by the number of eyes analyzed.
  • The full vitreous was homogenized and analyzed. The average concentration of the vitreous was calculated by dividing the mass of rapamycin measured by the volume of vitreous analyzed. Where injection is intravitreal, for samples other than the vitreous, the sample did not include the site of administration; thus, this measurement indicated the level of rapamycin delivered to the vitreous via the solution. Where injection was intravitreal, for vitreous samples, the sample is thought to include the site of administration; thus, this measurement indicated the level of rapamycin cleared from the vitreous.
  • The full retina choroid was homogenized and analyzed. The average concentration of the retina choroid was calculated by dividing the mass of rapamycin measured by the mass of retina choroid analyzed.
  • Where injection was intravitreal or subconjunctival, the sample did not include the site of administration; thus, this measurement indicated the level of rapamycin delivered to the retina choroid via the solution.
  • In this experiment, between two and five rabbit eyes were analyzed at each time point. The vitreous sample did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the vitreous. The average level of rapamycin in the vitreous at 5, 30, 60, 90, and 120 days after subconjunctival injection was about 1.81, 0.45, 0.39, 1.85, and 1.49 ng/ml, respectively.
  • The retina choroid was homogenized and analyzed as described in Example 3, with the samples taken as described for the vitreous above. The retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid. The average level of rapamycin in the retina choroid at 5, 30, 60, 90, and 120 days after subconjunctival injection was about 0.14, 0.03, 0.02, 0.02, and 0.01 ng/mg, respectively.
  • Example 4—Subconjunctival Injection of a Rapamycin-Containing Solution
  • 40 μl of the solution described in Example 2 were injected between the sclera and the conjunctiva of the eye of New Zealand white rabbits. FIG. 2 depicts the level of rapamycin in the vitreous on a logarithmic scale at 5, 30, 60, 90, and 120 days after injection. FIG. 3 depicts the level of rapamycin in the retina choroid on a logarithmic scale at the same time points.
  • The vitreous was homogenized and analyzed as described in Example 3. Between two and five rabbit eyes were analyzed at each time point. The vitreous sample did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the vitreous. The average level of rapamycin in the vitreous at 5, 30, 60, 90, and 120 days after subconjunctival injection was about 2.39, 0.65, 0.54, 2.07, and 1.92 ng/ml, respectively.
  • The retina choroid was homogenized and analyzed as described in Example 3, with the samples taken as described for the vitreous above. The retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid. The average level of rapamycin in the retina choroid at 5, 30, 60, 90, and 120 days after subconjunctival injection was about 0.47, 0.04, 0.01, 0.05, and 0.0 ng/mg, respectively.
  • Example 5—Subconjunctival Injection of a Rapamycin-Containing Solution
  • 60 μl of the solution described in Example 23 were injected between the sclera and the conjunctiva of the eye of New Zealand white rabbits. FIG. 2 depicts the level of rapamycin in the vitreous on a logarithmic scale at 5, 30, 60, 90, and 120 days after injection. FIG. 3 depicts the level of rapamycin in the retina choroid on a logarithmic scale at the same time points.
  • The vitreous was homogenized and analyzed as described in Example 3. Between two and five rabbit eyes were analyzed at each time point. The vitreous sample did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the vitreous. The average level of rapamycin in the vitreous at 5, 30, 60, 90, and 120 days after subconjunctival injection was about 8.65, 0.29, 0.18, 2.00, 1.41 ng/ml, respectively.
  • The retina choroid was homogenized and analyzed as described in Example 3, with the samples taken as described for the vitreous above. The retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid. The average level of rapamycin in the retina choroid at 5, 30, 60, 90, and 120 days after subconjunctival injection was about 0.63, 0.02, 0.02, 0.06, and 0.01 ng/mg, respectively.
  • Example 6—Intravitreal Injection of a Rapamycin-Containing Solution
  • 20 μl of the solution described in Example 2 were injected into the vitreous of the eye of New Zealand white rabbits. The injected solution formed a non-dispersed mass relative to the surrounding medium. FIG. 4 depicts the level of rapamycin in the vitreous on a logarithmic scale 5, 30, 60, 90, and 120 days after injection. FIG. 5 depicts the level of rapamycin in the retina choroid on a logarithmic scale at the same time points. For comparison, FIG. 4 and FIG. 5 also depict results of other studies described below in Example 28 and Example 30.
  • The vitreous was homogenized and analyzed as described in Example 3. Between two and five rabbit eyes were analyzed at each time point. The vitreous sample may have included the site of administration. The average level of rapamycin in the vitreous at 5, 30, 60, 90, and 120 days after intravitreal injection was about 162,100; 18,780; 57,830; 94,040; and 13,150 ng/ml, respectively.
  • The retina choroid was homogenized and analyzed as described in Example 3, with the samples taken as described for the vitreous above. The retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid. The average level of rapamycin in the retina choroid at 5, 30, 60, 90, and 120 days after intravitreal injection was about 2.84, 2.26, 0.17, 0.22, and 0.05 ng/mg, respectively.
  • Example 7—Intravitreal Injection of a Rapamycin-Containing Solution
  • 40 μl of the solution described in Example 2 were injected into the vitreous of the eye of New Zealand white rabbits. The injected solution formed a non-dispersed mass relative to the surrounding medium. FIG. 4 depicts the level of rapamycin in the vitreous on a logarithmic scale 5, 30, 60, 90, and 120 days after injection. FIG. 5 depicts the level of rapamycin in the retina choroid on a logarithmic scale at the same time points.
  • The vitreous was homogenized and analyzed as described in Example 3. Between two and five rabbit eyes were analyzed at each time point. The vitreous sample may have included the site of administration. The average level of rapamycin in the vitreous at 5, 30, 60, 90, and 120 days after intravitreal injection was about 415,600; 4,830; 74,510; 301,300; and 7,854 ng/ml respectively.
  • The retina choroid was homogenized and analyzed as described in Example 3, with the samples taken as described for the vitreous above. The retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid. The average level of rapamycin in the retina choroid at 5, 30, 60, 90, and 120 days after intravitreal injection was about 5.36, 0.23, 1.27, 1.08, and 0.08 ng/mg, respectively.
  • All references cited herein, including patents, patent applications, and publications, are hereby incorporated by reference in their entireties, whether previously specifically incorporated or not.

Claims (8)

What is claimed is:
1. A method for treating dry age-related macular degeneration in a human subject, the method comprising administering to the human subject by intraocular or periocular injection of a liquid formulation containing an amount of rapamycin effective to treat dry-age macular degeneration in the human subject, wherein the liquid formulation is a liquid solution that forms a non-dispersed mass when injected into the vitreous, and the liquid formulation comprises about 2% (w/w) rapamycin, about 94% (w/w) PEG 400, and about 4% (w/w) ethanol.
2. The method of claim 1, wherein the volume of liquid formulation contains between 20 μg and 2.5 mg of rapamycin.
3. The method of claim 1, wherein the volume of liquid formulation contains between 20 μg and 4 mg of rapamycin.
4. The method of claim 1, wherein the volume of the liquid formulation is administered to the human subject by injection into the vitreous.
5. The method of claim 1, wherein the volume of the liquid formulation is administered to the human subject by injection between the sclera and conjunctiva.
6. The method of claim 1, wherein the volume of the liquid formulation when injected into the vitreous delivers an amount of rapamycin sufficient to achieve one or both of:
an average concentration of rapamycin in the retina choroid of at least 0.01 ng/mg for a period of time of at least 30 days following administration of the liquid formulation, and
an average concentration of rapamycin in the vitreous of at least 1000 ng/ml for a period of time of at least 30 days following administration of the liquid formulation.
7. The method of claim 1, wherein the volume of the liquid formulation when injected between the sclera and conjunctiva delivers an amount of rapamycin sufficient to achieve one or both of:
an average concentration of rapamycin in the vitreous of at least 0.01 ng/ml for a period of time of at least 30 days following administration of the liquid formulation; and
an average concentration of rapamycin in the retina choroid of at least 0.001 ng/mg for a period of time of at least 30 days following administration of the liquid formulation.
8. The method of claim 1, wherein the non-dispersed mass is a solid depot of rapamycin.
US15/611,701 2005-02-09 2017-06-01 Rapamycin formulations and methods of their use Abandoned US20170266109A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/611,701 US20170266109A1 (en) 2005-02-09 2017-06-01 Rapamycin formulations and methods of their use

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US65179005P 2005-02-09 2005-02-09
US66430605P 2005-03-21 2005-03-21
US66404005P 2005-03-21 2005-03-21
US11/352,092 US8637070B2 (en) 2005-02-09 2006-02-09 Rapamycin formulations and methods of their use
US14/151,647 US9387165B2 (en) 2005-02-09 2014-01-09 Rapamycin formulations and methods of their use
US15/197,568 US20160303093A1 (en) 2005-02-09 2016-06-29 Rapamycin formulations and methods of their use
US15/611,701 US20170266109A1 (en) 2005-02-09 2017-06-01 Rapamycin formulations and methods of their use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/197,568 Continuation US20160303093A1 (en) 2005-02-09 2016-06-29 Rapamycin formulations and methods of their use

Publications (1)

Publication Number Publication Date
US20170266109A1 true US20170266109A1 (en) 2017-09-21

Family

ID=36793384

Family Applications (11)

Application Number Title Priority Date Filing Date
US11/352,092 Expired - Fee Related US8637070B2 (en) 2005-02-09 2006-02-09 Rapamycin formulations and methods of their use
US11/351,844 Abandoned US20060182771A1 (en) 2005-02-09 2006-02-09 Formulations for ocular treatment
US11/351,761 Abandoned US20060258698A1 (en) 2005-02-09 2006-02-09 Liquid formulations for treatment of diseases or conditions
US12/778,872 Active 2026-06-16 US8367097B2 (en) 2005-02-09 2010-05-12 Liquid formulations for treatment of diseases or conditions
US13/741,103 Active US8927005B2 (en) 2005-02-09 2013-01-14 Liquid formulations for treatment of diseases or conditions
US14/151,647 Active 2026-04-17 US9387165B2 (en) 2005-02-09 2014-01-09 Rapamycin formulations and methods of their use
US14/553,947 Active US9381153B2 (en) 2005-02-09 2014-11-25 Liquid formulations for treatment of diseases or conditions
US15/183,649 Abandoned US20170020809A1 (en) 2005-02-09 2016-06-15 Liquid formulations for treatment of diseases or conditions
US15/197,568 Abandoned US20160303093A1 (en) 2005-02-09 2016-06-29 Rapamycin formulations and methods of their use
US15/611,701 Abandoned US20170266109A1 (en) 2005-02-09 2017-06-01 Rapamycin formulations and methods of their use
US15/806,226 Abandoned US20180311152A1 (en) 2005-02-09 2017-11-07 Liquid formulations for treatment of diseases or conditions

Family Applications Before (9)

Application Number Title Priority Date Filing Date
US11/352,092 Expired - Fee Related US8637070B2 (en) 2005-02-09 2006-02-09 Rapamycin formulations and methods of their use
US11/351,844 Abandoned US20060182771A1 (en) 2005-02-09 2006-02-09 Formulations for ocular treatment
US11/351,761 Abandoned US20060258698A1 (en) 2005-02-09 2006-02-09 Liquid formulations for treatment of diseases or conditions
US12/778,872 Active 2026-06-16 US8367097B2 (en) 2005-02-09 2010-05-12 Liquid formulations for treatment of diseases or conditions
US13/741,103 Active US8927005B2 (en) 2005-02-09 2013-01-14 Liquid formulations for treatment of diseases or conditions
US14/151,647 Active 2026-04-17 US9387165B2 (en) 2005-02-09 2014-01-09 Rapamycin formulations and methods of their use
US14/553,947 Active US9381153B2 (en) 2005-02-09 2014-11-25 Liquid formulations for treatment of diseases or conditions
US15/183,649 Abandoned US20170020809A1 (en) 2005-02-09 2016-06-15 Liquid formulations for treatment of diseases or conditions
US15/197,568 Abandoned US20160303093A1 (en) 2005-02-09 2016-06-29 Rapamycin formulations and methods of their use

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/806,226 Abandoned US20180311152A1 (en) 2005-02-09 2017-11-07 Liquid formulations for treatment of diseases or conditions

Country Status (17)

Country Link
US (11) US8637070B2 (en)
EP (3) EP3025713A1 (en)
JP (2) JP4974903B2 (en)
KR (3) KR101492584B1 (en)
CN (1) CN104147005B (en)
AU (2) AU2006213673A1 (en)
BR (2) BRPI0608152A2 (en)
CA (2) CA2597590A1 (en)
CY (1) CY1117357T1 (en)
DK (1) DK1848431T3 (en)
ES (1) ES2564194T3 (en)
GB (1) GB2438544A (en)
HK (3) HK1110215A1 (en)
HU (1) HUE027352T2 (en)
PL (1) PL1848431T3 (en)
SI (1) SI1848431T1 (en)
WO (2) WO2006086750A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11400080B2 (en) 2016-05-25 2022-08-02 Santen Pharmaceutical Co., Ltd. Use of sirolimus to treat exudative age-related macular degeneration with persistent edema

Families Citing this family (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7431710B2 (en) 2002-04-08 2008-10-07 Glaukos Corporation Ocular implants with anchors and methods thereof
US7585517B2 (en) * 2003-09-18 2009-09-08 Macusight, Inc. Transscleral delivery
US8288362B2 (en) 2004-05-07 2012-10-16 S.K. Pharmaceuticals, Inc. Stabilized glycosaminoglycan preparations and related methods
WO2006086750A1 (en) 2005-02-09 2006-08-17 Macusight, Inc. Liquid formulations for treatment of diseases or conditions
US8663639B2 (en) 2005-02-09 2014-03-04 Santen Pharmaceutical Co., Ltd. Formulations for treating ocular diseases and conditions
CA2602525A1 (en) * 2005-03-21 2006-09-28 Macusight, Inc. Drug delivery systems for treatment of diseases or conditions
US20060222596A1 (en) 2005-04-01 2006-10-05 Trivascular, Inc. Non-degradable, low swelling, water soluble radiopaque hydrogel polymer
US20070173538A1 (en) * 2005-12-23 2007-07-26 Alcon, Inc. PHARMACEUTICAL FORMULATION FOR DELIVERY OF RECEPTOR TYROSINE KINASE INHIBITING (RTKi) COMPOUNDS TO THE EYE
CA2635797C (en) 2006-02-09 2015-03-31 Macusight, Inc. Stable formulations, and methods of their preparation and use
AU2013200089B2 (en) * 2006-02-09 2016-03-03 Santen Pharmaceutical Co., Ltd Stable formulations, and methods of their preparation and use
KR101520408B1 (en) 2006-03-23 2015-05-14 산텐 세이야꾸 가부시키가이샤 Formulations and methods for vascular permeability-related diseases or conditions
US20070249546A1 (en) * 2006-04-22 2007-10-25 Sawaya Assad S Ophthalmic and related aqueous solutions containing antifungal agents, uses therefor and methods for preparing them
US7872068B2 (en) 2006-05-30 2011-01-18 Incept Llc Materials formable in situ within a medical device
EP2049137A4 (en) * 2006-08-08 2013-05-01 Univ California Salicylanilides enhance oral delivery of therapeutic peptides
RU2010104916A (en) * 2006-08-16 2011-08-20 Михаил В. Благосклонный (US) METHOD FOR PREVENTION AND TREATMENT OF AGE DISEASES
US9205080B2 (en) 2006-11-16 2015-12-08 Transderm, Inc. Methods of treating keratin hyperproliferation disorders using mTOR inhibitors
US20080132475A1 (en) * 2006-12-05 2008-06-05 Charles Gerald Connor Treatment for dry eye
WO2008120249A1 (en) * 2007-03-30 2008-10-09 Sifi S.P.A. Pharmaceutical formulations based on apolar and polar lipids for ophthalmic use
US8642067B2 (en) 2007-04-02 2014-02-04 Allergen, Inc. Methods and compositions for intraocular administration to treat ocular conditions
AU2014201863B2 (en) * 2007-04-30 2017-02-02 Allergan, Inc. High viscosity macromolecular compositions for treating ocular conditions
US11078262B2 (en) 2007-04-30 2021-08-03 Allergan, Inc. High viscosity macromolecular compositions for treating ocular conditions
US9125807B2 (en) 2007-07-09 2015-09-08 Incept Llc Adhesive hydrogels for ophthalmic drug delivery
CA2693888A1 (en) * 2007-07-20 2009-01-29 Alcon, Inc. Pharmaceutical formulation for delivery of receptor tyrosine kinase inhibiting (rtki) compounds to the eye
CA2723139A1 (en) * 2007-07-30 2009-02-05 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Dha and pedf, a therapeutic composition for nerve and retinal pigment epithelial cells
KR20100055482A (en) * 2007-08-16 2010-05-26 마커사이트, 인코포레이티드 Formulations for treatment of ocular diseases or conditions
CA2701482C (en) 2007-10-08 2018-10-23 Lux Biosciences, Inc. Ophthalmic compositions comprising calcineurin inhibitors or mtor inhibitors
MX2010004373A (en) * 2007-11-01 2010-05-05 Bausch & Lomb Non-aqueous water-miscible materials as vehicles for drug delivery.
US20110034854A1 (en) * 2007-11-20 2011-02-10 Ceramoptec Industries, Inc. Pdt assisted vision correction and scar prevention
US20100016264A1 (en) * 2007-12-05 2010-01-21 Connor Charles G Treatment for dry eye using testosterone and progestagen
CA2723358A1 (en) * 2008-05-05 2009-11-12 Allison B. Reiss Method for improving cardiovascular risk profile of cox inhibitors
US8821870B2 (en) * 2008-07-18 2014-09-02 Allergan, Inc. Method for treating atrophic age related macular degeneration
CA2743491C (en) 2008-11-11 2016-10-11 Zelton Dave Sharp Inhibition of mammalian target of rapamycin
DE102008059201A1 (en) * 2008-11-27 2010-06-02 GÖPFERICH, Achim, Prof. Dr. In situ precipitating drug solutions
WO2010065024A1 (en) * 2008-12-05 2010-06-10 Kador Peter F Topical treatment of cataracts in dogs
US8409606B2 (en) 2009-02-12 2013-04-02 Incept, Llc Drug delivery through hydrogel plugs
WO2010093945A2 (en) 2009-02-13 2010-08-19 Glaukos Corporation Uveoscleral drug delivery implant and methods for implanting the same
WO2010117077A1 (en) * 2009-04-10 2010-10-14 参天製薬株式会社 Therapeutic agent for chorioretinal diseases comprising sirolimus derivative as active ingredient
CN104997774A (en) * 2009-04-10 2015-10-28 齐海燕 Novel anti-aging agent and method to identify them
US20120114637A1 (en) * 2009-05-04 2012-05-10 Santen Pharmaceutical Co., Ltd. Mtor pathway inhibitors for treating ocular disorders
US10206813B2 (en) 2009-05-18 2019-02-19 Dose Medical Corporation Implants with controlled drug delivery features and methods of using same
US20100305046A1 (en) * 2009-06-02 2010-12-02 Abbott Medical Optics Inc. Stable cyclosporine containing ophthalmic emulsion for treating dry eyes
AU2014250656B2 (en) * 2009-06-02 2016-05-05 Johnson & Johnson Surgical Vision, Inc. Omega-3 oil containing ophthalmic emulsions
US9480645B2 (en) * 2009-06-02 2016-11-01 Abbott Medical Optics Inc. Omega-3 oil containing ophthalmic emulsions
US20100303915A1 (en) * 2009-06-02 2010-12-02 Abbott Medical Optics Inc. Therapeutic opthalmic emulsions
AU2010259184B2 (en) 2009-06-09 2015-08-13 Aurinia Pharmaceuticals Inc. Topical drug delivery systems for ophthalmic use
CA2767576C (en) 2009-07-08 2020-03-10 Charleston Laboratories Inc. Pharmaceutical compositions comprising an antiemetic and an opioid analgesic
TWI492769B (en) * 2009-09-23 2015-07-21 Alcon Res Ltd Injectable aqueous ophthalmic composition and method of use therefor
EP2308468A1 (en) * 2009-10-08 2011-04-13 Novaliq GmbH Novel pharmaceutical composition comprising a macrolide immunosuppressant drug
US9717703B2 (en) 2009-10-16 2017-08-01 Glaxosmithkline Llc Emulsion and emulsion preconcentrate compositions comprising omega-3 fatty acids and uses thereof are disclosed
US10391059B2 (en) * 2009-11-11 2019-08-27 Rapamycin Holdings, Inc. Oral rapamycin nanoparticle preparations and use
WO2015161139A1 (en) 2014-04-16 2015-10-22 Rapamycin Holdings, Llc Oral rapamycin preparation and use for stomatitis
US9283211B1 (en) 2009-11-11 2016-03-15 Rapamycin Holdings, Llc Oral rapamycin preparation and use for stomatitis
ES2758554T3 (en) 2009-12-08 2020-05-05 Univ Case Western Reserve Range amino acids for treatment of eye disorders
KR20120117013A (en) 2010-01-12 2012-10-23 노보 노르디스크 에이/에스 Pharmaceutical compositions for oral administration of insulin peptides
US8961501B2 (en) * 2010-09-17 2015-02-24 Incept, Llc Method for applying flowable hydrogels to a cornea
JPWO2012067224A1 (en) * 2010-11-19 2014-05-19 日本水産株式会社 Treatment or prevention agent for corneal epithelial disorder and / or conjunctival epithelial disorder
US9668915B2 (en) 2010-11-24 2017-06-06 Dose Medical Corporation Drug eluting ocular implant
KR101214362B1 (en) * 2011-02-15 2012-12-21 한림대학교 산학협력단 Pharmaceutical composition for eye disease containing FK506 binding protein fusion protein
CN102653779B (en) * 2011-03-04 2014-02-19 北京科润三联生物技术有限责任公司 Novel preparation method of recombinant antibacterial polypeptide medicament
US10245178B1 (en) 2011-06-07 2019-04-02 Glaukos Corporation Anterior chamber drug-eluting ocular implant
US10226417B2 (en) 2011-09-16 2019-03-12 Peter Jarrett Drug delivery systems and applications
US8716363B2 (en) 2011-09-28 2014-05-06 Globus Medical, Inc. Biodegradable putty compositions and implant devices, methods, and kits relating to the same
CN103127052A (en) * 2011-12-05 2013-06-05 维瑞斯特姆有限公司 Treatment composition and relevant application method
EP3613413A1 (en) 2011-12-05 2020-02-26 Incept, LLC Medical organogel processes and compositions
WO2013109354A2 (en) * 2011-12-07 2013-07-25 Texas Southern University Etravirine formulations and uses thereof
US20150290176A1 (en) 2012-10-12 2015-10-15 The Board Of Regents Of The University Of Texas System Use of mtor inhibitors to treat vascular cognitive impairment
DK2968281T3 (en) 2013-03-13 2020-11-02 Univ Texas MTOR INHIBITORS FOR PREVENTING THE GROWTH OF THE INTESTINAL POLYPH
US9844597B2 (en) * 2013-04-18 2017-12-19 The Hong Kong University Of Science And Technology Biocompatible in situ hydrogel
EP3047850A4 (en) 2013-09-20 2017-05-10 Santen Pharmaceutical Co., Ltd Polyethylene glycol-containing composition
US9700544B2 (en) 2013-12-31 2017-07-11 Neal K Vail Oral rapamycin nanoparticle preparations
EP2946788A1 (en) 2014-05-23 2015-11-25 Immundiagnostik AG Method and composition for treating heart failure with preserved ejection fraction
US20150342875A1 (en) 2014-05-29 2015-12-03 Dose Medical Corporation Implants with controlled drug delivery features and methods of using same
CA2963871A1 (en) * 2014-10-08 2016-04-14 Maamar ACHACHA Altrenogest formulation and uses thereof for estrus synchronisation in animals
US20180000816A1 (en) * 2015-02-06 2018-01-04 Unity Biotechnology, Inc. Use of a Heterocyclic Bcl-xL Inhibitor and Related Analogs for Removing Senescent Cells in the Treatment of Eye Diseases and Other Age-Related Conditions
CA2976952A1 (en) 2015-03-05 2016-09-09 Allergan, Inc. Self-emulsifying drug delivery system (sedds) for ophthalmic drug delivery
US11090296B2 (en) * 2015-03-18 2021-08-17 Santen Pharmaceutical Co., Ltd. Sustained-release pharmaceutical composition
BR112017024732A2 (en) 2015-05-20 2018-07-31 Novartis Ag pharmaceutical combination of everolimus with dactolisib
AR106018A1 (en) 2015-08-26 2017-12-06 Achillion Pharmaceuticals Inc ARYL, HETEROARYL AND HETEROCYCLIC COMPOUNDS FOR THE TREATMENT OF MEDICAL DISORDERS
EP3340982B1 (en) 2015-08-26 2021-12-15 Achillion Pharmaceuticals, Inc. Compounds for treatment of immune and inflammatory disorders
WO2017040853A1 (en) 2015-09-02 2017-03-09 Glaukos Corporation Drug delivery implants with bi-directional delivery capacity
CN108024914A (en) 2015-09-17 2018-05-11 Jrx生物技术有限公司 Improve the method for the aquation or wetting action of skin
KR20180053340A (en) 2015-09-18 2018-05-21 산텐 세이야꾸 가부시키가이샤 Prevention or treatment of corneal myositis
US20190038605A1 (en) * 2015-09-18 2019-02-07 Nippon Kayaku Kabushiki Kaisha Pharmaceutical composition comprising rapamycin or derivative thereof
US11564833B2 (en) 2015-09-25 2023-01-31 Glaukos Corporation Punctal implants with controlled drug delivery features and methods of using same
AU2016369616B2 (en) 2015-12-17 2021-03-25 Ptc Therapeutics, Inc. Fluoroalkyl, fluoroalkoxy, phenoxy, heteroaryloxy, alkoxy, and amine 1,4-benzoquinone derivatives for treatment of oxidative stress disorders
JP2019507181A (en) 2016-03-04 2019-03-14 チャールストン ラボラトリーズ,インコーポレイテッド Pharmaceutical composition
CA3022830A1 (en) 2016-04-20 2017-10-26 Harold Alexander Heitzmann Bioresorbable ocular drug delivery device
EP3448389B1 (en) 2016-06-27 2021-09-29 Achillion Pharmaceuticals, Inc. Quinazoline and indole compounds to treat medical disorders
EP3478285A4 (en) 2016-06-30 2020-07-22 Durect Corporation Depot formulations
US10682340B2 (en) 2016-06-30 2020-06-16 Durect Corporation Depot formulations
CN110114070A (en) 2016-11-23 2019-08-09 诺华公司 Use everolimus (everolimus), the method being immunoreacted up to Tuoli former times cloth (dactolisib) or both enhancing
EA201990127A1 (en) * 2016-12-30 2020-08-18 Дьюрект Корпорейшн DEPO-PREPARATION
CN110520097B (en) * 2017-01-06 2023-10-27 帕尔维拉治疗股份有限公司 Anhydrous compositions of MTOR inhibitors and methods of use thereof
US11065217B2 (en) 2017-01-27 2021-07-20 Temple University—Of the Commonwealth System of Higher Education Use of short chain fatty acids for the treatment and prevention of diseases and disorders
JP7092687B2 (en) * 2017-02-17 2022-06-28 参天製薬株式会社 Pharmaceutical-sealed container and its use
US20190224275A1 (en) 2017-05-12 2019-07-25 Aurinia Pharmaceuticals Inc. Protocol for treatment of lupus nephritis
US20210154372A1 (en) 2017-05-15 2021-05-27 C.R. Bard, Inc. Medical device with drug-eluting coating and intermediate layer
WO2018220444A2 (en) * 2017-05-30 2018-12-06 Eximore Ltd. Compositions and methods for treating dry eye syndrome delivering antibiotic macrolide
JP6537092B2 (en) 2017-06-16 2019-07-03 学校法人同志社 Medicaments for treating or preventing ocular conditions, disorders or diseases, including mTOR inhibitors and applications thereof
MX2019015475A (en) 2017-06-30 2020-02-19 Univ California Compositions and methods for modulating hair growth.
EP3656852A4 (en) * 2017-07-20 2021-04-21 Riken Method for maturation of retinal tissue containing continuous epithelium
US10596165B2 (en) 2018-02-12 2020-03-24 resTORbio, Inc. Combination therapies
CN111902141A (en) 2018-03-26 2020-11-06 C4医药公司 Glucocerebroside binders for IKAROS degradation
WO2020010073A1 (en) 2018-07-02 2020-01-09 Palvella Therapeutics, Inc. ANHYDROUS COMPOSITIONS OF mTOR INHIBITORS AND METHODS OF USE
EP3866773A4 (en) 2018-10-16 2022-10-26 Georgia State University Research Foundation, Inc. Carbon monoxide prodrugs for the treatment of medical disorders
US11541152B2 (en) 2018-11-14 2023-01-03 Lutonix, Inc. Medical device with drug-eluting coating on modified device surface
EP3886852B1 (en) * 2018-12-03 2024-01-31 Smilebiotek Zhuhai Limited Octyl gallate and esters thereof of for use in the treatment and prevention of age-related macular degeneration caused by bacillus megaterium
WO2020150147A1 (en) * 2019-01-14 2020-07-23 The Regents Of The University Of California Compositions and methods for treating ocular conditions
CN113939324A (en) 2019-04-08 2022-01-14 巴德外周血管股份有限公司 Medical devices having drug eluting coatings on modified device surfaces
WO2021051003A1 (en) * 2019-09-13 2021-03-18 Aldeyra Therapeutics, Inc. Ophthalmic formulations of methotrexate
JP2023510354A (en) * 2020-01-10 2023-03-13 ブリオリ バイオテック,エルエルシー Topical compositions containing rofecoxib and methods of making and using the same
WO2022271702A1 (en) * 2021-06-21 2022-12-29 Palvella Therapeutics, Inc. Methods and compositions for treating gorlin syndrome
WO2023225373A1 (en) * 2022-05-20 2023-11-23 Dermbiont, Inc. Compositions and formulations for use of a pk inhibitor for the prevention, treatment, and improvement of skin diseases, conditions, and disorders
US11911385B1 (en) 2022-12-14 2024-02-27 Aldeyra Therapeutics, Inc. Methotrexate treatment methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050064010A1 (en) * 2003-09-18 2005-03-24 Cooper Eugene R. Transscleral delivery
US20050187241A1 (en) * 2002-09-18 2005-08-25 Rong Wen Method of inhibiting choroidal neovascularization

Family Cites Families (268)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2007538A (en) * 1934-04-10 1935-07-09 Louis Stern Company Bracelet end hook
US3416530A (en) 1966-03-02 1968-12-17 Richard A. Ness Eyeball medication dispensing tablet
US3630200A (en) 1969-06-09 1971-12-28 Alza Corp Ocular insert
US3828777A (en) 1971-11-08 1974-08-13 Alza Corp Microporous ocular device
US3914402A (en) 1973-06-14 1975-10-21 Alza Corp Ophthalmic dosage form, for releasing medication over time
US3926188A (en) 1974-11-14 1975-12-16 Alza Corp Laminated drug dispenser
US4093709A (en) * 1975-01-28 1978-06-06 Alza Corporation Drug delivery devices manufactured from poly(orthoesters) and poly(orthocarbonates)
US4014335A (en) * 1975-04-21 1977-03-29 Alza Corporation Ocular drug delivery device
FR2382240A1 (en) 1977-03-03 1978-09-29 Mouls Pierre Ophthalmic solution diffusion equipment - delivers fine mist to cornea indirectly using cup with baffles
US4300557A (en) 1980-01-07 1981-11-17 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Method for treating intraocular malignancies
AU543727B2 (en) 1980-06-02 1985-05-02 Ayerst Mckenna & Harrison Inc. Injectable composition of rapamycin
IT1141715B (en) 1980-06-06 1986-10-08 Sadepan Chimica Spa UREA-FORMALDEHYDE RESIN BASED ADHESIVE WITH CALCIUM AND / OR AMMONIUM LIGNINSULPHONATE, UREA FORMALDEHYDE RESIN MODIFIED WITH CALCIUM LIGNINSULPHONATE AND / OR AMMONIUM AND PRODUCTION METHOD OF THE SAME, FOR THE PREPARATION OF WOOD PANELS
US4316885A (en) * 1980-08-25 1982-02-23 Ayerst, Mckenna And Harrison, Inc. Acyl derivatives of rapamycin
US4650803A (en) * 1985-12-06 1987-03-17 University Of Kansas Prodrugs of rapamycin
US5147647A (en) 1986-10-02 1992-09-15 Sohrab Darougar Ocular insert for the fornix
US5322691A (en) * 1986-10-02 1994-06-21 Sohrab Darougar Ocular insert with anchoring protrusions
ATE109970T1 (en) 1987-09-03 1994-09-15 Univ Georgia Res Found CYCLOSPORIN EYE REMEDY.
US4853224A (en) 1987-12-22 1989-08-01 Visionex Biodegradable ocular implants
US4997652A (en) * 1987-12-22 1991-03-05 Visionex Biodegradable ocular implants
EP0356399A3 (en) * 1988-08-26 1991-03-20 Sandoz Ag Substituted 4-azatricyclo (22.3.1.04.9) octacos-18-ene derivatives, their preparation and pharmaceutical compositions containing them
US4946450A (en) 1989-04-18 1990-08-07 Biosource Genetics Corporation Glucan/collagen therapeutic eye shields
US5100899A (en) * 1989-06-06 1992-03-31 Roy Calne Methods of inhibiting transplant rejection in mammals using rapamycin and derivatives and prodrugs thereof
US5164188A (en) 1989-11-22 1992-11-17 Visionex, Inc. Biodegradable ocular implants
US5883082A (en) * 1990-08-14 1999-03-16 Isis Pharmaceuticals, Inc. Compositions and methods for preventing and treating allograft rejection
US5192773A (en) * 1990-07-02 1993-03-09 Vertex Pharmaceuticals, Inc. Immunosuppressive compounds
JPH04230389A (en) 1990-07-16 1992-08-19 American Home Prod Corp Rapamycin derivative
DE4022553A1 (en) 1990-07-16 1992-01-23 Hund Helmut Gmbh Medical contact lens - with recess contg. therapeutically or diagnostically active substance
US5023262A (en) 1990-08-14 1991-06-11 American Home Products Corporation Hydrogenated rapamycin derivatives
PT98990A (en) 1990-09-19 1992-08-31 American Home Prod PROCESS FOR THE PREPARATION OF CARBOXYLIC ACID ESTERS OF RAPAMICIN
US5290892A (en) * 1990-11-07 1994-03-01 Nestle S.A. Flexible intraocular lenses made from high refractive index polymers
CA2054983A1 (en) 1990-11-08 1992-05-09 Sotoo Asakura Suspendible composition and process for preparing the same
US5378475A (en) * 1991-02-21 1995-01-03 University Of Kentucky Research Foundation Sustained release drug delivery devices
US5078999A (en) * 1991-02-22 1992-01-07 American Home Products Corporation Method of treating systemic lupus erythematosus
US5120842A (en) * 1991-04-01 1992-06-09 American Home Products Corporation Silyl ethers of rapamycin
DE69231644T2 (en) * 1991-04-26 2001-05-23 Fujisawa Pharmaceutical Co USE OF MACROLID COMPOUNDS FOR EYE DISEASES
US5565560A (en) 1991-05-13 1996-10-15 Merck & Co., Inc. O-Aryl,O-alkyl,O-alkenyl and O-alkynylmacrolides having immunosuppressive activity
US5120727A (en) * 1991-05-29 1992-06-09 American Home Products Corporation Rapamycin dimers
US5120725A (en) * 1991-05-29 1992-06-09 American Home Products Corporation Bicyclic rapamycins
IL102414A (en) 1991-07-25 1996-08-04 Univ Louisville Res Found Pharmaceutical compositions for treating ocular inflammation comprising rapamycin
US5189042A (en) * 1991-08-22 1993-02-23 Merck & Co. Inc. Fluoromacrolides having immunosuppressive activity
US5457111A (en) 1991-09-05 1995-10-10 Abbott Laboratories Macrocyclic immunomodulators
US5192802A (en) * 1991-09-25 1993-03-09 Mcneil-Ppc, Inc. Bioadhesive pharmaceutical carrier
US5679666A (en) 1991-11-22 1997-10-21 Alcon Laboratories, Inc. Prevention and treatment of ocular neovascularization by treatment with angiostatic steroids
US5770592A (en) * 1991-11-22 1998-06-23 Alcon Laboratories, Inc. Prevention and treatment of ocular neovascularization using angiostatic steroids
US5516781A (en) * 1992-01-09 1996-05-14 American Home Products Corporation Method of treating restenosis with rapamycin
US5177203A (en) * 1992-03-05 1993-01-05 American Home Products Corporation Rapamycin 42-sulfonates and 42-(N-carboalkoxy) sulfamates useful as immunosuppressive agents
HUT70947A (en) 1992-03-30 1995-11-28 American Home Prod Injectable rapamycin solutions and process for producing them
US5178635A (en) * 1992-05-04 1993-01-12 Allergan, Inc. Method for determining amount of medication in an implantable device
FR2690846B1 (en) * 1992-05-05 1995-07-07 Aiache Jean Marc GALENIC FORM FOR EYE ADMINISTRATION AND METHOD OF PREPARATION.
US5858340A (en) * 1992-05-22 1999-01-12 The Procter & Gamble Company Cosmetic compositions
WO1994005257A1 (en) 1992-09-08 1994-03-17 Allergan, Inc. Sustained release of ophthalmic drugs from a soluble polymer drug delivery vehicle
GB9221220D0 (en) 1992-10-09 1992-11-25 Sandoz Ag Organic componds
US5258389A (en) 1992-11-09 1993-11-02 Merck & Co., Inc. O-aryl, O-alkyl, O-alkenyl and O-alkynylrapamycin derivatives
ES2134860T3 (en) * 1992-11-18 1999-10-16 Fujisawa Pharmaceutical Co PHARMACEUTICAL PREPARATION FOR PROLONGED ACTION.
CA2156065A1 (en) 1993-03-17 1994-09-29 Rolf Wagner Macrocyclic amide and urea immunomodulators
GB2278780B (en) 1993-05-27 1998-10-14 Sandoz Ltd Macrolide formulations
US5798355A (en) 1995-06-07 1998-08-25 Gpi Nil Holdings, Inc. Inhibitors of rotamase enzyme activity
ATE502664T1 (en) * 1993-07-19 2011-04-15 Angiotech Pharm Inc METHOD OF PRODUCTION OF A STENT WITH ANTI-ANGIOGENIC COMPOSITION
WO1995003009A1 (en) * 1993-07-22 1995-02-02 Oculex Pharmaceuticals, Inc. Method of treatment of macular degeneration
US5616588A (en) * 1993-09-30 1997-04-01 American Home Products Corporation Rapamycin formulation for IV injection
IL111003A0 (en) 1993-09-30 1994-11-28 American Home Prod Multi-component oral rapamycin formulation
IL111004A (en) 1993-09-30 1998-06-15 American Home Prod Oral rapamycin formulations
US5536729A (en) * 1993-09-30 1996-07-16 American Home Products Corporation Rapamycin formulations for oral administration
US5516770A (en) * 1993-09-30 1996-05-14 American Home Products Corporation Rapamycin formulation for IV injection
US5443505A (en) 1993-11-15 1995-08-22 Oculex Pharmaceuticals, Inc. Biocompatible ocular implants
US5527907A (en) * 1993-11-19 1996-06-18 Abbott Laboratories Macrolide immunomodulators
CA2175215C (en) 1993-11-19 2008-06-03 Yat Sun Or Semisynthetic analogs of rapamycin (macrolides) being immunomodulators
PL314238A1 (en) * 1993-12-17 1996-09-02 Sandoz Ltd Rapamycin derivatives
US5788687A (en) 1994-02-01 1998-08-04 Caphco, Inc Compositions and devices for controlled release of active ingredients
US5773021A (en) * 1994-03-14 1998-06-30 Vetoquinol S.A. Bioadhesive ophthalmic insert
US5516522A (en) * 1994-03-14 1996-05-14 Board Of Supervisors Of Louisiana State University Biodegradable porous device for long-term drug delivery with constant rate release and method of making the same
AU704591B2 (en) 1994-04-04 1999-04-29 William R. Freeman Use of phosphonylmethoxyalkyl nucleosides for the treatment of raised intraocular pressure
US5466233A (en) 1994-04-25 1995-11-14 Escalon Ophthalmics, Inc. Tack for intraocular drug delivery and method for inserting and removing same
US5621108A (en) * 1994-12-05 1997-04-15 Trustees Of The University Of Pennsylvania Processes and intermediates for preparing macrocycles
US5725493A (en) 1994-12-12 1998-03-10 Avery; Robert Logan Intravitreal medicine delivery
CN1283324C (en) 1995-05-14 2006-11-08 奥普通诺尔有限公司 Intraocular implant, delivery device, and method of implantation
US5614547A (en) * 1995-06-07 1997-03-25 Guilford Pharmaceuticals Inc. Small molecule inhibitors of rotamase enzyme
WO1996041865A1 (en) 1995-06-07 1996-12-27 Ariad Gene Therapeutics, Inc. Rapamcycin-based regulation of biological events
US5696135A (en) 1995-06-07 1997-12-09 Gpi Nil Holdings, Inc. Inhibitors of rotamase enzyme activity effective at stimulating neuronal growth
US6037370A (en) 1995-06-08 2000-03-14 Vertex Pharmaceuticals Incorporated Methods and compositions for stimulating neurite growth
FR2736550B1 (en) 1995-07-14 1998-07-24 Sandoz Sa PHARMACEUTICAL COMPOSITION IN THE FORM OF A SOLID DISPERSION COMPRISING A MACROLIDE AND A VEHICLE
JPH0930966A (en) 1995-07-24 1997-02-04 Gakuzo Tamura New pharmaceutical preparation for eye
CA2232378C (en) 1995-09-19 2009-04-14 Fujisawa Pharmaceutical Co., Ltd. Aerosol compositions
US5773019A (en) * 1995-09-27 1998-06-30 The University Of Kentucky Research Foundation Implantable controlled release device to deliver drugs directly to an internal portion of the body
JPH11514648A (en) 1995-10-31 1999-12-14 メルク エンド カンパニー インコーポレーテッド Triterpene derivatives with immunosuppressive activity
GB9601120D0 (en) * 1996-01-19 1996-03-20 Sandoz Ltd Organic compounds
JP2000505445A (en) 1996-02-13 2000-05-09 ジー.ディー.サール アンド カンパニー Immunosuppressive effect of administration of cyclooxygenase-2 inhibitor and leukotriene B <4> receptor antagonist
US6034239A (en) 1996-03-08 2000-03-07 Takeda Chemical Industries, Ltd. Tricyclic compounds, their production and use
US5743274A (en) * 1996-03-18 1998-04-28 Peyman; Gholam A. Macular bandage for use in the treatment of subretinal neovascular members
US5904144A (en) * 1996-03-22 1999-05-18 Cytotherapeutics, Inc. Method for treating ophthalmic diseases
JP3309175B2 (en) 1996-03-25 2002-07-29 参天製薬株式会社 Scleral plug containing proteinaceous drug
JPH09315954A (en) 1996-05-30 1997-12-09 Kita:Kk Medicine for preventing opacity of ocular tissue after ophthalmic operation
GB9710962D0 (en) * 1997-05-28 1997-07-23 Univ Cambridge Tech Polyketides and their synthesis
RU2123314C1 (en) 1996-06-27 1998-12-20 Павлова Татьяна Вячеславовна Method of placing irrigation system into tenon's space
ATE340586T1 (en) 1996-07-30 2006-10-15 Novartis Pharma Gmbh PHARMACEUTICAL COMPOSITIONS FOR THE TREATMENT OF TRANSPLANT REJECTION AND AUTOIMMUNE OR INFLAMMATORY CONDITIONS
US6142969A (en) 1996-10-25 2000-11-07 Anamed, Inc. Sutureless implantable device and method for treatment of glaucoma
US6007510A (en) 1996-10-25 1999-12-28 Anamed, Inc. Implantable devices and methods for controlling the flow of fluids within the body
AUPO427196A0 (en) 1996-12-19 1997-01-23 University Of Sydney, The A method for preventing or controlling cataract
US5800807A (en) 1997-01-29 1998-09-01 Bausch & Lomb Incorporated Ophthalmic compositions including glycerin and propylene glycol
JPH10218787A (en) 1997-02-06 1998-08-18 Akio Okamoto Ophthalmic composition based on neurotrophic factor
TW450810B (en) * 1997-02-20 2001-08-21 Fujisawa Pharmaceutical Co Macrolides antibiotic pharmaceutical composition for preventing and treating skin diseases
US6273913B1 (en) * 1997-04-18 2001-08-14 Cordis Corporation Modified stent useful for delivery of drugs along stent strut
CA2300154C (en) * 1997-08-11 2008-07-08 Allergan Sales, Inc. Sterile bioerodible implant device with improved biocompatability and method
US5902598A (en) 1997-08-28 1999-05-11 Control Delivery Systems, Inc. Sustained release drug delivery devices
US6342507B1 (en) 1997-09-05 2002-01-29 Isotechnika, Inc. Deuterated rapamycin compounds, method and uses thereof
US20060198867A1 (en) 1997-09-25 2006-09-07 Abbott Laboratories, Inc. Compositions and methods of administering rapamycin analogs using medical devices for long-term efficacy
US6015815A (en) 1997-09-26 2000-01-18 Abbott Laboratories Tetrazole-containing rapamycin analogs with shortened half-lives
US6890546B2 (en) * 1998-09-24 2005-05-10 Abbott Laboratories Medical devices containing rapamycin analogs
US20030190286A1 (en) 1997-10-01 2003-10-09 Dugger Harry A. Buccal, polar and non-polar spray or capsule containing drugs for treating allergies or asthma
DK1024814T3 (en) 1997-10-22 2008-01-02 Jens Ponikau Use of antifungal agents for topical treatment of fungus-induced mucositis
ZA989885B (en) 1997-10-31 1999-05-05 Abbott Lab Use of macrolides for the treatment of cancer and macular degeneration
CZ287497B6 (en) 1997-12-30 2000-12-13 Galena, A. S. Topic eye preparations containing immunosuppressive substances
AU2337599A (en) 1998-01-23 1999-08-09 Microcide Pharmaceuticals, Inc. Efflux pump inhibitors
DE19810655A1 (en) 1998-03-12 1999-09-16 Univ Eberhard Karls Pharmaceutical composition containing cyclosporin A suitable for topical administration for treating disorders of skin, mucosa and eyes
ATE365550T1 (en) 1998-03-13 2007-07-15 Univ Johns Hopkins Med USE OF A PROTEIN KINASE INHIBITOR SUCH AS GENISTEIN IN THE TREATMENT OF DIABETIC RETINOPATHY
WO1999058126A1 (en) 1998-05-11 1999-11-18 The Endowment For Research In Human Biology, Inc. Use of neomycin for treating angiogenesis-related diseases
US6399629B1 (en) * 1998-06-01 2002-06-04 Microcide Pharmaceuticals, Inc. Efflux pump inhibitors
AU748867B2 (en) 1998-07-24 2002-06-13 Jagotec Ag Medicinal aerosol formulations
US6378526B1 (en) * 1998-08-03 2002-04-30 Insite Vision, Incorporated Methods of ophthalmic administration
US7338976B1 (en) 1998-08-14 2008-03-04 Gpi Nil Holdings, Inc. Heterocyclic esters or amides for vision and memory disorders
US6376517B1 (en) 1998-08-14 2002-04-23 Gpi Nil Holdings, Inc. Pipecolic acid derivatives for vision and memory disorders
US6384056B1 (en) 1998-08-14 2002-05-07 Gpi Nil Holdings, Inc. Heterocyclic thioesters or ketones for vision and memory disorders
US6632836B1 (en) 1998-10-30 2003-10-14 Merck & Co., Inc. Carbocyclic potassium channel inhibitors
US6303637B1 (en) 1998-10-30 2001-10-16 Merck & Co., Inc. Heterocyclic potassium channel inhibitors
US6472370B1 (en) 1998-11-17 2002-10-29 Ortho-Mcneil Pharmaceutical, Inc. Anticonvulsant derivatives useful in treating post traumatic stress disorder
GB9826882D0 (en) 1998-12-07 1999-01-27 Novartis Ag Organic compounds
EP1135150B1 (en) * 1998-12-11 2012-10-17 Tris Pharma, Inc. Self-emulsifying compositions for drugs poorly soluble in water
US6399655B1 (en) 1998-12-22 2002-06-04 Johns Hopkins University, School Of Medicine Method for the prophylactic treatment of cataracts
CA2356422C (en) * 1998-12-23 2008-09-16 G.D. Searle Llc Combinations of ileal bile acid transport inhibitors and cholesteryl ester transfer protein inhibitors for cardiovascular indications
US6864232B1 (en) * 1998-12-24 2005-03-08 Sucampo Ag Agent for treating visual cell function disorder
CN1224420C (en) 1998-12-24 2005-10-26 苏坎波公司 Agent for treating visual cell function disorder
EP1154691A4 (en) 1999-01-05 2004-07-07 Massachusetts Eye & Ear Infirm Targeted transscleral controlled release drug delivery to the retina and choroid
US6706283B1 (en) 1999-02-10 2004-03-16 Pfizer Inc Controlled release by extrusion of solid amorphous dispersions of drugs
US6267985B1 (en) 1999-06-30 2001-07-31 Lipocine Inc. Clear oil-containing pharmaceutical compositions
US7374779B2 (en) * 1999-02-26 2008-05-20 Lipocine, Inc. Pharmaceutical formulations and systems for improved absorption and multistage release of active agents
US6217895B1 (en) 1999-03-22 2001-04-17 Control Delivery Systems Method for treating and/or preventing retinal diseases with sustained release corticosteroids
US6239113B1 (en) * 1999-03-31 2001-05-29 Insite Vision, Incorporated Topical treatment or prevention of ocular infections
US6254860B1 (en) * 1999-04-13 2001-07-03 Allergan Sales, Inc. Ocular treatment using cyclosporin-A derivatives
US7063857B1 (en) 1999-04-30 2006-06-20 Sucampo Ag Use of macrolide compounds for the treatment of dry eye
TR200103119T2 (en) 1999-04-30 2002-04-22 Sucampo Ag Substance for the treatment of dry eye.
JP2003500368A (en) * 1999-05-24 2003-01-07 ソーナス ファーマシューティカルス,インコーポレイテッド Emulsion vehicle for poorly soluble drugs
US6576224B1 (en) * 1999-07-06 2003-06-10 Sinuspharma, Inc. Aerosolized anti-infectives, anti-inflammatories, and decongestants for the treatment of sinusitis
JP2001064198A (en) 1999-08-24 2001-03-13 Teika Seiyaku Kk Therapeutic agent for corneal disease
HUP0203159A3 (en) 1999-10-18 2004-12-28 Fujisawa Pharmaceutical Co Method for producing liposome preparation, containing pipecolic acid derivative
EP1221918B1 (en) 1999-10-21 2005-03-16 Alcon Inc. Sub-tenon drug delivery
ATE283013T1 (en) 1999-10-21 2004-12-15 Alcon Inc MEDICATION DELIVERY DEVICE
US6416777B1 (en) 1999-10-21 2002-07-09 Alcon Universal Ltd. Ophthalmic drug delivery device
US6331313B1 (en) 1999-10-22 2001-12-18 Oculex Pharmaceticals, Inc. Controlled-release biocompatible ocular drug delivery implant devices and methods
JP2003512439A (en) * 1999-10-22 2003-04-02 バイオジェン インコーポレイテッド Use of a CD40: CD154 binding blocker to treat ocular immunological complications
WO2001030337A2 (en) * 1999-10-22 2001-05-03 Orbon Corporation Ophthalmic formulation of dopamine antagonists
WO2001034816A1 (en) 1999-10-29 2001-05-17 Kosan Biosciences, Inc. Rapamycin analogs
RU2149615C1 (en) 1999-11-10 2000-05-27 Нестеров Аркадий Павлович Method for introducing drugs in treating posterior eye segment diseases
US6531464B1 (en) 1999-12-07 2003-03-11 Inotek Pharmaceutical Corporation Methods for the treatment of neurodegenerative disorders using substituted phenanthridinone derivatives
HUP0204372A3 (en) 1999-12-23 2004-06-28 Pfizer Prod Inc Pharmaceutical compositions providing enhanced drug concentrations
GB0003932D0 (en) 2000-02-18 2000-04-12 Novartis Ag Pharmaceutical compositions
US6489335B2 (en) 2000-02-18 2002-12-03 Gholam A. Peyman Treatment of ocular disease
US20030018044A1 (en) * 2000-02-18 2003-01-23 Peyman Gholam A. Treatment of ocular disease
ES2206363T3 (en) 2000-04-07 2004-05-16 Laboratoire Medidom S.A. OPHTHALMIC FORMULATIONS BASED ON CYCLOSPORINE, Hyaluronic Aid and POLYSORBATE.
US6375972B1 (en) * 2000-04-26 2002-04-23 Control Delivery Systems, Inc. Sustained release drug delivery devices, methods of use, and methods of manufacturing thereof
DE10026698A1 (en) * 2000-05-30 2001-12-06 Basf Ag Self-emulsifying active ingredient formulation and use of this formulation
FR2809619B1 (en) 2000-06-06 2004-09-24 Pharmatop NOVEL AQUEOUS FORMULATIONS OF OXIDATION-SENSITIVE ACTIVE INGREDIENTS AND PROCESS FOR OBTAINING THEM
CN1127955C (en) 2000-07-07 2003-11-19 中山医科大学中山眼科中心 Medicine for treating immune relative disease of anterior chamber and surface of eye
ES2312456T3 (en) * 2000-08-30 2009-03-01 Johns Hopkins University DEVICES FOR INTRAOCULAR SUPPLY OF PHARMACOS.
CN1204919C (en) 2000-08-30 2005-06-08 中国科学院化学研究所 Long-acting intra-ocular release system of cyclosporin
WO2002028387A1 (en) 2000-10-03 2002-04-11 Oncopharmaceutical, Inc. Inhibitors of angiogenesis and tumor growth for local and systemic administration
US20050084514A1 (en) * 2000-11-06 2005-04-21 Afmedica, Inc. Combination drug therapy for reducing scar tissue formation
US6534693B2 (en) * 2000-11-06 2003-03-18 Afmedica, Inc. Surgically implanted devices having reduced scar tissue formation
US20040018228A1 (en) * 2000-11-06 2004-01-29 Afmedica, Inc. Compositions and methods for reducing scar tissue formation
DK1339438T3 (en) * 2000-11-29 2006-02-13 Allergan Inc Prevention of transplant rejection in the eye
ES2294043T3 (en) 2001-01-03 2008-04-01 BAUSCH &amp; LOMB INCORPORATED PROLONGED RELEASE DEVICES OF MEDICINES THAT INCLUDE NUCLEOS COVERED MEDICINES.
CN1492759A (en) 2001-01-16 2004-04-28 Ѫ�������������ι�˾ Device and method for preventing or treating failure of hemodialysis vascular access and other vascular grafts
US7181287B2 (en) * 2001-02-13 2007-02-20 Second Sight Medical Products, Inc. Implantable drug delivery device
RU2322981C2 (en) 2001-02-19 2008-04-27 Новартис Аг Combination and method for prophylaxis of breast cancer
US6777000B2 (en) 2001-02-28 2004-08-17 Carrington Laboratories, Inc. In-situ gel formation of pectin
US6713081B2 (en) 2001-03-15 2004-03-30 The United States Of America As Represented By The Department Of Health And Human Services Ocular therapeutic agent delivery devices and methods for making and using such devices
AR033151A1 (en) 2001-04-12 2003-12-03 Sucampo Pharmaceuticals Inc AGENT FOR THE TOPICAL OPHTHALMIC TREATMENT OF OCULAR INFLAMMATORY DISEASES
US7563255B2 (en) * 2001-05-03 2009-07-21 Massachusetts Eye And Ear Infirmary Implantable drug delivery device and use thereof
JP2002332225A (en) 2001-05-09 2002-11-22 Lion Corp Ophthalmic composition
DE60239868D1 (en) 2001-06-12 2011-06-09 Univ Johns Hopkins Med RESERVOIR DEVICE FOR INTRAOCULAR DRUG DELIVERY
US6787179B2 (en) 2001-06-29 2004-09-07 Ethicon, Inc. Sterilization of bioactive coatings
US7034037B2 (en) * 2001-06-29 2006-04-25 Ethicon, Inc. Compositions and medical devices utilizing bioabsorbable polymeric waxes and rapamycin
CA2452372A1 (en) * 2001-07-06 2003-01-16 Sucampo Ag Composition for topical administration comprising an interleukin-2 inhibitor and an antimicrobial agent
WO2003007944A1 (en) 2001-07-20 2003-01-30 Qlt, Inc. Treatment of macular edema with photodynamic therapy
AR035293A1 (en) 2001-08-23 2004-05-05 Novartis Ag OPHTHALMIC COMPOSITION.
US6812220B2 (en) 2001-08-29 2004-11-02 University Of British Columbia Pharmaceutical compositions and methods relating to fucans
GB0122318D0 (en) 2001-09-14 2001-11-07 Novartis Ag Organic compounds
US6656460B2 (en) 2001-11-01 2003-12-02 Yissum Research Development Method and composition for dry eye treatment
US6939376B2 (en) 2001-11-05 2005-09-06 Sun Biomedical, Ltd. Drug-delivery endovascular stent and method for treating restenosis
CN1582156A (en) * 2001-11-09 2005-02-16 眼科技术药物公司 Methods for treating ocular neovascular diseases
US6663880B1 (en) * 2001-11-30 2003-12-16 Advanced Cardiovascular Systems, Inc. Permeabilizing reagents to increase drug delivery and a method of local delivery
ATE364391T1 (en) 2001-12-14 2007-07-15 Jagotec Ag MEDICINAL FORMULATION CONTAINING CICLOSPORINE AND THEREOF USE
GB0200429D0 (en) * 2002-01-09 2002-02-27 Novartis Ag Organic compounds
DE60313299T2 (en) 2002-03-01 2008-01-03 Yissum Research Development Company Of The Hebrew University Of Jerusalem Self-regulating systems for the delivery of TAXOIDS
JP2005527508A (en) 2002-03-07 2005-09-15 ヴェクトゥラ リミテッド Rapid melting multiparticulate formulation for oral delivery
JP2005528352A (en) 2002-03-12 2005-09-22 エチファルム Composition with gelling properties for use in sustained release of bioactive substances
CA2484976A1 (en) 2002-05-03 2003-11-13 The Queen Elizabeth Hospital Research Foundation Inc. Method of inhibiting angiogenesis
CN1456350A (en) 2002-05-10 2003-11-19 刘继东 Eye cyclosporin gel
NZ518997A (en) * 2002-05-16 2004-12-24 Interag Injection formulation for parenteral administration of biodegradable implant for sustained release of active agent
US20040057958A1 (en) * 2002-05-17 2004-03-25 Waggoner David W. Immunogenicity-enhancing carriers and compositions thereof and methods of using the same
US7026374B2 (en) * 2002-06-25 2006-04-11 Aruna Nathan Injectable microdispersions for medical applications
PT1589031E (en) 2002-07-16 2007-11-28 Biotica Tech Ltd Production of polyketides and other natural products
EP1553940B1 (en) 2002-07-30 2008-02-13 Wyeth Parenteral formulations containing a rapamycin hydroxyester
US7429619B2 (en) 2002-08-02 2008-09-30 Mcneil Consumer Healthcare Polyacrylic film forming compositions
WO2004014373A1 (en) 2002-08-09 2004-02-19 Sucampo Pharmaceuticals, Inc. Pharmaceutical compositions comprising fk506 derivatives and the ir use for the treatment of allergic diseases
US20050031650A1 (en) 2002-08-26 2005-02-10 Ethypharm Composition with gelling properties for the sustained delivery of bioactive substances
AU2003279055A1 (en) * 2002-09-29 2004-04-19 Surmodics, Inc. Methods for treatment and/or prevention of retinal disease
US7704518B2 (en) 2003-08-04 2010-04-27 Foamix, Ltd. Foamable vehicle and pharmaceutical compositions thereof
US20040091455A1 (en) 2002-10-31 2004-05-13 Zeldis Jerome B. Methods of using and compositions comprising immunomodulatory compounds for treatment and management of macular degeneration
US7354574B2 (en) * 2002-11-07 2008-04-08 Advanced Ocular Systems Limited Treatment of ocular disease
CN101336887A (en) 2002-12-04 2009-01-07 参天制药株式会社 Drug delivery system using subconjunctival depot
WO2004060283A2 (en) 2002-12-16 2004-07-22 Nitromed, Inc. Nitrosated and nitrosylated rapamycin compounds, compositions and methods of use
US20040198763A1 (en) 2003-01-16 2004-10-07 Sucampo Ag Method of treating dry eye with a macrolide compound
DK1599573T3 (en) 2003-02-17 2013-07-08 Cold Spring Harbor Lab Model to study the role of genes in tumor resistance to chemotherapy
US20050074497A1 (en) * 2003-04-09 2005-04-07 Schultz Clyde L. Hydrogels used to deliver medicaments to the eye for the treatment of posterior segment diseases
US20050255144A1 (en) 2003-04-09 2005-11-17 Directcontact Llc Methods and articles for the delivery of medicaments to the eye for the treatment of posterior segment diseases
WO2004096261A1 (en) 2003-05-02 2004-11-11 Arturo Jimenez Bayardo Method of preparing an aqueous solution of cyclosporin-a and resulting aqueous solution
US7160867B2 (en) * 2003-05-16 2007-01-09 Isotechnika, Inc. Rapamycin carbohydrate derivatives
WO2005002625A2 (en) * 2003-06-26 2005-01-13 Control Delivery Systems, Inc. In-situ gelling drug delivery system
US7083802B2 (en) 2003-07-31 2006-08-01 Advanced Ocular Systems Limited Treatment of ocular disease
EP1510206A1 (en) 2003-08-29 2005-03-02 Novagali Pharma SA Self-nanoemulsifying oily formulation for the administration of poorly water-soluble drugs
US7087237B2 (en) 2003-09-19 2006-08-08 Advanced Ocular Systems Limited Ocular solutions
US20050181018A1 (en) 2003-09-19 2005-08-18 Peyman Gholam A. Ocular drug delivery
US7083803B2 (en) 2003-09-19 2006-08-01 Advanced Ocular Systems Limited Ocular solutions
EP1681983A4 (en) 2003-10-14 2008-12-10 Monogram Biosciences Inc Receptor tyrosine kinase signaling pathway analysis for diagnosis and therapy
US20060141049A1 (en) 2003-11-12 2006-06-29 Allergan, Inc. Triamcinolone compositions for intravitreal administration to treat ocular conditions
CA2536188A1 (en) * 2003-11-20 2005-06-09 Angiotech International Ag Electrical devices and anti-scarring agents
AU2004293071A1 (en) 2003-11-20 2005-06-09 Angiotech International Ag Polymer compositions and methods for their use
US7186518B2 (en) * 2003-11-21 2007-03-06 Dade Behring Inc. Method and composition useful for determining FK 506
WO2005055945A2 (en) 2003-12-08 2005-06-23 Gel-Del Technologies, Inc. Mucoadhesive drug delivery devices and methods of making and using thereof
JP2007523912A (en) 2004-02-26 2007-08-23 アドバンスト アキュラー システムズ リミテッド Heparin for the treatment of ocular lesions
WO2005094279A2 (en) 2004-03-25 2005-10-13 The Rothberg Institute For Childhood Diseases Immortalized human tuberous sclerosis null angiomyolipoma cell and method of use thereof
US7846940B2 (en) 2004-03-31 2010-12-07 Cordis Corporation Solution formulations of sirolimus and its analogs for CAD treatment
ES2435398T3 (en) 2004-04-08 2013-12-19 Eye Co Pty Ltd. Exudative retinopathy treatment with mineralocorticoids
US20050232965A1 (en) 2004-04-15 2005-10-20 Robert Falotico Local administration of a combination of rapamycin and 17 beta-estradiol for the treatment of vulnerable plaque
US20060182783A1 (en) * 2004-04-30 2006-08-17 Allergan, Inc. Sustained release intraocular drug delivery systems
WO2005110374A1 (en) 2004-04-30 2005-11-24 Allergan, Inc. Intraocular drug delivery systems containing a therapeutic component, a cyclodextrin, and a polymeric component
US20050250804A1 (en) 2004-05-06 2005-11-10 Glenmark Pharmaceuticals Limited Pharmaceutical gel formulations
US20060024350A1 (en) * 2004-06-24 2006-02-02 Varner Signe E Biodegradable ocular devices, methods and systems
US20080124400A1 (en) 2004-06-24 2008-05-29 Angiotech International Ag Microparticles With High Loadings Of A Bioactive Agent
US20060018948A1 (en) 2004-06-24 2006-01-26 Guire Patrick E Biodegradable implantable medical devices, methods and systems
US7534449B2 (en) * 2004-07-01 2009-05-19 Yale University Targeted and high density drug loaded polymeric materials
US20060110428A1 (en) 2004-07-02 2006-05-25 Eugene Dejuan Methods and devices for the treatment of ocular conditions
WO2006020755A2 (en) 2004-08-10 2006-02-23 Beth Israel Deaconess Medical Center, Inc. Methods for identifying inhibitors of the mtor pathway as diabetes therapeutics
US20060034891A1 (en) * 2004-08-12 2006-02-16 Laurie Lawin Biodegradable controlled release bioactive agent delivery device
AR050374A1 (en) 2004-08-20 2006-10-18 Wyeth Corp RAFAMPICINE POLYMORPHIC FORM
EP1781672B1 (en) 2004-08-27 2010-10-06 Cordis Corporation Solvent free amorphous rapamycin
KR101506925B1 (en) 2004-10-01 2015-03-30 램스코르 인코포레이티드 Conveniently implantable sustained release drug compositions
US20060210604A1 (en) 2004-10-04 2006-09-21 Eric Dadey Ocular delivery of polymeric delivery formulations
US20070299409A1 (en) 2004-11-09 2007-12-27 Angiotech Biocoatings Corp. Antimicrobial Needle Coating For Extended Infusion
CN101137369A (en) * 2005-02-09 2008-03-05 马库赛特公司 Formulations for ocular treatment
WO2006086750A1 (en) 2005-02-09 2006-08-17 Macusight, Inc. Liquid formulations for treatment of diseases or conditions
US8663639B2 (en) 2005-02-09 2014-03-04 Santen Pharmaceutical Co., Ltd. Formulations for treating ocular diseases and conditions
GB0504995D0 (en) * 2005-03-11 2005-04-20 Biotica Tech Ltd Use of a compound
CA2602525A1 (en) 2005-03-21 2006-09-28 Macusight, Inc. Drug delivery systems for treatment of diseases or conditions
US20060216288A1 (en) 2005-03-22 2006-09-28 Amgen Inc Combinations for the treatment of cancer
EP1868661A1 (en) 2005-04-08 2007-12-26 SurModics, Inc. Sustained release implants for subretinal delivery
JP2008539276A (en) 2005-04-27 2008-11-13 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インコーポレイティド Materials and methods for improving the resolution of mutant proteins associated with human disease
US8475776B2 (en) 2005-04-28 2013-07-02 Paloma Pharmaceuticals, Inc. Compositions and methods to treat diseases characterized by cellular proliferation and angiogenesis
US20060247265A1 (en) 2005-04-28 2006-11-02 Clackson Timothy P Therapies for treating disorders of the eye
AU2006255183B2 (en) 2005-06-08 2012-02-02 Centocor, Inc. A cellular therapy for ocular degeneration
US20070014760A1 (en) * 2005-07-18 2007-01-18 Peyman Gholam A Enhanced recovery following ocular surgery
CA2615990A1 (en) 2005-07-18 2007-01-25 Minu, L.L.C. Enhanced ocular neuroprotection/neurostimulation
WO2007047626A1 (en) 2005-10-14 2007-04-26 Alcon, Inc. Combination treatment with anecortave acetate and bevacizumab or ranibizumab for pathologic ocular angiogenesis
DE102006051512A1 (en) 2005-12-06 2007-06-14 Pari GmbH Spezialisten für effektive Inhalation Pharmaceutical drug compositions with cyclosporin
US20070173538A1 (en) 2005-12-23 2007-07-26 Alcon, Inc. PHARMACEUTICAL FORMULATION FOR DELIVERY OF RECEPTOR TYROSINE KINASE INHIBITING (RTKi) COMPOUNDS TO THE EYE
CA2639921C (en) 2006-01-23 2014-01-21 Yissum Research Development Company Of The Hebrew University Of Jerusalem Microspheres comprising nanocapsules containing a lipophilic drug
CA2635797C (en) 2006-02-09 2015-03-31 Macusight, Inc. Stable formulations, and methods of their preparation and use
KR101520408B1 (en) * 2006-03-23 2015-05-14 산텐 세이야꾸 가부시키가이샤 Formulations and methods for vascular permeability-related diseases or conditions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050187241A1 (en) * 2002-09-18 2005-08-25 Rong Wen Method of inhibiting choroidal neovascularization
US20050064010A1 (en) * 2003-09-18 2005-03-24 Cooper Eugene R. Transscleral delivery

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Bandello et al (F1000 Research, 2017, volume 6, pages 1-9) *
Girmens et al (Intractable and Rare Diseases Research, 2012, volume 1, pages 103-114) *
Khan et al. (ISRN Ophthalmology, 2014, volume 2014, pages 1-7) *
Leung et al (Expert Reviews in Clinical Pharmacology, 2013, volume 6, pages 565-579) *
Petrou et al (Investigative Ophthalmology and Visual Science, 2014, volume 56, pages 330-338) *
Wong et al (Investigative Ophthalmology and Visual Science, 2013, volume 54, pages 2941-2950) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11400080B2 (en) 2016-05-25 2022-08-02 Santen Pharmaceutical Co., Ltd. Use of sirolimus to treat exudative age-related macular degeneration with persistent edema

Also Published As

Publication number Publication date
US20170020809A1 (en) 2017-01-26
KR101387456B1 (en) 2014-04-21
BRPI0607606A2 (en) 2009-09-15
US20160303093A1 (en) 2016-10-20
PL1848431T3 (en) 2016-08-31
AU2006213588A1 (en) 2006-08-17
US20060258698A1 (en) 2006-11-16
CA2597596C (en) 2014-09-09
BRPI0608152A2 (en) 2009-11-10
HUE027352T2 (en) 2016-09-28
EP1848431A1 (en) 2007-10-31
EP1848431A4 (en) 2012-12-26
SI1848431T1 (en) 2016-05-31
US9387165B2 (en) 2016-07-12
US20150150794A1 (en) 2015-06-04
AU2006213673A1 (en) 2006-08-17
KR20140020369A (en) 2014-02-18
JP2008530128A (en) 2008-08-07
HK1110215A1 (en) 2008-07-11
US8637070B2 (en) 2014-01-28
WO2006086750A1 (en) 2006-08-17
DK1848431T3 (en) 2016-04-18
US20180311152A1 (en) 2018-11-01
EP3025713A1 (en) 2016-06-01
KR20070115943A (en) 2007-12-06
GB0715745D0 (en) 2007-09-19
CY1117357T1 (en) 2017-04-26
ES2564194T3 (en) 2016-03-18
US20130197024A1 (en) 2013-08-01
EP1853259A1 (en) 2007-11-14
CA2597590A1 (en) 2006-08-17
US20060264453A1 (en) 2006-11-23
EP1848431B1 (en) 2016-02-03
HK1200365A1 (en) 2015-08-07
HK1222537A1 (en) 2017-07-07
KR20070104931A (en) 2007-10-29
CA2597596A1 (en) 2006-08-17
JP2008530127A (en) 2008-08-07
AU2006213588B2 (en) 2011-11-17
CN104147005B (en) 2018-07-03
CN104147005A (en) 2014-11-19
BRPI0607606B1 (en) 2021-06-22
US8367097B2 (en) 2013-02-05
US20100227879A1 (en) 2010-09-09
JP4974903B2 (en) 2012-07-11
US20060182771A1 (en) 2006-08-17
US9381153B2 (en) 2016-07-05
WO2006086744A1 (en) 2006-08-17
KR101492584B1 (en) 2015-02-11
US8927005B2 (en) 2015-01-06
GB2438544A (en) 2007-11-28
US20140194461A1 (en) 2014-07-10

Similar Documents

Publication Publication Date Title
US9387165B2 (en) Rapamycin formulations and methods of their use
KR20100055482A (en) Formulations for treatment of ocular diseases or conditions
CN101137370A (en) Liquid formulations for treatment of diseases or conditions
US20150164790A1 (en) Topical Ophthalmological Pharmaceutical Composition containing Axitinib
US20150141448A1 (en) Topical Ophthalmological Pharmaceutical Composition containing Pazopanib
JP2021518352A (en) Pharmaceutical composition containing timolol
US20150174096A1 (en) Topical ophthalmological pharmaceutical composition containing sunitinib
JP7353292B2 (en) Pharmaceutical compositions containing nebivolol
Bellucci et al. Intraocular penetration of topical lidocaine 4%
KR20150100670A (en) Topical ophthalmological pharmaceutical composition containing regorafenib
US20150165028A1 (en) Topical ophthalmological pharmaceutical composition containing cediranib
Loewenstein et al. Retinal toxicity of gentamicin after subconjunctival injection performed adjacent to thinned sclera
CA3088185A1 (en) Suspension compositions of multi-target inhibitors
JP2021523222A (en) Eye drops and methods for continuous delivery of the drug to the retina

Legal Events

Date Code Title Description
AS Assignment

Owner name: MACUSIGHT, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUDUMBA, SREENIVASU;DOR, PHILIPPE JM;NIVAGGIOLI, THIERRY;AND OTHERS;SIGNING DATES FROM 20060626 TO 20060627;REEL/FRAME:043057/0853

Owner name: SANTEN PHARMACEUTICAL CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MACUSIGHT, INC.;REEL/FRAME:043057/0884

Effective date: 20100617

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION