US20170259673A1 - System and method for vehicle wireless vehicle charging communications using location based services - Google Patents

System and method for vehicle wireless vehicle charging communications using location based services Download PDF

Info

Publication number
US20170259673A1
US20170259673A1 US15/065,147 US201615065147A US2017259673A1 US 20170259673 A1 US20170259673 A1 US 20170259673A1 US 201615065147 A US201615065147 A US 201615065147A US 2017259673 A1 US2017259673 A1 US 2017259673A1
Authority
US
United States
Prior art keywords
vehicle
wireless charging
charging station
location
computing system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/065,147
Other versions
US10611250B2 (en
Inventor
Arthur M. Rutyna
John Paul Gibeau
Christopher W. Bell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to US15/065,147 priority Critical patent/US10611250B2/en
Assigned to FORD GLOBAL TECHNOLOGIES, LLC reassignment FORD GLOBAL TECHNOLOGIES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GIBEAU, JOHN PAUL, RUTYNA, ARTHUR M., BELL, CHRISTOPHER W.
Priority to DE102017103497.8A priority patent/DE102017103497A1/en
Priority to CN201710128098.2A priority patent/CN107182035B/en
Publication of US20170259673A1 publication Critical patent/US20170259673A1/en
Application granted granted Critical
Publication of US10611250B2 publication Critical patent/US10611250B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • B60L11/182
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/08Access security
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/50Secure pairing of devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/60Context-dependent security
    • H04W12/63Location-dependent; Proximity-dependent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • H04W76/023
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • B60L2240/622Vehicle position by satellite navigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • aspects of the disclosure relate to wireless power transfer communications management using vehicle embedded location based services.
  • a vehicle equipped with wireless charging capability communicates with a wireless charging station. Communication is initiated and managed by the vehicle and/or the charging station. Some prior art strategies have the vehicle continuously broadcasting or pinging a communications signal to establish communication with a charging station when the vehicle is within range of the charging station. However, continuous broadcasting or pinging of requests for connections or pairing unnecessarily consumes energy and may expose the vehicle to unauthorized attempts to establish communication with the vehicle (hacking). While vehicle systems that rely on the user to initiate communication with a wireless charging station via a button press or similar operation may be secure, manual initiation of communication is less convenient and does not satisfy the hands-free design intent for wireless vehicle charging.
  • a method performed by a vehicle computing system of a vehicle having a battery configured for wireless charging includes broadcasting a signal by the vehicle computing system to establish a communication link with a vehicle wireless charging station in response to a current vehicle location being within a specified range of a previously authorized vehicle wireless charging station.
  • the method may include receiving a GPS signal by the vehicle computing system to identify the current vehicle location and enabling vehicle WiFi communications by the vehicle computing system in response to the current vehicle location being within the specified range of the previously authorized vehicle wireless charging station.
  • a method may also include displaying a message via a vehicle HMI in response to the current vehicle location being within a specified range of a vehicle wireless charging station that has not yet been authorized or is not recognized. Broadcasting may be performed only in response to the current vehicle location being within the specified range.
  • a method for communicating with a vehicle wireless charging station may include receiving, by a vehicle computing system, a request to establish communication with a vehicle wireless charging station and communicating with the vehicle wireless charging station only if the current vehicle location is within a specified range of a previously authorized vehicle wireless charging station.
  • Authorized or stored vehicle wireless charging station locations may be received by the vehicle computing system over a wireless communication link or a vehicle HMI.
  • the vehicle HMI may receive a signal from a connected mobile device, such as a smart phone, identifying a vehicle wireless charging station location.
  • a method may include receiving, by a vehicle computing system, a request to establish communication with a vehicle wireless charging station, displaying a message via a vehicle HMI requesting authorization to communicate with the vehicle wireless charging station if the vehicle wireless charging station is not recognized by the vehicle computing system, and communicating, by the vehicle computing system, with the vehicle wireless charging system in response to authorization received via the vehicle HMI, or if the vehicle wireless charging station is recognized.
  • Embodiments may also include a system for vehicle wireless charging including a vehicle computing system having a transceiver and a processor programmed to transmit a wireless signal from the transceiver to establish communication with a wireless charging station in response to a current vehicle location being associated with a location of the wireless charging station.
  • the processor may be further programmed to transmit the wireless signal only if the current vehicle location is associated with the location of a previously authorized wireless charging station.
  • the system may include a vehicle HMI with a processor programmed to display a message on the vehicle HMI in response to receiving a signal from an unrecognized wireless charging station, or to send a message to the vehicle HMI in response to the current vehicle location being within a specified range of a wireless charging station that has not been authorized.
  • the processor may be programmed to store a location of a wireless charging station in response to user input received from a vehicle HMI.
  • a vehicle processor is programmed to transmit a wireless signal in response to receiving a wireless signal from a wireless charging station if the wireless charging station was previously authorized by the vehicle computing system.
  • One or more embodiments may include a computer readable storage medium having stored instructions executable by a processor of a vehicle computing system to transmit a signal to establish communication with a wireless charging station only in response to a vehicle location being within a range of a location associated with the wireless charging station.
  • the computer readable storage medium may also include instructions to transmit the signal in response to receiving a signal from the wireless charging station if the location of the wireless charging station is recognized by the vehicle computing system.
  • the computer readable storage medium includes instructions to display a message on a vehicle display in response to receiving a wireless signal from a wireless charging station that has not been previously stored by the vehicle computing system.
  • Embodiments according to the present disclosure may provide one or more advantages. For example, various embodiments generate a broadcast or ping signal to establish communication with a vehicle wireless charging station in response to a current vehicle location being within a previously determined wireless charging station location to reduce the potential for unauthorized users to intercept or respond to the vehicle broadcast. Transmitting signals only when the vehicle is near wireless charging stations also reduces the energy used to broadcast the signal relative to a continuous or periodic broadcast without regard to vehicle location relative to a wireless charging station.
  • the vehicle user may create and store recognized wireless power transfer or charging locations so that the vehicle initiates a broadcast, pairing request, or similar communication to establish communication with the charging station based on the current vehicle location being within a predetermined or specified range of the charging station. Alternatively, the vehicle may accept pairing requests or communications only from previously authorized wireless power transfer stations based on the current vehicle location relative to an authorized charging station.
  • the systems and methods of various embodiments may facilitate hands-free wireless charging and reduce the time required to authorize communications related to wireless vehicle charging.
  • FIG. 1 is a block diagram illustrating a system or method for wireless power transfer communications management according to various embodiments.
  • FIG. 2 is a flowchart illustrating operation of a system or method for wireless power transfer communications management according to various embodiments.
  • Various embodiments include a system or method for initiating or establishing communication between a vehicle wireless charging system and a stationary charging station using location based services (LBS).
  • LBS location based services
  • WPT wireless power transfer
  • Using LBS to trigger communication with a WPT charging station saves vehicle energy otherwise used to continuously or periodically transmit a pairing signal or beacon.
  • transmitting a signal only when the vehicle is near a known WPT charting station reduces the possibility for unauthorized interception or attempted hacking of the vehicle signal.
  • One or more embodiments provide the capability for a vehicle user to add WPT charging station locations using a vehicle human-machine interface (HMI) or a linked mobile device, for example.
  • HMI vehicle human-machine interface
  • FIG. 1 illustrates an example block topology for a vehicle based computing system 100 (VCS) for a vehicle 102 .
  • VCS vehicle based computing system
  • An example of such a vehicle-based computing system 100 is the SYNC system manufactured by THE FORD MOTOR COMPANY.
  • a vehicle enabled with a vehicle-based computing system may contain an HMI or visual front end interface 104 located in the vehicle. The user may be able to interact with interface 104 , for example, using a touch sensitive screen. In another illustrative embodiment, the interaction occurs through button presses or spoken dialog processed by automatic speech recognition and speech synthesis systems.
  • a CPU or processor 106 controls at least some portion of the operation of the vehicle-based computing system.
  • Processor 106 generally represents one or more vehicle controllers or control modules that may communicate with one another over a vehicle network, such as a controller area network (CAN).
  • CAN controller area network
  • Various functions illustrated or described with respect to processor 106 may be performed by one or more other processors not specifically illustrated.
  • Processor 106 is connected to various types of non-transitory computer program products implementing both temporary or non-persistent storage 108 and persistent storage 110 .
  • non-persistent or temporary storage is implemented by random access memory (RAM) and the persistent storage is implemented by a non-transitory computer program product or medium such as a hard disk drive (HDD), flash drive, or flash memory.
  • RAM random access memory
  • HDD hard disk drive
  • flash memory flash memory
  • persistent memory or storage can include all forms of memory or storage that maintain data when a computer or other device is powered down. This includes, but is not limited to, HDDs, CDs, DVDs, magnetic tapes, solid state drives, portable USB drives and any other suitable form of persistent memory or storage.
  • Processor 106 is also provided with a number of different inputs and outputs to facilitate user interaction with the processor and related devices, and to send and receive wired and wireless signals internally to vehicle components, controllers, and systems, as well as externally to other vehicles, infrastructure, or coupled devices.
  • a microphone 112 an auxiliary input 114 (for input 116 ), a USB interface 118 (for input/output 120 ), a GPS input 122 , display screen 104 , which may be a touchscreen display, and a BLUETOOTH pairing interface 124 are all provided.
  • An input/output (I/O) selector 126 may be provided to facilitate user selection of a particular input/output for use.
  • Input to both microphone 112 and auxiliary interface 114 may be converted from analog to digital signals by an associated A/D converter 128 before being communicated to processor 106 .
  • vehicle components and auxiliary components in communication with the VCS may use a wired or wireless vehicle network (including, but not limited to, a CAN bus) to communicate signals representing data to and from the VCS (or components thereof) as previously described.
  • System outputs may include, but are not limited to, a visual display 104 and speakers 130 or other stereo system output. Speakers 130 are connected to an amplifier 132 and receive signals from processor 106 through a digital-to-analog converter 134 . Input and output signals may also be communicated via a remote BLUETOOTH device such as a personal navigation device (PND) 136 , or a USB device, such as vehicle navigation device 138 , along the bi-directional data streams generally represented at 120 and 140 .
  • PND personal navigation device
  • USB device such as vehicle navigation device 138
  • system 100 uses a BLUETOOTH transceiver 150 to wirelessly communicate 152 with a mobile or nomadic device 154 (e.g., cell phone, smart phone, PDA, or any other device having wireless remote network connectivity).
  • Nomadic device 154 can then be used to communicate 156 with a network 158 outside vehicle 102 through, for example, communication 160 with a satellite 178 or cellular tower 162 .
  • cellular tower 162 or a similar tower or antenna may function as a WiFi access point.
  • Vehicle 102 may also use BLUETOOTH transceiver 150 to communicate with a stationary WPT vehicle charging station 166 as described in greater detail herein.
  • Nomadic device 154 may also be paired to vehicle 102 and communicate via BLUETOOTH or similar technology as represented by signal 164 . Pairing of nomadic device 154 and BLUETOOTH transceiver 150 may be initiated by an associated button or interface 124 , or similar input. Accordingly, processor 106 pairs an onboard BLUETOOTH transceiver 152 with a BLUETOOTH transceiver in nomadic device 154 or stationary WPT vehicle charging station 166 .
  • Data may be communicated between processor 106 and network 158 utilizing, for example, a data-plan, data over voice, or DTMF tones associated with nomadic device 154 .
  • Nomadic device 154 may then be used for communication 156 with network 158 outside vehicle 102 through, for example, communication 160 with cellular tower 162 or satellite 178 .
  • modem 172 may establish communication 180 with tower 162 to communicate with network 158 .
  • modem 172 may be a USB cellular modem and communication 180 may be cellular communication.
  • processor 106 is provided with an operating system including an API to communicate with modem application software.
  • the modem application software may access an embedded module or firmware of BLUETOOTH transceiver 152 to complete wireless communication with a remote BLUETOOTH transceiver, such as that found in nomadic device 154 , for example.
  • BLUETOOTH is a subset of IEEE 802 PAN (personal area network) protocols.
  • IEEE 802 LAN (local area network) protocols include WiFi and have considerable cross-functionality with IEEE 802 PAN protocols. Both are suitable for wireless communication within a vehicle.
  • nomadic device 154 includes a modem for voice band or broadband data communication.
  • incoming data can be passed through nomadic device 154 through onboard BLUETOOTH transceiver 150 to processor 106 .
  • the data can be stored on HDD 110 or other storage media until such time as the data is no longer needed.
  • VCS 100 may interface with various devices, such as personal navigation device 136 , having a USB connection 182 and/or an antenna 184 , vehicle navigation device 138 having a USB connection 186 or other connection, onboard GPS device 122 , or remote navigation system (not shown) having connectivity to network 158 .
  • personal navigation device 136 having a USB connection 182 and/or an antenna 184
  • vehicle navigation device 138 having a USB connection 186 or other connection
  • onboard GPS device 122 or remote navigation system (not shown) having connectivity to network 158 .
  • USB generally represents any of a variety of serial networking protocols that may include IEEE 1394 protocols referred to as FireWireTM (Apple), i.LINKTM (Sony), and LynxTM (Texas Instruments), EIA (Electronics Industry Association) serial protocols, IEEE 1284 (Centronics Port), S/PDIF (Sony/Philips Digital Interconnect Format) and USB-IF (USB Implementers Forum), which form the backbone of the device-device serial standards. Most of the protocols can be implemented for either electrical or optical communication.
  • processor 106 may communicate with various other types of auxiliary devices 190 . These devices may be connected through a wireless connection/antenna 192 and/or a wired connection 194 .
  • Auxiliary devices 190 may include, but are not limited to, personal media players, wireless health devices, portable computers, and the like.
  • Processor 106 may also be connected to a vehicle based wireless router 196 , using for example a WiFi (IEEE 803.11) transceiver 198 . This could allow processor 106 to connect to remote networks in range of vehicle based wireless router 196 .
  • Processor 106 may also communicate with a vehicle battery management system (BMS) 142 that controls charging, discharging, and other functions of battery 144 and WPT system 146 .
  • BMS vehicle battery management system
  • vehicle computing system 100 utilizes processor 106 and associated temporary and persistent memory RAM 108 and HDD 110 , respectively to store locations associated with WPT charging stations 166 and to broadcast a signal by VCS 100 using router 196 , nomadic device 154 , modem 170 , BLUETOOTH transceiver 172 , or a similar device to establish a communication link with WPT charging station 166 in response to a current vehicle location being within a specified range of a previously stored or authorized WPT charging station.
  • Location based services (LBS) 188 may use various signals from one or more connected devices, such as nomadic device 154 , GPS system 122 , personal navigation device 136 , vehicle navigation device 138 , and the like to determine current vehicle location relative to a location associated with a known or authorized WPT charging station 166 .
  • connected devices such as nomadic device 154 , GPS system 122 , personal navigation device 136 , vehicle navigation device 138 , and the like to determine current vehicle location relative to a location associated with a known or authorized WPT charging station 166 .
  • Display 104 may be used in combination with one or more inputs and outputs, such as microphone 112 , speaker 130 , and/or nomadic device 154 functioning as a vehicle human-machine interface (HMI).
  • Vehicle processor 106 is coupled to the HMI and programmed to store, in persistent memory 110 , one or more locations of WPT charging stations 166 that may be entered or identified using the HMI.
  • processor 106 may wirelessly receive location information for known, preferred, or otherwise recognized or authorized WPT charging stations 166 via cellular 162 , satellite 178 , or via nomadic device 154 , for example.
  • FIG. 2 is a flowchart illustrating operation of a system or method for wireless power transfer communications management according to various embodiments.
  • System or method 200 illustrated in the representative embodiment may be executed by a vehicle computing system 100 ( FIG. 1 ) located in a vehicle 102 ( FIG. 1 ).
  • processes may be executed by a computing system in communication with a vehicle computing system.
  • a system may include, but is not limited to, a wireless device (e.g., and without limitation, a mobile phone or portable computer) or a remote computing system (e.g., and without limitation, a server or computer) connected through the wireless device.
  • a wireless device e.g., and without limitation, a mobile phone or portable computer
  • a remote computing system e.g., and without limitation, a server or computer
  • Collectively, such systems may be referred to as vehicle associated computing systems (VACS).
  • VACS vehicle associated computing systems
  • particular components of the VACS may perform particular portions of a process depending on the particular implementation of the system.
  • system or method 200 may be implemented through a computer algorithm, machine executable code, or software instructions programmed into one or more suitable processors, controllers, computers or other programmable logic devices associated with the vehicle, such as processor 106 , nomadic device 154 , remote network 158 , another controller in communication with the vehicle computing system, or a combination thereof.
  • System or method 200 begins at block 210 where vehicle Wi-Fi may be disabled or otherwise inhibited from transmitting or broadcasting WPT related signals or messages upon vehicle key-on.
  • the location-based services using one or more vehicle devices or linked devices to determine a current vehicle location as represented at 212 .
  • LBS may use GPS signals, cellular signals, or information from a linked mobile device, for example, to determine the current vehicle location.
  • the VCS determines if the vehicle is within a specified range of a WPT charging station location as represented at 214 .
  • the WPT charging station locations may be stored in a table or database that may be updated based on the current vehicle location by wirelessly receiving information for a corresponding data service.
  • the VCS may include previously stored WPT charging station locations entered by a user or loaded to the VCS from a local or wide area network connection, for example.
  • the specified range may be user specified or determined by a VCS default range depending on the particular application.
  • block 214 may determine whether the current vehicle location is within a specified range of a previously authorized vehicle WPT (wireless) charging station based on a GPS signal received by the VCS to identify the current vehicle location using the vehicle LBS.
  • Block 216 sends a message to a vehicle HMI, which may include a connected mobile device HMI, in response to determining that the vehicle is within a specified range of a WPT charging station location as determined at block 214 .
  • Vehicle Wi-Fi communications may then be enabled in response to the current vehicle location being within the specified range of the previously authorized vehicle wireless charging station as represented at 218 .
  • block 220 determines whether the WPT charging station location is a recognized or previously authorized WPT station. If recognized, authorized, or otherwise known by the VCS as a valid WPT charging station, block 230 broadcasts a signal by the VCS to establish a communication link with the WPT charging station. In one embodiment, block 230 may represent receiving a signal from the WPT charging station and responding to the signal if the WPT charging station has been previously stored, authorized, or is otherwise recognized.
  • a corresponding message may be sent to the vehicle HMI as represented at 234 . Otherwise, if the communication is successful as represented at 232 , the initialization or authentication phase is completed and a WPT sequence may be started as represented at 236 .
  • a corresponding message or prompt is sent to the HMI for authorization of the WPT charging station location as represented at 240 .
  • the WPT charging station location is stored by the VCS as represented at 244 . Otherwise, control may return to disable the vehicle Wi-Fi as generally represented at 210 .
  • embodiments according to the present disclosure may provide one or more advantages such as incorporating LBS to enable communication with a WPT charging station to reduce the possibility of unauthorized interception of the vehicle signals, or from the vehicle responding to an unauthorized signal.
  • Authorized or known WPT charging station locations can be used to speed charging authorization when the vehicle arrives for charging.

Abstract

A system and method for managing communications with a vehicle wireless charging station include a vehicle having a battery configured for wireless charging and a vehicle computing system having a transceiver and a processor programmed to broadcast a signal by the vehicle computing system using the transceiver to establish a communication link with a vehicle wireless charging station in response to a current vehicle location being within a specified range of a previously authorized vehicle wireless charging station. The system and method may include a vehicle HMI to prompt a user for input to authorize communication with a wireless charging station that is not recognized or that has not been previously authorized. Wireless charging related broadcasts may be inhibited when the vehicle is not within a specified range of a known wireless charging station location to conserve energy and reduce potential for unauthorized responses to the vehicle broadcasts.

Description

    TECHNICAL FIELD
  • Aspects of the disclosure relate to wireless power transfer communications management using vehicle embedded location based services.
  • BACKGROUND
  • To facilitate hands-free wireless vehicle charging, a vehicle equipped with wireless charging capability communicates with a wireless charging station. Communication is initiated and managed by the vehicle and/or the charging station. Some prior art strategies have the vehicle continuously broadcasting or pinging a communications signal to establish communication with a charging station when the vehicle is within range of the charging station. However, continuous broadcasting or pinging of requests for connections or pairing unnecessarily consumes energy and may expose the vehicle to unauthorized attempts to establish communication with the vehicle (hacking). While vehicle systems that rely on the user to initiate communication with a wireless charging station via a button press or similar operation may be secure, manual initiation of communication is less convenient and does not satisfy the hands-free design intent for wireless vehicle charging.
  • SUMMARY
  • In various embodiments, a method performed by a vehicle computing system of a vehicle having a battery configured for wireless charging includes broadcasting a signal by the vehicle computing system to establish a communication link with a vehicle wireless charging station in response to a current vehicle location being within a specified range of a previously authorized vehicle wireless charging station. The method may include receiving a GPS signal by the vehicle computing system to identify the current vehicle location and enabling vehicle WiFi communications by the vehicle computing system in response to the current vehicle location being within the specified range of the previously authorized vehicle wireless charging station. In one or more embodiments, a method may also include displaying a message via a vehicle HMI in response to the current vehicle location being within a specified range of a vehicle wireless charging station that has not yet been authorized or is not recognized. Broadcasting may be performed only in response to the current vehicle location being within the specified range.
  • In at least one embodiment, a method for communicating with a vehicle wireless charging station may include receiving, by a vehicle computing system, a request to establish communication with a vehicle wireless charging station and communicating with the vehicle wireless charging station only if the current vehicle location is within a specified range of a previously authorized vehicle wireless charging station. Authorized or stored vehicle wireless charging station locations may be received by the vehicle computing system over a wireless communication link or a vehicle HMI. The vehicle HMI may receive a signal from a connected mobile device, such as a smart phone, identifying a vehicle wireless charging station location. In various embodiments, a method may include receiving, by a vehicle computing system, a request to establish communication with a vehicle wireless charging station, displaying a message via a vehicle HMI requesting authorization to communicate with the vehicle wireless charging station if the vehicle wireless charging station is not recognized by the vehicle computing system, and communicating, by the vehicle computing system, with the vehicle wireless charging system in response to authorization received via the vehicle HMI, or if the vehicle wireless charging station is recognized.
  • Embodiments may also include a system for vehicle wireless charging including a vehicle computing system having a transceiver and a processor programmed to transmit a wireless signal from the transceiver to establish communication with a wireless charging station in response to a current vehicle location being associated with a location of the wireless charging station. The processor may be further programmed to transmit the wireless signal only if the current vehicle location is associated with the location of a previously authorized wireless charging station. The system may include a vehicle HMI with a processor programmed to display a message on the vehicle HMI in response to receiving a signal from an unrecognized wireless charging station, or to send a message to the vehicle HMI in response to the current vehicle location being within a specified range of a wireless charging station that has not been authorized. The processor may be programmed to store a location of a wireless charging station in response to user input received from a vehicle HMI. In at least one embodiment, a vehicle processor is programmed to transmit a wireless signal in response to receiving a wireless signal from a wireless charging station if the wireless charging station was previously authorized by the vehicle computing system.
  • One or more embodiments may include a computer readable storage medium having stored instructions executable by a processor of a vehicle computing system to transmit a signal to establish communication with a wireless charging station only in response to a vehicle location being within a range of a location associated with the wireless charging station. The computer readable storage medium may also include instructions to transmit the signal in response to receiving a signal from the wireless charging station if the location of the wireless charging station is recognized by the vehicle computing system. In various embodiments, the computer readable storage medium includes instructions to display a message on a vehicle display in response to receiving a wireless signal from a wireless charging station that has not been previously stored by the vehicle computing system.
  • Embodiments according to the present disclosure may provide one or more advantages. For example, various embodiments generate a broadcast or ping signal to establish communication with a vehicle wireless charging station in response to a current vehicle location being within a previously determined wireless charging station location to reduce the potential for unauthorized users to intercept or respond to the vehicle broadcast. Transmitting signals only when the vehicle is near wireless charging stations also reduces the energy used to broadcast the signal relative to a continuous or periodic broadcast without regard to vehicle location relative to a wireless charging station. The vehicle user may create and store recognized wireless power transfer or charging locations so that the vehicle initiates a broadcast, pairing request, or similar communication to establish communication with the charging station based on the current vehicle location being within a predetermined or specified range of the charging station. Alternatively, the vehicle may accept pairing requests or communications only from previously authorized wireless power transfer stations based on the current vehicle location relative to an authorized charging station. The systems and methods of various embodiments may facilitate hands-free wireless charging and reduce the time required to authorize communications related to wireless vehicle charging.
  • The above advantages and other advantages and features associated with various embodiments will be readily apparent to those of ordinary skill in the art from the following detailed description when taken in connection with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram illustrating a system or method for wireless power transfer communications management according to various embodiments; and
  • FIG. 2 is a flowchart illustrating operation of a system or method for wireless power transfer communications management according to various embodiments.
  • DETAILED DESCRIPTION
  • As required, detailed embodiments are disclosed herein; however, it is to be understood that the disclosed embodiments are merely representative and the claimed subject matter may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the claimed subject matter.
  • Various embodiments include a system or method for initiating or establishing communication between a vehicle wireless charging system and a stationary charging station using location based services (LBS). Vehicles equipped with a wireless power transfer (WPT) system will usually be charged at the residence of the owner or at often revisited public stations, such as a work location or frequent shopping location, for example. Using LBS to trigger communication with a WPT charging station saves vehicle energy otherwise used to continuously or periodically transmit a pairing signal or beacon. In addition, transmitting a signal only when the vehicle is near a known WPT charting station reduces the possibility for unauthorized interception or attempted hacking of the vehicle signal. One or more embodiments provide the capability for a vehicle user to add WPT charging station locations using a vehicle human-machine interface (HMI) or a linked mobile device, for example.
  • FIG. 1 illustrates an example block topology for a vehicle based computing system 100 (VCS) for a vehicle 102. An example of such a vehicle-based computing system 100 is the SYNC system manufactured by THE FORD MOTOR COMPANY. A vehicle enabled with a vehicle-based computing system may contain an HMI or visual front end interface 104 located in the vehicle. The user may be able to interact with interface 104, for example, using a touch sensitive screen. In another illustrative embodiment, the interaction occurs through button presses or spoken dialog processed by automatic speech recognition and speech synthesis systems.
  • In the illustrative embodiment shown in FIG. 1, a CPU or processor 106 controls at least some portion of the operation of the vehicle-based computing system. Processor 106 generally represents one or more vehicle controllers or control modules that may communicate with one another over a vehicle network, such as a controller area network (CAN). Various functions illustrated or described with respect to processor 106 may be performed by one or more other processors not specifically illustrated. Processor 106 is connected to various types of non-transitory computer program products implementing both temporary or non-persistent storage 108 and persistent storage 110. In this illustrative embodiment, the non-persistent or temporary storage is implemented by random access memory (RAM) and the persistent storage is implemented by a non-transitory computer program product or medium such as a hard disk drive (HDD), flash drive, or flash memory. In general, persistent memory or storage can include all forms of memory or storage that maintain data when a computer or other device is powered down. This includes, but is not limited to, HDDs, CDs, DVDs, magnetic tapes, solid state drives, portable USB drives and any other suitable form of persistent memory or storage.
  • Processor 106 is also provided with a number of different inputs and outputs to facilitate user interaction with the processor and related devices, and to send and receive wired and wireless signals internally to vehicle components, controllers, and systems, as well as externally to other vehicles, infrastructure, or coupled devices. In this illustrative embodiment, a microphone 112, an auxiliary input 114 (for input 116), a USB interface 118 (for input/output 120), a GPS input 122, display screen 104, which may be a touchscreen display, and a BLUETOOTH pairing interface 124 are all provided. An input/output (I/O) selector 126 may be provided to facilitate user selection of a particular input/output for use. Input to both microphone 112 and auxiliary interface 114 may be converted from analog to digital signals by an associated A/D converter 128 before being communicated to processor 106. Although not explicitly illustrated, vehicle components and auxiliary components in communication with the VCS may use a wired or wireless vehicle network (including, but not limited to, a CAN bus) to communicate signals representing data to and from the VCS (or components thereof) as previously described.
  • System outputs may include, but are not limited to, a visual display 104 and speakers 130 or other stereo system output. Speakers 130 are connected to an amplifier 132 and receive signals from processor 106 through a digital-to-analog converter 134. Input and output signals may also be communicated via a remote BLUETOOTH device such as a personal navigation device (PND) 136, or a USB device, such as vehicle navigation device 138, along the bi-directional data streams generally represented at 120 and 140.
  • In one illustrative embodiment, system 100 uses a BLUETOOTH transceiver 150 to wirelessly communicate 152 with a mobile or nomadic device 154 (e.g., cell phone, smart phone, PDA, or any other device having wireless remote network connectivity). Nomadic device 154 can then be used to communicate 156 with a network 158 outside vehicle 102 through, for example, communication 160 with a satellite 178 or cellular tower 162. In some embodiments, cellular tower 162 or a similar tower or antenna may function as a WiFi access point. Vehicle 102 may also use BLUETOOTH transceiver 150 to communicate with a stationary WPT vehicle charging station 166 as described in greater detail herein.
  • Nomadic device 154 may also be paired to vehicle 102 and communicate via BLUETOOTH or similar technology as represented by signal 164. Pairing of nomadic device 154 and BLUETOOTH transceiver 150 may be initiated by an associated button or interface 124, or similar input. Accordingly, processor 106 pairs an onboard BLUETOOTH transceiver 152 with a BLUETOOTH transceiver in nomadic device 154 or stationary WPT vehicle charging station 166.
  • Data may be communicated between processor 106 and network 158 utilizing, for example, a data-plan, data over voice, or DTMF tones associated with nomadic device 154. Alternatively, it may be desirable to include an onboard modem 170 having antenna 172 for communication 174 of data between CPU 106 and network 158 over the voice band. Nomadic device 154 may then be used for communication 156 with network 158 outside vehicle 102 through, for example, communication 160 with cellular tower 162 or satellite 178. In some embodiments, modem 172 may establish communication 180 with tower 162 to communicate with network 158. As one example, modem 172 may be a USB cellular modem and communication 180 may be cellular communication.
  • In one illustrative embodiment, processor 106 is provided with an operating system including an API to communicate with modem application software. The modem application software may access an embedded module or firmware of BLUETOOTH transceiver 152 to complete wireless communication with a remote BLUETOOTH transceiver, such as that found in nomadic device 154, for example. BLUETOOTH is a subset of IEEE 802 PAN (personal area network) protocols. IEEE 802 LAN (local area network) protocols include WiFi and have considerable cross-functionality with IEEE 802 PAN protocols. Both are suitable for wireless communication within a vehicle. Other communication technology may also be suitable for wired or wireless communications within the vehicle, such as free-space optical communication (IrDA, for example), non-standardized consumer infrared (IR) protocols, and the like. In another embodiment, nomadic device 154 includes a modem for voice band or broadband data communication.
  • In one embodiment, incoming data can be passed through nomadic device 154 through onboard BLUETOOTH transceiver 150 to processor 106. In the case of certain temporary data, for example, the data can be stored on HDD 110 or other storage media until such time as the data is no longer needed.
  • As previously described, various devices may interface with VCS 100, such as personal navigation device 136, having a USB connection 182 and/or an antenna 184, vehicle navigation device 138 having a USB connection 186 or other connection, onboard GPS device 122, or remote navigation system (not shown) having connectivity to network 158. As used herein, USB generally represents any of a variety of serial networking protocols that may include IEEE 1394 protocols referred to as FireWire™ (Apple), i.LINK™ (Sony), and Lynx™ (Texas Instruments), EIA (Electronics Industry Association) serial protocols, IEEE 1284 (Centronics Port), S/PDIF (Sony/Philips Digital Interconnect Format) and USB-IF (USB Implementers Forum), which form the backbone of the device-device serial standards. Most of the protocols can be implemented for either electrical or optical communication.
  • As also shown in FIG. 1, processor 106 may communicate with various other types of auxiliary devices 190. These devices may be connected through a wireless connection/antenna 192 and/or a wired connection 194. Auxiliary devices 190 may include, but are not limited to, personal media players, wireless health devices, portable computers, and the like. Processor 106 may also be connected to a vehicle based wireless router 196, using for example a WiFi (IEEE 803.11) transceiver 198. This could allow processor 106 to connect to remote networks in range of vehicle based wireless router 196. Processor 106 may also communicate with a vehicle battery management system (BMS) 142 that controls charging, discharging, and other functions of battery 144 and WPT system 146.
  • In one embodiment, vehicle computing system 100 utilizes processor 106 and associated temporary and persistent memory RAM 108 and HDD 110, respectively to store locations associated with WPT charging stations 166 and to broadcast a signal by VCS 100 using router 196, nomadic device 154, modem 170, BLUETOOTH transceiver 172, or a similar device to establish a communication link with WPT charging station 166 in response to a current vehicle location being within a specified range of a previously stored or authorized WPT charging station. Location based services (LBS) 188 may use various signals from one or more connected devices, such as nomadic device 154, GPS system 122, personal navigation device 136, vehicle navigation device 138, and the like to determine current vehicle location relative to a location associated with a known or authorized WPT charging station 166.
  • Display 104 may be used in combination with one or more inputs and outputs, such as microphone 112, speaker 130, and/or nomadic device 154 functioning as a vehicle human-machine interface (HMI). Vehicle processor 106 is coupled to the HMI and programmed to store, in persistent memory 110, one or more locations of WPT charging stations 166 that may be entered or identified using the HMI. Alternatively, or in combination, processor 106 may wirelessly receive location information for known, preferred, or otherwise recognized or authorized WPT charging stations 166 via cellular 162, satellite 178, or via nomadic device 154, for example.
  • FIG. 2 is a flowchart illustrating operation of a system or method for wireless power transfer communications management according to various embodiments. System or method 200 illustrated in the representative embodiment may be executed by a vehicle computing system 100 (FIG. 1) located in a vehicle 102 (FIG. 1). In some embodiments, processes may be executed by a computing system in communication with a vehicle computing system. Such a system may include, but is not limited to, a wireless device (e.g., and without limitation, a mobile phone or portable computer) or a remote computing system (e.g., and without limitation, a server or computer) connected through the wireless device. Collectively, such systems may be referred to as vehicle associated computing systems (VACS). In certain embodiments particular components of the VACS may perform particular portions of a process depending on the particular implementation of the system. As generally understood by those of ordinary skill in the art, system or method 200 may be implemented through a computer algorithm, machine executable code, or software instructions programmed into one or more suitable processors, controllers, computers or other programmable logic devices associated with the vehicle, such as processor 106, nomadic device 154, remote network 158, another controller in communication with the vehicle computing system, or a combination thereof. Although the various operations shown in the simplified flowchart appear to occur in a particular order or sequence, one or more of the operations or features may be performed in a different order, may be repeatedly performed, may be performed concurrently or may be omitted.
  • System or method 200 begins at block 210 where vehicle Wi-Fi may be disabled or otherwise inhibited from transmitting or broadcasting WPT related signals or messages upon vehicle key-on. The location-based services (LBS) using one or more vehicle devices or linked devices to determine a current vehicle location as represented at 212. As previously described, LBS may use GPS signals, cellular signals, or information from a linked mobile device, for example, to determine the current vehicle location. The VCS determines if the vehicle is within a specified range of a WPT charging station location as represented at 214. The WPT charging station locations may be stored in a table or database that may be updated based on the current vehicle location by wirelessly receiving information for a corresponding data service. Alternatively, or in combination, the VCS may include previously stored WPT charging station locations entered by a user or loaded to the VCS from a local or wide area network connection, for example. The specified range may be user specified or determined by a VCS default range depending on the particular application.
  • If the current vehicle location or position is not within range of a WPT charging location as determined at 214, the Wi-Fi signals may continue to be disabled or inhibited. In one or more embodiments, block 214 may determine whether the current vehicle location is within a specified range of a previously authorized vehicle WPT (wireless) charging station based on a GPS signal received by the VCS to identify the current vehicle location using the vehicle LBS.
  • Block 216 sends a message to a vehicle HMI, which may include a connected mobile device HMI, in response to determining that the vehicle is within a specified range of a WPT charging station location as determined at block 214. Vehicle Wi-Fi communications may then be enabled in response to the current vehicle location being within the specified range of the previously authorized vehicle wireless charging station as represented at 218.
  • In the representative embodiment illustrated, block 220 determines whether the WPT charging station location is a recognized or previously authorized WPT station. If recognized, authorized, or otherwise known by the VCS as a valid WPT charging station, block 230 broadcasts a signal by the VCS to establish a communication link with the WPT charging station. In one embodiment, block 230 may represent receiving a signal from the WPT charging station and responding to the signal if the WPT charging station has been previously stored, authorized, or is otherwise recognized.
  • If the communication link is not successful as represented at 232, a corresponding message may be sent to the vehicle HMI as represented at 234. Otherwise, if the communication is successful as represented at 232, the initialization or authentication phase is completed and a WPT sequence may be started as represented at 236.
  • If the WPT charging station is not recognized or otherwise not authorized as represented at 220, a corresponding message or prompt is sent to the HMI for authorization of the WPT charging station location as represented at 240. In respect to user input received from the HMI indicating that the WPT charging station location is authorized or should otherwise be added as a recognized WPT charging station location as represented at 242, the WPT charging station location is stored by the VCS as represented at 244. Otherwise, control may return to disable the vehicle Wi-Fi as generally represented at 210.
  • As such, embodiments according to the present disclosure may provide one or more advantages such as incorporating LBS to enable communication with a WPT charging station to reduce the possibility of unauthorized interception of the vehicle signals, or from the vehicle responding to an unauthorized signal. Authorized or known WPT charging station locations can be used to speed charging authorization when the vehicle arrives for charging.
  • While representative embodiments are described above, it is not intended that these embodiments describe all possible forms of the claimed subject matter. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the disclosure. Additionally, the features of various implementing embodiments may be combined to form further embodiments that are not explicitly described or illustrated. While various embodiments may have been described as providing advantages or being preferred over other embodiments or prior art implementations with respect to one or more desired characteristics, as one of ordinary skill in the art is aware, one or more features or characteristics may be compromised to achieve desired overall system attributes, which depend on the specific application and implementation. These attributes include, but are not limited to: cost, strength, durability, life cycle cost, marketability, appearance, packaging, size, serviceability, weight, manufacturability, ease of assembly, etc. Embodiments described as less desirable than other embodiments or prior art implementations with respect to one or more characteristics are not necessarily outside the scope of the disclosure and may be desirable for particular applications.

Claims (20)

What is claimed is:
1. A method performed by a vehicle computing system of a vehicle having a battery configured for wireless charging, comprising:
broadcasting a signal by the vehicle computing system to establish a communication link with a vehicle wireless charging station in response to a current vehicle location being within a specified range of a previously authorized vehicle wireless charging station, and not broadcasting the signal in response to the current vehicle location being outside the specified range.
2. The method of claim 1 further comprising receiving a GPS signal by the vehicle computing system to identify the current vehicle location.
3. The method of claim 1 further comprising enabling WiFi communications by the vehicle computing system in response to the current vehicle location being within the specified range of the previously authorized vehicle wireless charging station.
4. The method of claim 1 further comprising displaying a message via a vehicle HMI in response to the current vehicle location being within a specified range of a vehicle wireless charging station that has not yet been authorized.
5. The method of claim 1 wherein the broadcasting is performed only in response to the current vehicle location being within the specified range.
6. The method of claim 1 further comprising:
receiving, by the vehicle computing system, a request to establish communication with a vehicle wireless charging station; and
communicating with the vehicle wireless charging station only if the current vehicle location is within a specified range of a previously authorized vehicle wireless charging station.
7. The method of claim 1 further comprising receiving authorized vehicle wireless charging station locations by the vehicle computing system over a wireless communication link.
8. The method of claim 1 further comprising receiving authorized vehicle wireless charging station locations by the vehicle computing system from a vehicle HMI.
9. The method of claim 8 wherein the vehicle HMI receives a signal from a mobile device identifying a vehicle wireless charging station location.
10. The method of claim 1 further comprising:
receiving, by the vehicle computing system, a request to establish communication with a vehicle wireless charging station;
displaying a message via a vehicle HMI requesting authorization to communicate with the vehicle wireless charging station if the vehicle wireless charging station is not recognized by the vehicle computing system; and
communicating, by the vehicle computing system, with the vehicle wireless charging system in response to authorization received via the vehicle HMI, or if the vehicle wireless charging station is recognized.
11. A system for vehicle wireless charging, comprising:
a vehicle computing system having a transceiver and a processor programmed to transmit a wireless signal from the transceiver to establish communication with a wireless charging station in response to a current vehicle location being associated with a location of the wireless charging station, and to not transmit the wireless signal in response to the current vehicle location not being associated with the location.
12. The system of claim 11, the processor further programmed to transmit the wireless signal only if the current vehicle location is associated with the location of a previously authorized wireless charging station.
13. The system of claim 11 further comprising a vehicle HMI, the processor further programmed to display a message on the vehicle HMI in response to receiving a signal from an unrecognized wireless charging station.
14. The system of claim 11, the processor further programmed to send a message to a vehicle HMI in response to the current vehicle location being within a specified range of a wireless charging station that has not been authorized.
15. The system of claim 11, the processor further programmed to store a location of a wireless charging station in response to user input received from a vehicle HMI.
16. The system of claim 11, the processor further programmed to transmit the wireless signal in response to receiving a wireless signal from the wireless charging station if the wireless charging station was previously authorized by the vehicle computing system.
17. A computer readable storage medium having stored instructions executable by a vehicle computing system to transmit a signal to establish communication with a wireless charging station only in response to a vehicle location being within a range of a location associated with the wireless charging station.
18. The computer readable storage medium of claim 17 further comprising instructions to transmit the signal in response to receiving a signal from the wireless charging station if the location of the wireless charging station is recognized by the vehicle computing system.
19. The computer readable storage medium of claim 17 further comprising instructions to display a message on a vehicle display in response to receiving a wireless signal from a wireless charging station that has not been previously stored by the vehicle computing system.
20. The computer readable storage medium of claim 17 wherein the location of the wireless charging station is stored as an authorized location in the vehicle computing system.
US15/065,147 2016-03-09 2016-03-09 System and method for vehicle wireless vehicle charging communications using location based services Active 2036-10-28 US10611250B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/065,147 US10611250B2 (en) 2016-03-09 2016-03-09 System and method for vehicle wireless vehicle charging communications using location based services
DE102017103497.8A DE102017103497A1 (en) 2016-03-09 2017-02-21 System and method for vehicle wireless vehicle charging communication using location based services
CN201710128098.2A CN107182035B (en) 2016-03-09 2017-03-06 Wireless vehicle charging communication system and method using location-based services

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/065,147 US10611250B2 (en) 2016-03-09 2016-03-09 System and method for vehicle wireless vehicle charging communications using location based services

Publications (2)

Publication Number Publication Date
US20170259673A1 true US20170259673A1 (en) 2017-09-14
US10611250B2 US10611250B2 (en) 2020-04-07

Family

ID=59700732

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/065,147 Active 2036-10-28 US10611250B2 (en) 2016-03-09 2016-03-09 System and method for vehicle wireless vehicle charging communications using location based services

Country Status (3)

Country Link
US (1) US10611250B2 (en)
CN (1) CN107182035B (en)
DE (1) DE102017103497A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9971353B2 (en) * 2012-07-03 2018-05-15 Qualcomm Incorporated Systems, methods, and apparatus related to electric vehicle parking and wireless charging
CN110014909A (en) * 2017-10-11 2019-07-16 通用汽车环球科技运作有限责任公司 Promote the packet communication of the wireless charging of electric vehicle
CN113771649A (en) * 2021-08-24 2021-12-10 金龙联合汽车工业(苏州)有限公司 Wireless charging communication control method and device
US20220032808A1 (en) * 2020-08-03 2022-02-03 Hyundai Motor Company Apparatus and method for diagnosis and reprogramming system using wireless charging interface in vehicle
CN114394025A (en) * 2022-03-01 2022-04-26 深圳泊链软件有限公司 Charging method, system, terminal and storage medium of alternating current charging pile
US11954270B2 (en) 2018-08-08 2024-04-09 Samsung Electronics Co., Ltd. Electronic device for controlling communication connection with input device and method of controlling same
US11958377B2 (en) * 2020-08-03 2024-04-16 Hyundai Motor Company Apparatus and method for diagnosis and reprogramming system using wireless charging interface in vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10814736B2 (en) * 2017-12-18 2020-10-27 Ford Global Technologies, Llc Wireless vehicle charging
CN112440810B (en) * 2019-09-05 2022-07-22 国创移动能源创新中心(江苏)有限公司 Communication control method and device for vehicle and parking space fixing equipment
CN113415208A (en) * 2021-08-23 2021-09-21 中国华能集团清洁能源技术研究院有限公司 Power exchange control assembly

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130020993A1 (en) * 2011-07-18 2013-01-24 Green Charge Networks Llc Multi-Mode Electric Vehicle Charging Station
US20130038424A1 (en) * 2011-08-10 2013-02-14 Qualcomm Atheros, Inc. Attenuation level based association in communication networks
US20130110296A1 (en) * 2011-10-19 2013-05-02 Zeco Systems Pte Ltd Methods and Apparatuses for Charging of Electric Vehicles
US20150015419A1 (en) * 2013-07-15 2015-01-15 Qualcomm Incorporated. Systems, methods, and apparatus related to mutual detection and identification of electric vehicle and charging station
US20150130630A1 (en) * 2010-03-02 2015-05-14 Christopher Scott Outwater Method and apparatus for finding and accessing a vehicle fueling station and for reporting data from remote sensors
US20150202974A1 (en) * 2012-07-21 2015-07-23 Audi Ag Method for operating a charging station
US20150226566A1 (en) * 2014-02-07 2015-08-13 Recargo, Inc. Determining a route of travel for an electric vehicle
US20150224888A1 (en) * 2014-02-07 2015-08-13 Recargo, Inc. Providing an interface to electric vehicle charging stations
US20150239357A1 (en) * 2014-02-24 2015-08-27 GM Global Technology Operations LLC Methods, systems and apparatus for authorizing operation of an electric vehicle that is being charged at a charging station
US9371007B1 (en) * 2011-04-22 2016-06-21 Angel A. Penilla Methods and systems for automatic electric vehicle identification and charging via wireless charging pads
US20160275400A1 (en) * 2015-03-19 2016-09-22 Microsoft Technology Licensing, Llc Device Charging Discovery Service
US20160334234A1 (en) * 2015-05-15 2016-11-17 Recargo, Inc. Performing actions in response to charging events

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6323775B1 (en) * 1999-08-10 2001-11-27 Telefonaktiebolaget Im Ericsson (Publ) Method, system and apparatus for proximity-based recharge notification
DE10000756A1 (en) * 2000-01-11 2001-07-26 Harting Automotive Gmbh & Co Data transmission method for communication between interrogation device and automobile has different frequencies used for interrogation signal and transmitted data
DE102009016869A1 (en) * 2009-04-08 2010-10-14 Li-Tec Battery Gmbh Method for operating a vehicle
US20110191186A1 (en) 2010-02-03 2011-08-04 Levy Paul S Method of autonomously recommending charging event of electric vehicle based on multiple factors and displaying carbon footprint data and personalized advertising via the vehicle display
US9260026B2 (en) 2011-07-21 2016-02-16 Ut-Battelle, Llc Vehicle to wireless power transfer coupling coil alignment sensor
WO2013142866A1 (en) 2012-03-23 2013-09-26 Hevo Inc. Systems and mobile application for electric wireless charging stations
US9971353B2 (en) * 2012-07-03 2018-05-15 Qualcomm Incorporated Systems, methods, and apparatus related to electric vehicle parking and wireless charging
WO2014104429A1 (en) 2012-12-28 2014-07-03 Korea Electronics Technology Institute Management protocol of wireless power transfer for multi-devices
JP5962687B2 (en) * 2014-01-31 2016-08-03 トヨタ自動車株式会社 Contactless power transmission system and charging station

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150130630A1 (en) * 2010-03-02 2015-05-14 Christopher Scott Outwater Method and apparatus for finding and accessing a vehicle fueling station and for reporting data from remote sensors
US9371007B1 (en) * 2011-04-22 2016-06-21 Angel A. Penilla Methods and systems for automatic electric vehicle identification and charging via wireless charging pads
US20130020993A1 (en) * 2011-07-18 2013-01-24 Green Charge Networks Llc Multi-Mode Electric Vehicle Charging Station
US20130038424A1 (en) * 2011-08-10 2013-02-14 Qualcomm Atheros, Inc. Attenuation level based association in communication networks
US20130110296A1 (en) * 2011-10-19 2013-05-02 Zeco Systems Pte Ltd Methods and Apparatuses for Charging of Electric Vehicles
US20150202974A1 (en) * 2012-07-21 2015-07-23 Audi Ag Method for operating a charging station
US20150015419A1 (en) * 2013-07-15 2015-01-15 Qualcomm Incorporated. Systems, methods, and apparatus related to mutual detection and identification of electric vehicle and charging station
US20150226566A1 (en) * 2014-02-07 2015-08-13 Recargo, Inc. Determining a route of travel for an electric vehicle
US20150224888A1 (en) * 2014-02-07 2015-08-13 Recargo, Inc. Providing an interface to electric vehicle charging stations
US20150239357A1 (en) * 2014-02-24 2015-08-27 GM Global Technology Operations LLC Methods, systems and apparatus for authorizing operation of an electric vehicle that is being charged at a charging station
US20160275400A1 (en) * 2015-03-19 2016-09-22 Microsoft Technology Licensing, Llc Device Charging Discovery Service
US20160334234A1 (en) * 2015-05-15 2016-11-17 Recargo, Inc. Performing actions in response to charging events

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9971353B2 (en) * 2012-07-03 2018-05-15 Qualcomm Incorporated Systems, methods, and apparatus related to electric vehicle parking and wireless charging
CN110014909A (en) * 2017-10-11 2019-07-16 通用汽车环球科技运作有限责任公司 Promote the packet communication of the wireless charging of electric vehicle
US11954270B2 (en) 2018-08-08 2024-04-09 Samsung Electronics Co., Ltd. Electronic device for controlling communication connection with input device and method of controlling same
US20220032808A1 (en) * 2020-08-03 2022-02-03 Hyundai Motor Company Apparatus and method for diagnosis and reprogramming system using wireless charging interface in vehicle
US11958377B2 (en) * 2020-08-03 2024-04-16 Hyundai Motor Company Apparatus and method for diagnosis and reprogramming system using wireless charging interface in vehicle
CN113771649A (en) * 2021-08-24 2021-12-10 金龙联合汽车工业(苏州)有限公司 Wireless charging communication control method and device
CN114394025A (en) * 2022-03-01 2022-04-26 深圳泊链软件有限公司 Charging method, system, terminal and storage medium of alternating current charging pile

Also Published As

Publication number Publication date
CN107182035B (en) 2021-04-16
US10611250B2 (en) 2020-04-07
DE102017103497A1 (en) 2017-09-14
CN107182035A (en) 2017-09-19

Similar Documents

Publication Publication Date Title
US10611250B2 (en) System and method for vehicle wireless vehicle charging communications using location based services
US10759388B2 (en) Methods and systems for a vehicle computing system to communicate with a device
CN105100192B (en) Method and system for starting application
US9369830B2 (en) Method and system for launching an application
US9754431B2 (en) Method and system for a key fob base station enabling remote car access using a nomadic device
US20140357248A1 (en) Apparatus and System for Interacting with a Vehicle and a Device in a Vehicle
US8626144B2 (en) Bluetooth low energy approach detections through vehicle paired capable devices
US9363318B2 (en) Method and system for launching an application
US9071698B2 (en) Charging devices for portable electronic devices
US20150195669A1 (en) Method and system for a head unit to receive an application
US10919496B2 (en) Method and apparatus for wireless valet key configuration and relay
US20170075366A1 (en) Methods and Systems to Synchronize Vehicle Settings Via a Home Network Connection
US9924017B2 (en) Methods and systems for a vehicle computing system to launch an application
US9703329B2 (en) Driver device detection
US20150193093A1 (en) Method and system for a head unit application host
US11627612B2 (en) Method and apparatus for efficient vehicle data reporting
US20150022151A1 (en) Vehicle authentication for a bev charger
KR20150107183A (en) Telematics system for wifi direct communicating using near field communication
US20160021193A1 (en) Method of automatically closing an application on transport disconnect
US9992317B2 (en) System and method of facilitating communication between a mobile device and vehicle computer system
US20170080896A1 (en) Method and apparatus for secure pairing based on fob presence
CN103916977B (en) The method of controlling terminal connection short-distance radio network
US20160006858A1 (en) Method and system for a vehicle computing system to communicate with a nomadic device via an auxiliary port
US20140080543A1 (en) System for detecting usage of a wireless phone in an automobile
US20160381209A1 (en) Vehicle computing systems and methods for delivery of a mobile device lockout icon

Legal Events

Date Code Title Description
AS Assignment

Owner name: FORD GLOBAL TECHNOLOGIES, LLC, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RUTYNA, ARTHUR M.;GIBEAU, JOHN PAUL;BELL, CHRISTOPHER W.;SIGNING DATES FROM 20160307 TO 20160309;REEL/FRAME:037934/0593

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCV Information on status: appeal procedure

Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4