US20160077005A1 - Forgery prevention medium, forgery prevention medium manufacturing apparatus, and forgery prevention medium manufacturing method - Google Patents

Forgery prevention medium, forgery prevention medium manufacturing apparatus, and forgery prevention medium manufacturing method Download PDF

Info

Publication number
US20160077005A1
US20160077005A1 US14/851,304 US201514851304A US2016077005A1 US 20160077005 A1 US20160077005 A1 US 20160077005A1 US 201514851304 A US201514851304 A US 201514851304A US 2016077005 A1 US2016077005 A1 US 2016077005A1
Authority
US
United States
Prior art keywords
forgery prevention
prevention medium
specific invisible
specific
invisible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/851,304
Inventor
Nobuki Nemoto
Takahisa Nakano
Fumitoshi Morimoto
Shota Kure
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Assigned to KABUSHIKI KAISHA TOSHIBA reassignment KABUSHIKI KAISHA TOSHIBA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Kure, Shota, MORIMOTO, FUMITOSHI, NAKANO, TAKAHISA, Nemoto, Nobuki
Publication of US20160077005A1 publication Critical patent/US20160077005A1/en
Priority to US15/820,043 priority Critical patent/US11320374B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • B41M3/142Security printing using chemical colour-formers or chemical reactions, e.g. leuco-dye/acid, photochromes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • B41M3/144Security printing using fluorescent, luminescent or iridescent effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/744Labels, badges, e.g. marker sleeves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/28Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using thermochromic compounds or layers containing liquid crystals, microcapsules, bleachable dyes or heat- decomposable compounds, e.g. gas- liberating
    • B41M5/282Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using thermochromic compounds or layers containing liquid crystals, microcapsules, bleachable dyes or heat- decomposable compounds, e.g. gas- liberating using thermochromic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/30Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using chemical colour formers
    • B41M5/305Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using chemical colour formers with reversible electron-donor electron-acceptor compositions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers

Definitions

  • Embodiments of the present invention relate to a forgery prevention medium, a forgery prevention medium manufacturing apparatus, and a forgery prevention medium manufacturing method.
  • a technique of attaching ink of a specific invisible material to a desired position by an inkjet or thermal transfer scheme is generally used when an invisible latent image is formed by a specific invisible material such as a fluorescent material not visibly recognized in an ordinary state and particularly the invisible latent image is formed on demand.
  • a material that absorbs an ultraviolet ray and emits a visible ray is used in many cases.
  • an invisible latent image forming method there is proposed a method of forming an invisible latent image by a laser.
  • a fluorescent material applied to (laminated on) one surface is set as a first layer
  • an information recording medium as a second layer is formed by laminating a photochromic material not allowing the transmission of a UV ray by laminating a UV ray thereon
  • a UV ray is irradiated to the second layer in accordance with a desired pattern so as to form a specific image by selectively changing the state of the second layer into a non-transmission state of a UV ray.
  • FIG. 1 is an outline configuration diagram of an image forming system
  • FIG. 2 is an outline cross-sectional view of a recording medium
  • FIGS. 3A and 3B are diagrams illustrating states before and after an invisible image is formed on a specific invisible material layer when a UV fluorescent material is used as a specific invisible material;
  • FIG. 4 is a flowchart illustrating a specific invisible image forming process of an embodiment
  • FIG. 5 is a flowchart illustrating an invisible latent image forming process of a first embodiment
  • FIG. 6 is a diagram illustrating a binary image and an inactivation target pixel of the first embodiment
  • FIG. 7 is a flowchart illustrating an invisible latent image forming process of a second embodiment.
  • FIG. 8 is a diagram illustrating a binary image and an inactivation target pixel of the second embodiment.
  • a forgery prevention medium of an embodiment includes a substrate and a specific invisible material layer directly or indirectly laminated on the substrate, having a specific invisible material reversibly and visually recognized through a predetermined process disposed thereon in a plane shape, and having a part of the specific invisible material inactivated in accordance with a visualized image pattern.
  • FIG. 1 is an outline configuration diagram of an image forming system.
  • An image forming system 10 includes an image processing apparatus 12 that performs an image process on an original image corresponding to an image formed on a recording medium 11 as a forgery prevention medium, a laser irradiation device 14 that performs an inactivation process in which a laser beam 13 is irradiated to a specific invisible image forming portion of the recording medium 11 based on the image process result of the image processing apparatus 12 so as to form an invisible image as an invisible latent image, and a stage 15 that holds the recording medium 11 at a predetermined position when the invisible image is formed.
  • the laser irradiation device 14 includes a laser controller 14 A that performs a laser emitting control based on the image process result of the image processing apparatus 12 and a laser oscillator 14 B that emits a laser beam under the control of the laser controller 14 A. Then, the laser irradiation device 14 performs an inactivation process of inactivating a specific invisible material by irradiating a laser beam to a pixel that maintains in a non-visible state, during a predetermined visualization process.
  • a fluorescent material a UV fluorescent material or an IR fluorescent material
  • a pixel which does not need to emit light even by the irradiation of the UV ray or the IR ray is inactivated.
  • a reversible temperature indicating material which reversibly changes from a colorless state (or a white state) to a color changed state or a colored state in accordance with an increase in temperature is used as the specific invisible material
  • a pixel which needs to be maintained in a colorless state (or a white state) is inactivated.
  • FIG. 2 is an outline cross-sectional view of the recording medium.
  • the recording medium 11 includes a normal recording medium 11 A which includes a paper or plastic substrate and records various information items thereon by a normal printing process or the like.
  • the recording medium 11 has a structure in which a specific invisible material layer 11 B formed by disposing a specific invisible material on the surface (the upper surface in FIG. 2 ) of the normal recording medium 11 A through coating, laminating, printing, or kneading is laminated on the normal recording medium 11 A.
  • the specific invisible material layer 11 B may be laminated on the normal recording medium 11 A through a layer such as an adhesion layer, a hologram layer, an image receiving layer for color printing, a ultraviolet reflection layer.
  • durability, such as scratch resistance can be raised by preparing a protective layer on the special invisible material layer 11 B.
  • FIGS. 3A and 3B are diagrams illustrating states before and after an invisible image is formed on a specific invisible material layer when a UV fluorescent material is used as a specific invisible material.
  • FIG. 3A is a diagram illustrating a state before the invisible image is formed on the specific invisible material layer.
  • a normal image 21 recorded on the normal recording medium 11 A by printing or the like can be visibly recognized in the non-irradiation state of the UV ray.
  • the entire specific invisible material layer 11 B emits fluorescent light along with the normal image 21 in the irradiation state of the UV ray.
  • the entire rectangular area emits fluorescent light.
  • FIG. 3B is a diagram illustrating a state after the invisible image is formed on the specific invisible material layer.
  • the normal image 21 recorded on the normal recording medium 11 A by printing or the like can be visibly recognized similarly to the case of FIG. 3A in the non-irradiation state of the UV ray.
  • the tamper resistance of the invisible latent image recorded by the specific invisible material is improved.
  • the first embodiment is an embodiment in which a fluorescent material (a UV fluorescent material or an IR fluorescent material) that emits fluorescent light by the irradiation of a UV ray or an IR ray is used as a specific invisible material.
  • a fluorescent material a UV fluorescent material or an IR fluorescent material
  • a desired image is binarized so as to generate a binary image data and a laser beam is irradiated to a pixel part to be inactivated in the specific invisible material layer 11 B laminated in advance on the normal recording medium 11 A based on the binary image data so as to inactivate the specific invisible material.
  • a desired image can be recorded as a specific image on the recording medium.
  • a YAG laser, a YVO 4 laser, a semiconductor laser, a CO 2 laser, or the like is desirable as a laser used to form an image pattern.
  • the harmonic waves of the YAG laser, the YVO 4 laser, and the semiconductor laser can be used in accordance with the absorbing wavelength of the recording medium 11 and the fluorescent material in addition to the basic waves of the YAG laser, the YVO 4 laser, the semiconductor laser, and the CO 2 laser.
  • inorganic fluorescent substance disclosed in, for example, JP 50-6410 A, JP 61-65226 A, JP 64-22987 A, JP 64-60671 A, JP 1-168911 A, JP 2003-89761 A, and JP 2006-255925 A can be appropriately selected as the fluorescent material (the fluorescent invisible latent image forming material) as the specific invisible material for forming the specific image.
  • organic fluorescent substance disclosed in JP 2005-15564 A, JP 2006-77191 A, JP 2006-348180 A, JP 2008-115225 A, and JP 2012-61794 A, and Magic Lumino Paint, Lumilite Color, and LOIHI MARKER can be appropriately selected as the organic fluorescent substance.
  • FIG. 4 is a flowchart of a specific invisible image forming process of the embodiment.
  • an operator inputs a desired image to the image processing apparatus 12 (step S 11 ).
  • the image processing apparatus 12 generates a grayscale image data (for example, a 256-grayscale monochromatic image) in which an input image is changed in grayscale (step S 12 ).
  • a grayscale image data for example, a 256-grayscale monochromatic image
  • the image processing apparatus 12 generates a binary image data in which the grayscale image data is binarized and outputs the binary image to the laser controller 14 A of the laser irradiation device 14 (step S 13 ).
  • the laser controller 14 A generates an invisible latent image by irradiating a laser beam oscillated from the laser oscillator 14 B to the specific invisible material layer 11 B laminated on the normal recording medium 11 A of the recording medium 11 in accordance with the black pixel part indicated by the binary image data corresponding to the binary image (step S 14 ). That is, the laser irradiation device 14 serves as an inactivation unit that inactivates an inactivation target pixel position of the specific invisible material layer by irradiating a laser beam thereto.
  • FIG. 5 is a flowchart of an invisible latent image forming process of the first embodiment.
  • FIG. 6 is a diagram illustrating a binary image and an inactivation target pixel of the first embodiment.
  • the binary image corresponding to the binary image data is set so that a grayscale of a black pixel 401 is set to 0 and a grayscale of a white pixel 402 is set to 1.
  • the laser controller 14 A acquires the position information of the black pixel 401 having a grayscale of 0 at the binary image illustrated in FIG. 6 (step S 22 ). That is, the image processing apparatus 12 and the laser controller 14 A serve as a pixel specification unit that specifies an inactivation target pixel position corresponding to a specific invisible image formed on a specific invisible material layer based on the input image data of the invisible target image. That is, the image processing apparatus 12 and the laser controller 14 A specify a position of a pixel (a black pixel) that needs to stop the emission of fluorescent light during the irradiation of light of a predetermined wavelength as an inactivation target pixel position.
  • the laser controller 14 A determines whether the irradiation of the laser beam to all black pixels 401 having a grayscale of 0 ends (step S 23 ).
  • the laser controller 14 A controls the laser oscillator 14 B so that the laser beam is irradiated to the black pixel 401 having a grayscale of 0 corresponding to the scanning position through laser scanning (step S 24 ). Accordingly, a specific invisible material 411 corresponding to the black pixel 401 is inactivated. On the contrary, a specific invisible material 412 corresponding to the white pixel 402 is activated as it is and an invisible latent image is formed so as to correspond to the binary image data as a whole. That is, the pixel having a grayscale of 0 of the binary image 40 is recorded as a pixel that does not emit light during the irradiation of the UV ray.
  • the laser controller 14 A moves the irradiation position (the scanning position) (step S 25 ), and the process is returned to step S 23 again.
  • step S 23 to step S 25 are repeated in the same way during a period in which the irradiation of the laser beam to all black pixels 401 having a grayscale of 0 does not end by the determination in step S 23 (step S 23 ; No).
  • step S 23 the inactivation process ends when the irradiation of the laser beam to all black pixels 401 having a grayscale of 0 ends by the determination of step S 23 (step S 23 ; Yes).
  • an image which is not visible under a general room lamp is observed as a light emitting pattern during the irradiation of the UV ray (electromagnetic wave).
  • the invisible image is formed on the specific invisible material layer 11 B including the fluorescent compound, the tamper resistance of the invisible latent image recorded by using the specific invisible material is improved.
  • the fluorescent material is used as the specific invisible material.
  • a second embodiment is an embodiment in which a temperature indicating material reversibly changing a colorless or white state and a colored state depending on the threshold temperature is used as the specific invisible material.
  • a colorless or white pixel (a grayscale of 1) is used as a pixel which is inactivated by the irradiation of the laser beam, the existence of the specific invisible image (the invisible latent image) is not easily detected and the formation position of the specific invisible image (the invisible latent image) is not easily specified compared with a pixel (a grayscale of 0) which is changed in color or colored with a change in temperature.
  • the temperature indicating material is a material which undergoes color change with temperature change by using solid-phase reaction, thermal decomposition, dehydration, electron transfer of an electron donor-acceptor, a change in crystalline structure, or the like. Among these, a temperature indicating material using solid-phase reaction or electron transfer of an electron donor-acceptor is preferred.
  • thermo indicating material using electron transfer of an electron donor-acceptor a temperature indicating material, which contains a reversal material satisfying the following conditions and a temperature indicating characteristic controller, is exemplified
  • reversal material a material, which causes reversible transformation between crystal and amorphous with respect to a part or all of an electron accepting compound and a composition system, or transformation between two phase separations or between phase separation and non-phase separation, is exemplified.
  • the material is solid at room temperature, and is a temperature indicating characteristic controller, at least a part of which is compatible with an electron accepting compound and/or a reversal material.
  • the speed of transformation between crystal and amorphous or transformation between phase separation and non-phase separation of the composition system is changed by transformation between crystal and amorphous or transformation between phase separation and non-phase separation of the temperature indicating characteristic controller, and the interaction between an electron donating compound and an electron accepting compound is not inhibited after the phase separation.
  • examples of the electron donating compound include crystal violet lactone, malachite green lactone, crystal violet carbinol, malachite green carbinol, N-(2,3-dichlorophenypleuco auramine, N-benzoyl auramine, rhodamine B lactam, N-acetyl auramine, N-phenyl auramine, 2-(phenyl imino ethane dilidene)-3,3-dimethyl indorine, N-3,3-trimethyl indorinobenzo spiropyran, 8′-methoxy-N-3,3-trimethyl indorinobenzo spiropyran, 3-diethylamino-6-methyl-7-chlorofluoran, 3-diethylamino-7-methoxyfluoran, 3-diethylamino-6-benzyloxyfluoran, 1,2-benz-6-diethylaminofluoran, 3,6-di-p-toluidino-4,5-d
  • examples of the electron accepting compound include acidic compounds such as phenols, metal salts of phenol, metal salts of carboxylic acid, sulfonic acid, salts of sulfonic acid, phosphoric acids, metal salts of phosphoric acid, acidic phosphoric acid ester, metal salts of acidic phosphoric acid ester, phosphorous acids, and metal salts of phosphorous acid. These can be used alone or in a mixture of two or more kinds thereof.
  • compounds having a steroid skeleton and the like are exemplified as a reversal material.
  • Specific examples thereof include cholesterol, stigmasterol, pregnenolone, methyl androstenediol, estradiol benzoate, epiandrostene, stenolone, ⁇ -sitosterol, pregnenolone acetate, ⁇ -cholestanol, and the like. These can be used alone or in a mixture of two or more kinds thereof.
  • thermo paper a compound which is an aromatic alcohol and has at least one phenolic hydroxyl group, aromatic alcohols, a compound having at least one benzoyl group, an aromatic ether compound, a sensitizer which is used in thermal paper, or the like is used.
  • Specific examples of the compound which is an aromatic alcohol and has at least one phenolic hydroxyl group include p-hydroxyphenethyl alcohol, 2-hydroxybenzyl alcohol, or vanillyl alcohol.
  • Specific examples of the aromatic alcohols include piperonyl alcohol, benzoin, benzhydrol, triphenylmethanol, methyl benzine acid, or benzyl DL-mandelat.
  • Specific examples of the compound having at least one benzoyl group include benzyl, benzoin isopropyl ether, benzyl phenyl ketone, or methyl 2-benzoylbenzoate.
  • aromatic ether compound examples include benzyl 2-naphthyl ether or 1-benzyloxy-2-methoxy-4-(1-propenyl)benzene.
  • sensitizer 4-benzyl biphenyl, m-terphenyl, or 4-benzoinbiphenyl is known to be effective.
  • these temperature indicating materials may be used alone or may be used in a form of microcapsules.
  • these temperature indicating materials may be dispersed in a resin binder for use, and as a resin to be dispersed, microencapsulation of the temperature indicating material or dispersion in a binder resin or the like is exemplified.
  • binder resin examples include polyethylenes, chlorinated polyethylenes, ethylene copolymers such as an ethylene-vinyl acetate copolymer and an ethylene-acrylic acid-maleic anhydride copolymer, polybutadienes, polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polypropylenes, polyisobutylenes, polyvinyl chlorides, polyvinylidene chlorides, polyvinyl acetates, polyvinyl alcohols, polyvinyl acetals, polyvinyl butyrals, fluorine resins, acrylic resins, methacrylic resins, acrylonitrile copolymers, polystyrene, halogenated polystyrene, stylene copolymers such as styrene-methacryate copolymers, acetal resins, polyamides such as nylon 66, polycarbonates, cellulose-based resin
  • METHAMOCOLOR manufactured by PILOT Corporation
  • THERMAL COLOR manufactured by Kiroku Sozai Sogo Kenkyusho Co., Ltd.
  • the like examples include METHAMOCOLOR (manufactured by PILOT Corporation), THERMAL COLOR (manufactured by Kiroku Sozai Sogo Kenkyusho Co., Ltd.), and the like.
  • the color change threshold temperature of the temperature indicating material is desirably in the range of ⁇ 30° C. to 70° C. and is more desirably in the range of ⁇ 20° C. to 5° C. or 40° C. to 60° C.
  • the threshold temperature is lower than ⁇ 30° C.
  • a problem arises in that a large-scale apparatus is needed to form an environment of the threshold temperature or less instead of a simple apparatus. Further, a problem arises in that the other materials forming the forgery prevention medium is degraded in an environment of the threshold temperature or less.
  • the threshold temperature is 70° C. or more
  • the other materials forming the forgery prevention medium may be degraded, deformed, or altered in an environment of the threshold temperature or more.
  • a temperature indicating material When the threshold temperature of the temperature indicating material is in a low temperature range ( ⁇ 20° C. to 5° C.), a temperature indicating material is used which is transparent or white at a temperature higher than the threshold temperature and becomes colored at a temperature lower than threshold temperature.
  • a temperature indicating material When the threshold temperature of the temperature indication material is in a high temperature range (40° C. to 60° C.), a temperature indicating material is used which is colored at a temperature higher than the threshold temperature and becomes transparent or white at a temperature lower than the threshold temperature.
  • the color change threshold temperature do not exist in the ordinary life temperature range in order to conceal the forgery prevention function, an easily realized temperature range excluding the temperature range of 5° C. to 40° C. is set. Further, a material can be used which has a plurality of color change threshold temperature values and is changed in color as three or more colors in accordance with a temperature.
  • the specific invisible image forming process illustrated in FIG. 4 is the same as the first embodiment. However, since the invisible latent image forming process of the second embodiment is different from that of the first embodiment, the invisible latent image forming process will be described below.
  • FIG. 7 is a flowchart of the invisible latent image forming process of the second embodiment.
  • FIG. 8 is a diagram illustrating a binary image and an inactivation target pixel of the second embodiment.
  • the binary image corresponding to the binary image data is set so that a grayscale of a black pixel 601 is set to 0 and a grayscale of a white pixel 602 is set to 1.
  • the laser controller 14 A acquires the position information of the white pixel 602 having a grayscale of 1 at a binary image 60 illustrated in FIG. 8 (step S 32 ).
  • the image processing apparatus 12 and the laser controller 14 A specify a position of a pixel (a white pixel) that needs to stop the changing in color or coloring in accordance with an increase in temperature as an inactivation target pixel position.
  • the laser controller 14 A determines whether the irradiation of the laser beam to all white pixels 602 having a grayscale of 1 ends (step S 33 ).
  • the laser controller 14 A controls the laser oscillator 14 B so that the laser beam is irradiated to the white pixel 602 having a grayscale of 1 corresponding to the scanning position through laser scanning (step S 34 ). Accordingly, the specific invisible material 612 corresponding to the white pixel 602 is inactivated.
  • an invisible latent image of the binary image 60 corresponding to the binary image data is formed as a whole while a specific invisible material 611 corresponding to the black pixel 601 is inactivated as it is. That is, even when the pixel having a grayscale of 1 in the binary image 60 increases in temperature, the pixel is recorded as a pixel which is not changed in color or colored.
  • the laser controller 14 A moves the irradiation position (the scanning position) (step S 35 ), and the process is returned to step S 33 again.
  • step S 33 to step S 35 are repeated in the same way during a period in which the irradiation of the laser beam to all white pixels 602 having a grayscale of 1 does not end by the determination of step S 33 (step S 33 ; No).
  • step S 33 the inactivation process ends when the irradiation of the laser to all white pixels 602 having a grayscale of 1 ends by the determination of step S 33 (step S 33 ; Yes).
  • an image which is not visible under a general room lamp becomes visible and is observed when the image is discolored or colored in accordance with an increase in temperature.
  • the invisible image is formed on the specific invisible material layer 11 B including the temperature indicating material even in the second embodiment, the tamper resistance of the invisible latent image recorded by using the specific invisible material is improved.
  • the pixel (the black pixel) not emitting fluorescent light is inactivated when the fluorescent compound is used as the specific invisible material, and the pixel (the colorless pixel or the white pixel) maintained in the state before the coloring is inactivated when the temperature indicating material is used as the specific invisible material.
  • the pixels can be inactivated in a reverse manner.
  • one kind of specific invisible material is used, but the UV fluorescent material, the IR fluorescent material, and the temperature indicating material can be appropriately selected and used in mixture thereof as the specific invisible material.
  • a plurality of kinds of specific invisible materials may be used in mixture or a plurality of kinds of specific invisible materials may be respectively formed in a plurality of areas of the surface of the normal recording medium 11 A.
  • the same image can be visibly recognized by the processes respectively corresponding to the specific invisible materials.
  • a change in the number of the lasers or the irradiation condition (the wavelength, the power, and the irradiation period) used for the inactivation is not limited to the above-described embodiments, and can be modified if necessary.
  • the image formed by the specific invisible material can have a grayscale. At that time, the image process in the image processing apparatus 12 can be modified in accordance with the number of the grayscales.
  • the laser having an appropriate wavelength can be selected.
  • a laser is most desirable in which two wavelengths are selected from a basic wave, a second harmonic wave, a third harmonic wave, and a fourth harmonic wave, one wavelength is used for the absorption band of the normal recording medium 11 A and the non-absorption band of the specific invisible material layer 11 B, and the other wavelength is used for the non-absorption band of the normal recording medium 11 A and the absorption band of the specific invisible material layer 11 B.
  • the reason that the fifth harmonic wave or more is not considered is that the energy abruptly decreases and thus the influence thereof is small.

Abstract

A forgery prevention medium includes a substrate and a specific invisible material layer directly or indirectly laminated on the substrate, having a specific invisible material reversibly and visually recognized through a predetermined process disposed thereon in a plane shape, and having a part of the specific invisible material inactivated in accordance with a visualized image pattern.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2014-186725, filed on Sep. 12, 2014, the entire contents of which are incorporated herein by reference.
  • FIELD
  • Embodiments of the present invention relate to a forgery prevention medium, a forgery prevention medium manufacturing apparatus, and a forgery prevention medium manufacturing method.
  • BACKGROUND
  • Conventionally, a technique of attaching ink of a specific invisible material to a desired position by an inkjet or thermal transfer scheme is generally used when an invisible latent image is formed by a specific invisible material such as a fluorescent material not visibly recognized in an ordinary state and particularly the invisible latent image is formed on demand.
  • As the specific invisible material, a material (hereinafter, referred to as a fluorescent material) that absorbs an ultraviolet ray and emits a visible ray is used in many cases.
  • As an invisible latent image forming method, there is proposed a method of forming an invisible latent image by a laser.
  • In a method of forming an invisible latent image by a laser, a fluorescent material applied to (laminated on) one surface is set as a first layer, an information recording medium as a second layer is formed by laminating a photochromic material not allowing the transmission of a UV ray by laminating a UV ray thereon, and a UV ray is irradiated to the second layer in accordance with a desired pattern so as to form a specific image by selectively changing the state of the second layer into a non-transmission state of a UV ray.
  • However, in this method, when the UV ray non-transmission layer as the second layer is peeled off and a UV ray non-transmission layer having a different pattern is laminated, there is a concern that an image recorded by the fluorescent material may be altered.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an outline configuration diagram of an image forming system;
  • FIG. 2 is an outline cross-sectional view of a recording medium;
  • FIGS. 3A and 3B are diagrams illustrating states before and after an invisible image is formed on a specific invisible material layer when a UV fluorescent material is used as a specific invisible material;
  • FIG. 4 is a flowchart illustrating a specific invisible image forming process of an embodiment;
  • FIG. 5 is a flowchart illustrating an invisible latent image forming process of a first embodiment;
  • FIG. 6 is a diagram illustrating a binary image and an inactivation target pixel of the first embodiment;
  • FIG. 7 is a flowchart illustrating an invisible latent image forming process of a second embodiment; and
  • FIG. 8 is a diagram illustrating a binary image and an inactivation target pixel of the second embodiment.
  • DETAILED DESCRIPTION
  • A forgery prevention medium of an embodiment includes a substrate and a specific invisible material layer directly or indirectly laminated on the substrate, having a specific invisible material reversibly and visually recognized through a predetermined process disposed thereon in a plane shape, and having a part of the specific invisible material inactivated in accordance with a visualized image pattern.
  • Next, an embodiment will be described with reference to the drawings.
  • FIG. 1 is an outline configuration diagram of an image forming system.
  • An image forming system 10 includes an image processing apparatus 12 that performs an image process on an original image corresponding to an image formed on a recording medium 11 as a forgery prevention medium, a laser irradiation device 14 that performs an inactivation process in which a laser beam 13 is irradiated to a specific invisible image forming portion of the recording medium 11 based on the image process result of the image processing apparatus 12 so as to form an invisible image as an invisible latent image, and a stage 15 that holds the recording medium 11 at a predetermined position when the invisible image is formed.
  • In this case, the laser irradiation device 14 includes a laser controller 14A that performs a laser emitting control based on the image process result of the image processing apparatus 12 and a laser oscillator 14B that emits a laser beam under the control of the laser controller 14A. Then, the laser irradiation device 14 performs an inactivation process of inactivating a specific invisible material by irradiating a laser beam to a pixel that maintains in a non-visible state, during a predetermined visualization process.
  • Specifically, when a fluorescent material (a UV fluorescent material or an IR fluorescent material) that emits fluorescent light by the irradiation of the UV ray or the IR ray is used as the specific invisible material, a pixel which does not need to emit light even by the irradiation of the UV ray or the IR ray is inactivated. Further, when a reversible temperature indicating material which reversibly changes from a colorless state (or a white state) to a color changed state or a colored state in accordance with an increase in temperature is used as the specific invisible material, a pixel which needs to be maintained in a colorless state (or a white state) is inactivated.
  • FIG. 2 is an outline cross-sectional view of the recording medium. The recording medium 11 includes a normal recording medium 11A which includes a paper or plastic substrate and records various information items thereon by a normal printing process or the like.
  • Then, the recording medium 11 has a structure in which a specific invisible material layer 11B formed by disposing a specific invisible material on the surface (the upper surface in FIG. 2) of the normal recording medium 11A through coating, laminating, printing, or kneading is laminated on the normal recording medium 11A. The specific invisible material layer 11B may be laminated on the normal recording medium 11A through a layer such as an adhesion layer, a hologram layer, an image receiving layer for color printing, a ultraviolet reflection layer. Moreover, durability, such as scratch resistance, can be raised by preparing a protective layer on the special invisible material layer 11B.
  • FIGS. 3A and 3B are diagrams illustrating states before and after an invisible image is formed on a specific invisible material layer when a UV fluorescent material is used as a specific invisible material.
  • FIG. 3A is a diagram illustrating a state before the invisible image is formed on the specific invisible material layer.
  • As illustrated in the upper diagram of FIG. 3A, a normal image 21 recorded on the normal recording medium 11A by printing or the like can be visibly recognized in the non-irradiation state of the UV ray.
  • In this state, as illustrated in the lower diagram of FIG. 3A, the entire specific invisible material layer 11B emits fluorescent light along with the normal image 21 in the irradiation state of the UV ray. Specifically, in the case of FIG. 3A, the entire rectangular area emits fluorescent light.
  • Subsequently, when the irradiation of the UV ray is stopped, the current state is returned to the state of the upper diagram of FIG. 3A.
  • FIG. 3B is a diagram illustrating a state after the invisible image is formed on the specific invisible material layer.
  • As illustrated in the upper diagram of FIG. 3B, the normal image 21 recorded on the normal recording medium 11A by printing or the like can be visibly recognized similarly to the case of FIG. 3A in the non-irradiation state of the UV ray.
  • On the contrary, as illustrated in the lower diagram of FIG. 3B, in the irradiation state of the UV ray, fluorescent light is not emitted from a pixel (in FIG. 3B, a black display pixel) inactivated by a laser beam in the specific invisible material layer 11B, but is emitted only from the other portion along with the normal image 21. For this reason, the fluorescent invisible latent image becomes a visualized image.
  • Subsequently, when the irradiation of the UV ray is stopped, the current state is returned to the state of the upper diagram of FIG. 3B.
  • According to the embodiment, since the invisible image is formed on the specific invisible material layer 11B, the tamper resistance of the invisible latent image recorded by the specific invisible material is improved.
  • First Embodiment
  • Next, a first embodiment will be described in more detail.
  • The first embodiment is an embodiment in which a fluorescent material (a UV fluorescent material or an IR fluorescent material) that emits fluorescent light by the irradiation of a UV ray or an IR ray is used as a specific invisible material.
  • In a specific invisible image forming process, a desired image is binarized so as to generate a binary image data and a laser beam is irradiated to a pixel part to be inactivated in the specific invisible material layer 11B laminated in advance on the normal recording medium 11A based on the binary image data so as to inactivate the specific invisible material.
  • Accordingly, a desired image can be recorded as a specific image on the recording medium.
  • Hereinafter, this operation will be described in detail.
  • In the first embodiment, a YAG laser, a YVO4 laser, a semiconductor laser, a CO2 laser, or the like is desirable as a laser used to form an image pattern. Here, the harmonic waves of the YAG laser, the YVO4 laser, and the semiconductor laser can be used in accordance with the absorbing wavelength of the recording medium 11 and the fluorescent material in addition to the basic waves of the YAG laser, the YVO4 laser, the semiconductor laser, and the CO2 laser.
  • Further, in the first embodiment, inorganic fluorescent substance disclosed in, for example, JP 50-6410 A, JP 61-65226 A, JP 64-22987 A, JP 64-60671 A, JP 1-168911 A, JP 2003-89761 A, and JP 2006-255925 A can be appropriately selected as the fluorescent material (the fluorescent invisible latent image forming material) as the specific invisible material for forming the specific image.
  • As the inorganic fluorescent compound, followings can be exemplified, such as
    • Sr2P2O7:Sn4+, Sr4Al14O25:Eu2+,
    • BaMgAl10O17:Eu2+, SrGa2S4:Ce3+, CaGa2S4:Ce3+,
    • (Ba,Sr)(Mg,Mn)Al10O17:Eu2+,
    • (Sr,Ca,Ba,Mg)10(PO4)6C12:Eu2+,
    • BAl2Si2O8:Eu2+, Sr5(PO4)3Cl:Eu2+,
    • Sr2P2O7:Eu2+, Sr(H2PO4)2:Eu2+,
    • (BaMg)Al16O27:Eu2+, Mn2+, Sr4Al14O25:Eu2+,
    • (Sr,Ba)Al2Si2O8:Eu2+, (Ba,Mg)2SiO4:Eu2+,
    • Y2SiO5:Ce3+, Tb3+, Sr2P2O7−Sr2B2O5:Eu2+,
    • (Ba,Ca,Mg)5(PO4)3Cl:Eu2+,
    • Sr2Si3O8−2SrC12:Eu2+,
    • Zr2SiO4, MgAl11O19:Ce3+, Tb3+,
    • Ca2Y8(SiO4)6O2:Tb3+, (GF12)Y3Al5O12:TB3+,
    • La3Ga5SiO14:Tb3+, Y2O2S:Eu3+,
    • (Ba,Mg)2SiO14:Eu3+,
    • (Ba,Mg)Al16O27:Eu3+,
    • (Ba,Ca,Mg)5(PO4)3Cl:Eu3+,
    • YVO4:Eu3+, CaS:Eu3+,
    • YAlO3:Eu3+, Ca2Y8(SiO4)6O2:Eu3+,
    • LiY9(SiO4)6O2:Eu3+, YVO4:Eu3+Bi2+, Gd2O2S:Eu3+, CaS:Eu3+Cl,
    • (CaMg)3(PO4)2:Sn2+.
  • Further, the organic fluorescent substance disclosed in JP 2005-15564 A, JP 2006-77191 A, JP 2006-348180 A, JP 2008-115225 A, and JP 2012-61794 A, and Magic Lumino Paint, Lumilite Color, and LOIHI MARKER (all is manufactured by SINLOIHI. CO. LTD) can be appropriately selected as the organic fluorescent substance.
  • Next, an operation of the first embodiment will be described.
  • FIG. 4 is a flowchart of a specific invisible image forming process of the embodiment.
  • First, an operator inputs a desired image to the image processing apparatus 12 (step S11).
  • Accordingly, the image processing apparatus 12 generates a grayscale image data (for example, a 256-grayscale monochromatic image) in which an input image is changed in grayscale (step S12).
  • Further, the image processing apparatus 12 generates a binary image data in which the grayscale image data is binarized and outputs the binary image to the laser controller 14A of the laser irradiation device 14 (step S13).
  • Thus, the laser controller 14A generates an invisible latent image by irradiating a laser beam oscillated from the laser oscillator 14B to the specific invisible material layer 11B laminated on the normal recording medium 11A of the recording medium 11 in accordance with the black pixel part indicated by the binary image data corresponding to the binary image (step S14). That is, the laser irradiation device 14 serves as an inactivation unit that inactivates an inactivation target pixel position of the specific invisible material layer by irradiating a laser beam thereto.
  • FIG. 5 is a flowchart of an invisible latent image forming process of the first embodiment.
  • FIG. 6 is a diagram illustrating a binary image and an inactivation target pixel of the first embodiment.
  • In the description below, the binary image corresponding to the binary image data is set so that a grayscale of a black pixel 401 is set to 0 and a grayscale of a white pixel 402 is set to 1.
  • When a binary image data is input to the laser controller 14A (step S21), the laser controller 14A acquires the position information of the black pixel 401 having a grayscale of 0 at the binary image illustrated in FIG. 6 (step S22). That is, the image processing apparatus 12 and the laser controller 14A serve as a pixel specification unit that specifies an inactivation target pixel position corresponding to a specific invisible image formed on a specific invisible material layer based on the input image data of the invisible target image. That is, the image processing apparatus 12 and the laser controller 14A specify a position of a pixel (a black pixel) that needs to stop the emission of fluorescent light during the irradiation of light of a predetermined wavelength as an inactivation target pixel position.
  • Next, the laser controller 14A determines whether the irradiation of the laser beam to all black pixels 401 having a grayscale of 0 ends (step S23).
  • In this case, since the irradiation of the laser beam is not performed (step S23; No), the laser controller 14A controls the laser oscillator 14B so that the laser beam is irradiated to the black pixel 401 having a grayscale of 0 corresponding to the scanning position through laser scanning (step S24). Accordingly, a specific invisible material 411 corresponding to the black pixel 401 is inactivated. On the contrary, a specific invisible material 412 corresponding to the white pixel 402 is activated as it is and an invisible latent image is formed so as to correspond to the binary image data as a whole. That is, the pixel having a grayscale of 0 of the binary image 40 is recorded as a pixel that does not emit light during the irradiation of the UV ray.
  • Subsequently, the laser controller 14A moves the irradiation position (the scanning position) (step S25), and the process is returned to step S23 again.
  • Hereinafter, the processes in step S23 to step S25 are repeated in the same way during a period in which the irradiation of the laser beam to all black pixels 401 having a grayscale of 0 does not end by the determination in step S23 (step S23; No).
  • Then, the inactivation process ends when the irradiation of the laser beam to all black pixels 401 having a grayscale of 0 ends by the determination of step S23 (step S23; Yes).
  • As a result, according to the recording medium 11 of the first embodiment, an image which is not visible under a general room lamp is observed as a light emitting pattern during the irradiation of the UV ray (electromagnetic wave).
  • As described above, according to the first embodiment, since the invisible image is formed on the specific invisible material layer 11B including the fluorescent compound, the tamper resistance of the invisible latent image recorded by using the specific invisible material is improved.
  • Second Embodiment
  • In the first embodiment, the fluorescent material is used as the specific invisible material. However, a second embodiment is an embodiment in which a temperature indicating material reversibly changing a colorless or white state and a colored state depending on the threshold temperature is used as the specific invisible material.
  • In this case, when a colorless or white pixel (a grayscale of 1) is used as a pixel which is inactivated by the irradiation of the laser beam, the existence of the specific invisible image (the invisible latent image) is not easily detected and the formation position of the specific invisible image (the invisible latent image) is not easily specified compared with a pixel (a grayscale of 0) which is changed in color or colored with a change in temperature.
  • The temperature indicating material is a material which undergoes color change with temperature change by using solid-phase reaction, thermal decomposition, dehydration, electron transfer of an electron donor-acceptor, a change in crystalline structure, or the like. Among these, a temperature indicating material using solid-phase reaction or electron transfer of an electron donor-acceptor is preferred.
  • In particular, as the temperature indicating material using electron transfer of an electron donor-acceptor, a temperature indicating material, which contains a reversal material satisfying the following conditions and a temperature indicating characteristic controller, is exemplified
  • As the reversal material, a material, which causes reversible transformation between crystal and amorphous with respect to a part or all of an electron accepting compound and a composition system, or transformation between two phase separations or between phase separation and non-phase separation, is exemplified.
  • Further, as the temperature indicating characteristic controlling material, the following material is exemplified. The material is solid at room temperature, and is a temperature indicating characteristic controller, at least a part of which is compatible with an electron accepting compound and/or a reversal material. Regarding the temperature indicating characteristic controller, the speed of transformation between crystal and amorphous or transformation between phase separation and non-phase separation of the composition system is changed by transformation between crystal and amorphous or transformation between phase separation and non-phase separation of the temperature indicating characteristic controller, and the interaction between an electron donating compound and an electron accepting compound is not inhibited after the phase separation.
  • More specifically, examples of the electron donating compound include crystal violet lactone, malachite green lactone, crystal violet carbinol, malachite green carbinol, N-(2,3-dichlorophenypleuco auramine, N-benzoyl auramine, rhodamine B lactam, N-acetyl auramine, N-phenyl auramine, 2-(phenyl imino ethane dilidene)-3,3-dimethyl indorine, N-3,3-trimethyl indorinobenzo spiropyran, 8′-methoxy-N-3,3-trimethyl indorinobenzo spiropyran, 3-diethylamino-6-methyl-7-chlorofluoran, 3-diethylamino-7-methoxyfluoran, 3-diethylamino-6-benzyloxyfluoran, 1,2-benz-6-diethylaminofluoran, 3,6-di-p-toluidino-4,5-dimethylfluoran-phenyl hydrazide-γ-lactam, 3-amino-5-methylfluoran, and the like. These can be used alone or in a mixture of two or more kinds thereof.
  • Further, examples of the electron accepting compound include acidic compounds such as phenols, metal salts of phenol, metal salts of carboxylic acid, sulfonic acid, salts of sulfonic acid, phosphoric acids, metal salts of phosphoric acid, acidic phosphoric acid ester, metal salts of acidic phosphoric acid ester, phosphorous acids, and metal salts of phosphorous acid. These can be used alone or in a mixture of two or more kinds thereof.
  • Further, compounds having a steroid skeleton and the like are exemplified as a reversal material. Specific examples thereof include cholesterol, stigmasterol, pregnenolone, methyl androstenediol, estradiol benzoate, epiandrostene, stenolone, β-sitosterol, pregnenolone acetate, β-cholestanol, and the like. These can be used alone or in a mixture of two or more kinds thereof.
  • Further, as the temperature indicating characteristic controller, a compound which is an aromatic alcohol and has at least one phenolic hydroxyl group, aromatic alcohols, a compound having at least one benzoyl group, an aromatic ether compound, a sensitizer which is used in thermal paper, or the like is used.
  • Specific examples of the compound which is an aromatic alcohol and has at least one phenolic hydroxyl group include p-hydroxyphenethyl alcohol, 2-hydroxybenzyl alcohol, or vanillyl alcohol. Specific examples of the aromatic alcohols include piperonyl alcohol, benzoin, benzhydrol, triphenylmethanol, methyl benzine acid, or benzyl DL-mandelat. Specific examples of the compound having at least one benzoyl group include benzyl, benzoin isopropyl ether, benzyl phenyl ketone, or methyl 2-benzoylbenzoate. Specific examples of the aromatic ether compound include benzyl 2-naphthyl ether or 1-benzyloxy-2-methoxy-4-(1-propenyl)benzene. As the sensitizer, 4-benzyl biphenyl, m-terphenyl, or 4-benzoinbiphenyl is known to be effective.
  • Further, these temperature indicating materials may be used alone or may be used in a form of microcapsules. Alternatively, these temperature indicating materials may be dispersed in a resin binder for use, and as a resin to be dispersed, microencapsulation of the temperature indicating material or dispersion in a binder resin or the like is exemplified.
  • Examples of the binder resin include polyethylenes, chlorinated polyethylenes, ethylene copolymers such as an ethylene-vinyl acetate copolymer and an ethylene-acrylic acid-maleic anhydride copolymer, polybutadienes, polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polypropylenes, polyisobutylenes, polyvinyl chlorides, polyvinylidene chlorides, polyvinyl acetates, polyvinyl alcohols, polyvinyl acetals, polyvinyl butyrals, fluorine resins, acrylic resins, methacrylic resins, acrylonitrile copolymers, polystyrene, halogenated polystyrene, stylene copolymers such as styrene-methacryate copolymers, acetal resins, polyamides such as nylon 66, polycarbonates, cellulose-based resins, phenolic resins, urea resins, epoxy resins, polyurethane resins, diaryl phthalate resins, silicone resins, polyimide amides, polyether sulfones, polymethyl pentenes, polyether imides, polyvinyl carbazoles, amorphous polyolefins, and the like. These can be used alone or in a mixture of two or more kinds thereof. Examples of materials having such characteristics include METHAMOCOLOR (manufactured by PILOT Corporation), THERMAL COLOR (manufactured by Kiroku Sozai Sogo Kenkyusho Co., Ltd.), and the like.
  • Further, the color change threshold temperature of the temperature indicating material is desirably in the range of −30° C. to 70° C. and is more desirably in the range of −20° C. to 5° C. or 40° C. to 60° C.
  • Here, when the threshold temperature is lower than −30° C., a problem arises in that a large-scale apparatus is needed to form an environment of the threshold temperature or less instead of a simple apparatus. Further, a problem arises in that the other materials forming the forgery prevention medium is degraded in an environment of the threshold temperature or less.
  • Specifically, when the threshold temperature is 70° C. or more, there is a possibility that the other materials forming the forgery prevention medium may be degraded, deformed, or altered in an environment of the threshold temperature or more.
  • When the threshold temperature of the temperature indicating material is in a low temperature range (−20° C. to 5° C.), a temperature indicating material is used which is transparent or white at a temperature higher than the threshold temperature and becomes colored at a temperature lower than threshold temperature. When the threshold temperature of the temperature indication material is in a high temperature range (40° C. to 60° C.), a temperature indicating material is used which is colored at a temperature higher than the threshold temperature and becomes transparent or white at a temperature lower than the threshold temperature. Anyway, it is more desirable to choose a temperature indicating material which becomes invisible at a normal temperature.
  • Further, since it is desirable that the color change threshold temperature do not exist in the ordinary life temperature range in order to conceal the forgery prevention function, an easily realized temperature range excluding the temperature range of 5° C. to 40° C. is set. Further, a material can be used which has a plurality of color change threshold temperature values and is changed in color as three or more colors in accordance with a temperature.
  • Next, an operation of the second embodiment will be described.
  • Even in the second embodiment, the specific invisible image forming process illustrated in FIG. 4 is the same as the first embodiment. However, since the invisible latent image forming process of the second embodiment is different from that of the first embodiment, the invisible latent image forming process will be described below.
  • FIG. 7 is a flowchart of the invisible latent image forming process of the second embodiment.
  • FIG. 8 is a diagram illustrating a binary image and an inactivation target pixel of the second embodiment.
  • In the description below, the binary image corresponding to the binary image data is set so that a grayscale of a black pixel 601 is set to 0 and a grayscale of a white pixel 602 is set to 1.
  • When a binary image data is input to the laser controller 14A (step S31), the laser controller 14A acquires the position information of the white pixel 602 having a grayscale of 1 at a binary image 60 illustrated in FIG. 8 (step S32). The image processing apparatus 12 and the laser controller 14A specify a position of a pixel (a white pixel) that needs to stop the changing in color or coloring in accordance with an increase in temperature as an inactivation target pixel position.
  • Next, the laser controller 14A determines whether the irradiation of the laser beam to all white pixels 602 having a grayscale of 1 ends (step S33).
  • In this case, since the irradiation of the laser beam is not performed (step S33; No), the laser controller 14A controls the laser oscillator 14B so that the laser beam is irradiated to the white pixel 602 having a grayscale of 1 corresponding to the scanning position through laser scanning (step S34). Accordingly, the specific invisible material 612 corresponding to the white pixel 602 is inactivated.
  • On the contrary, an invisible latent image of the binary image 60 corresponding to the binary image data is formed as a whole while a specific invisible material 611 corresponding to the black pixel 601 is inactivated as it is. That is, even when the pixel having a grayscale of 1 in the binary image 60 increases in temperature, the pixel is recorded as a pixel which is not changed in color or colored.
  • Subsequently, the laser controller 14A moves the irradiation position (the scanning position) (step S35), and the process is returned to step S33 again.
  • Hereinafter, the processes in step S33 to step S35 are repeated in the same way during a period in which the irradiation of the laser beam to all white pixels 602 having a grayscale of 1 does not end by the determination of step S33 (step S33; No).
  • Then, the inactivation process ends when the irradiation of the laser to all white pixels 602 having a grayscale of 1 ends by the determination of step S33 (step S33; Yes).
  • As a result, according to the recording medium 11 of the second embodiment, an image which is not visible under a general room lamp becomes visible and is observed when the image is discolored or colored in accordance with an increase in temperature.
  • As described above, since the invisible image is formed on the specific invisible material layer 11B including the temperature indicating material even in the second embodiment, the tamper resistance of the invisible latent image recorded by using the specific invisible material is improved.
  • Modification of Embodiment
  • In the description above, the pixel (the black pixel) not emitting fluorescent light is inactivated when the fluorescent compound is used as the specific invisible material, and the pixel (the colorless pixel or the white pixel) maintained in the state before the coloring is inactivated when the temperature indicating material is used as the specific invisible material. However, the pixels can be inactivated in a reverse manner.
  • In the above-described embodiments, one kind of specific invisible material is used, but the UV fluorescent material, the IR fluorescent material, and the temperature indicating material can be appropriately selected and used in mixture thereof as the specific invisible material. In this case, a plurality of kinds of specific invisible materials may be used in mixture or a plurality of kinds of specific invisible materials may be respectively formed in a plurality of areas of the surface of the normal recording medium 11A. When a plurality of kinds of specific invisible materials is used in mixture, the same image can be visibly recognized by the processes respectively corresponding to the specific invisible materials. When a plurality of kinds of specific invisible materials is laminated on a plurality of areas of the surface of the normal recording medium 11A, an image of each area can be visibly recognized by the process corresponding to each of the specific invisible materials. In these cases, the tamper resistance of the invisible latent image recorded by using the specific invisible material is further improved.
  • Further, a change in the number of the lasers or the irradiation condition (the wavelength, the power, and the irradiation period) used for the inactivation is not limited to the above-described embodiments, and can be modified if necessary. Further, the image formed by the specific invisible material can have a grayscale. At that time, the image process in the image processing apparatus 12 can be modified in accordance with the number of the grayscales.
  • Further, since it is more desirable to use a wavelength having a difference between the absorption wavelength of the recording medium and the absorption wavelength of the specific invisible material as the laser used for the inactivation, the laser having an appropriate wavelength can be selected.
  • Further, even in the wavelength of the laser beam, it is more desirable to use a wavelength having a difference between the absorption wavelength of the recording medium and the absorption wavelength of the specific invisible material. Accordingly, for example, a laser is most desirable in which two wavelengths are selected from a basic wave, a second harmonic wave, a third harmonic wave, and a fourth harmonic wave, one wavelength is used for the absorption band of the normal recording medium 11A and the non-absorption band of the specific invisible material layer 11B, and the other wavelength is used for the non-absorption band of the normal recording medium 11A and the absorption band of the specific invisible material layer 11B. In addition, the reason that the fifth harmonic wave or more is not considered is that the energy abruptly decreases and thus the influence thereof is small.
  • While several embodiments of the present invention have been described, these embodiments are merely examples and are not intended to limit the scope of the invention. These novel embodiments can be modified into various forms, and various omissions, replacements, and modifications can be made without departing from the spirit of the present invention. These embodiments or the modifications thereof are included in the scope or the spirit of the present invention, and are included in the range equivalent to the present invention of claims.

Claims (16)

What is claimed is:
1. A forgery prevention medium comprising:
a substrate; and
a specific invisible material layer directly or indirectly laminated on the substrate, having a specific invisible material reversibly and visually recognized through a predetermined process disposed thereon in a plane shape, and having a part of the specific invisible material inactivated in accordance with a visualized image pattern.
2. The forgery prevention medium according to claim 1, wherein the specific invisible material is a fluorescent material, and wherein the predetermined process is to irradiate a predetermined wavelength of light such as a UV ray or an IR ray.
3. The forgery prevention medium according to claim 1, wherein the specific invisible material includes a UV fluorescent material and an IR fluorescent material.
4. The forgery prevention medium according to claim 2, wherein a portion of the specific invisible material corresponding to a black pixel of the visualized image pattern is inactivated.
5. The forgery prevention medium according to claim 1, wherein the specific invisible material is a reversible temperature indicating material, and wherein the predetermined process is to change the temperature of the specific invisible material layer to a predetermined temperature.
6. The forgery prevention medium according to claim 5, wherein a portion of the specific invisible material corresponding to a white pixel of the visualized image pattern is inactivated.
7. The forgery prevention medium according to claim 5, wherein a color change threshold temperature of the temperature indicating material is in the range of −30° C. to 70° C.
8. The forgery prevention medium according to claim 7, wherein a color change threshold temperature of the temperature indicating material is in the range of −20° C. to 5° C. or 40° C. to 60° C.
9. The forgery prevention medium according to claim 1, wherein the specific invisible material includes a fluorescent material and a temperature indicating material.
10. A forgery prevention medium manufacturing apparatus for manufacturing a forgery prevention medium by using a recording medium including a substrate and a specific invisible material layer directly or indirectly laminated on the substrate and having a specific invisible material reversibly and visually recognized through a predetermined process disposed thereon in a plane shape, the forgery prevention medium manufacturing apparatus comprising:
a pixel specification unit specifying an inactivation target pixel position corresponding to a specific invisible image formed on the specific invisible material layer based on an image data of an invisible target image input thereto; and
an inactivation unit irradiating a laser beam to the inactivation target pixel position in the specific invisible material layer so as to inactivate the specific invisible material at the inactivation target pixel position.
11. The forgery prevention medium manufacturing apparatus according to claim 10, wherein the specific invisible material includes a fluorescent material, and wherein the pixel specification unit specifies a position of a pixel stopping the emission of fluorescent light during the irradiation of a predetermined wavelength of light as the inactivation target pixel position.
12. The forgery prevention medium manufacturing apparatus according to claim 10, wherein the specific invisible material includes a reversible temperature indicating material, and wherein the pixel specification unit specifies a position of a pixel stopping changing in color or coloring in accordance with an increase in temperature as the inactivation target pixel position.
13. The forgery prevention medium manufacturing apparatus according to claim 10, wherein the inactivation unit irradiates the laser beam by using at least one of a YAG laser, a YVO4 laser, a semiconductor laser, and a CO2 laser.
14. A forgery prevention medium manufacturing method to be carried out by a forgery prevention medium manufacturing apparatus for manufacturing a forgery prevention medium by using a recording medium including a substrate and a specific invisible material layer directly or indirectly laminated on the substrate and having a specific invisible material reversibly and visually recognized through a predetermined process disposed thereon in a plane shape, the forgery prevention medium manufacturing method comprising:
specifying an inactivation target pixel position corresponding to a specific invisible image formed on the specific invisible material layer based on an image data of an invisible target image input thereto; and
irradiating a laser beam to the inactivation target pixel position in the specific invisible material layer so as to inactivate the specific invisible material at the inactivation target pixel position.
15. The forgery prevention medium manufacturing method according to claim 14, wherein the specific invisible material includes a fluorescent material, and wherein in the specifying of the inactivation target pixel position, a position of a pixel stopping the emission of fluorescent light during the irradiation of a predetermined wavelength of light is specified as the inactivation target pixel position.
16. The forgery prevention medium manufacturing method according to claim 14, wherein the specific invisible material includes a reversible temperature indicating material, and wherein in the specifying of the inactivation target pixel position, a position of a pixel stopping changing in color or coloring in accordance with an increase in temperature is specified as the inactivation target pixel position.
US14/851,304 2014-09-12 2015-09-11 Forgery prevention medium, forgery prevention medium manufacturing apparatus, and forgery prevention medium manufacturing method Abandoned US20160077005A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/820,043 US11320374B2 (en) 2014-09-12 2017-11-21 Forgery prevention medium, forgery prevention medium manufacturing apparatus, and forgery prevention medium manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-186725 2014-09-12
JP2014186725A JP6334340B2 (en) 2014-09-12 2014-09-12 Forgery and alteration prevention medium, forgery and alteration prevention medium creation device, and forgery and alteration prevention medium creation method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/820,043 Division US11320374B2 (en) 2014-09-12 2017-11-21 Forgery prevention medium, forgery prevention medium manufacturing apparatus, and forgery prevention medium manufacturing method

Publications (1)

Publication Number Publication Date
US20160077005A1 true US20160077005A1 (en) 2016-03-17

Family

ID=54150247

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/851,304 Abandoned US20160077005A1 (en) 2014-09-12 2015-09-11 Forgery prevention medium, forgery prevention medium manufacturing apparatus, and forgery prevention medium manufacturing method
US15/820,043 Active 2037-03-06 US11320374B2 (en) 2014-09-12 2017-11-21 Forgery prevention medium, forgery prevention medium manufacturing apparatus, and forgery prevention medium manufacturing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/820,043 Active 2037-03-06 US11320374B2 (en) 2014-09-12 2017-11-21 Forgery prevention medium, forgery prevention medium manufacturing apparatus, and forgery prevention medium manufacturing method

Country Status (3)

Country Link
US (2) US20160077005A1 (en)
EP (1) EP2995465B1 (en)
JP (1) JP6334340B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019133729A (en) * 2018-02-02 2019-08-08 株式会社デンソーウェーブ Information recording method, information reading method and alumina fluophor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3431304B1 (en) * 2017-07-18 2020-05-20 Agfa-Gevaert Method of providing an ovd on a security document by laser marking
JP6939613B2 (en) * 2017-08-23 2021-09-22 株式会社デンソーウェーブ Information recording method and information reading method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5873604A (en) * 1995-05-25 1999-02-23 Verify First Technologies, Inc. Document security system having thermo-activated pantograph and validation mark
US5990197A (en) * 1996-10-28 1999-11-23 Eastman Chemical Company Organic solvent based ink for invisible marking/identification
US20020056756A1 (en) * 1997-12-06 2002-05-16 Jon Cameron Thermochromic bar code
US6413305B1 (en) * 2000-02-07 2002-07-02 The Standard Register Company Thermochromic ink composition
US20030000450A1 (en) * 2001-06-27 2003-01-02 John Wesley Thermochromic ink safety label for chafing fuel cans and methods of making the same
US20030127415A1 (en) * 2002-01-07 2003-07-10 Fabricas Monterrey, S.A. De C.V. Color changing closure for bottling applications
US20050087605A1 (en) * 2003-10-24 2005-04-28 Pitney Bowes Incorporated Fluorescent hidden indicium
US7628336B2 (en) * 2007-05-25 2009-12-08 Target Brands, Inc. Transaction card with thermochromic feature

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506410A (en) 1973-05-19 1975-01-23
JPS6165226A (en) 1984-09-07 1986-04-03 Dainippon Toryo Co Ltd White screen and method for forming image
JPS6374053A (en) * 1986-09-18 1988-04-04 Mitsubishi Electric Corp Recording method
JPS6422987A (en) 1987-07-20 1989-01-25 Sinloihi Co Ltd Light-emitting material
JP2567624B2 (en) 1987-08-31 1996-12-25 パイロットインキ株式会社 Water-based fluorescent ink
JPH01168911A (en) 1987-12-23 1989-07-04 Kuraray Co Ltd Production of ultraviolet light luminous yarn
DE10048812B4 (en) * 2000-09-29 2005-07-28 Orga Systems Gmbh Data carrier with customizable by means of high-energy beam authenticity features
JP2003089761A (en) 2001-09-18 2003-03-28 Konica Corp Fluorescent material ink for ink jet printer, method for forming fluorescent material image and ink jet printer
JP3811142B2 (en) 2003-06-24 2006-08-16 株式会社東芝 LED element and light emitting medium using rare earth complex
JP4185032B2 (en) 2004-09-13 2008-11-19 株式会社東芝 Fluorescent image formed product and fluorescent light emitting ink
JP2006255925A (en) 2005-03-15 2006-09-28 Seiko Epson Corp Method for preparing hidden picture and printed matter
JP4435033B2 (en) 2005-06-16 2010-03-17 株式会社東芝 Fluorescent pattern formed article, recording medium, security medium, and recording method
US20070212501A1 (en) * 2006-03-07 2007-09-13 Wynn Wolfe Thermal-activated beverage containers and holders
DE102006038270A1 (en) * 2006-08-10 2008-02-14 Bundesdruckerei Gmbh Security and / or value document with a pattern of radiation-modified components
JP2008115225A (en) 2006-11-01 2008-05-22 Toshiba Corp Luminescent ink and use of the same
JP5498331B2 (en) 2010-09-17 2014-05-21 株式会社東芝 Information recording medium, authenticity determination method thereof, and authenticity determination system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5873604A (en) * 1995-05-25 1999-02-23 Verify First Technologies, Inc. Document security system having thermo-activated pantograph and validation mark
US5990197A (en) * 1996-10-28 1999-11-23 Eastman Chemical Company Organic solvent based ink for invisible marking/identification
US20020056756A1 (en) * 1997-12-06 2002-05-16 Jon Cameron Thermochromic bar code
US6413305B1 (en) * 2000-02-07 2002-07-02 The Standard Register Company Thermochromic ink composition
US20030000450A1 (en) * 2001-06-27 2003-01-02 John Wesley Thermochromic ink safety label for chafing fuel cans and methods of making the same
US20030127415A1 (en) * 2002-01-07 2003-07-10 Fabricas Monterrey, S.A. De C.V. Color changing closure for bottling applications
US20050087605A1 (en) * 2003-10-24 2005-04-28 Pitney Bowes Incorporated Fluorescent hidden indicium
US7628336B2 (en) * 2007-05-25 2009-12-08 Target Brands, Inc. Transaction card with thermochromic feature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019133729A (en) * 2018-02-02 2019-08-08 株式会社デンソーウェーブ Information recording method, information reading method and alumina fluophor

Also Published As

Publication number Publication date
EP2995465B1 (en) 2017-05-31
EP2995465A1 (en) 2016-03-16
JP6334340B2 (en) 2018-05-30
JP2016060042A (en) 2016-04-25
US20180073983A1 (en) 2018-03-15
US11320374B2 (en) 2022-05-03

Similar Documents

Publication Publication Date Title
US11320374B2 (en) Forgery prevention medium, forgery prevention medium manufacturing apparatus, and forgery prevention medium manufacturing method
US8597774B2 (en) Laser-marking film
US7635660B2 (en) Thermal imaging system
US7463395B2 (en) Method for recording information into rewritable thermal label of the non-contact type
US8098269B2 (en) Print head pulsing techniques for multicolor printers
US7972990B2 (en) Process for recording into rewritable recording medium of non-contact type
EP3587133A1 (en) Recording medium and recording device
US9956787B2 (en) Laser recording device and recording method
JP2015147379A (en) laser printing laminate
JP2001001645A (en) Thermally reversible multiple color recording medium
EP3636445A2 (en) Recording medium and recording device
JP7155057B2 (en) laser recorder
EP1055919A1 (en) A method for initializing control of a thermal indicating material, a thermal monitoring member and a thermal monitoring method
JPH11152117A (en) Laser-printable packaging material
JP6045949B2 (en) Anti-counterfeit medium and method for judging authenticity of anti-counterfeit medium
JP2016172285A (en) Protective enclosure and laser irradiation system
JP2010125809A (en) Laminate for laser marking, and laser marking method using the same
JP6762822B2 (en) Laser recorders, methods and programs
EP1831873B1 (en) Pulsed laser mode for writing labels
JP7089923B2 (en) Laminate
KR20220010238A (en) A laser labels with laser marking layers blocked from external interface
JP2023141354A (en) Recording medium
JP6698274B2 (en) Multilayer film for laser printing
JP2024011779A (en) image recording medium
JP2023117088A (en) Image recording device, method for controlling image recording device, and control program

Legal Events

Date Code Title Description
AS Assignment

Owner name: KABUSHIKI KAISHA TOSHIBA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NEMOTO, NOBUKI;NAKANO, TAKAHISA;MORIMOTO, FUMITOSHI;AND OTHERS;REEL/FRAME:037011/0366

Effective date: 20151029

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION