US20160136421A1 - Vaginal rehabilitative device - Google Patents

Vaginal rehabilitative device Download PDF

Info

Publication number
US20160136421A1
US20160136421A1 US15/007,709 US201615007709A US2016136421A1 US 20160136421 A1 US20160136421 A1 US 20160136421A1 US 201615007709 A US201615007709 A US 201615007709A US 2016136421 A1 US2016136421 A1 US 2016136421A1
Authority
US
United States
Prior art keywords
control module
applicator
stimulation
user
treatment program
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/007,709
Inventor
Edward Hagege
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Blue Medical Innovation Ltd
Original Assignee
Blue Medical Innovation Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blue Medical Innovation Ltd filed Critical Blue Medical Innovation Ltd
Priority to US15/007,709 priority Critical patent/US20160136421A1/en
Assigned to Obensen Ltd. reassignment Obensen Ltd. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAGEGE, EDWARD
Assigned to BLUE MEDICAL INNOVATION LTD. reassignment BLUE MEDICAL INNOVATION LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PERINEALIS LTD.
Assigned to PERINEALIS LTD. reassignment PERINEALIS LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Obensen Ltd.
Publication of US20160136421A1 publication Critical patent/US20160136421A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36007Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of urogenital or gastrointestinal organs, e.g. for incontinence control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0521Genital electrodes
    • A61N1/0524Vaginal electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37235Aspects of the external programmer
    • A61N1/37241Aspects of the external programmer providing test stimulations

Definitions

  • the invention relates to the field of vaginal rehabilitation devices.
  • Urinary incontinence is often divided to two main types: stress incontinence and urge incontinence.
  • Stress incontinence corresponds to loss of urine as a result of an increase in abdominal pressure on the bladder. This increase in pressure may be caused due to coughing, sneezing, laughing, or making a movement, in particular lifting a heavy object.
  • Stress incontinence is the most common type of incontinence and it mainly affects women. It takes place in general when the perineal muscles and the muscles of the floor of the pelvis are weakened, e.g. by pregnancies, childbirth, or menopause.
  • Urge incontinence corresponds to a sudden need to urinate, followed by an immediate contraction of the bladder. This contraction results in an involuntary loss of urine. Both men and women may be affected by this type of incontinence, in particular among older people. One of the reasons for such incontinence is a failure in the operation of the nervous system controlling the bladder.
  • Mixed incontinence is a combination of stress incontinence and of urge incontinence.
  • a perineal rehabilitation device comprising: an electrical stimulation applicator; and a control module connectable by a wire to said applicator, and configured to control said applicator, the control module comprising a user interface for controlling said applicator and a display module configured to display data received from said applicator.
  • said applicator is shaped as an elongated rounded cylinder, for endocavity use.
  • said applicator is shaped as an annular band, for external use.
  • said applicator further comprises at least one energy storage unit.
  • said applicator further comprises at least one microprocessor, configured to manage said applicator operation.
  • said applicator further comprises at least two stimulation electrodes, configured to apply voltage for executing electrical stimulation.
  • said applicator further comprises at least two charging electrodes, configured to be connected to power source while said applicator is charging.
  • said applicator further comprises a dedicated electrode configured to detect if said applicator is positioned correctly to allow stimulation activation.
  • said applicator further comprises a sensor configured to detect body reaction to electrical stimulation, for allowing adaptive stimulation and feedback of treatment effectiveness.
  • said sensor is a pressure sensor, configured to sense muscle contraction.
  • said control module further comprises at least one energy storage unit.
  • said control module further comprises at least one microprocessor, configured to manage said control module operation.
  • said control module further comprises a memory for storing data regarding the treatment history.
  • said applicator and said control module are configured to communicate via bidirectional wired communication protocol.
  • said control module is further configured to communicate with a computer via wired communication protocol, for further viewing and analyzing.
  • said control module is further configured to communicate with a computer via wireless communication protocol, for further viewing and analyzing.
  • a method for perineal rehabilitation comprising: selecting desired stimulation program using a control module; selecting desired treatment duration using said control panel; applying stimulation applicator to suitable body part and waiting for confirmation of correct applying on said control module; performing sensitivity test to define user sensitivity threshold; running the selected stimulation program; receiving feedback from user body by a sensor installed in said applicator; adjusting stimulation parameters while said program is running, if needed; extracting said applicator after treatment end; viewing data on said control module; and optionally connecting said control module to a computer, for viewing data stored on said control module.
  • said program is selected from multiple programs, pre-determined and dedicated for treatment of different medical diagnosis, programmed in said control module.
  • said sensitivity test is done by applying stimulation at zero intensity level and increasing stimulation manually by user, stopping the stimulation by the user when it is initially felt, and storing the corresponding intensity level on said control module memory.
  • said sensitivity test is done by applying stimulation at zero intensity level and increasing stimulation automatically by said control module, stopping the stimulation by the user when it is initially felt, and storing the corresponding intensity level on said control module memory.
  • said selected stimulation program parameters are displayed to the user on said control module, while said program is running.
  • said selected stimulation program parameters can be changed and said program can be stopped by the user at any time, while said program is running.
  • said selected stimulation program can be stopped automatically at any time if the applicator misplaced from its correct location on suitable body part, while said program is running.
  • said receiving feedback from user body is done by measuring muscle contraction, and used for adaptive stimulation.
  • FIG. 1A shows an illustration of an endocavity applicator of a rehabilitation device, in accordance with some embodiments
  • FIG. 1B shows an illustration of a control module of a rehabilitation device, in accordance with some embodiments
  • FIG. 1C shows an illustration of an endocavity applicator with a detection electrode, in accordance with some embodiments
  • FIG. 2 shows an illustration of a perineal rehabilitation device during a charging stage, in accordance with some embodiments
  • FIG. 3 shows an example of a display on the screen of the control module, in accordance with some embodiments
  • FIG. 4 shows a flow chart of the system operation, in accordance with some embodiments.
  • FIG. 5 shows an illustration of the optional connection of the control module to a computer, in accordance with some embodiments
  • FIG. 6A shows an example of a compact window displayed on a computer screen, in accordance with some embodiments
  • FIG. 6B shows an example of a detailed window displayed on a computer screen, in accordance with some embodiments.
  • FIG. 6C shows an example of another detailed window displayed on a computer screen.
  • Oblong portion 100 a may be equipped with multiple annular stimulation electrodes, by way of example herein two electrodes 102 and 104 . Other electrode shapes, in particular circular arcs may also be implemented. Stimulation electrodes 102 and 104 may be used to apply the electrical stimuli. The number of stimulation electrodes may be greater. Nevertheless, studies have shown that the ratio of the number of electrodes to the effectiveness of stimuli is very satisfactory when using two electrodes.
  • stimulation electrodes 102 and 104 may occupy the first four centimeters of oblong portion 100 a , since it may be their optimal and most effective location.
  • Applicator 100 may include at least one microprocessor for managing the stimuli, and a communication module, for wire communicating with a control module 108 .
  • Control module 108 may function as a remote control for the user.
  • Control module 108 may include a display screen 110 and multiple control buttons, by way of example herein five buttons 112 , 114 , 116 , 118 , 120 .
  • Control module 108 may also include a battery, at least one microprocessor, at least one memory module for storing data, and a communication module for wire communicating with applicator 100 .
  • Button 112 may serve to switch the device on and off. Button 112 may be also used for stopping the stimulation at any moment. Button 114 may enable the treatment to be started and paused momentarily. Buttons 116 , 118 and 120 may serve as multi-functional keys, allowing controlling a variety of changing functionalities, such as validation of choices, selecting treatment, setting treatment duration and intensity, view session report, setting preferred language, date and time, etc.
  • Applicator 100 and control module 108 may apply wired communication between them. Any type of wired communication protocol may be used, such as Ethernet, USB (Universal Serial Bus), etc. wired communication may be obtained via applicator connector 106 and control module connector 122 , by way of example herein DIN3 connectors, which may be connected with a wire suitable for the communication protocol of choice. Specifically, muscular contraction may weaken after several successive contractions. It may then become inefficient for the muscle that is fatigued or that is becoming fatigued to be stimulated strongly.
  • applicator 100 may include a sensor for measuring the reactions of the user's body, e.g. a pressure sensor suitable for measuring muscle contraction, which may be implemented by a strain gauge. The measurement of this contraction may then be transmitted in real time to control module 108 , which may adjust the stimulation intensity according to measured muscle contraction, for creating an adapted use. Moreover, this data may be recorded on control module memory, to provide feedback of user advancement to the user and/or to health professional, in real time during treatment session and/or during report analysis after treatment.
  • a sensor for measuring the reactions of the user's body e.g. a pressure sensor suitable for measuring muscle contraction, which may be implemented by a strain gauge.
  • control module 108 may adjust the stimulation intensity according to measured muscle contraction, for creating an adapted use.
  • this data may be recorded on control module memory, to provide feedback of user advancement to the user and/or to health professional, in real time during treatment session and/or during report analysis after treatment.
  • the applicator 100 includes a third electrode 103 for detecting that it has been inserted or installed in a body cavity, e.g. the vagina, to avoid electric shocks.
  • Electrode 103 is suitable for detecting contact with the body, said electrode being suitable for sending a signal to the microprocessor installed within the applicator and/or the microprocessor installed within the control module, the microprocessor being such as to be suitable for causing stimulation to stop as soon as the applicator is no longer in contact with the body or when the applicator 100 is extracted from the vagina.
  • the electric current or intensity can be reduced to zero at any moment so as to allow removing the applicator at any moment.
  • the sensor 103 then serves to verify that the applicator 100 is indeed inserted before beginning the treatment.
  • the signal issued by the sensor 103 is sent to the control module.
  • the software managing the operation of the applicator 100 to stop the stimulation as soon as the sensor 103 detects that the applicator 100 is no longer in contact with the body.
  • This stopping of stimulation may be under the control of the control module to which the signal issued by the sensor 103 is returned, or indeed it may be stopped internally by the applicator itself, with the microprocessor installed therein being suitable for processing the data issued by the sensor 103 and for stopping stimulation.
  • Control module 108 may be connected to a charger 200 using a charging cable 202 , which may be a USB cable.
  • Charger 200 in turn, may be connected to a mains outlet 204 , to allow charging.
  • An indicator 300 may indicate whether connection with applicator 100 may be established or not (e.g. green indicator for communication and red indicator for no communication).
  • An indicator 302 may indicate the stimulation intensity level graphically.
  • An indicator 304 may indicate the stimulation intensity level numerically.
  • An indicator 306 may specify the stimulation program (in this example “EFFORT P 1 ”) that may be running or may have been selected.
  • An indicator 308 may display a timer showing the elapsed or remaining duration of the treatment.
  • An indicator 310 may indicate that stimulation is currently operating. In this example, it may be depicted by a circle with a disk at its center that is lighted only when stimulation is active.
  • Indicators 312 and 314 may indicate that multi-functional buttons 118 and 120 are now configured to increase or decrease stimulation intensity level, respectively.
  • An indicator 316 may indicate the device battery level.
  • Control module 108 may be switched on using button 112 , and screen 110 may display a “wake-up” indication, in step S 1 .
  • Screen 110 may then invite the user to press on button 116 (herein button 1 ) in order to select a treatment option, in step S 2 .
  • the user may be invited to select treatment program from a list of programs, using buttons 116 , 118 , and 120 (herein buttons 1 , 2 , and 3 ), in step S 3 .
  • the user may select from the following programs: Programs P 1 and P 2 may be dedicated for treating stress incontinence, and program P 3 may be dedicated for treating mixed incontinence.
  • the programs specific parameters may be given by the following table:
  • Pulse Stimulation Rest Frequency duration time time Recommended Program [Hz] [ ⁇ sec] [sec] [sec] use P1 50 400 3 6 30 min, 3-5 times/week P2 50 400 5 10 30 min, 3-5 times/week P3 20 400 3 6 30 min, 3-5 times/week
  • the system may invite the user to select the duration of the treatment, using buttons 116 , 118 , and 120 (herein buttons 1 , 2 , and 3 ), in step S 4 .
  • the system may then invite the user to insert applicator 100 into the vagina, in step S 5 .
  • the sensor 103 then serves to verify that the applicator 100 is indeed inserted before beginning the treatment.
  • the signal issued by the sensor 103 is sent to the control module.
  • the screen can then indicate whether or not the applicator 100 has been inserted correctly, and when the applicator is inserted correctly, the screen invites the user to press on the key in order to start the stimulation program.
  • the system may invite the user to press on button 114 in order to start the stimulation program, in step S 6 .
  • Screen 110 may then display a message announcing of stimulation test start, in step T 1 .
  • the test sequence may begin with stimulation at zero intensity level, to ensure that the patient does not suffer any electric shock, and the user may be invited to increase stimulation intensity level by pressing on “+”, using button 118 (herein button 2 ).
  • button 118 herein button 2
  • she may press “OK” using button 120 (herein button 3 ).
  • the intensity level may be adjusted automatically by control module 108 , according to body feedback (e.g.
  • the test may be performed at the beginning of each session, and allow obtaining important medical data, namely the user's sensitivity threshold and advancement level. A health professional may then measure the effectiveness of the treatment, knowing such data.
  • the selected stimulation program may then put into operation in step P 1 .
  • a timer counting down may appear and the user may increase and/or decrease the intensity level, using buttons 118 and 120 (herein buttons 2 and 3 ).
  • the intensity level may be adjusted automatically by control module 108 , according to body feedback (e.g. muscle contraction) measured by a sensor embedded in applicator 100 and transmitted to control module 108 .
  • indicator 310 may light up when a stimulation starts and may turn off when it stops. This may enable the user to know when stimulation is taking place in order to contract her muscles at the same time. In application of Kegel exercises, such contraction may encourage treatment and restoration or reinforcement of muscular structures. The user may also pause and/or resume the program momentarily, using button 114 .
  • the duration of stimulation and its intensity may be stored automatically in the memory of control module 108 .
  • screen 110 may display an “end of session” indication, in step P 2 . Executed treatment session parameters may be automatically stored in control module memory.
  • screen 110 may automatically display a “report” indication, in step R 1 , immediately followed by a summary report of the executed treatment, in step R 2 .
  • the report may include treatment session time and date, selected program, duration, average intensity level, stimulation test value, status of the session (completed successfully or not), etc.
  • Treatment session history for all executed treatment sessions may be available to the user and/or health professional, by selecting the “Reports” option with button 120 (herein button 3 ), in step S 2 .
  • FIG. 5 shows an illustration of the optional connection of the control module to a computer.
  • the connection between control module 108 and a computer 500 may be done by a USB cable 502 .
  • the data stored in memory of control module 108 may then be accessible by computer 500 . It may also be possible to transfer the stored data to computer 500 . Under such circumstances, the data may be subsequently presented using a format that may be suitable for reading that data by common software (e.g. Excel).
  • common software e.g. Excel
  • it is advantageous also to store a so called “fitness” test showing the automatic adaptation of the intensity of stimulation as a function of progress during the application of the treatment. This may provide information about the fatigability of the muscle and about its training.
  • FIG. 6A shows an example of a compact window displayed on a computer screen.
  • Compact window 600 may include a summary report of a specific session stored in the control module.
  • FIG. 6B shows an example of a detailed window displayed on a computer screen.
  • Detailed window 602 may include additional data regarding the session (e.g. user name, graphical stimulation test summary, etc.) stored in the control module.
  • FIG. 6C shows an example of another detailed window displayed on a computer screen.
  • Detailed window 604 may include a list of treatment sessions performed by the user, stored in the control module.
  • the summary of the sensitivity tests in window 602 may be in the form of a curve of sensitivity threshold intensities detected by the user over the set of treatment sessions listed in window 604 .

Abstract

A vaginal rehabilitative device comprising: a vaginal electrical stimulation applicator; and a control module connectable by a wire to said applicator and comprising a user interface for controlling electrical stimuli by said applicator and a display module configured to display data received from said applicator.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. patent application Ser. No. 13/862,555, filed Apr. 15, 2013 and entitled “Vaginal Rehabilitative Device”, which is a Continuation-in-Part of U.S. patent application Ser. No. 13/063,949, now U.S. Pat. No. 8,634,920, filed May 6, 2011, and entitled “Device for Perineum Reeducation”. These documents are incorporated herein by reference in their entirety.
  • FIELD OF THE INVENTION
  • The invention relates to the field of vaginal rehabilitation devices.
  • BACKGROUND
  • Urinary incontinence is often divided to two main types: stress incontinence and urge incontinence. Stress incontinence corresponds to loss of urine as a result of an increase in abdominal pressure on the bladder. This increase in pressure may be caused due to coughing, sneezing, laughing, or making a movement, in particular lifting a heavy object. Stress incontinence is the most common type of incontinence and it mainly affects women. It takes place in general when the perineal muscles and the muscles of the floor of the pelvis are weakened, e.g. by pregnancies, childbirth, or menopause.
  • Urge incontinence corresponds to a sudden need to urinate, followed by an immediate contraction of the bladder. This contraction results in an involuntary loss of urine. Both men and women may be affected by this type of incontinence, in particular among older people. One of the reasons for such incontinence is a failure in the operation of the nervous system controlling the bladder.
  • Mixed incontinence is a combination of stress incontinence and of urge incontinence.
  • The foregoing examples of the related art and limitations related therewith are intended to be illustrative and not exclusive. Other limitations of the related art will become apparent to those of skill in the art upon a reading of the specification and a study of the figures.
  • SUMMARY
  • The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods which are meant to be exemplary and illustrative, not limiting in scope.
  • There is provided, in accordance with some embodiments, a perineal rehabilitation device comprising: an electrical stimulation applicator; and a control module connectable by a wire to said applicator, and configured to control said applicator, the control module comprising a user interface for controlling said applicator and a display module configured to display data received from said applicator.
  • In some embodiments, said applicator is shaped as an elongated rounded cylinder, for endocavity use.
  • In some embodiments, said applicator is shaped as an annular band, for external use.
  • In some embodiments, said applicator further comprises at least one energy storage unit.
  • In some embodiments, said applicator further comprises at least one microprocessor, configured to manage said applicator operation.
  • In some embodiments, said applicator further comprises at least two stimulation electrodes, configured to apply voltage for executing electrical stimulation.
  • In some embodiments, said applicator further comprises at least two charging electrodes, configured to be connected to power source while said applicator is charging.
  • In some embodiments, said applicator further comprises a dedicated electrode configured to detect if said applicator is positioned correctly to allow stimulation activation.
  • In some embodiments, said applicator further comprises a sensor configured to detect body reaction to electrical stimulation, for allowing adaptive stimulation and feedback of treatment effectiveness.
  • In some embodiments, said sensor is a pressure sensor, configured to sense muscle contraction.
  • In some embodiments, said control module further comprises at least one energy storage unit.
  • In some embodiments, said control module further comprises at least one microprocessor, configured to manage said control module operation.
  • In some embodiments, said control module further comprises a memory for storing data regarding the treatment history.
  • In some embodiments, said applicator and said control module are configured to communicate via bidirectional wired communication protocol.
  • In some embodiments, said control module is further configured to communicate with a computer via wired communication protocol, for further viewing and analyzing.
  • In some embodiments, said control module is further configured to communicate with a computer via wireless communication protocol, for further viewing and analyzing.
  • There is further provided, in accordance with some embodiments, a method for perineal rehabilitation comprising: selecting desired stimulation program using a control module; selecting desired treatment duration using said control panel; applying stimulation applicator to suitable body part and waiting for confirmation of correct applying on said control module; performing sensitivity test to define user sensitivity threshold; running the selected stimulation program; receiving feedback from user body by a sensor installed in said applicator; adjusting stimulation parameters while said program is running, if needed; extracting said applicator after treatment end; viewing data on said control module; and optionally connecting said control module to a computer, for viewing data stored on said control module.
  • In some embodiments, said program is selected from multiple programs, pre-determined and dedicated for treatment of different medical diagnosis, programmed in said control module.
  • In some embodiments, said sensitivity test is done by applying stimulation at zero intensity level and increasing stimulation manually by user, stopping the stimulation by the user when it is initially felt, and storing the corresponding intensity level on said control module memory.
  • In some embodiments, said sensitivity test is done by applying stimulation at zero intensity level and increasing stimulation automatically by said control module, stopping the stimulation by the user when it is initially felt, and storing the corresponding intensity level on said control module memory.
  • In some embodiments, said selected stimulation program parameters are displayed to the user on said control module, while said program is running.
  • In some embodiments, said selected stimulation program parameters can be changed and said program can be stopped by the user at any time, while said program is running.
  • In some embodiments, said selected stimulation program can be stopped automatically at any time if the applicator misplaced from its correct location on suitable body part, while said program is running.
  • In some embodiments, said receiving feedback from user body is done by measuring muscle contraction, and used for adaptive stimulation.
  • In addition to the exemplary aspects and embodiments described above, further aspects and embodiments will become apparent by reference to the figures and by study of the following detailed description.
  • BRIEF DESCRIPTION OF THE FIGURES
  • Exemplary embodiments are illustrated in referenced figures. Dimensions of components and features shown in the figures are generally chosen for convenience and clarity of presentation and are not necessarily shown to scale. The figures are listed below.
  • FIG. 1A shows an illustration of an endocavity applicator of a rehabilitation device, in accordance with some embodiments;
  • FIG. 1B shows an illustration of a control module of a rehabilitation device, in accordance with some embodiments;
  • FIG. 1C shows an illustration of an endocavity applicator with a detection electrode, in accordance with some embodiments;
  • FIG. 2 shows an illustration of a perineal rehabilitation device during a charging stage, in accordance with some embodiments;
  • FIG. 3 shows an example of a display on the screen of the control module, in accordance with some embodiments;
  • FIG. 4 shows a flow chart of the system operation, in accordance with some embodiments;
  • FIG. 5 shows an illustration of the optional connection of the control module to a computer, in accordance with some embodiments;
  • FIG. 6A shows an example of a compact window displayed on a computer screen, in accordance with some embodiments;
  • FIG. 6B shows an example of a detailed window displayed on a computer screen, in accordance with some embodiments; and
  • FIG. 6C shows an example of another detailed window displayed on a computer screen.
  • DETAILED DESCRIPTION
  • Disclosed herein are a device and a method for vaginal rehabilitation. The present device, according to some embodiments, may be a mobile, liquid-sealed, easy to use electrical stimulator for treating one or more conditions such as urine incontinence, organ prolapsed and/or the like.
  • Present embodiments may be better understood with reference to the accompanying drawings. Reference is now made to FIG. 1A, which shows an illustration of an endocavity applicator of a rehabilitation device, and to FIG. 1B which shows an illustration of a control module of a rehabilitation device. Depicted is an endocavity applicator 100 which may comprise an oblong portion 100 a for inserting into the cavity (e.g. the vagina), and a long thin portion 100 b which may comprise a handle for inserting and removing the applicator. The endocavity applicator may be sealed so as to be easy to clean.
  • Oblong portion 100 a may be equipped with multiple annular stimulation electrodes, by way of example herein two electrodes 102 and 104. Other electrode shapes, in particular circular arcs may also be implemented. Stimulation electrodes 102 and 104 may be used to apply the electrical stimuli. The number of stimulation electrodes may be greater. Nevertheless, studies have shown that the ratio of the number of electrodes to the effectiveness of stimuli is very satisfactory when using two electrodes.
  • Assuming the device may be designed for vaginal use in such manner that oblong portion 100 a is inserted in full, stimulation electrodes 102 and 104 may occupy the first four centimeters of oblong portion 100 a, since it may be their optimal and most effective location.
  • Applicator 100 may include at least one microprocessor for managing the stimuli, and a communication module, for wire communicating with a control module 108. Control module 108 may function as a remote control for the user. Control module 108 may include a display screen 110 and multiple control buttons, by way of example herein five buttons 112, 114, 116, 118, 120. Control module 108 may also include a battery, at least one microprocessor, at least one memory module for storing data, and a communication module for wire communicating with applicator 100.
  • Button 112 may serve to switch the device on and off. Button 112 may be also used for stopping the stimulation at any moment. Button 114 may enable the treatment to be started and paused momentarily. Buttons 116, 118 and 120 may serve as multi-functional keys, allowing controlling a variety of changing functionalities, such as validation of choices, selecting treatment, setting treatment duration and intensity, view session report, setting preferred language, date and time, etc.
  • Applicator 100 and control module 108 may apply wired communication between them. Any type of wired communication protocol may be used, such as Ethernet, USB (Universal Serial Bus), etc. wired communication may be obtained via applicator connector 106 and control module connector 122, by way of example herein DIN3 connectors, which may be connected with a wire suitable for the communication protocol of choice. Specifically, muscular contraction may weaken after several successive contractions. It may then become inefficient for the muscle that is fatigued or that is becoming fatigued to be stimulated strongly.
  • Advantageously, applicator 100 may include a sensor for measuring the reactions of the user's body, e.g. a pressure sensor suitable for measuring muscle contraction, which may be implemented by a strain gauge. The measurement of this contraction may then be transmitted in real time to control module 108, which may adjust the stimulation intensity according to measured muscle contraction, for creating an adapted use. Moreover, this data may be recorded on control module memory, to provide feedback of user advancement to the user and/or to health professional, in real time during treatment session and/or during report analysis after treatment.
  • According to an advantageous characteristic of the invention, the applicator 100 includes a third electrode 103 for detecting that it has been inserted or installed in a body cavity, e.g. the vagina, to avoid electric shocks. Electrode 103 is suitable for detecting contact with the body, said electrode being suitable for sending a signal to the microprocessor installed within the applicator and/or the microprocessor installed within the control module, the microprocessor being such as to be suitable for causing stimulation to stop as soon as the applicator is no longer in contact with the body or when the applicator 100 is extracted from the vagina.
  • In addition to sensor 103, the electric current or intensity can be reduced to zero at any moment so as to allow removing the applicator at any moment. The sensor 103 then serves to verify that the applicator 100 is indeed inserted before beginning the treatment. The signal issued by the sensor 103 is sent to the control module.
  • According to the invention, it is also advantageous for the software managing the operation of the applicator 100 to stop the stimulation as soon as the sensor 103 detects that the applicator 100 is no longer in contact with the body. This stopping of stimulation may be under the control of the control module to which the signal issued by the sensor 103 is returned, or indeed it may be stopped internally by the applicator itself, with the microprocessor installed therein being suitable for processing the data issued by the sensor 103 and for stopping stimulation.
  • Reference is now made to FIG. 2, which shows an illustration of the device charging. Control module 108 may be connected to a charger 200 using a charging cable 202, which may be a USB cable. Charger 200 in turn, may be connected to a mains outlet 204, to allow charging.
  • Reference is now made to FIG. 3, which shows an example of a display on the screen of the control module. An indicator 300 may indicate whether connection with applicator 100 may be established or not (e.g. green indicator for communication and red indicator for no communication). An indicator 302 may indicate the stimulation intensity level graphically. An indicator 304 may indicate the stimulation intensity level numerically. An indicator 306 may specify the stimulation program (in this example “EFFORT P1”) that may be running or may have been selected. An indicator 308 may display a timer showing the elapsed or remaining duration of the treatment. An indicator 310 may indicate that stimulation is currently operating. In this example, it may be depicted by a circle with a disk at its center that is lighted only when stimulation is active. Indicators 312 and 314 may indicate that multi-functional buttons 118 and 120 are now configured to increase or decrease stimulation intensity level, respectively. An indicator 316 may indicate the device battery level.
  • Reference is now made to FIG. 4, which shows a flow chart of the system operation. Control module 108 may be switched on using button 112, and screen 110 may display a “wake-up” indication, in step S1. Screen 110 may then invite the user to press on button 116 (herein button 1) in order to select a treatment option, in step S2. The user may be invited to select treatment program from a list of programs, using buttons 116, 118, and 120 (herein buttons 1, 2, and 3), in step S3. Specifically, the user may select from the following programs: Programs P1 and P2 may be dedicated for treating stress incontinence, and program P3 may be dedicated for treating mixed incontinence. The programs specific parameters may be given by the following table:
  • Pulse Stimulation Rest
    Frequency duration time time Recommended
    Program [Hz] [μsec] [sec] [sec] use
    P1 50 400 3 6 30 min, 3-5
    times/week
    P2 50 400 5 10 30 min, 3-5
    times/week
    P3
    20 400 3 6 30 min, 3-5
    times/week
  • Afterwards, the system may invite the user to select the duration of the treatment, using buttons 116, 118, and 120 (herein buttons 1, 2, and 3), in step S4. The system may then invite the user to insert applicator 100 into the vagina, in step S5. The sensor 103 then serves to verify that the applicator 100 is indeed inserted before beginning the treatment. Advantageously, the signal issued by the sensor 103 is sent to the control module. The screen can then indicate whether or not the applicator 100 has been inserted correctly, and when the applicator is inserted correctly, the screen invites the user to press on the key in order to start the stimulation program.
  • After applicator 100 may have been inserted correctly, the system may invite the user to press on button 114 in order to start the stimulation program, in step S6. Screen 110 may then display a message announcing of stimulation test start, in step T1. In step T2, the test sequence may begin with stimulation at zero intensity level, to ensure that the patient does not suffer any electric shock, and the user may be invited to increase stimulation intensity level by pressing on “+”, using button 118 (herein button 2). When she might feel a convenient level of stimulation, she may press “OK” using button 120 (herein button 3). Alternatively, the intensity level may be adjusted automatically by control module 108, according to body feedback (e.g. muscle contraction) measured by a sensor embedded in applicator 100 and transmitted to control module 108. The test may be performed at the beginning of each session, and allow obtaining important medical data, namely the user's sensitivity threshold and advancement level. A health professional may then measure the effectiveness of the treatment, knowing such data. The selected stimulation program may then put into operation in step P1. A timer counting down may appear and the user may increase and/or decrease the intensity level, using buttons 118 and 120 (herein buttons 2 and 3). Alternatively, the intensity level may be adjusted automatically by control module 108, according to body feedback (e.g. muscle contraction) measured by a sensor embedded in applicator 100 and transmitted to control module 108. While the program is running, indicator 310 may light up when a stimulation starts and may turn off when it stops. This may enable the user to know when stimulation is taking place in order to contract her muscles at the same time. In application of Kegel exercises, such contraction may encourage treatment and restoration or reinforcement of muscular structures. The user may also pause and/or resume the program momentarily, using button 114. The duration of stimulation and its intensity may be stored automatically in the memory of control module 108. After the treatment session has finished, screen 110 may display an “end of session” indication, in step P2. Executed treatment session parameters may be automatically stored in control module memory. Thus, after session ending, screen 110 may automatically display a “report” indication, in step R1, immediately followed by a summary report of the executed treatment, in step R2. The report may include treatment session time and date, selected program, duration, average intensity level, stimulation test value, status of the session (completed successfully or not), etc. Treatment session history for all executed treatment sessions may be available to the user and/or health professional, by selecting the “Reports” option with button 120 (herein button 3), in step S2.
  • Reference is now made to FIG. 5, which shows an illustration of the optional connection of the control module to a computer. The connection between control module 108 and a computer 500 (e.g. the computer of the user or of a health professional) may be done by a USB cable 502. The data stored in memory of control module 108 may then be accessible by computer 500. It may also be possible to transfer the stored data to computer 500. Under such circumstances, the data may be subsequently presented using a format that may be suitable for reading that data by common software (e.g. Excel). In the context of biofeedback applications, it is advantageous also to store a so called “fitness” test showing the automatic adaptation of the intensity of stimulation as a function of progress during the application of the treatment. This may provide information about the fatigability of the muscle and about its training.
  • Reference is now made to FIG. 6A which shows an example of a compact window displayed on a computer screen. Compact window 600 may include a summary report of a specific session stored in the control module. Reference is now made to FIG. 6B which shows an example of a detailed window displayed on a computer screen. Detailed window 602 may include additional data regarding the session (e.g. user name, graphical stimulation test summary, etc.) stored in the control module. Reference is now made to FIG. 6C which shows an example of another detailed window displayed on a computer screen. Detailed window 604 may include a list of treatment sessions performed by the user, stored in the control module. The summary of the sensitivity tests in window 602 may be in the form of a curve of sensitivity threshold intensities detected by the user over the set of treatment sessions listed in window 604.
  • In the description and claims of the application, each of the words “comprise” “include” and “have”, and forms thereof, are not necessarily limited to members in a list with which the words may be associated. In addition, where there are inconsistencies between this application and any document incorporated by reference, it is hereby intended that the present application controls.

Claims (9)

What is claimed is:
1. A method for vaginal rehabilitation, comprising:
selecting a desired treatment program using a control module;
applying a vaginal electrical stimulation applicator wired to the control module;
performing a sensitivity test to define a user sensitivity threshold;
running the selected treatment program; and
displaying data pertaining to the running of the treatment program on said control module.
2. The method according to claim 1, further comprising sensing user body feedback by a sensor installed in said applicator.
3. The method according to claim 2, further comprising adjusting one or more parameters of the electrical stimulation while running the selected treatment program.
4. The method according to claim 1, further comprising connecting the control module to a computer, for viewing data stored on said control module.
5. The method according to claim 1, wherein said treatment program is selected from multiple programs programmed in said control module, wherein the programs are configured for treatment of multiple medical conditions.
6. The method according to claim 1, wherein said sensitivity test comprises:
gradually increasing a stimulation intensity;
stopping the gradual increase of the stimulation intensity when the user initially feels the stimulation; and
storing, in the control module, a stimulation intensity at which the gradual increase is stopped.
7. The method according to claim 6, wherein said gradually increasing the stimulation intensity is performed automatically by the control module.
8. The method according to claim 6, wherein said gradually increasing the stimulation intensity is performed manually by the user.
9. The method according to claim 1, further comprising displaying one or more parameters of the selected treatment program parameters on said control module, while running the treatment program.
US15/007,709 2011-05-06 2016-01-27 Vaginal rehabilitative device Abandoned US20160136421A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/007,709 US20160136421A1 (en) 2011-05-06 2016-01-27 Vaginal rehabilitative device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201113063949A 2011-05-06 2011-05-06
US13/862,555 US9320893B2 (en) 2011-05-06 2013-04-15 Vaginal rehabilitative device
US15/007,709 US20160136421A1 (en) 2011-05-06 2016-01-27 Vaginal rehabilitative device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/862,555 Division US9320893B2 (en) 2011-05-06 2013-04-15 Vaginal rehabilitative device

Publications (1)

Publication Number Publication Date
US20160136421A1 true US20160136421A1 (en) 2016-05-19

Family

ID=49325768

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/862,555 Expired - Fee Related US9320893B2 (en) 2011-05-06 2013-04-15 Vaginal rehabilitative device
US15/007,709 Abandoned US20160136421A1 (en) 2011-05-06 2016-01-27 Vaginal rehabilitative device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/862,555 Expired - Fee Related US9320893B2 (en) 2011-05-06 2013-04-15 Vaginal rehabilitative device

Country Status (1)

Country Link
US (2) US9320893B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11590346B2 (en) * 2009-11-16 2023-02-28 Pollogen Ltd. Apparatus and method for cosmetic treatment of human mucosal tissue
CA3014195A1 (en) * 2016-02-12 2017-08-17 Axonics Modulation Technologies, Inc. External pulse generator device and associated methods for trial nerve stimulation
EP3500335A4 (en) * 2016-08-17 2020-06-10 Tam, Pui Ling Non-invasive device and method for stimulating vulvar tissues and pelvic floor muscles for treating and improving dysfunction or disorders and probe unit used therefor
GB2602658B (en) * 2021-01-11 2022-12-28 Savantini Ltd An exercise system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4406288A (en) * 1981-04-06 1983-09-27 Hugh P. Cash Bladder control device and method
US4909263A (en) * 1988-10-28 1990-03-20 C. R. Bard, Inc. Method and apparatus for fitting a patient with a body cavity electrode
US6086549A (en) * 1997-07-03 2000-07-11 Utah Medical Products, Inc. Apparatus and method for treating female urinary incontinence
US20060190049A1 (en) * 2005-02-23 2006-08-24 Medtronic, Inc. Implantable medical device providing adaptive neurostimulation therapy for incontinence
US20090222060A1 (en) * 2005-11-24 2009-09-03 Femeda Ltd Self contained device with treatment cycle for electrostimulation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1603856A (en) 1977-05-16 1981-12-02 Jaller K I A Arrangement for detecting and controlling an outflow from living bodies
US4515167A (en) * 1983-02-28 1985-05-07 Hochman Joel S Device for the development, training and rehabilitation of the pubococcygeal and related perineal musculature of the female
GB9211085D0 (en) 1992-05-23 1992-07-08 Tippey Keith E Electrical stimulation
US6402683B1 (en) 2000-02-17 2002-06-11 Jean-Claude Marty Vaginal stimulator and device for the treatment of female urinary incontinence
US7577476B2 (en) 2001-10-26 2009-08-18 Athena Feminine Technologies, Inc System and method for transducing, sensing, or affecting vaginal or body conditions, and/or stimulating perineal musculature and nerves using 2-way wireless communications
US20070066995A1 (en) 2004-06-10 2007-03-22 Ndi Medical, Llc Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US8195296B2 (en) 2006-03-03 2012-06-05 Ams Research Corporation Apparatus for treating stress and urge incontinence
GB2435834A (en) 2006-03-06 2007-09-12 Michael Craggs Neuromodulation device for pelvic dysfunction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4406288A (en) * 1981-04-06 1983-09-27 Hugh P. Cash Bladder control device and method
US4909263A (en) * 1988-10-28 1990-03-20 C. R. Bard, Inc. Method and apparatus for fitting a patient with a body cavity electrode
US6086549A (en) * 1997-07-03 2000-07-11 Utah Medical Products, Inc. Apparatus and method for treating female urinary incontinence
US20060190049A1 (en) * 2005-02-23 2006-08-24 Medtronic, Inc. Implantable medical device providing adaptive neurostimulation therapy for incontinence
US20090222060A1 (en) * 2005-11-24 2009-09-03 Femeda Ltd Self contained device with treatment cycle for electrostimulation

Also Published As

Publication number Publication date
US20130274823A1 (en) 2013-10-17
US9320893B2 (en) 2016-04-26

Similar Documents

Publication Publication Date Title
US8634920B2 (en) Device for perineum reeducation
US10751567B2 (en) Exercising kegel muscles using preprogrammed exercise programs
US20160136421A1 (en) Vaginal rehabilitative device
EP2873366B1 (en) Equipment with biofeedback for training the muscles of the pelvic floor
WO2012079127A1 (en) An apparatus for pelvic floor management
US20090138061A1 (en) Stimulator For The Control of a Bodily Function
US10201702B2 (en) Pelvic floor muscle training
US11207562B2 (en) Pelvic floor muscle exercise system and detection device
CN104887254A (en) Integrated intelligent system visualizing functional evaluation and rehabilitation training for levator ani muscle
JP2006503640A (en) Systems and methods for performing inspection or conversion of vaginal conditions, stimulation responses of vaginal or bodily conditions, and / or stimulation of perineal muscle tissue and nerves using two-way wireless communication
CN107929942B (en) Intelligent postpartum rehabilitation treatment device, realization method thereof and rehabilitation treatment instrument
US20120215135A1 (en) Pelvic Region Analyzer and Associated Therapeutic and Diagnostic Methods
EP3784330A1 (en) Devices, systems, and methods for treating urinary and fecal incontinence
WO2017210870A1 (en) Pelvic floor muscle therapy system, probe apparatus and method of use thereof
CN108542739B (en) Remote interactive Kaiger muscle rehabilitation device
CN116036476A (en) Guided pelvic floor muscle training instrument and pelvic floor muscle training method
US11848090B2 (en) Trainer for a neurostimulator programmer and associated methods of use with a neurostimulation system
GB2602658A (en) An exercise system
CN111298291B (en) Autonomous urination auxiliary device and method
CN108355320A (en) Kai Geer muscular recuperation devices
WO2022089372A1 (en) Massage device-based kegel training method
WO2022090787A1 (en) An exercise system
US20200178806A1 (en) Theraputic pelvic region analyzer and method of use thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: OBENSEN LTD., VIRGIN ISLANDS, BRITISH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAGEGE, EDWARD;REEL/FRAME:037630/0689

Effective date: 20130617

Owner name: BLUE MEDICAL INNOVATION LTD., HONG KONG

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PERINEALIS LTD.;REEL/FRAME:037630/0800

Effective date: 20160113

Owner name: PERINEALIS LTD., CYPRUS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OBENSEN LTD.;REEL/FRAME:037662/0264

Effective date: 20131003

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION