US20160331921A1 - Facial interface and headgear system for use with ventilation and positive air pressure systems - Google Patents

Facial interface and headgear system for use with ventilation and positive air pressure systems Download PDF

Info

Publication number
US20160331921A1
US20160331921A1 US15/114,636 US201515114636A US2016331921A1 US 20160331921 A1 US20160331921 A1 US 20160331921A1 US 201515114636 A US201515114636 A US 201515114636A US 2016331921 A1 US2016331921 A1 US 2016331921A1
Authority
US
United States
Prior art keywords
arm
canceled
headgear
assembly
nasal pillow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/114,636
Inventor
Donald Harrison
Andrew Havens Gosline
Veaceslav Gheorghe Arabagi
Aaron Jonah Kapelus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HUMAN DESIGN MEDICAL LLC
Original Assignee
HUMAN DESIGN MEDICAL LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HUMAN DESIGN MEDICAL LLC filed Critical HUMAN DESIGN MEDICAL LLC
Priority to US15/114,636 priority Critical patent/US20160331921A1/en
Publication of US20160331921A1 publication Critical patent/US20160331921A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0683Holding devices therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0066Blowers or centrifugal pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0605Means for improving the adaptation of the mask to the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0605Means for improving the adaptation of the mask to the patient
    • A61M16/0616Means for improving the adaptation of the mask to the patient with face sealing means comprising a flap or membrane projecting inwards, such that sealing increases with increasing inhalation gas pressure
    • A61M16/0622Means for improving the adaptation of the mask to the patient with face sealing means comprising a flap or membrane projecting inwards, such that sealing increases with increasing inhalation gas pressure having an underlying cushion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0666Nasal cannulas or tubing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0683Holding devices therefor
    • A61M16/0694Chin straps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0816Joints or connectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0875Connecting tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1045Devices for humidifying or heating the inspired gas by using recovered moisture or heat from the expired gas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/22Carbon dioxide-absorbing devices ; Other means for removing carbon dioxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M2016/0661Respiratory or anaesthetic masks with customised shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0216Materials providing elastic properties, e.g. for facilitating deformation and avoid breaking

Definitions

  • the present invention relates to medical devices, and, more particularly to mask and headgear portions of air delivery devices that assist with the delivery of gas to the nasal passages of users.
  • These mask and headgear systems and devices may be used with positive airway pressure [PAP] such as continuous positive airway pressure devices [CPAP], automatic positive airway pressure devices [APAP], variable positive airway pressure devices [VPAP], and bi-level positive airway pressure devices [BPAP].
  • PAP positive airway pressure
  • CPAP continuous positive airway pressure devices
  • APAP automatic positive airway pressure devices
  • VPAP variable positive airway pressure devices
  • BPAP bi-level positive airway pressure devices
  • Nasal pillows exist to be partially inserted into a user's nare and form a seal with the nare(s), which allows for the user to breathe from the ventilator or PAP device.
  • nasal pillows have been known to not necessarily form the best seals for all users, put unnecessary pressure on the nare region when held in place by a mask system, and limited on flexibility.
  • Masks have also tended to be bulky and shift when wearing them at night. Designs are being made to make masks lighter and more secure.
  • the facial interface can include a system and assembly configured to provide a portion of continuous airway pressure to a user's airways.
  • the system and assembly includes a core having an inlet connector for receiving a supply of pressurized gas from a delivery tube, the core including a right arm and a left arm both extending from the core, each arm forming an associated air pathway through each respective arm, wherein each arm includes an aperture.
  • the system can further include a nasal pillow assembly configured to connect to each of the arms over the respective apertures. In this manner each nasal pillow assembly can be configured to communicate the supply of pressurized gas from the air pathway through each nasal pillow assembly and to a user's nostrils.
  • a headgear interface can be provided which is located about a distal end of each of the right and left arms, the headgear interface being configured to be attached to a headgear assembly.
  • the right and left arms can be offset with respect to one another so as to be non-coaxial, or in other words angled with respect to one another.
  • the nasal pillow assembly includes a nasal pillow rotatable about a nasal pillow axis.
  • the headgear interface provided at each distal end of the left and right arms can include a deformable sidepiece configured to attach to its respective arm.
  • This deformable sidepiece can be configured to attach to the arm at various angular positions with respect to the axis of its respective right or left arm.
  • the deformable sidepiece as a planar member which is configured to be selectively deformed out of plane so as to conform about the facial contours of a user, for example, to hold a shape corresponding to the curvature of the user's cheeks. It will be appreciated that this deformable sidepiece represents a potentially uncomfortable situation wherein the deformable sidepiece could be pressed into the user's face.
  • a malleable cover such as fabric or neoprene can be provided and configured to encompass the deformable sidepiece.
  • the nasal pillow assembly can further include an attachment sleeve configured to engage with each of the right and left arms respectively and encompass the associated aperture.
  • the attachment sleeve can thus be configured to provide rotation of each pillow assembly about its respective arm without obstructing flow through the respective aperture.
  • the attachment sleeve includes a radial hose connection for interfacing with its respective nasal pillow. This radial hose connection can be configured to allow for axial adjustable along the radial hose.
  • attachment sleeve can be provided with one or more washout vents.
  • washout vents can be provided at distal ends of the right and left arms, or about the core, or in any combination of the same.
  • the nasal pillows can formed in the shape of a cone, the cone having an elliptical cross section. In this manner as the pillows are rotated about a central pillow axis, or about the axis of the radial hose the relative orientation of each pillow can be adjusted so as to match the nostrils or nares of the user.
  • the headgear can include a plurality of adjustable straps so as to be adjustable to provide a desired retention force or a desired sealing force as well as be customizable so as to match the specific contours of the user's head.
  • one strap can be configured to extend over a crown of the user's head, and in other embodiments a strap can be configured to extend behind a rear portion of the user's head, or both.
  • the mask and headgear assembly of claim 2 wherein the deformable sidepiece attaches to each arm using an interference interconnector comprising a male connection and a female connection located selectively about either the deformable sidepiece or the interference interconnector.
  • the inlet connector can includes a swivel connector so as to provide a certain degree of flexibility with respect to an air supply hose and the mask frame provided about the user's face, for example if the user shifts while sleeping.
  • the core can be provided with a heat moisture exchange (HME) located within the central portion.
  • HME heat moisture exchange
  • the HME can be provided within the air supply hose, or within the right or left arms
  • a method of providing a pressurized stream of air using the device described above is contemplated.
  • the method can include various steps, in varying combinations including: providing a supply of pressurized gas to a delivery tube; receiving the supply of pressurized gas at an inlet of a core; selecting a pair of properly sized nasal pillows from a plurality of various nasal pillows, each nasal pillow having a pillow aperture formed at a top end; affixing the pair of nasal pillows to the core over the respective apertures of each arm such that the air pathway extends through the pillow aperture of each pillow; and positioning the nasal pillows such that the air pathway extends to a user's respiratory system through the nasal pillows through the user's nares.
  • the method can also include the steps of: affixing a headgear assembly to distal ends of both the right and left arms; and rotating the nasal pillows such that the elliptical cross section coincides with the user's particular nare shape, wherein each of the nasal pillows has an elliptical axial cross section.
  • FIG. 1 illustrates a perspective view of a facial interface and headgear system for use with ventilation and positive air pressure systems
  • FIG. 2 illustrates a front exploded view of the facial interface and headgear system for use with ventilation and positive air pressure systems of FIG. 1 ;
  • FIG. 3 illustrates a core or mask frame structure for use with the facial interface and headgear system for use with ventilation and positive air pressure systems of FIGS. 1-2 ;
  • FIG. 4 illustrates an exploded view of the core or mask frame structure of FIG. 3 illustrating a swivel adapter and heat moisture exchange component.
  • FIG. 5 illustrates an exemplary headgear system attached to the core or mask frame structure of FIG. 3 ;
  • FIGS. 6A-E illustrate various exemplary nasal pillows and configurations for use with the ventilation and positive air pressure systems of FIGS. 1-2 ;
  • FIG. 7 illustrates a top view of the ventilation and positive air pressure systems of FIGS. 1-2 ;
  • FIG. 8 illustrates an exemplary embodiment of a potential headgear connection interface for use with the ventilation and positive air pressure systems of FIGS. 1-2 ;
  • FIG. 9 illustrates another exemplary embodiment of a potential headgear connection interface for use with the ventilation and positive air pressure systems of FIGS. 1-2 ;
  • FIG. 10 illustrates a fitting for the potential headgear connection interface of FIG. 9 ;
  • FIG. 11 illustrates another alternative fitting for the potential headgear connection interface of FIG. 9 ;
  • FIG. 12 illustrates a perspective view of an assembly procedure using the headgear connection interface of FIG. 9 ;
  • FIG. 13 illustrates a perspective view of an assembly procedure of yet another exemplary embodiment of a potential headgear connection interface for use with the ventilation and positive air pressure systems of FIGS. 1-2 ;
  • FIG. 14 illustrates an alternative perspective view of the assembly procedure of the embodiment of FIG. 13 ;
  • FIG. 15 illustrates a perspective view of a user wearing yet another exemplary embodiment of a potential headgear connection interface for use with the ventilation and positive air pressure systems of FIGS. 1-2 ;
  • FIG. 16 illustrates a perspective view of the assembled exemplary embodiment of a potential headgear connection interface of FIG. 15 ;
  • FIG. 17 illustrates a perspective exploded view of the exemplary embodiment of a potential headgear connection interface of FIG. 15 ;
  • FIG. 18 illustrates a perspective view of an assembly procedure of the exemplary embodiment of a potential headgear connection interface of FIG. 15 ;
  • FIG. 19 illustrates a perspective view of another portion of the assembly procedure of the exemplary embodiment of a potential headgear connection interface of FIG. 15 ;
  • FIG. 20 illustrates a perspective view of a user wearing yet another exemplary embodiment of a potential headgear connection interface for use with the ventilation and positive air pressure systems of FIGS. 1-2 ;
  • FIG. 21 illustrates a perspective exploded view of a yet another exemplary embodiment of a potential headgear connection interface for use with the ventilation and positive air pressure systems of FIGS. 1-2 ;
  • FIG. 22 illustrates a perspective view of yet another partially assembled exemplary embodiment of a potential headgear connection interface for use with the ventilation and positive air pressure systems of FIGS. 1-2 ;
  • FIGS. 23A-C illustrate exploded side and front views, respectively, of an alternative core or mask frame assembly for use with the ventilation and positive air pressure systems of FIGS. 1-2 .
  • FIG. 24 illustrates variable core or mask frame with pivoting arms.
  • the present application seeks to provide a solution to the aforementioned problems by creating an adjustable, comfortable, mask assembly system that has interchangeable components, light-weight, and adaptable to individual users.
  • FIGS. 1-2, and 7 illustrate various views of a positive airway pressure assembly 10 configured to aid in supplying a stream of positive pressure air to the airways of a patient wearing the assembly 10 .
  • the assembly includes a mask frame 300 having a pair of nasal pillow assemblies 100 attached thereto.
  • the mask frame 300 receives a stream of pressurized air from a blower (not shown), which can be attached to the mask frame 30 by means of a supply hose 30 .
  • the air then travels through the mask frame 30 through apertures 354 and through the associated pillow assemblies 100 to provide air into the nostrils or nares of the user wearing the positive airway pressure assembly 10 .
  • the positive airway pressure assembly 10 can optionally include a headgear system 20 configured to provide a sealing force between the individual pillow assemblies 100 and the nostrils of the user.
  • the headgear system 20 can also provide a positioning force between the mask frame 300 and the maxilla of the user or patient, for example on the portion of the face between the upper lip and below the nose.
  • the headgear assembly 20 can be formed of a resilient material, or be adjustable through various means so as to conform to the individual user's contours which, understandably, vary between various users.
  • the headgear assembly 20 can also be configured to affix to distal ends of the mask frame 300 and can be configured to provide a certain degree of rotational adjustment between the mask frame 300 and the headgear 20 .
  • headgear 20 may be comprised of multiple straps, such as one configured to go over the top portion of a user's head, and second strap going generally about the back portion of a user's head.
  • Either strap can have an adjustment mechanism, no adjustment mechanism, formed of resilient material, inflexible or formed in a variety of configurations including having a cover or sleeve formed over a portion of the straps or no cover or sleeve.
  • FIGS. 3-5 illustrate various aspects of the mask frame 300 . It will be appreciated that air supply travels as shown by pathway arrows 60 through the tube, through a central portion of the mask frame 300 and exits apertures 354 .
  • the apertures can have a pair of lips or shoulders 358 upon or about which the pillow assembly 100 from FIGS. 1-2 can rest and seal.
  • the mask frame 300 can have a central portion 310 and left and right arms extending therefrom, 362 and 364 respectively. Each of the right and left arms can be provided with a headgear connection interface 400 about their respective distal ends.
  • the headgear connection interface allows for variation in the types of connectors used for connecting the headgear (not shown here).
  • the right and left arms can be provided as co-axial, i.e. straight with respect to each other, so as to reduce fabrication complexity and cost.
  • the right and left arms can be angled with respect to one another so as to better conform in shape to the front of the user's face, which understandably typically has a curved profile.
  • the mask frame or core 300 can be provided with an inlet connector 322 about the central portion.
  • the inlet connector can be configured to swivel coaxially with the air supply hose 30 .
  • the core or mask frame 300 can be provided with a heat moisture exchange (HME) component within the core 326 about the inlet connector 322 .
  • the HME 326 can also be provided in alternative locations as well as in multiples, for example a pair of HME 326 units could be provided within the nasal pillow assemblies or more proximal the apertures 354 .
  • FIG. 5 illustrates how the headgear can be affixed to the core or mask frame 300 through the use of one embodiment of a headgear connection interface 400 .
  • This particular embodiment illustrates a swivel connection which allows the headgear to rotate with respect to the distal ends of the mask frame 300 .
  • FIGS. 6A-E illustrate various views of a nasal pillow assembly 100 for use with the nasal mask frame as shown in FIGS. 3-5 .
  • the nasal pillow assembly 100 can include a nasal pillow 110 and attachment sleeves 150 .
  • the attachment sleeves 150 in this embodiment are configured to slide over the mask frame 300 and seal over apertures 354 by having an inner shoulder 359 which abuts against and slidingly seals against the shoulders 358 as shown in FIG. 3 . In this manner, the air delivered to the mask frame can be redirected through the pillow assembly 100 and into the user's nares.
  • the attachment sleeve 150 can be provided with an attachment portion 154 for receiving the pillow 110 .
  • the attachment portion 154 can be provided with a series of ribs or channels configured to interface with a plurality of annular ribs 114 and/or channels provided on an annular tube (or stem) forming an attachment portion of each pillow 110 .
  • FIG. 6D illustrates an air conform bladder 162 which can be formed as part of the attachment sleeve 150 .
  • the air conform bladder 162 can be formed of a malleable or flexible material, and have a hollow cavity defined thereby which receives pressurized gas from the interior of the attachment sleeve 150 when attached to the mask frame (not shown here). In this manner, as the pressure rises or is increased when the system is on, the air conform bladder becomes partially inflated and acts similar to a balloon. The air conform bladder 162 can then rest against the maxilla and provide an air cushioned interface between the mask and the user's face.
  • the air conform bladder is formed directly on the core frame, as part of the nasal pillows devoid of an attachment sleeve, or a part of the attachment sleeve itself that can form in part the nasal pillow assembly.
  • each nasal pillow can translate axially with respect to a pillow axis thus providing a first degree of freedom 104 A.
  • the ribs and channels can slide with respect to one another when twisted about the pillow axis providing a second degree of freedom 104 B which is rotational about a central axis of each pillow.
  • the interior shoulder 359 can also slide with respect to its relative exterior shoulder of the mask frame 358 as shown in FIG. 3 . so as to allow the sleeve, and the associated pillow to rotate about the axis of the right or left arm thus providing a third degree of freedom 104 C.
  • This sealing lip 359 allows for the attachment sleeve 150 to rotate about the mask along the mask frame axis thus providing a third degree of freedom 104 C.
  • Additional flexibility in the system can come from the nasal pillow itself.
  • the base portion of the nasal pillow which functions like a trampoline or pivoting spring allows for the head or conical portion of the nasal portion to tilt or pivot about the stem or annular tube. This is made possible by varying the thickness or durometer of the base portion with respect to the head or conical portion and the stem or annular tube.
  • FIG. 8 illustrates another embodiment of the headgear connector 400 A which utilizes a contoured barb 404 and a corresponding barb receiver 408 .
  • the barb can have a plurality of shapes including semi-spherical shapes as shown, or any other conceivable geometric shape with a correspondingly shaped receiver.
  • the receiver is configured to be deformable or resilient so as to expand to initially accept the barb 404 when press therein. After the barb 404 is pressed into the receiver, an interference fit is formed and the barb will resist, to a certain degree, being pulled from the receiver 408 .
  • FIGS. 9-12 illustrate yet another embodiment of a headgear connector 400 C which utilizes a connector 412 which has two ends, one for attaching to the distal end of the mask frame or core 300 , and the other for interfacing with the headgear 20 .
  • the headgear interfacing end is provided with an aperture 414 configured to receive a clip barb 416 .
  • the core end of the connector 412 has another corresponding aperture 416 through which a plug 428 can be provided so as to affix the connector 412 to the core 300 .
  • the two ends of the connector can be configured to rotate with respect to one another, as illustrated between FIGS. 10 and 11 , so as to provide additional comfort to the user and allow the strap of the headgear to rest naturally with respect to the distal ends of the mask frame.
  • FIGS. 13-14 illustrate yet another embodiment of a headgear connection interface 400 E in which a strap of the headgear 20 is provided with a simple annular washer end 436 .
  • a plug 432 can then be provided the annular washer end 436 and have an interference fit with a corresponding plug adapter end 434 provided about the distal ends of the mask frame 300 .
  • FIGS. 15-19 illustrate various views of yet another embodiment of a headgear connection interface 400 G in which a strap of the headgear 20 is provided with a deformable side piece 500 provided between the headgear 20 and the mask frame 300 .
  • the deformable sidepiece 500 can attach to each arm using an interference interconnector comprising a male connection 518 and a female connector 514 as well as attached to the headgear 20 by means of a male connector 522 and female aperture 524 .
  • an interference interconnector comprising a male connection 518 and a female connector 514 as well as attached to the headgear 20 by means of a male connector 522 and female aperture 524 .
  • the relative male of female connectors or apertures can be located selectively about either the deformable sidepiece or the interference interconnector.
  • the deformable sidepiece 500 can be configured to attach to the each respective arm at various angular positions, or in other words rotate with respect to the mask frame 300 . Additionally, the deformable sidepiece 500 can be provided initially as a planar member, which can then be selectively deformed out of plane so as to conform about the facial contours of a user. In this manner the deformable side piece can be shaped so as to follow the contours of the user's cheeks without touching them, or alternatively touch the cheeks but equally distribute any pressure applied thereto.
  • some versions are configured to have the headgear connect to the mask frame in a fixed connection (non-rotating), some allow for free rotation connection (no interference or stops), and some have interference mechanisms to selectively rotate or be positioned angularly about the mask frame.
  • the deformable sidepiece is formed of a shape retaining plastic.
  • This plastic can have a general deformation characteristic along a single plane while maintaining some rigidity in a second plane.
  • Other types of deformable plastic can be deformed along multiple planes.
  • the cross-section of the deformable sidepiece is rectangular.
  • the curvature of the deformable sidepiece along a particular plane can be preset or formed to transfer the force of the head gear system around certain features of the user's face. Since user's faces have three-dimensional features the deformable sidepiece can then conform to the remaining features of the user's face.
  • a malleable sleeve 510 can be provided which encompasses the deformable sidepiece 500 .
  • the malleable sleeve can be formed of fabric, silicone, or other comfort increasing material having any number of desired attributes, such as heat transfer rate, elasticity, softness, etc.
  • FIG. 20 illustrates a deformable sidepiece 500 A which has a silicone shell 560 having a malleable shape retaining core.
  • FIG. 21 illustrates yet another headgear connection interface 400 H which includes a keyed post 440 located about a distal end of the mask frame 300 and keyed opening 442 which slid through the keys to an inner portion 442 with a smaller diameter which allows free rotation.
  • the assembly can only be separated when angularly positioned correctly so as to align the keys. It will be appreciated that the keys should be provided out of phase from each other in normal angular positions between the mask frame 300 and the headgear 20 while being worn.
  • a cap 444 can be provided which prevents unintentional separation.
  • FIG. 22 illustrates another keyed embodiment, similar to that of FIG. 21 . having an alternative strap portion 442 A, which covers the hardware, i.e. the keyed post 440 and the associated connector inside the strap 442 A, so as to improve comfort and reduce the likelihood of catching the mask on something while shifting during sleep and thus tearing the mask off the user's face.
  • This embodiment utilizes a similar plug 444 A to cover the connection from the outside of the strap 442 A and thus prevent premature decoupling or catching.
  • FIGS. 23A-C illustrate an alternative embodiment of a mask frame 600 .
  • This mask frame is more rigid and instead of interfacing with the nasal pillow assembly 100 using a rotatable sleeve, the arms of mask frame 600 are rigid and do not provide rotation of the pillow assemblies 100 about the respective arm portions.
  • This embodiment provides increased stability for headgear attachment and facial placement purposes.
  • the nasal pillows are still permitted to rotate about the pillow's central axis, wherein the pillows can have an elliptical cross section.
  • a plurality of washout vents 604 can be provided in a central portion of the mask frame 600 .
  • the headgear 20 can be attached to the mask frame 600 using any of the previously discussed headgear attachment interfaces.
  • FIGS. 6E, 21 and 23A all show various placements of CO 2 washout vents. Being at a bottom portion of the pillow assembly 100 , on the attachment sleeve 150 as shown by 158 in FIG. 6E , at the ends of the right or left arms, as shown by 159 in FIG. 21 , and on the mask frame at a central portion as shown by 604 in FIG. 23A . It will be appreciated that any one of these placements either alone or in any combination is within the scope of the present invention.
  • the CO 2 washout vents may be comprised of a material that has silicone knife coated across it. In other embodiments the CO 2 vent is a plurality of holes that have been formed therein.
  • the headgear can cause a direct tightening of the pillows into the nostrils of the user, thus having a direct correlation to a sealing force.
  • the force applied by the headgear can be partially directed through the air conform bladder and into the maxilla to provide a primarily a positioning force, where the sealing force can be adjusted by changing the relative placement of the mask frame on the face, which is held by the positioning force.
  • the nasal pillows can be caused to enter into, and hold their relative position by the elastic properties of the pillows being exerted onto the inner walls of the user's nostrils or nares without the use of headgear altogether.
  • FIG. 24 illustrates another alternative core or mask frame 300 A where the right and left arms are arranged to pivot or rotate about the center of the core.
  • the right and left arms can form a 180 degree angle between each other, making the core look more like “T” shape, each arm can then be repositioned to form a “Y” shape.
  • the angles between each arm can range from several degrees to greater than 180 degrees. However, most users will have the arms angled somewhere less than 180 degrees.
  • This additional degree of freedom presented by this alternative core 300 A can also work with the attachment sleeves, rotatable nasal pillows as described above for a customizable fit.
  • the rotation of the arms is a constant and consistent motion, which can be enabled by a pressure sliding fit between the pivoting arm and the core.
  • discrete angled positions are enabled by each arm locking into a groove or channel or other distinct locking mechanism.

Landscapes

  • Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Emergency Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Otolaryngology (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)

Abstract

The present disclosure relates to a mask assembly system that has an adjustable headgear system with adjustable sidepiece for conforming to a user's face. Additionally, the mask assembly allows for detachable nasal pillows to be rotated about multiple degrees of freedom.

Description

    PRIORITY CLAIM
  • Priority is claimed to co-pending U.S. Provisional Patent Application Ser. No. 62/025,073, filed Jul. 16, 2014, 62/025,077, filed Jul. 16, 2014, and 62/049,994 filed Sep. 12, 2014 which are hereby incorporated herein by reference in their entirety.
  • COPYRIGHT STATEMENT
  • A portion of the disclosure of this patent application document contains material that is subject to copyright protection including the drawings. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure as it appears in the Patent and Trademark Office file or records, but otherwise reserves all copyright rights whatsoever.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to medical devices, and, more particularly to mask and headgear portions of air delivery devices that assist with the delivery of gas to the nasal passages of users. These mask and headgear systems and devices may be used with positive airway pressure [PAP] such as continuous positive airway pressure devices [CPAP], automatic positive airway pressure devices [APAP], variable positive airway pressure devices [VPAP], and bi-level positive airway pressure devices [BPAP].
  • 2. Description of the Prior Art
  • Nasal pillows exist to be partially inserted into a user's nare and form a seal with the nare(s), which allows for the user to breathe from the ventilator or PAP device. However, nasal pillows have been known to not necessarily form the best seals for all users, put unnecessary pressure on the nare region when held in place by a mask system, and limited on flexibility. Masks have also tended to be bulky and shift when wearing them at night. Designs are being made to make masks lighter and more secure.
  • A need therefore exists for a nasal pillow that is interchangeable with a mask system, which is flexible and adaptable to a user's nare and facial profile, and reduces pressure applied on the nare region while in use. A need also exists for an adjustable mask and headgear system that conforms to a user's head and facial features while being comfortable and securely attaching the nasal pillows to a user's nares.
  • SUMMARY OF THE INVENTION
  • Contemplated herein is a facial interface and headgear system for use with ventilation and positive air pressure systems. The facial interface can include a system and assembly configured to provide a portion of continuous airway pressure to a user's airways. The system and assembly includes a core having an inlet connector for receiving a supply of pressurized gas from a delivery tube, the core including a right arm and a left arm both extending from the core, each arm forming an associated air pathway through each respective arm, wherein each arm includes an aperture. The system can further include a nasal pillow assembly configured to connect to each of the arms over the respective apertures. In this manner each nasal pillow assembly can be configured to communicate the supply of pressurized gas from the air pathway through each nasal pillow assembly and to a user's nostrils.
  • Optionally, a headgear interface can be provided which is located about a distal end of each of the right and left arms, the headgear interface being configured to be attached to a headgear assembly.
  • In some embodiments the right and left arms can be offset with respect to one another so as to be non-coaxial, or in other words angled with respect to one another. In yet other embodiments the nasal pillow assembly includes a nasal pillow rotatable about a nasal pillow axis.
  • In some embodiments the headgear interface provided at each distal end of the left and right arms can include a deformable sidepiece configured to attach to its respective arm. This deformable sidepiece can be configured to attach to the arm at various angular positions with respect to the axis of its respective right or left arm. In some embodiments the deformable sidepiece as a planar member which is configured to be selectively deformed out of plane so as to conform about the facial contours of a user, for example, to hold a shape corresponding to the curvature of the user's cheeks. It will be appreciated that this deformable sidepiece represents a potentially uncomfortable situation wherein the deformable sidepiece could be pressed into the user's face. As such, a malleable cover, such as fabric or neoprene can be provided and configured to encompass the deformable sidepiece.
  • In some embodiments the nasal pillow assembly can further include an attachment sleeve configured to engage with each of the right and left arms respectively and encompass the associated aperture. The attachment sleeve can thus be configured to provide rotation of each pillow assembly about its respective arm without obstructing flow through the respective aperture. In some embodiments the attachment sleeve includes a radial hose connection for interfacing with its respective nasal pillow. This radial hose connection can be configured to allow for axial adjustable along the radial hose.
  • In yet other embodiments the attachment sleeve can be provided with one or more washout vents. Alternatively, washout vents can be provided at distal ends of the right and left arms, or about the core, or in any combination of the same.
  • In some embodiments the nasal pillows can formed in the shape of a cone, the cone having an elliptical cross section. In this manner as the pillows are rotated about a central pillow axis, or about the axis of the radial hose the relative orientation of each pillow can be adjusted so as to match the nostrils or nares of the user.
  • In some embodiments the headgear can include a plurality of adjustable straps so as to be adjustable to provide a desired retention force or a desired sealing force as well as be customizable so as to match the specific contours of the user's head. In some embodiments one strap can be configured to extend over a crown of the user's head, and in other embodiments a strap can be configured to extend behind a rear portion of the user's head, or both.
  • The mask and headgear assembly of claim 2, wherein the deformable sidepiece attaches to each arm using an interference interconnector comprising a male connection and a female connection located selectively about either the deformable sidepiece or the interference interconnector.
  • In some embodiments the inlet connector can includes a swivel connector so as to provide a certain degree of flexibility with respect to an air supply hose and the mask frame provided about the user's face, for example if the user shifts while sleeping.
  • In some embodiments the core can be provided with a heat moisture exchange (HME) located within the central portion. Alternatively, the HME can be provided within the air supply hose, or within the right or left arms
  • In yet additional embodiments a method of providing a pressurized stream of air using the device described above is contemplated. The method can include various steps, in varying combinations including: providing a supply of pressurized gas to a delivery tube; receiving the supply of pressurized gas at an inlet of a core; selecting a pair of properly sized nasal pillows from a plurality of various nasal pillows, each nasal pillow having a pillow aperture formed at a top end; affixing the pair of nasal pillows to the core over the respective apertures of each arm such that the air pathway extends through the pillow aperture of each pillow; and positioning the nasal pillows such that the air pathway extends to a user's respiratory system through the nasal pillows through the user's nares.
  • The method can also include the steps of: affixing a headgear assembly to distal ends of both the right and left arms; and rotating the nasal pillows such that the elliptical cross section coincides with the user's particular nare shape, wherein each of the nasal pillows has an elliptical axial cross section.
  • These and other embodiments form some of the various inventive concepts as contained herein. The individual embodiments as described are not intended to be limiting, but are intended only as illustrative of the various inventive concepts and are not intended to be limiting except as claimed below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other objects, aspects, features, and advantages of the disclosure will become more apparent and better understood by referring to the following description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 illustrates a perspective view of a facial interface and headgear system for use with ventilation and positive air pressure systems;
  • FIG. 2 illustrates a front exploded view of the facial interface and headgear system for use with ventilation and positive air pressure systems of FIG. 1;
  • FIG. 3 illustrates a core or mask frame structure for use with the facial interface and headgear system for use with ventilation and positive air pressure systems of FIGS. 1-2;
  • FIG. 4 illustrates an exploded view of the core or mask frame structure of FIG. 3 illustrating a swivel adapter and heat moisture exchange component.
  • FIG. 5 illustrates an exemplary headgear system attached to the core or mask frame structure of FIG. 3;
  • FIGS. 6A-E illustrate various exemplary nasal pillows and configurations for use with the ventilation and positive air pressure systems of FIGS. 1-2;
  • FIG. 7 illustrates a top view of the ventilation and positive air pressure systems of FIGS. 1-2;
  • FIG. 8 illustrates an exemplary embodiment of a potential headgear connection interface for use with the ventilation and positive air pressure systems of FIGS. 1-2;
  • FIG. 9 illustrates another exemplary embodiment of a potential headgear connection interface for use with the ventilation and positive air pressure systems of FIGS. 1-2;
  • FIG. 10 illustrates a fitting for the potential headgear connection interface of FIG. 9;
  • FIG. 11 illustrates another alternative fitting for the potential headgear connection interface of FIG. 9;
  • FIG. 12 illustrates a perspective view of an assembly procedure using the headgear connection interface of FIG. 9;
  • FIG. 13 illustrates a perspective view of an assembly procedure of yet another exemplary embodiment of a potential headgear connection interface for use with the ventilation and positive air pressure systems of FIGS. 1-2;
  • FIG. 14 illustrates an alternative perspective view of the assembly procedure of the embodiment of FIG. 13;
  • FIG. 15 illustrates a perspective view of a user wearing yet another exemplary embodiment of a potential headgear connection interface for use with the ventilation and positive air pressure systems of FIGS. 1-2;
  • FIG. 16 illustrates a perspective view of the assembled exemplary embodiment of a potential headgear connection interface of FIG. 15;
  • FIG. 17 illustrates a perspective exploded view of the exemplary embodiment of a potential headgear connection interface of FIG. 15;
  • FIG. 18 illustrates a perspective view of an assembly procedure of the exemplary embodiment of a potential headgear connection interface of FIG. 15;
  • FIG. 19 illustrates a perspective view of another portion of the assembly procedure of the exemplary embodiment of a potential headgear connection interface of FIG. 15;
  • FIG. 20 illustrates a perspective view of a user wearing yet another exemplary embodiment of a potential headgear connection interface for use with the ventilation and positive air pressure systems of FIGS. 1-2;
  • FIG. 21 illustrates a perspective exploded view of a yet another exemplary embodiment of a potential headgear connection interface for use with the ventilation and positive air pressure systems of FIGS. 1-2;
  • FIG. 22 illustrates a perspective view of yet another partially assembled exemplary embodiment of a potential headgear connection interface for use with the ventilation and positive air pressure systems of FIGS. 1-2; and
  • FIGS. 23A-C illustrate exploded side and front views, respectively, of an alternative core or mask frame assembly for use with the ventilation and positive air pressure systems of FIGS. 1-2.
  • FIG. 24 illustrates variable core or mask frame with pivoting arms.
  • Reference will now be made to the exemplary embodiments illustrated, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended though the exemplary embodiments discussed, but the examples are for purposes of illustration of the inventive concepts.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • To provide an overall understanding of the systems, devices, and methods described herein, certain illustrative embodiments will be described. Although the embodiments and features described herein are frequently described for use in connection with CPAP apparatuses, systems, and methods, it will be understood that all the components, mechanisms, systems, methods, and other features outlined below may be combined with one another in any suitable manner and may be adapted and applied to other PAP apparatuses, systems, and methods, including, but not limited to, APAP, VPAP, and BPAP apparatuses, ventilators, systems, and methods.
  • The present application seeks to provide a solution to the aforementioned problems by creating an adjustable, comfortable, mask assembly system that has interchangeable components, light-weight, and adaptable to individual users.
  • FIGS. 1-2, and 7 illustrate various views of a positive airway pressure assembly 10 configured to aid in supplying a stream of positive pressure air to the airways of a patient wearing the assembly 10. The assembly includes a mask frame 300 having a pair of nasal pillow assemblies 100 attached thereto. The mask frame 300 receives a stream of pressurized air from a blower (not shown), which can be attached to the mask frame 30 by means of a supply hose 30. The air then travels through the mask frame 30 through apertures 354 and through the associated pillow assemblies 100 to provide air into the nostrils or nares of the user wearing the positive airway pressure assembly 10.
  • The positive airway pressure assembly 10 can optionally include a headgear system 20 configured to provide a sealing force between the individual pillow assemblies 100 and the nostrils of the user. In certain cases the headgear system 20 can also provide a positioning force between the mask frame 300 and the maxilla of the user or patient, for example on the portion of the face between the upper lip and below the nose. It will be appreciated that the headgear assembly 20 can be formed of a resilient material, or be adjustable through various means so as to conform to the individual user's contours which, understandably, vary between various users. Further, the headgear assembly 20 can also be configured to affix to distal ends of the mask frame 300 and can be configured to provide a certain degree of rotational adjustment between the mask frame 300 and the headgear 20.
  • As shown in various figures, headgear 20 may be comprised of multiple straps, such as one configured to go over the top portion of a user's head, and second strap going generally about the back portion of a user's head. Either strap can have an adjustment mechanism, no adjustment mechanism, formed of resilient material, inflexible or formed in a variety of configurations including having a cover or sleeve formed over a portion of the straps or no cover or sleeve.
  • FIGS. 3-5 illustrate various aspects of the mask frame 300. It will be appreciated that air supply travels as shown by pathway arrows 60 through the tube, through a central portion of the mask frame 300 and exits apertures 354. The apertures can have a pair of lips or shoulders 358 upon or about which the pillow assembly 100 from FIGS. 1-2 can rest and seal. The mask frame 300 can have a central portion 310 and left and right arms extending therefrom, 362 and 364 respectively. Each of the right and left arms can be provided with a headgear connection interface 400 about their respective distal ends. The headgear connection interface allows for variation in the types of connectors used for connecting the headgear (not shown here).
  • In some embodiments, the right and left arms can be provided as co-axial, i.e. straight with respect to each other, so as to reduce fabrication complexity and cost. Alternatively, and as shown herein the right and left arms can be angled with respect to one another so as to better conform in shape to the front of the user's face, which understandably typically has a curved profile.
  • In addition the mask frame or core 300 can be provided with an inlet connector 322 about the central portion. The inlet connector can be configured to swivel coaxially with the air supply hose 30. In addition the core or mask frame 300 can be provided with a heat moisture exchange (HME) component within the core 326 about the inlet connector 322. The HME 326 can also be provided in alternative locations as well as in multiples, for example a pair of HME 326 units could be provided within the nasal pillow assemblies or more proximal the apertures 354.
  • In particular, FIG. 5 illustrates how the headgear can be affixed to the core or mask frame 300 through the use of one embodiment of a headgear connection interface 400. This particular embodiment illustrates a swivel connection which allows the headgear to rotate with respect to the distal ends of the mask frame 300.
  • FIGS. 6A-E illustrate various views of a nasal pillow assembly 100 for use with the nasal mask frame as shown in FIGS. 3-5. The nasal pillow assembly 100 can include a nasal pillow 110 and attachment sleeves 150. The attachment sleeves 150 in this embodiment are configured to slide over the mask frame 300 and seal over apertures 354 by having an inner shoulder 359 which abuts against and slidingly seals against the shoulders 358 as shown in FIG. 3. In this manner, the air delivered to the mask frame can be redirected through the pillow assembly 100 and into the user's nares. The attachment sleeve 150 can be provided with an attachment portion 154 for receiving the pillow 110. The attachment portion 154 can be provided with a series of ribs or channels configured to interface with a plurality of annular ribs 114 and/or channels provided on an annular tube (or stem) forming an attachment portion of each pillow 110.
  • In particular FIG. 6D illustrates an air conform bladder 162 which can be formed as part of the attachment sleeve 150. The air conform bladder 162 can be formed of a malleable or flexible material, and have a hollow cavity defined thereby which receives pressurized gas from the interior of the attachment sleeve 150 when attached to the mask frame (not shown here). In this manner, as the pressure rises or is increased when the system is on, the air conform bladder becomes partially inflated and acts similar to a balloon. The air conform bladder 162 can then rest against the maxilla and provide an air cushioned interface between the mask and the user's face. In some embodiments, the air conform bladder is formed directly on the core frame, as part of the nasal pillows devoid of an attachment sleeve, or a part of the attachment sleeve itself that can form in part the nasal pillow assembly.
  • The meshing or integration of the annular ribs 114 with the channels or ribs 154 provided in the attachment sleeve allows for incremental adjustment of the relative height or radial positioning of the nasal pillow 110 with respect to the attachment sleeve 150, and thereby the mask frame or core, by changing which ribs are meshed with which respective channel. In this manner each nasal pillow can translate axially with respect to a pillow axis thus providing a first degree of freedom 104A. Additionally, the ribs and channels can slide with respect to one another when twisted about the pillow axis providing a second degree of freedom 104B which is rotational about a central axis of each pillow. Finally, the interior shoulder 359 can also slide with respect to its relative exterior shoulder of the mask frame 358 as shown in FIG. 3. so as to allow the sleeve, and the associated pillow to rotate about the axis of the right or left arm thus providing a third degree of freedom 104C. This sealing lip 359 allows for the attachment sleeve 150 to rotate about the mask along the mask frame axis thus providing a third degree of freedom 104C. Additional flexibility in the system can come from the nasal pillow itself. For example, the base portion of the nasal pillow, which functions like a trampoline or pivoting spring allows for the head or conical portion of the nasal portion to tilt or pivot about the stem or annular tube. This is made possible by varying the thickness or durometer of the base portion with respect to the head or conical portion and the stem or annular tube.
  • FIG. 8 illustrates another embodiment of the headgear connector 400A which utilizes a contoured barb 404 and a corresponding barb receiver 408. The barb can have a plurality of shapes including semi-spherical shapes as shown, or any other conceivable geometric shape with a correspondingly shaped receiver. In this embodiment the receiver is configured to be deformable or resilient so as to expand to initially accept the barb 404 when press therein. After the barb 404 is pressed into the receiver, an interference fit is formed and the barb will resist, to a certain degree, being pulled from the receiver 408.
  • FIGS. 9-12 illustrate yet another embodiment of a headgear connector 400C which utilizes a connector 412 which has two ends, one for attaching to the distal end of the mask frame or core 300, and the other for interfacing with the headgear 20. The headgear interfacing end is provided with an aperture 414 configured to receive a clip barb 416. The core end of the connector 412 has another corresponding aperture 416 through which a plug 428 can be provided so as to affix the connector 412 to the core 300. The two ends of the connector can be configured to rotate with respect to one another, as illustrated between FIGS. 10 and 11, so as to provide additional comfort to the user and allow the strap of the headgear to rest naturally with respect to the distal ends of the mask frame.
  • FIGS. 13-14 illustrate yet another embodiment of a headgear connection interface 400E in which a strap of the headgear 20 is provided with a simple annular washer end 436. A plug 432 can then be provided the annular washer end 436 and have an interference fit with a corresponding plug adapter end 434 provided about the distal ends of the mask frame 300.
  • FIGS. 15-19 illustrate various views of yet another embodiment of a headgear connection interface 400G in which a strap of the headgear 20 is provided with a deformable side piece 500 provided between the headgear 20 and the mask frame 300. The deformable sidepiece 500 can attach to each arm using an interference interconnector comprising a male connection 518 and a female connector 514 as well as attached to the headgear 20 by means of a male connector 522 and female aperture 524. It will be appreciated that the relative male of female connectors or apertures can be located selectively about either the deformable sidepiece or the interference interconnector. As shown, the deformable sidepiece 500 can be configured to attach to the each respective arm at various angular positions, or in other words rotate with respect to the mask frame 300. Additionally, the deformable sidepiece 500 can be provided initially as a planar member, which can then be selectively deformed out of plane so as to conform about the facial contours of a user. In this manner the deformable side piece can be shaped so as to follow the contours of the user's cheeks without touching them, or alternatively touch the cheeks but equally distribute any pressure applied thereto.
  • It should be understood that of the various connectors described herein, some versions are configured to have the headgear connect to the mask frame in a fixed connection (non-rotating), some allow for free rotation connection (no interference or stops), and some have interference mechanisms to selectively rotate or be positioned angularly about the mask frame.
  • In one instance the deformable sidepiece is formed of a shape retaining plastic. This plastic can have a general deformation characteristic along a single plane while maintaining some rigidity in a second plane. Other types of deformable plastic can be deformed along multiple planes. In one embodiment the cross-section of the deformable sidepiece is rectangular. The curvature of the deformable sidepiece along a particular plane (see FIGS. 15 and 17) can be preset or formed to transfer the force of the head gear system around certain features of the user's face. Since user's faces have three-dimensional features the deformable sidepiece can then conform to the remaining features of the user's face. Thus, allowing a customizable headgear system that maintains a balance between rigidity and flexibility, while being conformable to a user's unique facial features.
  • It will be further appreciated that the deformable sidepiece 500 might cause a certain degree of discomfort to a user. As such, a malleable sleeve 510 can be provided which encompasses the deformable sidepiece 500. The malleable sleeve can be formed of fabric, silicone, or other comfort increasing material having any number of desired attributes, such as heat transfer rate, elasticity, softness, etc.
  • FIG. 20 illustrates a deformable sidepiece 500A which has a silicone shell 560 having a malleable shape retaining core.
  • FIG. 21 illustrates yet another headgear connection interface 400H which includes a keyed post 440 located about a distal end of the mask frame 300 and keyed opening 442 which slid through the keys to an inner portion 442 with a smaller diameter which allows free rotation. The assembly can only be separated when angularly positioned correctly so as to align the keys. It will be appreciated that the keys should be provided out of phase from each other in normal angular positions between the mask frame 300 and the headgear 20 while being worn. In order to ensure that the keyed components do not separate unintentionally, a cap 444 can be provided which prevents unintentional separation.
  • FIG. 22 illustrates another keyed embodiment, similar to that of FIG. 21. having an alternative strap portion 442A, which covers the hardware, i.e. the keyed post 440 and the associated connector inside the strap 442A, so as to improve comfort and reduce the likelihood of catching the mask on something while shifting during sleep and thus tearing the mask off the user's face. This embodiment utilizes a similar plug 444A to cover the connection from the outside of the strap 442A and thus prevent premature decoupling or catching.
  • FIGS. 23A-C illustrate an alternative embodiment of a mask frame 600. This mask frame is more rigid and instead of interfacing with the nasal pillow assembly 100 using a rotatable sleeve, the arms of mask frame 600 are rigid and do not provide rotation of the pillow assemblies 100 about the respective arm portions. This embodiment provides increased stability for headgear attachment and facial placement purposes. In this embodiment the nasal pillows are still permitted to rotate about the pillow's central axis, wherein the pillows can have an elliptical cross section.
  • In this embodiment a plurality of washout vents 604 can be provided in a central portion of the mask frame 600. Additionally, the headgear 20 can be attached to the mask frame 600 using any of the previously discussed headgear attachment interfaces.
  • FIGS. 6E, 21 and 23A all show various placements of CO2 washout vents. Being at a bottom portion of the pillow assembly 100, on the attachment sleeve 150 as shown by 158 in FIG. 6E, at the ends of the right or left arms, as shown by 159 in FIG. 21, and on the mask frame at a central portion as shown by 604 in FIG. 23A. It will be appreciated that any one of these placements either alone or in any combination is within the scope of the present invention. The CO2 washout vents may be comprised of a material that has silicone knife coated across it. In other embodiments the CO2 vent is a plurality of holes that have been formed therein.
  • It is contemplated that the wall thickness and/or durometer of the nasal pillow portion can be varied. In one exemplary embodiment the flat underside portion which connects the bell like top of the nasal pillow to the tube portion may have either a thinner wall portion then the flared bell like portion and tube portion or may have a lower durometer value. This thinner wall or lower durometer value allows the tube connected to the flat underside to collapse into the bell like portion when pressure is exerted on the bell like portion. When the nasal pillows are formed of the silica material or silken like material the nasal pillow returns to its original state when no pressures being exerted on it. Again this allows for the flared bell like portion to pay that about the tube portion when being inserted into the nasal region. The collapse ability again helps reduce pressure exerted onto the nasal region while at the same time helping to find an optimal position that forms a good seal between the nasal pillow and each of the nostrils.
  • It will be appreciated that in certain embodiments the headgear can cause a direct tightening of the pillows into the nostrils of the user, thus having a direct correlation to a sealing force. In yet other embodiments, for example, when providing an air conform bladder, as discussed with reference to FIG. 7, the force applied by the headgear can be partially directed through the air conform bladder and into the maxilla to provide a primarily a positioning force, where the sealing force can be adjusted by changing the relative placement of the mask frame on the face, which is held by the positioning force. In yet additional embodiments, the nasal pillows can be caused to enter into, and hold their relative position by the elastic properties of the pillows being exerted onto the inner walls of the user's nostrils or nares without the use of headgear altogether.
  • FIG. 24 illustrates another alternative core or mask frame 300A where the right and left arms are arranged to pivot or rotate about the center of the core. In some versions the right and left arms can form a 180 degree angle between each other, making the core look more like “T” shape, each arm can then be repositioned to form a “Y” shape. The angles between each arm can range from several degrees to greater than 180 degrees. However, most users will have the arms angled somewhere less than 180 degrees. This additional degree of freedom presented by this alternative core 300A can also work with the attachment sleeves, rotatable nasal pillows as described above for a customizable fit.
  • In some versions the rotation of the arms is a constant and consistent motion, which can be enabled by a pressure sliding fit between the pivoting arm and the core. In other versions discrete angled positions are enabled by each arm locking into a groove or channel or other distinct locking mechanism. Some of the rotation mechanisms can function similar to the locking and rotation features of the headgear interface assembly.
  • While the forgoing examples are illustrative of the principles of the present invention in one or more particular applications, it will be apparent to those of ordinary skill in the art that numerous modifications in form, usage and details of implementation can be made without the exercise of inventive faculty, and without departing from the principles and concepts of the invention. Further, discussion with regard to any of the specific features is intended to be for illustrative purposes, with the understanding that any feature discussed herein can be used in combination with any number of other features in any combination from any of the various embodiments. Accordingly, it is not intended that the invention be limited, except as by the claims set forth below.

Claims (30)

What is claimed:
1. (canceled)
2. (canceled)
3. (canceled)
4. (canceled)
5. (canceled)
6. (canceled)
7. (canceled)
8. A mask and headgear assembly comprising:
a core having an inlet connector for receiving a supply of pressurized gas from a delivery tube, the core including a right arm and a left arm both extending from the core, each arm forming an associated air pathway through each respective arm, wherein each arm includes an aperture;
a nasal pillow assembly having at least a nasal pillow rotatably connected over the aperture of both the right arm and the left arm, each nasal pillow assembly being configured to communicate the supply of pressurized gas from the air pathway through each nasal pillow assembly and to a user's nostrils;
a headgear interface located about a distal end of each arm, the headgear interface being configured to be attached to a headgear assembly; and
an attachment sleeve configured to engage with each of the right and left arms respectively and encompass the associated aperture, the attachment sleeve configured to provide rotation of each nasal pillow assembly about its respective arm so as to maintain flow through the respective aperture.
9. The mask and headgear assembly of claim 8, wherein the attachment sleeve includes a radial hose connection for interfacing with a respective nasal pillow.
10. The mask and headgear assembly of claim 8, wherein the attachment sleeve is provided with one or more washout vents.
11. The mask and headgear assembly of claim 9, wherein each nasal pillow is axially adjustable along the radial hose.
12. The mask and headgear assembly of claim 11, wherein each nasal pillow is formed of a cone having an elliptical cross section.
13. The mask and headgear assembly of claim 12, wherein each pillow is configured to rotate about the axis of the radial hose.
14. (canceled)
15. (canceled)
16. (canceled)
17. (canceled)
18. (canceled)
19. (canceled)
20. (canceled)
21. (canceled)
22. (canceled)
23. (canceled)
24. (canceled)
25. (canceled)
26. (canceled)
27. (canceled)
28. (canceled)
29. A mask and headgear assembly comprising:
a core having an inlet connector for receiving a supply of pressurized gas from a delivery tube, the core including a right arm and a left arm both extending from the core, each arm forming an associated air pathway through each respective arm, wherein each arm includes an aperture;
a nasal pillow assembly comprised of at least two nasal pillows, wherein one nasal pillow is rotatably connected over the aperture of the right arm and another nasal pillow is rotatably connected over the left arm, wherein the nasal pillow assembly is configured to communicate the supply of pressurized gas from the air pathway through each nasal pillow to a user's nostrils;
a headgear assembly comprised of at least two deformable sidepieces and a strap;
wherein the headgear assembly is attachable to a headgear interface located about a distal end of each arm; and
wherein the nasal pillow assembly further comprises a pair of attachment sleeves disposed between each arm of the core and the nasal pillows, and wherein the attachment sleeves rotate at least partially about each arm while maintaining the communication of flow of pressurized gas from the air pathway through to nasal pillows.
30. A mask and headgear assembly comprising:
a core having an inlet connector for receiving a supply of pressurized gas from a delivery tube, the core including a right arm and a left arm both extending from the core, each arm forming an associated air pathway through each respective arm, wherein each arm includes an aperture;
a nasal pillow assembly comprised of at least two nasal pillows, wherein one nasal pillow is rotatably connected over the aperture of the right arm and another nasal pillow is rotatably connected over the left arm, wherein the nasal pillow assembly is configured to communicate the supply of pressurized gas from the air pathway through each nasal pillow to a user's nostrils;
a headgear assembly comprised of at least two deformable sidepieces and a strap;
wherein the headgear assembly is attachable to a headgear interface located about a distal end of each arm; and
wherein the right and left arms pivot about the core.
US15/114,636 2014-07-16 2015-07-16 Facial interface and headgear system for use with ventilation and positive air pressure systems Abandoned US20160331921A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/114,636 US20160331921A1 (en) 2014-07-16 2015-07-16 Facial interface and headgear system for use with ventilation and positive air pressure systems

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462025077P 2014-07-16 2014-07-16
US201462025073P 2014-07-16 2014-07-16
US201462049994P 2014-09-12 2014-09-12
PCT/US2015/040737 WO2016011246A1 (en) 2014-07-16 2015-07-16 Facial interface and headgear system for use with ventilation and positive air pressure systems
US15/114,636 US20160331921A1 (en) 2014-07-16 2015-07-16 Facial interface and headgear system for use with ventilation and positive air pressure systems

Publications (1)

Publication Number Publication Date
US20160331921A1 true US20160331921A1 (en) 2016-11-17

Family

ID=90124243

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/801,037 Abandoned US20160015925A1 (en) 2014-07-16 2015-07-16 Facial interface and headgear system for use with ventilation and positive air pressure systems
US15/114,636 Abandoned US20160331921A1 (en) 2014-07-16 2015-07-16 Facial interface and headgear system for use with ventilation and positive air pressure systems
US14/800,999 Expired - Fee Related US10485944B2 (en) 2014-07-16 2015-07-16 Adjustable positive airway pressure or ventilation system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/801,037 Abandoned US20160015925A1 (en) 2014-07-16 2015-07-16 Facial interface and headgear system for use with ventilation and positive air pressure systems

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/800,999 Expired - Fee Related US10485944B2 (en) 2014-07-16 2015-07-16 Adjustable positive airway pressure or ventilation system

Country Status (6)

Country Link
US (3) US20160015925A1 (en)
EP (1) EP3169391B1 (en)
CN (2) CN110152153B (en)
CA (1) CA2955024C (en)
ES (1) ES2748329T3 (en)
WO (1) WO2016011246A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD770036S1 (en) * 2013-11-27 2016-10-25 Fisher & Paykel Healthcare Limited Breathing interface assembly
USD771239S1 (en) 2014-05-08 2016-11-08 Fisher & Paykel Healthcare Limited Crown strap of a headgear assembly for a breathing interface
CA2955024C (en) * 2014-07-16 2019-03-05 Human Design Medical, Llc Facial interface and headgear system for use with ventilation and positive air pressure systems
USD797921S1 (en) * 2014-11-07 2017-09-19 Fisher & Paykel Healthcare Limited Breathing apparatus
CA2970299A1 (en) * 2014-12-08 2016-06-16 Human Design Medical, Llc A hybrid positive airway interface system for use with ventilation and positive air pressure systems
AU2016288678B2 (en) 2015-06-30 2021-05-27 Vapotherm, Inc. Nasal cannula for continuous and simultaneous delivery of aerosolized medicament and high flow therapy
SG11201807938YA (en) * 2016-03-15 2018-10-30 Fisher & Paykel Healthcare Ltd Respiratory mask system
US10987481B2 (en) * 2016-06-28 2021-04-27 REMSleep Holdings Inc. Sleep apnea nasal pillows device
WO2018005851A1 (en) * 2016-06-30 2018-01-04 Vapotherm, Inc. Cannula device for high flow therapy
US10960163B2 (en) * 2016-09-02 2021-03-30 Fresca Medical Inc. Apparatus, systems, and methods for improved treatment of obstructive sleep apnea
CN106693140B (en) * 2017-01-06 2020-02-07 北京怡和嘉业医疗科技股份有限公司 Breathing mask nose pad and breathing mask
USD1017025S1 (en) 2017-05-16 2024-03-05 REM Sleep Holdings Sleep apnea cannula and nasal pillows device
USD985115S1 (en) 2017-05-16 2023-05-02 REMSleep Holdings Inc. Sleep apnea nasal pillows device
EP3678721A1 (en) 2017-09-08 2020-07-15 Vapotherm, Inc. Birfurcated cannula device
US10905840B2 (en) * 2018-07-17 2021-02-02 Foxxmed Ltd. Nasal cannula device
USD986410S1 (en) * 2018-07-27 2023-05-16 Cooltech, Llc Mask
USD894372S1 (en) * 2018-07-27 2020-08-25 Cooltech, Llc Mask
JP7185514B2 (en) * 2018-12-10 2022-12-07 日本光電工業株式会社 Nasal adapters and respiratory management devices
AU2020302871A1 (en) 2019-06-28 2022-01-27 Vapotherm, Inc. Variable geometry cannula
AU2020353666A1 (en) 2019-09-26 2022-04-14 Vapotherm, Inc. Internal cannula mounted nebulizer
EP4114490A4 (en) * 2020-03-03 2024-03-06 Fisher & Paykel Healthcare Ltd Patient interface system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2245969A (en) * 1939-11-27 1941-06-17 Francisco Charles Henry Nasal inhaler
US4919128A (en) * 1988-08-26 1990-04-24 University Technologies International Inc. Nasal adaptor device and seal
US5438979A (en) * 1994-06-17 1995-08-08 Johnson Enterprises, Inc. Nasal cannula support
US5687715A (en) * 1991-10-29 1997-11-18 Airways Ltd Inc Nasal positive airway pressure apparatus and method
US20160015925A1 (en) * 2014-07-16 2016-01-21 Human Design Medical, Llc Facial interface and headgear system for use with ventilation and positive air pressure systems
US20160015924A1 (en) * 2014-07-16 2016-01-21 Human Design Medical, Llc Facial interface and headgear system for use with ventilation and positive air pressure systems

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4422456A (en) * 1981-09-08 1983-12-27 City Of Hope National Medical Center Nasal cannula structure
US4782832A (en) * 1987-07-30 1988-11-08 Puritan-Bennett Corporation Nasal puff with adjustable sealing means
US5538000A (en) * 1995-02-06 1996-07-23 Hans Rudolph, Inc. Airflow delivery system
TW453865B (en) * 2000-05-23 2001-09-11 Optovent Ab Apparatus and method for monitoring a patient's breath and supplying a gas or gases different from ambient air to the patient, and nose adapter for the apparatus
US6431172B1 (en) * 2000-10-20 2002-08-13 Mallinckrodt Inc. Nasal cannula with inflatable plenum chamber
CN101468222B (en) * 2003-02-21 2016-04-20 瑞思迈有限公司 Nasal assembly
NZ562413A (en) * 2003-02-21 2009-02-28 Resmed Ltd Headgear assembly for nasal pillows mask
US20050011524A1 (en) * 2003-07-17 2005-01-20 Marguerite Thomlinson Nasal interface apparatus
US7856982B2 (en) * 2004-03-11 2010-12-28 Ric Investments, Llc Patient interface device
CN101683545B (en) * 2004-04-09 2012-11-28 雷斯梅德有限公司 Nasal assembly and nasal face mask with the nasal assembly
US20060042634A1 (en) * 2004-08-31 2006-03-02 Nalagatla Anil K Device for connecting a cannula to a medical effector system
CN101432036A (en) * 2004-08-31 2009-05-13 伊西康内外科公司 Medical effector system
US8042539B2 (en) * 2004-12-10 2011-10-25 Respcare, Inc. Hybrid ventilation mask with nasal interface and method for configuring such a mask
US20060218702A1 (en) * 2005-04-01 2006-10-05 Santos Carla C Head harness for supporting an interface device
NZ591018A (en) * 2005-06-06 2013-01-25 Resmed Ltd Mask system for CPAP using nasal prongs having self adjustable properties in use
US20100258132A1 (en) * 2005-09-22 2010-10-14 Karen Leigh Moore Headgear pad for CPAP interface
WO2007041786A1 (en) * 2005-10-14 2007-04-19 Resmed Ltd Nasal assembly
US7556043B2 (en) * 2005-10-24 2009-07-07 Ric Investments, Llc Patient interface with an integral cushion and nasal pillows
US7640934B2 (en) * 2005-12-02 2010-01-05 Carefusion 2200, Inc. Infant nasal interface prong device
US20080276938A1 (en) * 2006-01-19 2008-11-13 John C. Jeppesen Dmd, Inc. Method and Device For the Treating Sleep Apnea
US8701667B1 (en) * 2006-05-05 2014-04-22 Ric Investments, Llc Patient interface device with limited support area on the face
US8887725B2 (en) * 2006-05-10 2014-11-18 Respcare, Inc. Ventilation interface
WO2008040050A1 (en) 2006-10-02 2008-04-10 Resmed Ltd Cushion for mask system
ES2954589T3 (en) * 2006-07-14 2023-11-23 Fisher & Paykel Healthcare Ltd Respiratory assistance device
EP2051761B1 (en) * 2006-08-04 2019-08-21 ResMed Pty Ltd Nasal prongs for mask system
WO2008061250A2 (en) * 2006-11-16 2008-05-22 Ventus Medical, Inc. Adjustable nasal devices
NZ615330A (en) * 2006-12-15 2015-03-27 Resmed Ltd Delivery of respiratory therapy
CN101455871B (en) * 2007-07-30 2016-01-27 瑞思迈有限公司 Patient interface
US20090095303A1 (en) 2007-10-16 2009-04-16 Bruce Sher Nasal prongs
US9393375B2 (en) * 2008-01-07 2016-07-19 Mergenet Solutions Nasal ventilation interface
US20090188507A1 (en) * 2008-01-26 2009-07-30 Lacava Toni Nasal Air Pillow Holder
US9072855B2 (en) 2008-06-12 2015-07-07 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
CN102159273B (en) * 2008-08-25 2015-01-28 皇家飞利浦电子股份有限公司 Respiratory patient interfaces
WO2010096467A1 (en) * 2009-02-17 2010-08-26 Aeiomed, Inc. Positive airway pressure therapy mask humidification systems and methods
US9387300B2 (en) * 2010-03-25 2016-07-12 Respcare, Inc. Adjustable nasal prong and headgear assembly
US8844533B2 (en) * 2011-06-22 2014-09-30 Breathe Technologies, Inc. Ventilation mask with integrated piloted exhalation valve
US20130098359A1 (en) * 2011-10-21 2013-04-25 Somnetics Global Pte. Ltd. Nares mask and support apparatus
US20130239301A1 (en) * 2012-03-16 2013-09-19 Meredith Broderick Headgear Apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2245969A (en) * 1939-11-27 1941-06-17 Francisco Charles Henry Nasal inhaler
US4919128A (en) * 1988-08-26 1990-04-24 University Technologies International Inc. Nasal adaptor device and seal
US5687715A (en) * 1991-10-29 1997-11-18 Airways Ltd Inc Nasal positive airway pressure apparatus and method
US5438979A (en) * 1994-06-17 1995-08-08 Johnson Enterprises, Inc. Nasal cannula support
US20160015925A1 (en) * 2014-07-16 2016-01-21 Human Design Medical, Llc Facial interface and headgear system for use with ventilation and positive air pressure systems
US20160015924A1 (en) * 2014-07-16 2016-01-21 Human Design Medical, Llc Facial interface and headgear system for use with ventilation and positive air pressure systems
US20160346496A1 (en) * 2014-07-16 2016-12-01 Human Design Medical, Llc Facial interface and headgear system for use with ventilation and positive air pressure systems

Also Published As

Publication number Publication date
US20160015921A1 (en) 2016-01-21
US10485944B2 (en) 2019-11-26
EP3169391A1 (en) 2017-05-24
CA2955024A1 (en) 2016-01-21
CN110152153A (en) 2019-08-23
CN106659863B (en) 2019-06-04
CN110152153B (en) 2021-11-23
CN106659863A (en) 2017-05-10
EP3169391B1 (en) 2019-06-26
EP3169391A4 (en) 2018-02-14
US20160015925A1 (en) 2016-01-21
WO2016011246A1 (en) 2016-01-21
ES2748329T3 (en) 2020-03-16
CA2955024C (en) 2019-03-05

Similar Documents

Publication Publication Date Title
CA2955024C (en) Facial interface and headgear system for use with ventilation and positive air pressure systems
US10518057B2 (en) Facial interface and headgear system for use with ventilation and positive air pressure systems
JP7427630B2 (en) Patient connectors and headgear for respiratory equipment
US10561812B2 (en) Mask system
US9649463B2 (en) Patient interface device with limited support area on the face
EP1660003B1 (en) Patient interface assembly and system using same
US9962510B2 (en) Respiratory mask assembly
US7942150B2 (en) Nasal assembly
US20140083429A1 (en) Headgear attachment mechanism for a patient interface device
CN211301633U (en) Respiratory mask and ventilation therapy equipment

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION