US20170074766A1 - Moisture and volatiles analyzer - Google Patents

Moisture and volatiles analyzer Download PDF

Info

Publication number
US20170074766A1
US20170074766A1 US14/930,754 US201514930754A US2017074766A1 US 20170074766 A1 US20170074766 A1 US 20170074766A1 US 201514930754 A US201514930754 A US 201514930754A US 2017074766 A1 US2017074766 A1 US 2017074766A1
Authority
US
United States
Prior art keywords
infrared
microwave
cavity
source
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/930,754
Inventor
Joseph Lambert
David Deese
William Jennings
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CEM Corp
Original Assignee
CEM Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CEM Corp filed Critical CEM Corp
Priority to US14/930,754 priority Critical patent/US20170074766A1/en
Assigned to CEM CORPORATION reassignment CEM CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DEESE, DAVID, JENNINGS, WILLIAM, LAMBERT, JOSEPH
Priority to CA2940723A priority patent/CA2940723C/en
Priority to AU2016222516A priority patent/AU2016222516B2/en
Priority to JP2016173322A priority patent/JP6371347B2/en
Priority to EP16188123.0A priority patent/EP3141883B1/en
Priority to CN201610819781.6A priority patent/CN106525640A/en
Publication of US20170074766A1 publication Critical patent/US20170074766A1/en
Priority to US16/190,356 priority patent/US10527533B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/04Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder
    • G01N5/045Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder for determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • H05B6/645Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using temperature sensors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • H05B6/6464Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using weight sensors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/647Aspects related to microwave heating combined with other heating techniques
    • H05B6/6482Aspects related to microwave heating combined with other heating techniques combined with radiant heating, e.g. infrared heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/76Prevention of microwave leakage, e.g. door sealings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/046Microwave drying of wood, ink, food, ceramic, sintering of ceramic, clothes, hair

Definitions

  • the present invention relates to instrumentation for conducting loss-on-drying analysis of moisture and volatile content for a wide variety of materials.
  • Measuring the moisture content, or the volatile content, or both of materials is a necessary, valuable, frequent, and repetitive task in many circumstances.
  • the measurement of sample volatile content may be an important step in a quality control procedure. If the time for conducting the analysis is long, then poor quality samples may not be detected for several hours or days. In this circumstance, the manufacturing facility may have continued producing the lower quality product throughout the time necessary for conducting the test. Accordingly, a large quantity of poor quality material may have been produced before the quality problem was discovered. Such a delay often leads to cost overruns and manufacturing delays, as the poor quality product may require disposal and the manufacturing process must begin again.
  • determining volatile or moisture content consists of weighing a representative sample of material, drying the material, then re-weighing the material to ascertain the losses on drying and, consequently, the initial volatile content of the sample.
  • Convective, hot-air ovens which are often used for this task, can be relatively slow to bring the sample to “oven-dry” equilibrium.
  • Such devices can also be expensive to operate as they inefficiently consume energy.
  • microwaves refers to that portion of the electromagnetic spectrum between about 300 and 300,000 megahertz (MHz) with wavelengths of between about one millimeter (1 mm) and one meter (1 m). These are, of course, arbitrary boundaries, but help quantify microwaves as falling below the frequencies of infrared (IR) radiation and above those referred to as radio frequencies. Similarly, given the well-established inverse relationship between frequency and wavelength, microwaves have longer wavelengths than infrared radiation, but shorter than radio frequency wavelengths. Additionally, a microwave instrument incorporating a micro-processor can monitor the drying curve (weight loss vs. time) of a sample and can predict the final dried weight (and thus the original moisture content) based on an initial portion of the drying curve. Such analyses may be conducted in about one to three minutes for samples that contain free water.
  • microwave drying to measure moisture content is usually faster than equivalent hot-air methods.
  • Microwaves are, however, selective in their interaction with materials, a characteristic that potentially leads to non-uniform heating of different samples and associated problems. Stated differently, the rapid manner in which microwaves tend to interact with certain materials, which is an obvious advantage in some circumstances, can cause secondary heating of other materials that is disadvantageous (at least for volatile or moisture measurement purposes).
  • microwaves interact with materials in a fashion known as “coupling,” i.e., the response of the materials (“the load”) to the microwave radiation.
  • Some materials do not couple well with microwave energy, making drying or other volatile removal techniques difficult or imprecise.
  • Other materials couple well when their moisture content, or content of other microwave-responsive materials (e.g., alcohols and other polar solvents), is high. As they dry under the influence of microwaves, however, they couple less and less effectively; i.e., the load changes. As a result, the effect of the microwaves on the sample becomes less satisfactory and more difficult to control. In turn, the sample can tend to burn rather than dry, or degrade in some other undesired fashion. Both circumstances, of course, tend to produce unsatisfactory results.
  • volatiles such as “loose” water (i.e., not bound to any compound or crystal) respond quickly to microwave radiation, but “bound” water (i.e., water of hydration in compounds such as sodium carbonate monohydrate, Na 2 CO 3 .H 2 O) and nonpolar volatiles (e.g., low molecular weight hydrocarbons and related compounds) are typically unresponsive to microwave radiation. Instead, such bound water or other volatiles must be driven off thermally; i.e., by heat conducted from the surroundings.
  • bound water i.e., water of hydration in compounds such as sodium carbonate monohydrate, Na 2 CO 3 .H 2 O
  • nonpolar volatiles e.g., low molecular weight hydrocarbons and related compounds
  • microwaves can help remove bound water from a sample when the sample contains other materials that are responsive to microwaves.
  • the secondary heat generated in (or by) the microwave-responsive materials can help release bound water.
  • the nature of microwave radiation is such, however, that not all such materials or surroundings may be heated when exposed to microwaves. Thus, loss-on-drying measurements using microwaves are typically less satisfactory for determining bound water than are more conventional heating methods.
  • the predictability of a susceptor's temperature response can be erratic.
  • certain standardized drying tests are based upon heating a sample to, and maintaining the sample at, a specified temperature for a specified time. The weight loss under such conditions provides useful and desired information, provided the test is run under the specified conditions.
  • microwave techniques may be less attractive for such standardized protocols.
  • the susceptor may tend to heat the sample unevenly. For example, in many circumstances, the portion of the sample in direct contact with the susceptor may become warmer than portions of the sample that are not in such direct contact. Such uneven temperatures may lead to incomplete removal of bound moisture as well as inaccurate loss-on-drying analyses.
  • Bound water may be removed in some circumstances by applying infrared radiation to a sample.
  • Infrared radiation succeeds in driving off bound water (as well as any free water) by raising the temperature of the sample to an extent that overcomes the activation energy of the water-molecule bond.
  • Infrared drying is also faster than oven drying for many samples. Nevertheless, infrared radiation tends to heat moisture-containing samples relatively slowly as compared to microwaves.
  • infrared radiation typically heats the surface (or near surface) of the material following which the heat conducts inwardly; and typically takes time to do so. Infrared radiation will, however, heat almost all materials to some extent, and thus it offers advantages for materials that do not couple with microwaves.
  • the invention is a volatile content analysis instrument that includes a cavity and a balance with at least the balance pan (or platform) in the cavity.
  • An infrared source is positioned to direct infrared radiation into the cavity, with a lens between said infrared source and said balance pan for more efficiently directing infrared radiation to a sample on said balance pan.
  • lens is used herein in the sense of an item or device that directs or focuses radiation, including frequencies (wavelengths) other than visible light, such as infrared or microwave radiation.
  • frequencies (wavelengths) other than visible light such as infrared or microwave radiation.
  • the reflective collimator described and claimed herein falls within this dictionary definition.
  • the invention is a volatile content analysis instrument that includes a cavity and a microwave source positioned to produce and direct microwaves into the cavity at frequencies other than infrared frequencies.
  • a balance is included with at least the balance pan (or platform) in the cavity.
  • An infrared source is positioned to produce and direct infrared radiation into the cavity at frequencies other than the microwave frequencies produced by the microwave source.
  • a lens is positioned between the infrared source and the balance pan for more efficiently directing infrared radiation to a sample on the balance pan. The lens has dimensions that preclude microwaves of the frequencies produced by the source and directed into the cavity from leaving the cavity.
  • the invention is a method of loss-on-drying content measurement.
  • the invention includes the steps of collimating infrared radiation towards a volatile-containing sample, and concurrently propagating microwave frequencies to the same sample.
  • the invention is combined infrared collimator and microwave attenuator.
  • the collimator is formed of a plurality of adjoining cells, open at both ends and oriented with the open ends of each cell generally aligned substantially parallel to one another.
  • the interior walls of the cells have surfaces that are sufficiently specular to reflect electromagnetic radiation in the infrared frequencies; the cells have a length-to-opening ratio sufficient to attenuate electromagnetic radiation within the microwave frequencies.
  • FIG. 1 is a front elevational view of an instrument according to the invention.
  • FIG. 2 is a front perspective view of the instrument of FIG. 1 opened to illustrate the cavity portion and the balance pan.
  • FIG. 3 is a rear perspective view of the opened instrument of FIG. 2 .
  • FIG. 4 is a side elevational view of an instrument according to the present invention.
  • FIG. 5 is a side elevational view corresponding to FIG. 4 , but with the instrument open.
  • FIG. 6 is a rear elevational view of the instrument in the closed orientation.
  • FIG. 7 is a partial cross-sectional, partial perspective view of the interior of the instrument.
  • FIG. 8 is a partial perspective, partial cross-sectional view oriented perpendicularly to FIG. 7 of an instrument according to the invention.
  • FIG. 9 is a direct cross-sectional view of the instrument perpendicular to FIG. 12 .
  • FIG. 10 is an enlarged view of a portion of the interior of the instrument illustrating the infrared sensor temperature.
  • FIG. 11 is a segregated enlarged view of the collimator according to the invention.
  • FIG. 12 is a cross-sectional view taken perpendicularly to the cross-section of FIG. 9 .
  • FIG. 1 is a perspective view of an instrument according to the present invention and broadly designated at 20 .
  • FIG. 1 illustrates an upper housing 21 , a lower housing 22 , and an input/output control 23 shown in the form of a touch screen.
  • a latch 24 is part of the upper housing 21 and, as described further herein, permits access to the infrared lamps of this illustrated embodiment.
  • FIG. 2 illustrates the instrument 20 in partial perspective view with the housing opened on the hinges 18 to show portions of the interior.
  • FIG. 2 illustrates the cavity 25 in the form of its upper specially shaped chamber 26 and the cavity floor 27 .
  • the instrument 20 includes a balance, more details of which will be described with respect to other drawings, but that has at least the balance pan 30 in the cavity 25 just above the cavity floor 27 .
  • FIG. 3 is a rear elevational view of the instrument 20 illustrating the upper housing in the open position.
  • FIG. 3 illustrates a number of items in common with other figures including the upper housing 21 - and the lower housing 22 .
  • FIG. 3 also illustrates a plurality of network connections 46 , and a plurality of pedestal feet 15 upon which the lower housing 22 and the remainder of the instrument 20 rest.
  • FIG. 3 also illustrates that an on-off switch 16 can be positioned at the rear of the instrument 20 along with the plug 17 for a power cord.
  • the network connectors can be selected by those of skill in this art without undue experimentation, but the instrument and processor are in most cases consistent with Ethernet connections, or 802.11 wireless transmissions (“WiFi”) or short range radio frequency connections for which the 2.4 gigahertz standard (“Bluetooth”) is widely accepted and used. Again, the choices are exemplary rather than limiting.
  • WiFi 802.11 wireless transmissions
  • Bluetooth short range radio frequency connections for which the 2.4 gigahertz standard
  • FIG. 3 also illustrates an exhaust elbow 28 that is connected to the cavity 25 illustrated in other drawings and which is used to draw volatile gases and water vapor from the cavity during the heating process.
  • FIG. 4 is a side elevational view of the instrument 20 illustrating a number of the same items as FIGS. 1-3 and that additionally illustrates the vents 29 as well as a printer 38 adjacent the vents 29 .
  • the printer has a door 39 that flips down so that paper rolls can be added as desired or necessary.
  • FIG. 5 has the same orientation as FIG. 4 , but showing the instrument in the open position.
  • FIG. 5 accordingly illustrates the balance pan 30 , and the cavity floor 27 .
  • FIG. 6 is a rear elevational view of the instrument 20 that illustrates the same items as FIG. 3 , but with the instrument in the closed position.
  • the use of a cavity is primarily expected for microwave techniques, the use of the cavity with infrared radiation also has advantages independent of the use of microwaves.
  • the cavity provides a defined thermal environment for the sample and thus raises the heating efficiency.
  • the cavity when the cavity is made of a material that reflects infrared radiation (such as metal, which is typical), the cavity likewise enhances the overall heating efficiency.
  • the cavity when using a sensitive balance for which even small air currents can give a false or inaccurate reading, such as described in commonly assigned U.S. Pat. No. 6,521,876, the cavity provides a shield against exterior air movement and again increases the accuracy and precision of the weighing step and thus increases the overall efficiency.
  • the cavity When microwaves are also used in the instrument, the cavity provides the desired shielding against undesired propagation of microwaves outside of the instrument, and some cavity designs help support a single mode of microwave radiation for one or more of the frequencies generated by the source. Nevertheless, a cavity that is closed to radiation entering or leaving for microwave purposes is as a result usually opaque to visible or infrared frequencies, and some opening must be provided for visible or infrared frequencies in a dual source instrument.
  • FIG. 7 is a partial cross-sectional, partial perspective view of the instrument 20 according to the invention.
  • FIG. 7 illustrates the same items as in FIG. 1 and FIG. 2 , but with additional interior detail. It will be understood by the skilled person that much of the interior detail is straightforward and need not be described in detail herein other than as the parts fit together in an exterior housing of a particular size and shape. That said, a pair of infrared lamps 54 ( FIG. 9 ) are positioned near the top of the upper housing 21 and are covered with an infrared reflector 31 typically (although not necessarily) formed of metal and typically having a highly reflective surface.
  • the reflective surface and the ability to be in close proximity to the infrared lamps 54 is functionally most important, and other materials such as ceramics or engineering polymers can potentially be incorporated provided they can withstand the ambient heat generated by the lamps and otherwise do not interfere with the function of the lamps, or any other portions or operations of the instrument.
  • a lens illustrated as the honeycomb shaped collimator 32 is positioned in an upper wall of the cavity 25 between the lamps 54 and the balance pan 30 .
  • the lens 32 serves to direct infrared radiation more efficiently at (or to) the balance pan 30 position rather than simply flooding the cavity with infrared radiation. Focusing the infrared radiation in this manner has at least several benefits, including but not necessarily limited to, heating the sample more efficiently (and thus using less energy) and minimizing or eliminating any interference when temperature control is carried out using an infrared thermal sensor (e.g., 59 ; FIG. 9 ).
  • the term “lens” is used herein in the sense of an item or device that directs or focuses radiation, including frequencies (wavelengths) other than visible light, such as infrared or microwave radiation.
  • the reflective collimator described and claimed herein falls within this dictionary definition.
  • FIG. 7 also illustrates the microwave source 33 which in the illustrated embodiment is a magnetron, but which (depending upon costs and other factors) could include a klystron or an IMPATT diode.
  • An antenna 34 projects microwaves into the waveguide 35 and from the waveguide 35 into the cavity 25 .
  • the power supply 36 provides power to the microwave source 33 and these portions of the instrument 20 are cooled as necessary by one or more fans 40 , 41 .
  • a switching power supply (e.g., commonly assigned U.S. Pat. No. 6,288,379) can offer additional precision and control.
  • FIG. 7 illustrates that the balance pan 30 is in the form of an open framework that will support a rigid or semi rigid sample pan; i.e., the balance pan itself does not need to be a solid planar object.
  • the balance pan 30 is supported by a shaft 42 .
  • the balance 44 is a load cell of the strain gauge type, although this is illustrative rather than limiting of the invention.
  • a mechanical scale is acceptable assuming that it is accurate, precise, reliable, and properly calibrated and maintained.
  • the method of operation can involve either the use of a weight balancing mechanism or the detection of the force developed by mechanical levers.
  • FIG. 7 also shows reinforcing structures throughout the instrument such as the supporting structure floor 53 under the instrument, the grid 50 below the touch screen 23 , and the grid 51 above the power supply 36 .
  • a plurality of radiating fins 52 on the magnetron 33 help to reduce heat accumulation as do the heat sink fins 57 ( FIG. 8 ) near the infrared lamps 54 .
  • FIG. 8 is another partial perspective, partial cross-sectional view of the instrument 20 .
  • FIG. 8 illustrates many of the same items as FIGS. 1-3 , but is particularly illustrative of the reflector 31 , the infrared source shown as a pair of infrared lamps 54 , and the temperature sensor illustrated as the infrared detector 55 .
  • the detector 55 focuses on the sample pan 30 , and thus on a sample during use.
  • the infrared detector 55 is in communication with the processor 45 so that the temperature of the sample on the pan 30 can be taken into consideration as drying proceeds.
  • FIG. 8 also illustrates an on-off switch 56 located near the rear of the lower housing 22 .
  • FIG. 9 is a cross-sectional view generally perpendicular to the longitudinal view of FIG. 12 .
  • FIG. 9 includes many of the same elements as the previous drawings, but also illustrates details of the infrared lamps 54 , the infrared reflector 31 , a plurality of heat sink fins 57 , and portions of the infrared detector 55 , which in turn is illustrated in greater detail in FIG. 10 .
  • the portions of the infrared detector 55 illustrated in FIG. 9 include a mount 60 and a collar 61 .
  • FIG. 9 also broadly illustrates portions of the lamp electronics 62 , and portions of the processor and balance electronics 63 .
  • the infrared temperature detector 55 is positioned to target a sample on the balance pan 30 .
  • the nature of the detector and the distance from the detector to the source help increase the efficiency and precision of the results from such detectors, and these factors are likewise well understood in the art.
  • the processor 45 is in communication with the infrared source lamps 54 , the microwave source 33 , and the temperature detector 55 , so that the application of radiation (infrared or microwave or both) to a sample can be moderated in response to the detected temperature.
  • Such temperature detection and response provides precise control over the sample heating, and helps keep the temperature within a range that drives off moisture and other volatiles without creating undesired decomposition that would produce inaccurate results based on the measured weight change of that sample.
  • FIG. 10 is a cutaway perspective view taken generally along the segment 10 - 10 in FIG. 9 .
  • FIG. 10 illustrates the infrared detector 55 in more detail, particularly the collar 61 and a mirror 64 that directs infrared radiation from the cavity 25 to reflect into the detector diode (not shown) within its housing 65 .
  • FIG. 11 is a segregated perspective view of the collimator 32 according to the present invention.
  • the collimator is formed of a frame 66 and a plurality of smaller hexagonally shaped open cells 67 within the perimeter defined by the collar 66 . Because the collimator serves two functions, it is engineered and proportionately sized to meet both functions. As a first function, the collimator re-directs (or more closely directs) infrared radiation from the lamps 54 and the reflector 31 to the portion of the cavity 25 at which the sample will be positioned. In the illustrated embodiment, this position is predominantly defined by the balance pan 30 .
  • the size of the cells 67 (length and width), their surface, and the material from which they are made, all must be consistent with their infrared radiation related function.
  • the collimator must preclude microwave energy having frequencies produced by the source 33 from leaving the cavity 25 . Therefore, the size and material of the cells 67 must meet that function as well.
  • the function is referred to as attenuation, and an item with such a function is informally referred to as a choke.
  • the length (longer dimension) of the opening structure must exceed the diameter (or open area) of the structure by a defined proportional amount.
  • an attenuator in the form of a cylinder should have a diameter smaller than the propagated wavelength ( ⁇ ) and a length that is at least one-fourth of the propagated wavelength.
  • the cells 67 are open at both ends and standing alone are oriented with the open ends of each of the cells generally aligned substantially parallel to one another.
  • the interior walls 68 of the cells 67 have surfaces that are sufficiently specular to reflect electromagnetic radiation in the infrared frequencies, and the cells 67 have the length-to-opening ratio that is sufficient to attenuate electromagnetic radiation within the microwave frequency range.
  • quartz-halogen lamps emit wavelengths predominately at about 3.5 microns ( ⁇ m) and tungsten lamps at about 2.5 ⁇ m.
  • the detector 55 can be selected or designed to offer the most sensitivity within a particular range. In exemplary embodiments, the detector 55 measures radiation from the sample in the range of about 8-15 ⁇ m. By virtue of this selection, the frequency (or corresponding wavelength) of the infrared source differs from both the microwave frequencies and from the infrared detector frequencies, thus enhancing the accuracy and precision of the temperature measurement and in turn of the feedback control.
  • the interior wall surfaces 68 will reflect infrared radiation having wavelengths of between about 1 microns ( ⁇ m) and 1 millimeter (mm) and the cells 67 will attenuate microwave radiation having wavelengths between about 1 mm and 1 meter.
  • the combined collimator and attenuator has cells formed of metal.
  • the cell walls 68 do not need to be specular, and that for collimating purposes, the cells 67 do not need to meet the microwave attenuation ratio.
  • the combination of these functions thus provides an unexpected benefit for both purposes that neither an attenuator nor an infrared collimator would provide if standing alone.
  • the instruments described herein are typically designed to operate in the S band (2-4 gigahertz; 7.5-15 millimeters) based on regulation of electromagnetic radiation in the United States and elsewhere.
  • the overall frame has dimensions of about 14 centimeters by about 12 centimeters, and the hexagonal openings are approximately 0.9 centimeters across and about 1 centimeter long.
  • different sizes can be selected based on available space, the size and positioning of the lamps, and the microwave frequencies being propagated into the cavity.
  • FIG. 12 is a full cross sectional view longitudinally through the instrument and illustrates everything in FIG. 7 along with several additional items.
  • FIG. 12 illustrates a microwave stirring blade 70 mounted on a small rotating shaft 71 .
  • FIG. 12 also provides an excellent illustration of the shape of the cavity 25 which can be the same or similar to the shape described in commonly assigned U.S. Pat. No. 6,521,876, the contents of which are incorporated entirely herein by reference.
  • the invention includes a method of loss-on-drying content measurement that collimates infrared radiation towards a volatile-containing sample while concurrently propagating microwave frequencies to the same sample.
  • the microwaves are attenuated at a collimator that collimates the infrared radiation used to dry the sample. Based on that, the microwave attenuator has the proportional dimensions required to attenuate the microwave frequencies being propagated.
  • the method further includes the steps of weighing the sample before starting either of the collimating or microwave propagating steps, and weighing is also carried out during the heating and microwave steps. In this manner the sample can be dried to completion and once a weighing step is carried out after completion, the percentage of volatiles in the material can be easily calculated.

Abstract

A volatile content analysis instrument is disclosed that includes a cavity and a microwave source positioned to produce and direct microwaves into the cavity at frequencies other than infrared frequencies. A balance is included with at least the balance pan (or platform) in the cavity. An infrared source is positioned to produce and direct infrared radiation into the cavity at frequencies other than the microwave frequencies produced by the microwave source. A lens is positioned between the infrared source and the balance pan for more efficiently directing infrared radiation to a sample on the balance pan. The lens has dimensions that preclude microwaves of the frequencies produced by the source and directed into the cavity from leaving the cavity.

Description

    BACKGROUND
  • The present invention relates to instrumentation for conducting loss-on-drying analysis of moisture and volatile content for a wide variety of materials.
  • Measuring the moisture content, or the volatile content, or both of materials is a necessary, valuable, frequent, and repetitive task in many circumstances.
  • For example, in a manufacturing setting, the measurement of sample volatile content may be an important step in a quality control procedure. If the time for conducting the analysis is long, then poor quality samples may not be detected for several hours or days. In this circumstance, the manufacturing facility may have continued producing the lower quality product throughout the time necessary for conducting the test. Accordingly, a large quantity of poor quality material may have been produced before the quality problem was discovered. Such a delay often leads to cost overruns and manufacturing delays, as the poor quality product may require disposal and the manufacturing process must begin again.
  • In its simplest form, determining volatile or moisture content consists of weighing a representative sample of material, drying the material, then re-weighing the material to ascertain the losses on drying and, consequently, the initial volatile content of the sample. Convective, hot-air ovens, which are often used for this task, can be relatively slow to bring the sample to “oven-dry” equilibrium. Such devices can also be expensive to operate as they inefficiently consume energy. These problems lessen the utility of hot-air devices for volatile analysis.
  • Drying certain substances using microwave energy to determine volatile or moisture content is generally convenient and precise. The term “microwaves” refers to that portion of the electromagnetic spectrum between about 300 and 300,000 megahertz (MHz) with wavelengths of between about one millimeter (1 mm) and one meter (1 m). These are, of course, arbitrary boundaries, but help quantify microwaves as falling below the frequencies of infrared (IR) radiation and above those referred to as radio frequencies. Similarly, given the well-established inverse relationship between frequency and wavelength, microwaves have longer wavelengths than infrared radiation, but shorter than radio frequency wavelengths. Additionally, a microwave instrument incorporating a micro-processor can monitor the drying curve (weight loss vs. time) of a sample and can predict the final dried weight (and thus the original moisture content) based on an initial portion of the drying curve. Such analyses may be conducted in about one to three minutes for samples that contain free water.
  • More importantly, microwave drying to measure moisture content is usually faster than equivalent hot-air methods. Microwaves are, however, selective in their interaction with materials, a characteristic that potentially leads to non-uniform heating of different samples and associated problems. Stated differently, the rapid manner in which microwaves tend to interact with certain materials, which is an obvious advantage in some circumstances, can cause secondary heating of other materials that is disadvantageous (at least for volatile or moisture measurement purposes).
  • Additionally, microwaves interact with materials in a fashion known as “coupling,” i.e., the response of the materials (“the load”) to the microwave radiation. Some materials do not couple well with microwave energy, making drying or other volatile removal techniques difficult or imprecise. Other materials couple well when their moisture content, or content of other microwave-responsive materials (e.g., alcohols and other polar solvents), is high. As they dry under the influence of microwaves, however, they couple less and less effectively; i.e., the load changes. As a result, the effect of the microwaves on the sample becomes less satisfactory and more difficult to control. In turn, the sample can tend to burn rather than dry, or degrade in some other undesired fashion. Both circumstances, of course, tend to produce unsatisfactory results.
  • As another factor, volatiles, such as “loose” water (i.e., not bound to any compound or crystal) respond quickly to microwave radiation, but “bound” water (i.e., water of hydration in compounds such as sodium carbonate monohydrate, Na2CO3.H2O) and nonpolar volatiles (e.g., low molecular weight hydrocarbons and related compounds) are typically unresponsive to microwave radiation. Instead, such bound water or other volatiles must be driven off thermally; i.e., by heat conducted from the surroundings.
  • Thus, microwaves can help remove bound water from a sample when the sample contains other materials that are responsive to microwaves. In such cases, the secondary heat generated in (or by) the microwave-responsive materials can help release bound water. The nature of microwave radiation is such, however, that not all such materials or surroundings may be heated when exposed to microwaves. Thus, loss-on-drying measurements using microwaves are typically less satisfactory for determining bound water than are more conventional heating methods.
  • In order to take advantage of the speed of microwave coupling for samples that do not readily absorb or couple with microwaves, techniques have been incorporated in which a sample is placed on a material that absorbs microwaves and becomes heated in response to those microwaves (often referred to as a susceptor). U.S. Pat. No. 4,681,996 is an example of one such technique. As set forth therein, the goal is for the thermally-responsive material to conductively heat the sample to release the bound water. Theoretically, a truly synergistic effect should be obtained because the thermally heated material heats the sample to remove bound water while the free water responds to, and is removed by, the direct effect of the microwaves.
  • Susceptor techniques, however, are less successful in actual practice. As one disadvantage, the necessary susceptors are often self-limiting in temperature response to microwaves, and thus different compositions are required to obtain different desired temperatures.
  • As another disadvantage, the predictability of a susceptor's temperature response can be erratic. As known to those familiar with content analysis, certain standardized drying tests are based upon heating a sample to, and maintaining the sample at, a specified temperature for a specified time. The weight loss under such conditions provides useful and desired information, provided the test is run under the specified conditions. Thus, absent such temperature control, microwave techniques may be less attractive for such standardized protocols.
  • As another disadvantage, the susceptor may tend to heat the sample unevenly. For example, in many circumstances, the portion of the sample in direct contact with the susceptor may become warmer than portions of the sample that are not in such direct contact. Such uneven temperatures may lead to incomplete removal of bound moisture as well as inaccurate loss-on-drying analyses.
  • Bound water may be removed in some circumstances by applying infrared radiation to a sample. Infrared radiation succeeds in driving off bound water (as well as any free water) by raising the temperature of the sample to an extent that overcomes the activation energy of the water-molecule bond. Infrared drying is also faster than oven drying for many samples. Nevertheless, infrared radiation tends to heat moisture-containing samples relatively slowly as compared to microwaves. Furthermore, infrared radiation typically heats the surface (or near surface) of the material following which the heat conducts inwardly; and typically takes time to do so. Infrared radiation will, however, heat almost all materials to some extent, and thus it offers advantages for materials that do not couple with microwaves.
  • Merely using two devices (e.g., one microwave and one infrared) to remove the two types of volatiles does not provide a satisfactory solution to the problem because moving the sample between devices typically results in at least some cooling, some loss of time (efficiency), the potential to regain moisture (under principles of physical and chemical equilibrium), and an increase in the experimental uncertainty (accuracy and precision) of the resulting measurement. Furthermore, if a sample is moved from a first balance in a microwave cavity to a second (separate) balance exposed to infrared radiation, the tare on the first balance would be meaningless with respect to the use of the second balance.
  • U.S. Pat. No. 7,581,876 addresses a number of these issues successfully. As set forth herein, the present invention further increases both heating efficiency and accuracy of temperature measurement.
  • SUMMARY
  • In a first aspect, the invention is a volatile content analysis instrument that includes a cavity and a balance with at least the balance pan (or platform) in the cavity. An infrared source is positioned to direct infrared radiation into the cavity, with a lens between said infrared source and said balance pan for more efficiently directing infrared radiation to a sample on said balance pan.
  • The term “lens” is used herein in the sense of an item or device that directs or focuses radiation, including frequencies (wavelengths) other than visible light, such as infrared or microwave radiation. The reflective collimator described and claimed herein falls within this dictionary definition.
  • In another aspect, the invention is a volatile content analysis instrument that includes a cavity and a microwave source positioned to produce and direct microwaves into the cavity at frequencies other than infrared frequencies. A balance is included with at least the balance pan (or platform) in the cavity. An infrared source is positioned to produce and direct infrared radiation into the cavity at frequencies other than the microwave frequencies produced by the microwave source. A lens is positioned between the infrared source and the balance pan for more efficiently directing infrared radiation to a sample on the balance pan. The lens has dimensions that preclude microwaves of the frequencies produced by the source and directed into the cavity from leaving the cavity.
  • In another aspect, the invention is a method of loss-on-drying content measurement. In this aspect the invention includes the steps of collimating infrared radiation towards a volatile-containing sample, and concurrently propagating microwave frequencies to the same sample.
  • In yet another aspect, the invention is combined infrared collimator and microwave attenuator. The collimator is formed of a plurality of adjoining cells, open at both ends and oriented with the open ends of each cell generally aligned substantially parallel to one another. The interior walls of the cells have surfaces that are sufficiently specular to reflect electromagnetic radiation in the infrared frequencies; the cells have a length-to-opening ratio sufficient to attenuate electromagnetic radiation within the microwave frequencies.
  • The foregoing and other objects and advantages of the invention and the manner in which the same are accomplished will become clearer based on the followed detailed description taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a front elevational view of an instrument according to the invention.
  • FIG. 2 is a front perspective view of the instrument of FIG. 1 opened to illustrate the cavity portion and the balance pan.
  • FIG. 3 is a rear perspective view of the opened instrument of FIG. 2.
  • FIG. 4 is a side elevational view of an instrument according to the present invention.
  • FIG. 5 is a side elevational view corresponding to FIG. 4, but with the instrument open.
  • FIG. 6 is a rear elevational view of the instrument in the closed orientation.
  • FIG. 7 is a partial cross-sectional, partial perspective view of the interior of the instrument.
  • FIG. 8 is a partial perspective, partial cross-sectional view oriented perpendicularly to FIG. 7 of an instrument according to the invention.
  • FIG. 9 is a direct cross-sectional view of the instrument perpendicular to FIG. 12.
  • FIG. 10 is an enlarged view of a portion of the interior of the instrument illustrating the infrared sensor temperature.
  • FIG. 11 is a segregated enlarged view of the collimator according to the invention.
  • FIG. 12 is a cross-sectional view taken perpendicularly to the cross-section of FIG. 9.
  • DETAILED DESCRIPTION
  • FIG. 1 is a perspective view of an instrument according to the present invention and broadly designated at 20. FIG. 1 illustrates an upper housing 21, a lower housing 22, and an input/output control 23 shown in the form of a touch screen. A latch 24 is part of the upper housing 21 and, as described further herein, permits access to the infrared lamps of this illustrated embodiment.
  • FIG. 2 illustrates the instrument 20 in partial perspective view with the housing opened on the hinges 18 to show portions of the interior. In particular, FIG. 2 illustrates the cavity 25 in the form of its upper specially shaped chamber 26 and the cavity floor 27. The instrument 20 includes a balance, more details of which will be described with respect to other drawings, but that has at least the balance pan 30 in the cavity 25 just above the cavity floor 27.
  • FIG. 3 is a rear elevational view of the instrument 20 illustrating the upper housing in the open position. FIG. 3 illustrates a number of items in common with other figures including the upper housing 21- and the lower housing 22. FIG. 3 also illustrates a plurality of network connections 46, and a plurality of pedestal feet 15 upon which the lower housing 22 and the remainder of the instrument 20 rest. FIG. 3 also illustrates that an on-off switch 16 can be positioned at the rear of the instrument 20 along with the plug 17 for a power cord.
  • The network connectors can be selected by those of skill in this art without undue experimentation, but the instrument and processor are in most cases consistent with Ethernet connections, or 802.11 wireless transmissions (“WiFi”) or short range radio frequency connections for which the 2.4 gigahertz standard (“Bluetooth”) is widely accepted and used. Again, the choices are exemplary rather than limiting.
  • FIG. 3 also illustrates an exhaust elbow 28 that is connected to the cavity 25 illustrated in other drawings and which is used to draw volatile gases and water vapor from the cavity during the heating process.
  • FIG. 4 is a side elevational view of the instrument 20 illustrating a number of the same items as FIGS. 1-3 and that additionally illustrates the vents 29 as well as a printer 38 adjacent the vents 29. The printer has a door 39 that flips down so that paper rolls can be added as desired or necessary.
  • FIG. 5 has the same orientation as FIG. 4, but showing the instrument in the open position. FIG. 5 accordingly illustrates the balance pan 30, and the cavity floor 27.
  • FIG. 6 is a rear elevational view of the instrument 20 that illustrates the same items as FIG. 3, but with the instrument in the closed position.
  • Although the use of a cavity is primarily expected for microwave techniques, the use of the cavity with infrared radiation also has advantages independent of the use of microwaves. As one advantage, the cavity provides a defined thermal environment for the sample and thus raises the heating efficiency. As another advantage, when the cavity is made of a material that reflects infrared radiation (such as metal, which is typical), the cavity likewise enhances the overall heating efficiency. As yet another advantage, when using a sensitive balance for which even small air currents can give a false or inaccurate reading, such as described in commonly assigned U.S. Pat. No. 6,521,876, the cavity provides a shield against exterior air movement and again increases the accuracy and precision of the weighing step and thus increases the overall efficiency.
  • When microwaves are also used in the instrument, the cavity provides the desired shielding against undesired propagation of microwaves outside of the instrument, and some cavity designs help support a single mode of microwave radiation for one or more of the frequencies generated by the source. Nevertheless, a cavity that is closed to radiation entering or leaving for microwave purposes is as a result usually opaque to visible or infrared frequencies, and some opening must be provided for visible or infrared frequencies in a dual source instrument.
  • FIG. 7 is a partial cross-sectional, partial perspective view of the instrument 20 according to the invention. FIG. 7 illustrates the same items as in FIG. 1 and FIG. 2, but with additional interior detail. It will be understood by the skilled person that much of the interior detail is straightforward and need not be described in detail herein other than as the parts fit together in an exterior housing of a particular size and shape. That said, a pair of infrared lamps 54 (FIG. 9) are positioned near the top of the upper housing 21 and are covered with an infrared reflector 31 typically (although not necessarily) formed of metal and typically having a highly reflective surface. Of these characteristics, the reflective surface and the ability to be in close proximity to the infrared lamps 54 is functionally most important, and other materials such as ceramics or engineering polymers can potentially be incorporated provided they can withstand the ambient heat generated by the lamps and otherwise do not interfere with the function of the lamps, or any other portions or operations of the instrument.
  • A lens illustrated as the honeycomb shaped collimator 32 is positioned in an upper wall of the cavity 25 between the lamps 54 and the balance pan 30. The lens 32 serves to direct infrared radiation more efficiently at (or to) the balance pan 30 position rather than simply flooding the cavity with infrared radiation. Focusing the infrared radiation in this manner has at least several benefits, including but not necessarily limited to, heating the sample more efficiently (and thus using less energy) and minimizing or eliminating any interference when temperature control is carried out using an infrared thermal sensor (e.g., 59; FIG. 9).
  • To repeat a salient point, the term “lens” is used herein in the sense of an item or device that directs or focuses radiation, including frequencies (wavelengths) other than visible light, such as infrared or microwave radiation. The reflective collimator described and claimed herein falls within this dictionary definition.
  • FIG. 7 also illustrates the microwave source 33 which in the illustrated embodiment is a magnetron, but which (depending upon costs and other factors) could include a klystron or an IMPATT diode. An antenna 34 projects microwaves into the waveguide 35 and from the waveguide 35 into the cavity 25. The power supply 36 provides power to the microwave source 33 and these portions of the instrument 20 are cooled as necessary by one or more fans 40, 41. A switching power supply (e.g., commonly assigned U.S. Pat. No. 6,288,379) can offer additional precision and control.
  • As some additional details, FIG. 7 illustrates that the balance pan 30 is in the form of an open framework that will support a rigid or semi rigid sample pan; i.e., the balance pan itself does not need to be a solid planar object. The balance pan 30 is supported by a shaft 42.
  • In most embodiments, including this illustrated embodiment, the balance 44 is a load cell of the strain gauge type, although this is illustrative rather than limiting of the invention. A mechanical scale is acceptable assuming that it is accurate, precise, reliable, and properly calibrated and maintained. The method of operation can involve either the use of a weight balancing mechanism or the detection of the force developed by mechanical levers.
  • A processor and its associated electronics are illustrated at 45. The processor is in communication with the balance, the infrared source 54, the microwave source 33 the temperature sensor 55, and the input and output control 23. The electronics for the touch screen input control 23 are illustrated at 47. FIG. 7 also shows reinforcing structures throughout the instrument such as the supporting structure floor 53 under the instrument, the grid 50 below the touch screen 23, and the grid 51 above the power supply 36. A plurality of radiating fins 52 on the magnetron 33 help to reduce heat accumulation as do the heat sink fins 57 (FIG. 8) near the infrared lamps 54.
  • FIG. 8 is another partial perspective, partial cross-sectional view of the instrument 20. FIG. 8 illustrates many of the same items as FIGS. 1-3, but is particularly illustrative of the reflector 31, the infrared source shown as a pair of infrared lamps 54, and the temperature sensor illustrated as the infrared detector 55. As FIG. 8 illustrates, the detector 55 focuses on the sample pan 30, and thus on a sample during use. The infrared detector 55 is in communication with the processor 45 so that the temperature of the sample on the pan 30 can be taken into consideration as drying proceeds. FIG. 8 also illustrates an on-off switch 56 located near the rear of the lower housing 22.
  • FIG. 9 is a cross-sectional view generally perpendicular to the longitudinal view of FIG. 12. FIG. 9 includes many of the same elements as the previous drawings, but also illustrates details of the infrared lamps 54, the infrared reflector 31, a plurality of heat sink fins 57, and portions of the infrared detector 55, which in turn is illustrated in greater detail in FIG. 10. The portions of the infrared detector 55 illustrated in FIG. 9 include a mount 60 and a collar 61. FIG. 9 also broadly illustrates portions of the lamp electronics 62, and portions of the processor and balance electronics 63.
  • For reasons well understood to those familiar with this art, the infrared temperature detector 55 is positioned to target a sample on the balance pan 30. In particular, the nature of the detector and the distance from the detector to the source (in this case a heated sample) help increase the efficiency and precision of the results from such detectors, and these factors are likewise well understood in the art.
  • The processor 45 is in communication with the infrared source lamps 54, the microwave source 33, and the temperature detector 55, so that the application of radiation (infrared or microwave or both) to a sample can be moderated in response to the detected temperature. Such temperature detection and response provides precise control over the sample heating, and helps keep the temperature within a range that drives off moisture and other volatiles without creating undesired decomposition that would produce inaccurate results based on the measured weight change of that sample.
  • FIG. 10 is a cutaway perspective view taken generally along the segment 10-10 in FIG. 9. FIG. 10 illustrates the infrared detector 55 in more detail, particularly the collar 61 and a mirror 64 that directs infrared radiation from the cavity 25 to reflect into the detector diode (not shown) within its housing 65.
  • FIG. 11 is a segregated perspective view of the collimator 32 according to the present invention. In the illustrated embodiment, which has been found to be advantageous, the collimator is formed of a frame 66 and a plurality of smaller hexagonally shaped open cells 67 within the perimeter defined by the collar 66. Because the collimator serves two functions, it is engineered and proportionately sized to meet both functions. As a first function, the collimator re-directs (or more closely directs) infrared radiation from the lamps 54 and the reflector 31 to the portion of the cavity 25 at which the sample will be positioned. In the illustrated embodiment, this position is predominantly defined by the balance pan 30.
  • Therefore, the size of the cells 67 (length and width), their surface, and the material from which they are made, all must be consistent with their infrared radiation related function.
  • As a concurrent function, however, the collimator must preclude microwave energy having frequencies produced by the source 33 from leaving the cavity 25. Therefore, the size and material of the cells 67 must meet that function as well. The function is referred to as attenuation, and an item with such a function is informally referred to as a choke. In order to serve as a choke, the length (longer dimension) of the opening structure must exceed the diameter (or open area) of the structure by a defined proportional amount. The use and sizing of such attenuators is well understood in the art and need not be discussed herein in detail other than to note that an attenuator in the form of a cylinder should have a diameter smaller than the propagated wavelength (λ) and a length that is at least one-fourth of the propagated wavelength.
  • Accordingly, the cells 67 are open at both ends and standing alone are oriented with the open ends of each of the cells generally aligned substantially parallel to one another. The interior walls 68 of the cells 67 have surfaces that are sufficiently specular to reflect electromagnetic radiation in the infrared frequencies, and the cells 67 have the length-to-opening ratio that is sufficient to attenuate electromagnetic radiation within the microwave frequency range.
  • As examples of relevant infrared sources, quartz-halogen lamps emit wavelengths predominately at about 3.5 microns (μm) and tungsten lamps at about 2.5 μm. The detector 55 can be selected or designed to offer the most sensitivity within a particular range. In exemplary embodiments, the detector 55 measures radiation from the sample in the range of about 8-15 μm. By virtue of this selection, the frequency (or corresponding wavelength) of the infrared source differs from both the microwave frequencies and from the infrared detector frequencies, thus enhancing the accuracy and precision of the temperature measurement and in turn of the feedback control.
  • Expressed in this manner, the interior wall surfaces 68 will reflect infrared radiation having wavelengths of between about 1 microns (μm) and 1 millimeter (mm) and the cells 67 will attenuate microwave radiation having wavelengths between about 1 mm and 1 meter. In most cases the combined collimator and attenuator has cells formed of metal.
  • It will be noted, of course that for microwave attenuation purposes, the cell walls 68 do not need to be specular, and that for collimating purposes, the cells 67 do not need to meet the microwave attenuation ratio. The combination of these functions thus provides an unexpected benefit for both purposes that neither an attenuator nor an infrared collimator would provide if standing alone.
  • The instruments described herein are typically designed to operate in the S band (2-4 gigahertz; 7.5-15 millimeters) based on regulation of electromagnetic radiation in the United States and elsewhere. Based upon that, in the illustrated embodiment, the overall frame has dimensions of about 14 centimeters by about 12 centimeters, and the hexagonal openings are approximately 0.9 centimeters across and about 1 centimeter long. In one sense, if the proportional requirements for infrared radiation and microwave attenuation are met, different sizes can be selected based on available space, the size and positioning of the lamps, and the microwave frequencies being propagated into the cavity.
  • FIG. 12 is a full cross sectional view longitudinally through the instrument and illustrates everything in FIG. 7 along with several additional items. In particular, FIG. 12 illustrates a microwave stirring blade 70 mounted on a small rotating shaft 71. FIG. 12 also provides an excellent illustration of the shape of the cavity 25 which can be the same or similar to the shape described in commonly assigned U.S. Pat. No. 6,521,876, the contents of which are incorporated entirely herein by reference.
  • In another aspect the invention includes a method of loss-on-drying content measurement that collimates infrared radiation towards a volatile-containing sample while concurrently propagating microwave frequencies to the same sample. In the method the microwaves are attenuated at a collimator that collimates the infrared radiation used to dry the sample. Based on that, the microwave attenuator has the proportional dimensions required to attenuate the microwave frequencies being propagated.
  • As is fundamental to loss-on-drawing techniques, the method further includes the steps of weighing the sample before starting either of the collimating or microwave propagating steps, and weighing is also carried out during the heating and microwave steps. In this manner the sample can be dried to completion and once a weighing step is carried out after completion, the percentage of volatiles in the material can be easily calculated.
  • As those familiar with microwave techniques are aware, however, in many cases the loss of moisture and volatiles during the heating process will rapidly assume an asymptotic curve from which an end point (i.e., mathematically representative of a totally dry sample) can be calculated once several (two or three are often sufficient) measurements are taken during drying. The processor included with the instrument can provide this function as well; see, U.S. Pat. No. 4,457,632.
  • In the drawings and specification there has been set forth a preferred embodiment of the invention, and although specific terms have been employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being defined in the claims.

Claims (23)

1. A volatile content analysis instrument comprising:
a cavity;
a balance with at least the balance pan in said cavity;
an infrared source that is positioned to direct infrared radiation into said cavity;
a lens between said infrared source and said balance pan for more efficiently directing infrared radiation to a sample on said balance pan.
2. An instrument according to claim 1 wherein said lens comprises a reflective collimator positioned between said infrared source and said balance pan.
3. An instrument according to claim 2 wherein:
said instrument includes a microwave source that produces and directs microwave radiation into said cavity at frequencies other than the infrared frequencies produced by said infrared source; and
said collimator is a metal opening having dimensions that preclude the microwave frequencies produced by said microwave source from leaving said cavity through said collimator opening.
4. An instrument according to claim 3 further comprising an infrared temperature detector positioned to target a sample on said balance pan.
5. An instrument according to claim 4 further comprising a processor in communication with said infrared source, said microwave source, and said temperature detector, for moderating the application of radiation to a sample in response to the detected temperature.
6. A volatile content analysis instrument comprising:
a cavity;
a microwave source positioned to produce and direct microwaves into said cavity at frequencies other than infrared frequencies;
a balance with at least the balance pan in the cavity;
an infrared source that is positioned to produce and direct infrared radiation into said cavity at frequencies other than the microwave frequencies produced by said microwave source;
a lens between said infrared source and said balance pan for more efficiently directing infrared radiation to a sample on said balance pan; and
said lens having dimensions that preclude microwaves of the frequencies produced by said source and directed into said cavity from leaving said cavity.
7. An instrument according to claim 6 further comprising an infrared temperature detector positioned to target a sample on said balance pan.
8. An instrument according to claim 7 further comprising a processor in communication with said infrared source, said microwave source, and said temperature detector, for moderating the application of radiation to a sample in response to the detected temperature.
9. An instrument according to claim 6 wherein said lens is a metal opening having dimensions that preclude microwaves produced by said microwave source from leaving said cavity through said lens.
10. An instrument according to claim 6 wherein said lens comprises a plurality of adjoining cells, open at both ends and oriented in a wall of said cavity with the open ends of each said cell generally aligned along a light path defined from said infrared source to said balance pan; and
with the interior walls of said cells having a surface that is sufficiently specular to reflect electromagnetic radiation in the infrared frequencies produced by said infrared source.
11. An instrument according to claim 10 wherein said plurality of adjoining cells are formed of metal.
12. An instrument according to claim 10 wherein said cells have a length-to-opening ratio sufficient to attenuate the microwave frequencies generated by said source and propagated into said cavity.
13. An instrument according to claim 6 further comprising an infrared reflector positioned to direct infrared radiation from said source to said lens.
14. A method of loss-on-drying content measurement comprising:
collimating infrared radiation towards a volatile-containing sample; and
concurrently propagating microwave frequencies to the same sample.
15. A method according to claim 14 further comprising attenuating the microwave frequencies at a collimator that collimates the infrared radiation.
16. A method according to claim 14 further comprising collimating the infrared radiation through a microwave attenuator that is sized proportionately to attenuate the concurrently propagated microwave frequencies.
17. A method according to claim 14 further comprising measuring the infrared radiation produced by a heated sample.
18. A method according to claim 17 further comprising adjusting a factor selected from the group consisting of the collimated infrared radiation, the propagated microwaves, and combinations thereof, in response to the measured infrared radiation from the heated sample.
19. A method according to claim 14 further comprising:
weighing the sample before the collimating and microwave propagation steps; and
weighing the sample during the collimating and microwave propagation steps.
20. A method according to claim 14 further comprising:
weighing the sample before the collimating and microwave propagation steps; and
weighing the sample when the sample is dry.
21. A combined infrared collimator and microwave attenuator comprising:
a plurality of adjoining cells, open at both ends and oriented with the open ends of each said cell generally aligned substantially parallel to one another;
wherein the interior walls of said cells have surfaces that are sufficiently specular to reflect electromagnetic radiation in the infrared frequencies; and
wherein said cells have a length-to-opening ratio sufficient to attenuate electromagnetic radiation within the microwave frequencies.
22. A combined infrared collimator and microwave attenuator according to claim 21 wherein:
said interior wall surfaces will reflect infrared radiation having wavelengths between about 3 microns and 1 millimeter; and;
said cells will attenuate microwave radiation having wavelengths between about 1 millimeter and 1 meter.
23. A combined infrared collimator and microwave attenuator according to claim 22 wherein said cells are formed of metal.
US14/930,754 2015-09-11 2015-11-03 Moisture and volatiles analyzer Abandoned US20170074766A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/930,754 US20170074766A1 (en) 2015-09-11 2015-11-03 Moisture and volatiles analyzer
CA2940723A CA2940723C (en) 2015-09-11 2016-08-31 Moisture and volatiles analyzer
AU2016222516A AU2016222516B2 (en) 2015-09-11 2016-09-05 Moisture and volatiles analyzer
JP2016173322A JP6371347B2 (en) 2015-09-11 2016-09-06 Moisture and volatile analyzer
EP16188123.0A EP3141883B1 (en) 2015-09-11 2016-09-09 Moisture and volatiles analyzer
CN201610819781.6A CN106525640A (en) 2015-09-11 2016-09-12 Moisture and volatiles analyzer
US16/190,356 US10527533B2 (en) 2015-09-11 2018-11-14 Moisture and volatiles analyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562217375P 2015-09-11 2015-09-11
US14/930,754 US20170074766A1 (en) 2015-09-11 2015-11-03 Moisture and volatiles analyzer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/190,356 Continuation US10527533B2 (en) 2015-09-11 2018-11-14 Moisture and volatiles analyzer

Publications (1)

Publication Number Publication Date
US20170074766A1 true US20170074766A1 (en) 2017-03-16

Family

ID=56896416

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/930,754 Abandoned US20170074766A1 (en) 2015-09-11 2015-11-03 Moisture and volatiles analyzer
US16/190,356 Active US10527533B2 (en) 2015-09-11 2018-11-14 Moisture and volatiles analyzer

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/190,356 Active US10527533B2 (en) 2015-09-11 2018-11-14 Moisture and volatiles analyzer

Country Status (6)

Country Link
US (2) US20170074766A1 (en)
EP (1) EP3141883B1 (en)
JP (1) JP6371347B2 (en)
CN (1) CN106525640A (en)
AU (1) AU2016222516B2 (en)
CA (1) CA2940723C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053851A (en) * 2015-09-11 2017-03-16 シーイーエム・コーポレーション Moisture and volatiles analyzer
CN108562705A (en) * 2018-06-21 2018-09-21 安徽石台县西黄山茶叶实业有限公司 A kind of tealeaves device for detecting water content
US11435142B2 (en) * 2015-12-16 2022-09-06 3M Innovative Properties Company Microwave furnace and a method of sintering

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918335B (en) * 2018-08-24 2020-08-21 烟台大学 Device and method for rapidly measuring water content of filament-ball-shaped object
CN110174325A (en) * 2019-06-05 2019-08-27 江苏科技大学 A kind of information acquisition device of novel market management
CN112326497A (en) * 2020-11-16 2021-02-05 中广核核电运营有限公司 Device and method for measuring volatilization rate of volatile organic compounds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956538A (en) * 1988-09-09 1990-09-11 Texas Instruments, Incorporated Method and apparatus for real-time wafer temperature measurement using infrared pyrometry in advanced lamp-heated rapid thermal processors
US6900422B2 (en) * 2000-09-28 2005-05-31 Bsh Bosch Und Siemens Hausgeraete Gmbh Microwave device
US7581876B2 (en) * 2006-07-15 2009-09-01 Cem Corporation Dual energy source loss-on-drying instrument

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1114459A (en) 1964-12-24 1968-05-22 Industrial Nucleonics Corp Measuring system
US4438500A (en) 1973-07-20 1984-03-20 Cem Corporation Rapid volatility analyzer
US4457632A (en) 1973-07-20 1984-07-03 Cem Corporation Automatic volatility computer
US3909598A (en) 1973-07-20 1975-09-30 Cem Corp Automatic volatility computer
US4219716A (en) * 1978-04-26 1980-08-26 Dca Food Industries, Inc. Bottom entry oven
US4291775A (en) 1979-11-01 1981-09-29 Cem Corporation Method and apparatus for improving weighing accuracy
JPS58204336A (en) 1982-05-25 1983-11-29 Japan Tobacco Inc Moisture measuring device by infrared rays
US4566804A (en) 1982-12-16 1986-01-28 Cem Corporation Apparatuses, processes and articles for controllably heating and drying materials by microwave radiation
US4681996A (en) 1982-12-16 1987-07-21 Cem Corporation Analytical process in which materials to be analyzed are directly and indirectly heated and dried by microwave radiation
GB2152790B (en) * 1983-12-02 1986-11-05 Thorn Emi Domestic Appliances Additional heating in microwave ovens
DE3583431D1 (en) * 1984-12-20 1991-08-14 Matsushita Electric Ind Co Ltd MICROWAVE OVEN.
GB8530477D0 (en) * 1985-12-11 1986-01-22 Thorn Emi Appliances Microwave ovens
JPH0648244B2 (en) 1988-10-25 1994-06-22 横河電機株式会社 Infrared moisture meter that reduces the effect of basis weight
JPH0389139A (en) 1989-09-01 1991-04-15 Ebara Infilco Co Ltd Measurement of moisture
JP2667021B2 (en) 1989-10-19 1997-10-22 株式会社ケット科学研究所 Method and apparatus for measuring moisture in infrared moisture meter
JPH0810185B2 (en) 1991-05-29 1996-01-31 株式会社ケット科学研究所 Method and apparatus for predicting moisture content in infrared moisture meter
CN2117606U (en) 1992-01-03 1992-09-30 丹东市互感器厂 Computer moisture rapid testing apparatus
JPH06281556A (en) 1993-03-26 1994-10-07 Nisshin Flour Milling Co Ltd Heating type automatic measuring method for moisture
JPH07111393B2 (en) 1993-05-18 1995-11-29 工業技術院長 Moisture measuring device
CN2259626Y (en) 1995-11-24 1997-08-13 浙江大学 High accuracy infrared moisture measuring instrument
JP3289597B2 (en) 1996-05-01 2002-06-10 トヨタ自動車株式会社 Method for measuring trace moisture in materials
JPH10267821A (en) 1997-03-26 1998-10-09 Kett Electric Lab Balance column device of infrared moisture meter
US6084226A (en) 1998-04-21 2000-07-04 Cem Corporation Use of continuously variable power in microwave assisted chemistry
US6227041B1 (en) 1998-09-17 2001-05-08 Cem Corporation Method and apparatus for measuring volatile content
US6320170B1 (en) 1999-09-17 2001-11-20 Cem Corporation Microwave volatiles analyzer with high efficiency cavity
US6302577B1 (en) * 1999-09-17 2001-10-16 Cem Corporation Microwave apparatus and method for achieving accurate weight measurements
US6566637B1 (en) 2000-06-28 2003-05-20 Cem Corporation Microwave assisted content analyzer
JP2004151038A (en) 2002-10-31 2004-05-27 Kett Electric Laboratory Stoving type infrared moisture meter
EP1850110A1 (en) 2006-04-25 2007-10-31 Mettler-Toledo AG Measuring device for gravimetric moisture determination
JP2008267858A (en) * 2007-04-17 2008-11-06 Oji Paper Co Ltd Coated film drying behavior measuring method and instrument
DE102008053083B4 (en) 2008-10-24 2011-07-28 Pyreos Ltd. Infrared light detector and production thereof
CN201837570U (en) * 2010-07-16 2011-05-18 上海屹尧仪器科技发展有限公司 Microwave fast moisture determination instrument
US9921282B2 (en) 2012-04-10 2018-03-20 Cem Corporation Method for determining fat or moisture content
CN202947942U (en) * 2012-11-29 2013-05-22 华南理工大学 Microwave heating weight detection device
DE102012024418A1 (en) * 2012-12-14 2014-06-18 Sikora Ag A method and apparatus for non-contact temperature determination of a moving article of unknown emissivity
CN203101213U (en) 2013-02-18 2013-07-31 福州福民茶叶有限公司 Rapid moisture detector
CN203231949U (en) 2013-05-15 2013-10-09 许世伟 Meat moisture tester
CN103308417A (en) 2013-05-15 2013-09-18 许世伟 Meat moisture tester
CN203929556U (en) 2014-07-05 2014-11-05 杭州同孚环保科技有限公司 A kind of far infrared drying drimeter
CN204064843U (en) 2014-07-05 2014-12-31 杭州同孚环保科技有限公司 A kind of lift far infrared drying drimeter
US9853413B2 (en) * 2014-11-12 2017-12-26 Tae Jin Kim Airport runway approach lighting apparatus
US20170074766A1 (en) * 2015-09-11 2017-03-16 Cem Corporation Moisture and volatiles analyzer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956538A (en) * 1988-09-09 1990-09-11 Texas Instruments, Incorporated Method and apparatus for real-time wafer temperature measurement using infrared pyrometry in advanced lamp-heated rapid thermal processors
US6900422B2 (en) * 2000-09-28 2005-05-31 Bsh Bosch Und Siemens Hausgeraete Gmbh Microwave device
US7581876B2 (en) * 2006-07-15 2009-09-01 Cem Corporation Dual energy source loss-on-drying instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053851A (en) * 2015-09-11 2017-03-16 シーイーエム・コーポレーション Moisture and volatiles analyzer
US11435142B2 (en) * 2015-12-16 2022-09-06 3M Innovative Properties Company Microwave furnace and a method of sintering
CN108562705A (en) * 2018-06-21 2018-09-21 安徽石台县西黄山茶叶实业有限公司 A kind of tealeaves device for detecting water content

Also Published As

Publication number Publication date
US10527533B2 (en) 2020-01-07
JP2017053851A (en) 2017-03-16
AU2016222516B2 (en) 2017-11-23
EP3141883B1 (en) 2020-07-29
EP3141883A1 (en) 2017-03-15
AU2016222516A1 (en) 2017-03-30
CA2940723C (en) 2023-08-01
CA2940723A1 (en) 2017-03-11
US20190078988A1 (en) 2019-03-14
CN106525640A (en) 2017-03-22
JP6371347B2 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
US10527533B2 (en) Moisture and volatiles analyzer
US6227041B1 (en) Method and apparatus for measuring volatile content
US7581876B2 (en) Dual energy source loss-on-drying instrument
US7441443B2 (en) Drying balance
CA2384796C (en) Microwave apparatus and method for achieving accurate weight measurements
JP4777566B2 (en) Microwave volatile analyzer with high efficiency cavity
Vongpradubchai et al. Microwave and hot air drying of wood using a rectangular waveguide
KR101724333B1 (en) System and method for measuring dielectric properties of materials by using fabry-perot resonance
Flynn et al. Design of a subminiature guarded hot plate apparatus
Pedreño-Molina et al. A new procedure for power efficiency optimization in microwave ovens based on thermographic measurements and load location search
Tinga Rapid high temperature measurement of microwave dielectric properties
Szałatkiewicz et al. Investigation of newly developed microwave heated moisture analyzer measurements of ketchup and milk samples in climatic chamber
Holmes et al. In-kiln moisture content measurement of timber using a waveguide aperture array
Mattar et al. Development and optimization of a 50-75 GHz complex permittivity instrumentation system for high loss liquids
Tinga et al. Design of a new high-temperature dielectrometer system
Pérez-Campos et al. A Calibration Approach for the Bulk Temperature Estimation from Container Surface Temperature during Microwave Heating Processes
Ivanov et al. Development of a System of Metrological Assurance of the Region of Measurements of the Energy Parameters of Laser Radiation
Borrego et al. Measurements of dielectric properties for intense heating applications
Lee et al. Characterisation of dry cold load for ALMA front-end verification

Legal Events

Date Code Title Description
AS Assignment

Owner name: CEM CORPORATION, NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAMBERT, JOSEPH;DEESE, DAVID;JENNINGS, WILLIAM;REEL/FRAME:036943/0979

Effective date: 20151028

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION