US20160068573A1 - Peptidomimetic macrocycles - Google Patents

Peptidomimetic macrocycles Download PDF

Info

Publication number
US20160068573A1
US20160068573A1 US14/853,894 US201514853894A US2016068573A1 US 20160068573 A1 US20160068573 A1 US 20160068573A1 US 201514853894 A US201514853894 A US 201514853894A US 2016068573 A1 US2016068573 A1 US 2016068573A1
Authority
US
United States
Prior art keywords
virus
amino acid
peptidomimetic macrocycle
peptidomimetic
macrocycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/853,894
Inventor
Huw M. Nash
David Allen Annis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aileron Therapeutics Inc
Original Assignee
Aileron Therapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aileron Therapeutics Inc filed Critical Aileron Therapeutics Inc
Priority to US14/853,894 priority Critical patent/US20160068573A1/en
Assigned to AILERON THERAPEUTICS, INC. reassignment AILERON THERAPEUTICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ANNIS, DAVID ALLEN, NASH, HUM M.
Assigned to AILERON THERAPEUTICS, INC. reassignment AILERON THERAPEUTICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ANNIS, DAVID ALLEN, NASH, HUW M.
Publication of US20160068573A1 publication Critical patent/US20160068573A1/en
Priority to US15/093,373 priority patent/US10022422B2/en
Priority to US15/093,335 priority patent/US20160251399A1/en
Priority to US16/002,977 priority patent/US20180339014A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • C07K7/54Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • C07K7/54Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring
    • C07K7/56Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring the cyclisation not occurring through 2,4-diamino-butanoic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/64Cyclic peptides containing only normal peptide links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • Seasonal influenza infection is a major health concern for first-world and developing countries alike. Each year in the United States, five- to twenty-percent of the population gets the flu, more than 200,000 people are hospitalized from flu complications, and about 36,000 people die from flu. Worldwide, influenza causes tens of millions of respiratory illnesses and 250,000 to 500,000 deaths each year. New strains of avian influenza that are transmissible to humans are a critical concern for global health because these flu strains could yield pandemic disease for which no immunity exists, potentially resulting in millions of fatalities. “Avian flu” refers to a pathogenic avian influenza subtype that is highly contagious among birds and causes high mortality among domestic poultry.
  • influenza viruses Since all influenza viruses have the ability to rapidly mutate, there is considerable concern that avian flu may be able to infect humans more easily and become communicable from one person to another. Also, avian flu virus strains have not infected many humans worldwide, so there is little or no immune protection against these strains in the human population; therefore, an influenza pandemic could easily occur if sustained avian flu virus transmission were to develop.
  • Influenza A viruses are divided into subtypes based on characteristics of two proteins, hemagglutinin (H) and neuraminidase (N), on the surface of the virus. There are 16 different hemagglutinin subtypes and 9 different neuraminidase subtypes, with H1N1 and H3N2 being the most common subtypes found in humans.
  • the avian flu virus refers to influenza A H5N1.
  • Influenza A is a negative-sense (3′ to 5′) single-stranded RNA virus.
  • RNA-dependent RNA polymerase RNA-dependent RNA polymerase to transcribe its genome to positive-sense RNA prior to translation.
  • RNA-dependent RNA polymerases have no mammalian counterpart, which renders species selectivity less problematic in the development of therapeutics that target this enzyme.
  • viral RNA-dependent RNA polymerases include polioviral 3Dpol, vesicular stomatitis virus L, and hepatitis C virus NS5b; the latter is an active target for development of hepatitis C antiviral therapies.
  • current flu targets e.g., neuraminidase for Tamiflu
  • influenza RNA polymerase is highly conserved and therefore less likely to suffer the resistance issues that current drugs face.
  • influenza protein RNA polymerase a critical enzyme for viral replication and a novel target for both therapeutic intervention and prophylaxis during influenza outbreaks.
  • the influenza RNA-dependent RNA polymerase is a heterotrimer of three subunits, PA, PB1, and PB2, with the 3 10 -helical N-terminal region of PB1 binding between the “jaws” of the PA protein.
  • the PB1 helix is thought to be important for complex formation and nuclear transport and inhibits influenza A viral replication by interfering with polymerase activity.
  • the PB2 subunit has also been shown to play an essential role in activity of the viral polymerase complex, for instance through contacts with the PB1 subunit. See Sugiyama et al, EMBO Journal , 2009, 28, 1803-1811. However, little is known about compounds capable of interfering with the binding and activity of these proteins. In general, there remains a need for therapeutic methods of treating viral diseases in which RNA-dependent RNA polymerases play a role, and for compositions and methods capable of modifying the activity such polymerases.
  • the present invention addresses these and other needs.
  • the present invention provides a peptidomimetic macrocycle capable of binding to a viral RNA-dependent RNA polymerase.
  • a macrocycle may, for example, be capable of disrupting the assembly of subunits of a viral RNA-dependent RNA polymerase complex.
  • such a macrocycle may compete with the binding of a peptide of the sequence MDVNPTLLFLKVPAQ or MERIKELRNLM to said viral RNA-dependent RNA polymerase.
  • a peptidomimetic macrocycle of the invention comprises an amino acid sequence which is at least about 60%, 80%, 90%, or 95% identical to the amino acid sequence MDVNPTLLFLKVPAQ (PB1) or MERIKELRNLM (PB2).
  • the amino acid sequence of said peptidomimetic macrocycle is identified and optimized for its ability to bind to either the PB1 peptide binding site of the PA protein or the PB2 peptide binding site of the PB1 protein, for example through affinity selection with the PA or PB1 target protein or by structure-based design, with such a mechanism of action being confirmed by biophysical/structural studies and/or competitive displacement assays with the PB1 or PB2 peptide.
  • the peptidomimetic macrocycle comprises a helix, such as a 3 10 helix or an ⁇ -helix. In other embodiments, the peptidomimetic macrocycle comprises an ⁇ , ⁇ -disubstituted amino acid.
  • a peptidomimetic macrocycle of the invention may comprise a crosslinkcr linking the ⁇ -positions of at least two amino acids. At least one of said two amino acids may be an ⁇ , ⁇ -disubstituted amino acid.
  • the pcptidomimetic macrocyclic has the formula:
  • each A, C, D, and E is independently a natural or non-natural amino acid;
  • B is a natural or non-natural amino acid, amino acid analog,
  • R 1 and R 2 are independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-;
  • R 3 is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R 5 ;
  • L is a macrocycle-forming linker of the formula -L 1 -L 2 -;
  • L 1 and L 2 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene, or [—R 4 —K—R 4 -] n , each being optionally substituted with R 5 ;
  • the peptidomimetic macrocycle may comprise a crosslinker linking a backbone amino group of a first amino acid to a second amino acid within the peptidomimetic macrocycle.
  • the invention provides peptidomimetic macrocycles of the formula (IV) or (IVa):
  • each A, C, D, and E is independently a natural or non-natural amino acid;
  • B is a natural or non-natural amino acid, amino acid analog,
  • R 1 and R 2 are independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-, or part of a cyclic structure with an E residue;
  • R 3 is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R 5 ;
  • L 1 and L 2 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene, or [—R 4 —K—R 4 -] n , each being optionally substituted with R 5
  • x+y+z is 2, 3, 5 or 6.
  • the invention provides a method of treating influenza virus infection in a subject comprising administering to the subject a pcptidomimetic macrocycle of the invention. Also provided is a method of preventing infection by an influenza virus in a subject comprising administering to the subject a peptidomimetic macrocycle of the invention, or a method of inhibiting the activity of the RNA-dependent RNA polymerase of an influenza virus in a subject comprising administering to the subject such a pcptidomimetic macrocycle.
  • FIG. 1 a shows a bound PB1 helix in complex with the PA subunit of a RNA-dependent RNA polymerase.
  • Leu7 and Leu10 are candidate residues for i, i+3 macrocycle formation to stabilize a 3 10 helix.
  • FIG. 1 b shows a macrocycle derived from the sequence in FIG. 1 a.
  • FIG. 2 a shows the sequence of FIG. 1 a excised from its complex with the PA subunit of a RNA-dependent RNA polymerase.
  • FIG. 2 b shows the macrocycle derived from the sequence in FIG. 1 b excised from its complex with the PA subunit of a RNA-dependent RNA polymerase.
  • FIG. 3 describes the plasma stability of several peptidomimetic macrocycles of the invention.
  • FIG. 4 shows in vivo pharmacokinetic properties of several peptidomimetic macrocycles of the invention.
  • FIGS. 5 a - 5 f illustrate in vivo pharmacokinetic properties of peptidomimetic macrocycles of the invention.
  • FIG. 6 shows selected pharmacokinetic parameters for several peptidomimetic macrocycles of the invention.
  • FIG. 7 illustrates pharmacokinetic properties for intravenous and subcutaneous modes of administration for a peptidomimetic macrocycle of the invention.
  • microcycle refers to a molecule having a chemical structure including a ring or cycle formed by at least 9 covalently bonded atoms.
  • peptidomimetic macrocycle or “crosslinked polypeptide” refers to a compound comprising a plurality of amino acid residues joined by a plurality of peptide bonds and at least one macrocycle-forming linker which forms a macrocycle between a first naturally-occurring or non-naturally-occurring amino acid residue (or analog) and a second naturally-occurring or non-naturally-occurring amino acid residue (or analog) within the same molecule.
  • Pcptidomimetic macrocycle include embodiments where the macrocycle-forming linker connects the ⁇ carbon of the first amino acid residue (or analog) to the ⁇ carbon of the second amino acid residue (or analog).
  • the peptidomimetic macrocycles optionally include one or more non-peptide bonds between one or more amino acid residues and/or amino acid analog residues, and optionally include one or more non-naturally-occurring amino acid residues or amino acid analog residues in addition to any which form the macrocycle.
  • a “corresponding uncrosslinked polypeptide” when referred to in the context of a peptidomimetic macrocycle is understood to relate to a polypeptide of the same length as the macrocycle and comprising the equivalent natural amino acids of the wild-type sequence corresponding to the macrocycle.
  • the term “stability” refers to the maintenance of a defined secondary structure in solution by a peptidomimetic macrocycle of the invention as measured by circular dichroism, NMR or another biophysical measure, or resistance to proteolytic degradation in vitro or in vivo.
  • Non-limiting examples of secondary structures contemplated in this invention are helices, ⁇ -turns, and ⁇ -pleated sheets.
  • the term “helix” or “helical” is used to refer to any type of helical secondary structure, including 3 10 -helices, ⁇ -helices, and ⁇ -helices.
  • helical stability refers to the maintenance of helical structure by a peptidomimetic macrocycle of the invention as measured by circular dichroism or NMR.
  • the peptidomimetic macrocycles of the invention exhibit at least a 1.25, 1.5, 1.75 or 2-fold increase in helicity as determined by circular dichroism compared to a corresponding uncrosslinked macrocycle.
  • amino acid refers to a molecule containing both an amino group and a carboxyl group bound to a carbon which is designated the ⁇ -carbon.
  • Suitable amino acids include, without limitation, both the D-and L-isomers of the naturally-occurring amino acids, as well as non-naturally occurring amino acids prepared by organic synthesis or other metabolic routes. Unless the context specifically indicates otherwise, the term amino acid, as used herein, is intended to include amino acid analogs.
  • naturally occurring amino acid refers to any one of the twenty amino acids commonly found in peptides synthesized in nature, and known by the one letter abbreviations A, R, N, C, D, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y and V.
  • amino acid analog or “non-natural amino acid” refers to a molecule which is structurally similar to an amino acid and which can be substituted for an amino acid in the formation of a peptidomimetic macrocycle.
  • Amino acid analogs include, without limitation, compounds which are structurally identical to an amino acid, as defined herein, except for the inclusion of one or more additional methylene groups between the amino and carboxyl group (e.g., ⁇ -amino ⁇ -carboxy acids), or for the substitution of the amino or carboxy group by a similarly reactive group (e.g., substitution of the primary amine with a secondary or tertiary amine, or substitution or the carboxy group with an ester).
  • non-essential amino acid residue is a residue that can be altered from the wild-type sequence of a polypeptide (e.g., a BH3 domain or the p53 MDM2 binding domain) without abolishing or substantially altering its essential biological or biochemical activity (e.g., receptor binding or activation).
  • essential amino acid residue is a residue that, when altered from the wild-type sequence of the polypeptide, results in abolishing or substantially abolishing the polypeptide's essential biological or biochemical activity.
  • a “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain.
  • Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., K, R, H), acidic side chains (e.g., D, E), uncharged polar side chains (e.g., G, N, Q, S, T, Y, C), nonpolar side chains (e.g., A, V, L, I, P, F, M, W), beta-branched side chains (e.g., T, V, I) and aromatic side chains (e.g., Y, F, W, H).
  • basic side chains e.g., K, R, H
  • acidic side chains e.g., D, E
  • uncharged polar side chains e.g., G, N, Q, S, T, Y, C
  • nonpolar side chains e.g., A, V, L
  • a predicted nonessential amino acid residue in a polypeptide is preferably replaced with another amino acid residue from the same side chain family.
  • Other examples of acceptable substitutions are substitutions based on isosteric considerations (e.g. norleucine for methionine) or other properties (e.g. 2-thienylalanine for phenylalanine).
  • member refers to the atoms that form or can form the macrocycle, and excludes substituent or side chain atoms.
  • cyclodecane, 1,2-difluoro-decane and 1,3-dimethyl cyclodecane are all considered ten-membered macrocycles as the hydrogen or fluoro substituents or methyl side chains do not participate in forming the macrocycle.
  • amino acid side chain refers to a moiety attached to the ⁇ -carbon in an amino acid.
  • amino acid side chain for alanine is methyl
  • amino acid side chain for phenylalanine is phenylmethyl
  • amino acid side chain for cysteine is thiomethyl
  • amino acid side chain for aspartate is carboxymethyl
  • amino acid side chain for tyrosine is 4-hydroxyphenylmethyl
  • Other non-naturally occurring amino acid side chains are also included, for example, those that occur in nature (e.g., an amino acid metabolite) or those that are made synthetically (e.g., an ⁇ , ⁇ di-substituted amino acid).
  • ⁇ , ⁇ di-substituted amino acid refers to a molecule or moiety containing both an amino group and a carboxyl group bound to a carbon (the ⁇ -carbon) that is attached to two natural or non-natural amino acid side chains.
  • polypeptide encompasses two or more naturally or non-naturally-occurring amino acids joined by a covalent bond (e.g., an amide bond).
  • Polypeptides as described herein include full length proteins (e.g., fully processed proteins) as well as shorter amino acid sequences (e.g., fragments of naturally-occurring proteins or synthetic polypeptide fragments).
  • microcyclization reagent or “macrocycle-forming reagent” as used herein refers to any reagent which may be used to prepare a peptidomimetic macrocycle of the invention by mediating the reaction between two reactive groups.
  • Reactive groups may be, for example, an azide and alkyne
  • macrocyclization reagents include, without limitation, Cu reagents such as reagents which provide a reactive Cu(I) species, such as CuBr, CuI or CuOTf, as well as Cu(II) salts such as Cu(CO 2 CH 3 ) 2 , CuSO 4 , and CuCl 2 that can be converted in situ to an active Cu(I) reagent by the addition of a reducing agent such as ascorbic acid or sodium ascorbate.
  • Macrocyclization reagents may additionally include, for example, Ru reagents known in the art such as Cp*RuCl(PPh 3 ) 2 , [Cp*RuCl] 4 or other Ru reagents which may provide a reactive Ru(II) species.
  • the reactive groups are terminal olefins.
  • the macrocyclization reagents or macrocycle-forming reagents are metathesis catalysts including, but not limited to, stabilized, late transition metal carbene complex catalysts such as Group VIII transition metal carbene catalysts.
  • such catalysts are Ru and Os metal centers having a +2 oxidation state, an electron count of 16 and pentacoordinated.
  • the reactive groups are thiol groups.
  • the macrocyclization reagent is, for example, a linker fuictionalized with two thiol-reactive groups such as halogen groups.
  • halo or halogen refers to fluorine, chlorine, bromine or iodine or a radical thereof.
  • alkyl refers to a hydrocarbon chain that is a straight chain or branched chain, containing the indicated number of carbon atoms. For example, C 1 -C 10 indicates that the group has from 1 to 10 (inclusive) carbon atoms in it. In the absence of any numerical designation, “alkyl” is a chain (straight or branched) having 1 to 20 (inclusive) carbon atoms in it.
  • alkylene refers to a divalent alkyl (i.e., —R—).
  • alkenyl refers to a hydrocarbon chain that is a straight chain or branched chain having one or more carbon-carbon double bonds.
  • the alkenyl moiety contains the indicated number of carbon atoms. For example, C 2 -C 10 indicates that the group has from 2 to 10 (inclusive) carbon atoms in it.
  • lower alkenyl refers to a C 2 -C 6 alkenyl chain. In the absence of any numerical designation, “alkenyl” is a chain (straight or branched) having 2 to 20 (inclusive) carbon atoms in it.
  • alkynyl refers to a hydrocarbon chain that is a straight chain or branched chain having one or more carbon-carbon triple bonds.
  • the alkynyl moiety contains the indicated number of carbon atoms.
  • C 2 -C 10 indicates that the group has from 2 to 10 (inclusive) carbon atoms in it.
  • lower alkynyl refers to a C 2 -C 6 alkynyl chain.
  • alkynyl is a chain (straight or branched) having 2 to 20 (inclusive) carbon atoms in it.
  • aryl refers to a 6-carbon monocyclic or 10-carbon bicyclic aromatic ring system wherein 0, 1, 2, 3, or 4 atoms of each ring are substituted by a substituent. Examples of aryl groups include phenyl, naphthyl and the like.
  • arylalkyl or the term “aralkyl” refers to alkyl substituted with an aryl.
  • arylalkoxy refers to an alkoxy substituted with aryl.
  • Arylalkyl refers to an aryl group, as defined above, wherein one of the aryl group's hydrogen atoms has been replaced with a C 1 -C 5 alkyl group, as defined above.
  • Representative examples of an arylalkyl group include, but are not limited to, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2-ethylphenyl, 3-ethylphenyl, 4-ethylphenyl, 2-propylphenyl, 3-propylphenyl, 4-propylphenyl, 2-butylphenyl, 3-butylphenyl, 4-butylphenyl, 2-pentylphenyl, 3-pentylphenyl, 4-pentylphenyl, 2-isopropylphenyl, 3-isopropylphenyl, 4-isopropylphenyl, 2-isobutylphenyl, 3-isobutylphenyl, 4-isopropylphenyl
  • Arylamido refers to an aryl group, as defined above, wherein one of the aryl group's hydrogen atoms has been replaced with one or more —C(O)NH 2 groups.
  • Representative examples of an arylamido group include 2-C(O)NH 2 -phenyl, 3-C(O)NH 2 -phenyl, 4-C(O)NH 2 -phenyl, 2-C(O)NH 2 -pyridyl, 3-C(O)NH 2 -pyridyl, and 4-C(O)NH 2 -pyridyl,
  • Alkylheterocycle refers to a C 1 -C 5 alkyl group, as defined above, wherein one of the C 1 -C 5 alkyl group's hydrogen atoms has been replaced with a heterocycle.
  • Representative examples of an alkylheterocycle group include, but are not limited to, —CH 2 CH 2 -morpholine, —CH 2 CH 2 -piperidine, —CH 2 CH 2 CH 2 -morpholine, and —CH 2 CH 2 CH 2 -imidazole.
  • Alkylamido refers to a C 1 -C 5 alkyl group, as defined above, wherein one of the C 1 -C 5 alkyl group's hydrogen atoms has been replaced with a —C(O)NH 2 group.
  • an alkylamido group include, but are not limited to, —CH 2 —C(O)NH 2 , —CH 2 CH 2 —C(O)NH 2 , —CH 2 CH 2 CH 2 C(O)NH 2 , —CH 2 CH 2 CH 2 CH 2 C(O)NH 2 , —CH 2 CH(C(O)NH 2 )CH 3 , —CH 2 CH(C(O)NH 2 )CH 2 CH 3 , —CH(C(O)NH 2 )CH 2 CH 3 , —C(CH 3 ) 2 CH 2 C(O)NH 2 , —CH 2 —CH 2 —NH—C(O)—CH 3 , —CH 2 —CH 2 —NH—C(O)—CH 3 , —CH 2 —CH 2 —NH—C(O)—CH 3 , —CH 2 —CH 2 —NH—C(O)—CH 3 , —CH 2 —CH 2 —NH—C(O)
  • Alkanol refers to a C 1 -C 5 alkyl group, as defined above, wherein one of the C 1 -C 5 alkyl group's hydrogen atoms has been replaced with a hydroxyl group.
  • Representative examples of an alkanol group include, but are not limited to, —CH 2 OH, —CH 2 CH 2 OH, —CH 2 CH 2 CH 2 OH, —CH 2 CH 2 CH 2 CH 2 OH, —CH 2 CH 2 CH 2 CH 2 CH 2 OH, —CH 2 CH(OH)CH 3 , —CH 2 CH(OH)CH 2 CH 3 , —CH(OH)CH 3 and —C(CH 3 ) 2 CH 2 OH.
  • Alkylcarboxy refers to a C 1 -C 5 alkyl group, as defined above, wherein one of the C 1 -C 5 alkyl group's hydrogen atoms has been replaced with a —COOH group.
  • Representative examples of an alkylcarboxy group include, but are not limited to, —CH 2 COOH, —CH 2 CH 2 COOH, —CH 2 CH 2 CH 2 COOH, —CH 2 CH 2 CH 2 CH 2 COOH, —CH 2 CH(COOH)CH 3 , —CH 2 CH 2 CH 2 CH 2 COOH, —CH 2 CH(COOH)CH 2 CH 3 , —CH(COOH)CH 2 CH 3 and —C(CH 3 ) 2 CH 2 COOH.
  • cycloalkyl as employed herein includes saturated and partially unsaturated cyclic hydrocarbon groups having 3 to 12 carbons, preferably 3 to 8 carbons, and more preferably 3 to 6 carbons, wherein the cycloalkyl group additionally is optionally substituted.
  • Some cycloalkyl groups include, without limitation, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, and cyclooctyl.
  • heteroaryl refers to an aromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of O, N, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein 0, 1, 2, 3, or 4 atoms of each ring are substituted by a substituent.
  • heteroaryl groups include pyridyl, furyl or furanyl, imidazolyl, benzimidazolyl, pyrimidinyl, thiophenyl or thienyl, quinolinyl, indolyl, thiazolyl, and the like.
  • heteroarylalkyl or the term “heteroaralkyl” refers to an alkyl substituted with a heteroaryl.
  • heteroarylalkoxy refers to an alkoxy substituted with heteroaryl.
  • heteroarylalkyl or the term “heteroaralkyl” refers to an alkyl substituted with a heteroaryl.
  • heteroarylalkoxy refers to an alkoxy substituted with heteroaryl.
  • heterocyclyl refers to a nonaromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of O, N, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein 0, 1, 2 or 3 atoms of each ring are substituted by a substituent.
  • heterocyclyl groups include piperazinyl, pyrrolidinyl, dioxanyl, morpholinyl, tetrahydrofuranyl, and the like.
  • substituted refers to a group replacing a second atom or group such as a hydrogen atom on any molecule, compound or moiety.
  • Suitable substituents include, without limitation, halo, hydroxy, mercapto, oxo, nitro, haloalkyl, alkyl, alkaryl, aryl, aralkyl, alkoxy, thioalkoxy, aryloxy, amino, alkoxycarbonyl, amido, carboxy, alkanesulfonyl, alkylcarbonyl, and cyano groups.
  • the compounds of this invention contain one or more asymmetric centers and thus occur as racemates and racemic mixtures, single enantiomers, individual diastereomers and diastereomeric mixtures. All such isomeric forms of these compounds are included in the present invention unless expressly provided otherwise.
  • the compounds of this invention are also represented in multiple tautomeric forms, in such instances, the invention includes all tautomeric forms of the compounds described herein (e.g., if alkylation of a ring system results in alkylation at multiple sites, the invention includes all such reaction products). All such isomeric forms of such compounds are included in the present invention unless expressly provided otherwise. All crystal forms of the compounds described herein are included in the present invention unless expressly provided otherwise.
  • the terms “increase” and “decrease” mean, respectively, to cause a statistically significantly (i.e., p ⁇ 0.1) increase or decrease of at least 5%.
  • variable is equal to any of the values within that range.
  • variable is equal to any integer value within the numerical range, including the end-points of the range.
  • variable is equal to any real value within the numerical range, including the end-points of the range.
  • a variable which is described as having values between 0 and 2 takes the values 0, 1 or 2 if the variable is inherently discrete, and takes the values 0.0, 0.1, 0.01, 0.001, or any other real values ⁇ 0 and ⁇ 2 if the variable is inherently continuous.
  • on average represents the mean value derived from performing at least three independent replicates for each data point.
  • biological activity encompasses structural and functional properties of a macrocycle of the invention.
  • Biological activity is, for example, structural stability, helicity (including, e.g. alpha-helicity), affinity for a target, resistance to proteolytic degradation, cell penetrability, intracellular stability, in vivo stability, or any combination thereof.
  • peptidomimetic macrocycles are prepared that target or interact with proteins that a virus needs for infection or replication within a host cell.
  • viruses may be, for example, influenza viruses belonging to Orthomyxoviridae family of viruses. This family also includes Thogoto viruses and Dhoriviruses.
  • Influenza type A viruses infect people, birds, pigs, horses, seals and other animals, but wild birds are the natural hosts for these viruses.
  • Influenza type A viruses are divided into subtypes and named on the basis of two proteins on the surface of the virus: hemagglutinin (HA) and neuraminidase (NA).
  • HA hemagglutinin
  • NA neuraminidase
  • an “H7N2 virus” designates an influenza A subtype that has an HA 7 protein and an NA 2 protein.
  • an “H5N1” virus has an HA 5 protein and an NA 1 protein.
  • Only some influenza A subtypes i.e., H1N1, H1N2, and H3N2 are currently in general circulation among people. Other subtypes are found most commonly in other animal species.
  • H7N7 and H3N8 viruses cause illness in horses, and H3N8 also has recently been shown to cause illness in dogs (http://www.cdc.gov/flu/avian/gen-info/flu-viruses.htm).
  • Antiviral agents according to the invention can be used to protect high-risk groups (hospital units, institutes caring for elderly, immuno-suppressed individuals), and on a case by case basis.
  • a potential use for antiviral agents is to limit the spread and severity of the future pandemics whether caused by avian H5N1 or other strains of influenza virus.
  • Avian influenza A viruses of the subtypes H5 and H7, including H5N1, H7N7, and H7N3 viruses have been associated with high pathogenicity, and human infection with these viruses have ranged from mild (H7N3, H7N7) to severe and fatal disease (H7N7, H5N1).
  • Influenza B viruses are usually found in humans but can also infect seals. Unlike influenza A viruses, these viruses are not classified according to subtype. Influenza B viruses can cause morbidity and mortality among humans, but in general are associated with less severe epidemics than influenza A viruses. Although influenza type B viruses can cause human epidemics, they have not caused pandemics. (http://www.cdc.gov/flu/avian/gen-info/flu-viruses.htm).
  • Influenza type C viruses cause mild illness in humans and do not cause epidemics or pandemics. These viruses can also infect dogs and pigs. These viruses are not classified according to subtype. (http://www.cdc.gov/flu/avian/gen-info/flu-viruses.htm).
  • Influenza viruses differ from each other in respect to cell surface receptor specificity and cell tropism, however they use common entry pathways. Charting these pathways and identification of host cell proteins involved in virus influenza transmission, entry, replication, biosynthesis, assembly, or exit allows the development of general agents against existing and emerging strains of influenza.
  • the agents may also prove useful against unrelated viruses that use similar pathways. For example, the agents may protect airway epithelial cells against a number of different viruses in addition to influenza viruses.
  • the targeted virus is an adenovirus.
  • Adenoviruses most commonly cause respiratory illness; symptoms of respiratory illness caused by adenovirus infection range from the common cold syndrome to pneumonia, croup, and bronchitis. Patients with compromised immune systems are especially susceptible to severe complications of adenovirus infection.
  • Acute respiratory disease (ARD), first recognized among military recruits during World War II, can be caused by adenovirus infections during conditions of crowding and stress.
  • Adenoviruses are medium-sized (90-100 nm), nonenveloped icosohedral viruses containing double-stranded DNA.
  • immunologically distinct types (6 subgenera: A through F) that can cause human infections.
  • Adenoviruses are unusually stable to chemical or physical agents and adverse pH conditions, allowing for prolonged survival outside of the body. Some adenoviruses, such as AD2 and Ad5 (species C) use clathrin mediated endocytosis and macropinocytosis for infectious entry. Other adenoviruses, such as Ad3 (species B) use dynamin dependent endocytosis and macropinocytosis for infectious entry.
  • the targeted virus is a respiratory syncytial virus (RSV).
  • RSV respiratory syncytial virus
  • Illness begins most frequently with fever, runny nose, cough, and sometimes wheezing.
  • RSV infection between 25% and 40% of infants and young children have signs or symptoms of bronchiolitis or pneumonia, and 0.5% to 2% require hospitalization.
  • Most children recover from illness in 8 to 15 days. The majority of children hospitalized for RSV infection are under 6 months of age.
  • RSV also causes repeated infections throughout life, usually associated with moderate-to-severe cold-like symptoms; however, severe lower respiratory tract disease may occur at any age, especially among the elderly or among those with compromised cardiac, pulmonary, or immune systems.
  • RSV is a negative-sense, enveloped RNA virus.
  • the virion is variable in shape and size (average diameter of between 120 and 300 nm), is unstable in the environment (surviving only a few hours on environmental surfaces), and is readily inactivated with soap and water and disinfectants.
  • the targeted virus is a human parainfluenza virus (HPIV).
  • HPIVs are second to respiratory syncytial virus (RSV) as a common cause of lower respiratory tract disease in young children. Similar to RSV, HPIVs can cause repeated infections throughout life, usually manifested by an upper respiratory tract illness (e.g., a cold and/or sore throat). HPIVs can also cause serious lower respiratory tract disease with repeat infection (e.g., pneumonia, bronchitis, and bronchiolitis), especially among the elderly, and among patients with compromised immune systems. Each of the four HPIVs has different clinical and epidemiologic features.
  • HPIV-1 and HPIV-2 are distinctive clinical feature of HPIV-1 and HPIV-2.
  • croup i.e., laryngotracheobronchitis
  • HPIV-1 is the leading cause of croup in children, whereas HPIV-2 is less frequently detected.
  • HPIV-1 and -2 can cause other upper and lower respiratory tract illnesses.
  • HPIV-3 is more often associated with bronchiolitis and pneumonia.
  • HPIV-4 is infrequently detected, possibly because it is less likely to cause severe disease.
  • the incubation period for HPIVs is generally from 1 to 7 days.
  • HPIVs are negative-sense, single-stranded RNA viruses that possess fusion and hemagglutinin-neuraminidase glycoprotein “spikes” on their surface.
  • HPIV HPIV
  • subtypes 4a and 4b
  • the virion varies in size (average diameter between 150 and 300 nm) and shape, is unstable in the environment (surviving a few hours on environmental surfaces), and is readily inactivated with soap and water.
  • the targeted virus is a coronavirus.
  • Coronavirus is a genus of animal virus belonging to the family Coronaviridae. Coronaviruses are enveloped viruses with a positive-sense single-stranded RNA genome and a helical symmetry. The genomic size of coronaviruses ranges from approximately 16 to 31 kilobases, extraordinarily large for an RNA virus.
  • the name “coronavirus” is derived from the Latin corona, meaning crown, as the virus envelope appears under electron microscopy to be crowned by a characteristic ring of small bulbous structures. This morphology is actually formed by the viral spike peplomers, which are proteins that populate the surface of the virus and determine host tropism.
  • Coronaviruses are grouped in the order Nidovirales, named for the Latin nidus, meaning nest, as all viruses in this order produce a 3′ co-terminal nested set of subgenomic mRNA's during infection. Proteins that contribute to the overall structure of all coronaviruses are the spike, envelope, membrane and nucleocapsid. In the specific case of SARS a defined receptor-binding domain on S mediates the attachment of the virus to its cellular receptor, angiotensin-converting enzyme 2.
  • the targeted virus is a rhinovirus.
  • Rhinovirus (from the Greek rhin-, which means “nose”) is a genus of the Picornaviridae family of viruses. Rhinoviruses are the most common viral infective agents in humans, and a causative agent of the common cold. There are over 105 serologic virus types that cause cold symptoms, and rhinoviruses are responsible for approximately 50% of all cases. Rhinoviruses have single-stranded positive sense RNA genomes of between 7.2 and 8.5 kb in length. At the 5′ end of the genome is a virus-encoded protein, and like mammalian mRNA, there is a 3′ poly-A tail. Structural proteins are encoded in the 5′ region of the genome and non structural at the end. This is the same for all picornaviruses. The viral particles themselves are not enveloped and are icosahedral in structure.
  • Any secondary structure of a viral protein can form the basis of the methods of the invention.
  • a viral proteins comprising a secondary structure which is a helix may be used to design peptidomimetic macrocycles based on said helix.
  • the peptidomimetic macrocycle of the invention is designed based on the PR1 or PB2 sequence of an influenza virus.
  • the PB1 sequence is highly conserved across all known strains of influenza A virus, which may result in less drug resistance should than that observed with the current standard of care.
  • An alignment of the first 25 N-terminal amino acids of PB1 from the NCBI data bank's 2,485 influenza A virus strains (Ghanem, 2007) demonstrates the remarkable sequence conservation in the PA interaction domain of PB1. Therefore, antiviral therapies based on the PB1 sequence may block most if not all, influenza A virus strains. Additionally, sequence modification of a peptidomimetic macrocycle based on these few variations in PB1 may enable an antiviral cocktail of PB1 inhibitors to eliminate resistance due to escape mutants.
  • a peptidomimetic macrocycle of the invention has the Formula (I):
  • each A, C, D, and E is independently a natural or non-natural amino acid
  • B is a natural or non-natural amino acid, amino acid analog
  • R 1 and R 2 are independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-;
  • R 3 is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R 5 ;
  • L is a macrocycle-forming linker of the formula -L 1 -L 2 -;
  • L 1 and L 2 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene, or [—R 4 —K—R 4 -]
  • At least one of R 1 and R 2 is alkyl, unsubstituted or substituted with halo-. In another example, both R 1 and R 2 are independently alkyl, unsubstituted or substituted with halo-. In some embodiments, at least one of R 1 and R 2 is methyl. In other embodiments, R 1 and R 2 are methyl.
  • x+y+z is at least 2. In other embodiments of the invention, x+y+z is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • Each occurrence of A, B, C, D or E in a macrocycle or macrocycle precursor of the invention is independently selected.
  • a sequence represented by the formula [A] x when x is 3, encompasses embodiments where the amino acids are not identical, e.g. Gln-Asp-Ala as well as embodiments where the amino acids are identical, e.g. Gln-Gln-Gln. This applies for any value of x, y, or z in the indicated ranges.
  • each compound of the invention may encompass peptidomimetic macrocycles which are the same or different.
  • a compound of the invention may comprise peptidomimetic macrocycles comprising different linker lengths or chemical compositions.
  • the peptidomimetic macrocycle of the invention comprises a secondary structure which is a helix and R 8 is —H, allowing intrahelical hydrogen bonding.
  • at least one of A, B, C, D or E is an ⁇ , ⁇ -disubstituted amino acid.
  • B is an ⁇ , ⁇ -disubstituted amino acid.
  • at least one of A, B, C, D or E is 2-aminoisobutyric acid.
  • at least one of A, B, C, D or E is
  • the length of the macrocycle-forming linker L as measured from a first C ⁇ to a second C ⁇ is selected to stabilize a desired secondary peptide structure, such as a helix formed by residues of the peptidomimetic macrocycle including, but not necessarily limited to, those between the first C ⁇ to a second C ⁇ .
  • the peptidomimetic macrocycle of Formula (I) is:
  • each R 1 and R 2 is independently independently H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo.
  • the peptidomimetic macrocycle of Formula (I) is:
  • the peptidomimetic macrocycles of the invention have the Formula (II):
  • each A, C, D, and E is independently a natural or non-natural amino acid;
  • B is a natural or non-natural amino acid, amino acid analog,
  • R 1 and R 2 are independently H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo;
  • R 3 is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R 5 ;
  • L is a macrocycle-forming linker of the formula
  • L 1 , L 2 and L 3 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene, or [—R 4 —K—R 4 -] n , each being optionally substituted with R 5 ; each R 4 is alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene; each K is O, S, SO, SO 2 , CO, CO 2 , or CONR 3 ; each R 5 is independently halogen, alkyl, —OR 6 , —N(R 6 ) 2 , —SR 6 , —SOR 6 , —SO 2 R 6 , —CO 2 R 6 , a fluorescent moiety, a radioisotope or a therapeutic agent; each R 6 is independently —H, alkyl, alkenyl,
  • At least one of R 1 and R 2 is alkyl, unsubstituted or substituted with halo-. In another example, both R 1 and R 2 are independently alkyl, unsubstituted or substituted with halo. In some embodiments, at least one of R 1 and R 2 is methyl. In other embodiments, R 1 and R 2 are methyl.
  • x+y+z is at least 2. In other embodiments of the invention, x+y+z is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • Each occurrence of A, B, C, D or E in a macrocycle or macrocycle precursor of the invention is independently selected.
  • a sequence represented by the formula [A] x when x is 3, encompasses embodiments where the amino acids are not identical, e.g. Gln Asp Ala as well as embodiments where the amino acids are identical, e.g. Gln Gln Gln. This applies for any value of x, y, or z in the indicated ranges.
  • the peptidomimetic macrocycle of the invention comprises a secondary structure which is a helix and R 8 is —H, allowing intrahelical hydrogen bonding.
  • at least one of A, B, C, D or F is an ⁇ , ⁇ -disubstituted amino acid.
  • B is an ⁇ , ⁇ -disubstituted amino acid.
  • at least one of A, B, C, D or E is 2-aminoisobutyric acid.
  • at least one of A, B, C, D or E is
  • the length of the macrocycle-forming linker L as measured from a first C ⁇ to a second C ⁇ is selected to stabilize a desired secondary peptide structure, such as a helix formed by residues of the peptidomimetic macrocycle including, but not necessarily limited to, those between the first C ⁇ to a second C ⁇ .
  • the invention provides peptidomimetic macrocycles of Formula (II):
  • each A, C, D, and F is independently a natural or non-natural amino acid;
  • B is a natural or non-natural amino acid, amino acid analog,
  • R 1 and R 2 are independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-;
  • R 3 is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, unsubstituted or substituted with R 5 ;
  • L 1 , L 2 , L 3 and L 4 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene or [—R 4 —K—R 4 -]n, each being unsubstituted or substituted with R
  • K is O, S, SO, SO 2 , CO, CO 2 , or CONR 3 ;
  • R 7 is —II, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloal
  • At least one of R 1 and R 2 is alkyl, unsubstituted or substituted with halo-. In another example, both R 1 and R 2 are independently alkyl, unsubstituted or substituted with halo-. In some embodiments, at least one of R 1 and R 2 is methyl. In other embodiments, R 1 and R 2 are methyl.
  • x+y+z is at least 2. In other embodiments of the invention, x+y+z is 3, 4, 5, 6, 7, 8, 9 or 10.
  • Each occurrence of A, B, C, D or E in a macrocycle or macrocycle precursor of the invention is independently selected.
  • a sequence represented by the formula [A] x when x is 3, encompasses embodiments where the amino acids are not identical, e.g. Gln-Asp-Ala as well as embodiments where the amino acids are identical, e.g. Gln-Gln-Gln. This applies for any value of x, y, or z in the indicated ranges.
  • the peptidomimetic macrocycle of the invention comprises a secondary structure which is a helix and R 8 is —H, allowing intrahelical hydrogen bonding.
  • at least one of A, B, C, D or E is an ⁇ , ⁇ -disubstituted amino acid.
  • B is an ⁇ , ⁇ -disubstituted amino acid.
  • at least one of A, B, C, D or E is 2-aminoisobutyric acid.
  • at least one of A, B, C, D or E is
  • the length of the macrocycle-forming linker [-L 1 -S-L 2 -S-L 3 -] as measured from a first C ⁇ to a second C ⁇ is selected to stabilize a desired secondary peptide structure, such as a helix (including, but not limited to a 3 10 helix or an ⁇ -helix) formed by residues of the peptidomimetic macrocycle including, but not necessarily limited to, those between the first C ⁇ to a second C ⁇ .
  • a desired secondary peptide structure such as a helix (including, but not limited to a 3 10 helix or an ⁇ -helix) formed by residues of the peptidomimetic macrocycle including, but not necessarily limited to, those between the first C ⁇ to a second C ⁇ .
  • Macrocycles or macrocycle precursors are synthesized, for example, by solution phase or solid-phase methods, and can contain both naturally-occurring and non-naturally-occurring amino acids. See, for example, Hunt, “The Non-Protein Amino Acids” in Chemistry and Biochemistry of the Amino Acids , edited by G. C. Barrett, Chapman and Hall, 1985.
  • the thiol moieties are the side chains of the amino acid residues L-cysteine, D-cysteine, ⁇ -methyl-L cysteine, ⁇ -methyl-D-cysteine, L-homocysteine, D-homocysteine, ⁇ -methyl-L-homocysteine or ⁇ -methyl-D-homocysteine.
  • a bis-alkylating reagent is of the general formula X-L 2 -Y wherein L 2 is a linker moiety and X and Y are leaving groups that are displaced by —SH moieties to form bonds with L 2 .
  • X and Y are halogens such as I, Br, or Cl.
  • D and/or E in the compound of Formula I, II or III are further modified in order to facilitate cellular uptake.
  • lipidating or PEGylating a peptidomimetic macrocycle facilitates cellular uptake, increases bioavailability, increases blood circulation, alters pharmacokinetics, decreases immunogenicity and/or decreases the needed frequency of administration.
  • At least one of [D] and [E] in the compound of Formula I, II or III represents a moiety comprising an additional macrocycle-forming linker such that the peptidomimetic macrocycle comprises at least two macrocycle-forming linkers.
  • a peptidomimetic macrocycle comprises two macrocycle-forming linkers.
  • any of the macrocycle-forming linkers described herein may be used in any combination with any of the sequences shown in Tables 1-4 and also with any of the R substituents indicated herein.
  • the peptidomimetic macrocycle of the invention comprises at least one helical motif such as a 3 10 or an ⁇ -helix motif.
  • A, B and/or C in the compound of Formula I, II or III include one or more helices.
  • helices include between 3 and 4 amino acid residues per turn.
  • the helix of the peptidomimetic macrocycle includes 1 to 5 turns and, therefore, 3 to 20 amino acid residues.
  • the helix includes 1 turn, 2 turns, 3 turns, 4 turns, or 5 turns.
  • the macrocycle-forming linker stabilizes a helix motif included within the peptidomimetic macrocycle.
  • the length of the macrocycle-forming linker L from a first C ⁇ to a second C ⁇ is selected to increase the stability of a helix.
  • the macrocycle-forming linker spans from 1 turn to 5 turns of the helix. In some embodiments, the macrocycle-forming linker spans approximately 1 turn, 2 turns, 3 turns, 4 turns, or 5 turns of the helix. In some embodiments, the length of the macrocycle-forming linker is approximately 5 ⁇ to 9 ⁇ per turn of the helix, or approximately 6 ⁇ to 8 ⁇ per turn of the helix.
  • the length is equal to approximately 5 carbon-carbon bonds to 13 carbon-carbon bonds, approximately 7 carbon-carbon bonds to 11 carbon-carbon bonds, or approximately 9 carbon-carbon bonds.
  • the length is equal to approximately 8 carbon-carbon bonds to 16 carbon-carbon bonds, approximately 10 carbon-carbon bonds to 14 carbon-carbon bonds, or approximately 12 carbon-carbon bonds.
  • the macrocycle-forming linker spans approximately 3 turns of a helix, the length is equal to approximately 14 carbon-carbon bonds to 22 carbon-carbon bonds, approximately 16 carbon-carbon bonds to 20 carbon-carbon bonds, or approximately 18 carbon-carbon bonds.
  • the length is equal to approximately 20 carbon-carbon bonds to 28 carbon-carbon bonds, approximately 22 carbon-carbon bonds to 26 carbon-carbon bonds, or approximately 24 carbon-carbon bonds.
  • the macrocycle-forming linker spans approximately 5 turns of a helix, the length is equal to approximately 26 carbon-carbon bonds to 34 carbon-carbon bonds, approximately 28 carbon-carbon bonds to 32 carbon-carbon bonds, or approximately 30 carbon-carbon bonds.
  • the linkage contains approximately 4 atoms to 12 atoms, approximately 6 atoms to 10 atoms, or approximately 8 atoms.
  • the linkage contains approximately 7 atoms to 15 atoms, approximately 9 atoms to 13 atoms, or approximately 11 atoms.
  • the linkage contains approximately 13 atoms to 21 atoms, approximately 15 atoms to 19 atoms, or approximately 17 atoms.
  • the linkage contains approximately 19 atoms to 27 atoms, approximately 21 atoms to 25 atoms, or approximately 23 atoms.
  • the linkage contains approximately 25 atoms to 33 atoms, approximately 27 atoms to 31 atoms, or approximately 29 atoms.
  • the resulting macrocycle forms a ring containing approximately 17 members to 25 members, approximately 19 members to 23 members, or approximately 21 members.
  • the macrocycle-forming linker spans approximately 2 turns of the helix, the resulting macrocycle forms a ring containing approximately 29 members to 37 members, approximately 31 members to 35 members, or approximately 33 members.
  • the resulting macrocycle forms a ring containing approximately 44 members to 52 members, approximately 46 members to 50 members, or approximately 48 members.
  • the resulting macrocycle forms a ring containing approximately 59 members to 67 members, approximately 61 members to 65 members, or approximately 63 members.
  • the macrocycle-forming linker spans approximately 5 turns of the helix, the resulting macrocycle forms a ring containing approximately 74 members to 82 members, approximately 76 members to 80 members, or approximately 78 members.
  • the invention provides peptidomimetic macrocycles of Formula (IV) or (IVa):
  • each A, C, D, and E is independently a natural or non-natural amino acid;
  • B is a natural or non-natural amino acid, amino acid analog,
  • R 1 and R 2 are independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-, or part of a cyclic structure with an E residue;
  • R 3 is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R 5 ;
  • L is a macrocycle-forming linker of the formula -L 1 -L 2 -;
  • L 1 and L 2 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene, or
  • At least one of R 1 and R 2 is alkyl, unsubstituted or substituted with halo-. In another example, both R 1 and R 2 are independently alkyl, unsubstituted or substituted with halo-. In some embodiments, at least one of R 1 and R 2 is methyl. In other embodiments, R 1 and R 2 are methyl.
  • x+y+z is at least 1. In other embodiments of the invention, x+y+z is at least 2. In other embodiments of the invention, x+y+z is 3, 4, 5, 6, 7, 8, 9 or 10.
  • Each occurrence of A, B, C, D or E in a macrocycle or macrocycle precursor of the invention is independently selected.
  • a sequence represented by the formula [A] x when x is 3, encompasses embodiments where the amino acids are not identical, e.g. Gln-Asp-Ala as well as embodiments where the amino acids are identical, e.g. Gln-Gln-Gln. This applies for any value of x, y, or z in the indicated ranges.
  • the peptidomimetic macrocycle of the invention comprises a secondary structure which is a helix and R is —H, allowing intrahelical hydrogen bonding.
  • at least one of A, B, C, D or E is an ⁇ , ⁇ -disubstituted amino acid.
  • B is an ⁇ , ⁇ -disubstituted amino acid.
  • at least one of A, B, C, D or E is 2-aminoisobutyric acid.
  • at least one of A, B, C, D or E is
  • the length of the macrocycle-forming linker L as measured from a first C ⁇ to a second C ⁇ is selected to stabilize a desired secondary peptide structure, such as a helix (including a 3 10 helix or ⁇ -helix) formed by residues of the peptidomimetic macrocycle including, but not necessarily limited to, those between the first C ⁇ to a second C ⁇ .
  • a desired secondary peptide structure such as a helix (including a 3 10 helix or ⁇ -helix) formed by residues of the peptidomimetic macrocycle including, but not necessarily limited to, those between the first C ⁇ to a second C ⁇ .
  • Pcptidomimetic macrocycles of the invention may be prepared by any of a variety of methods known in the art.
  • any of the residues indicated by “X” in Table 1 may be substituted with a residue capable of forming a crosslinker with a second residue in the same molecule or a precursor of such a residue.
  • peptidomimetic macrocycles of Formula I
  • the preparation of peptidomimetic macrocycles of Formula I is described in Schafffle et al., J. Am. Chem. Soc. 122:5891-5892 (2000); Schafffle & Verdine, J. Am. Chem. Soc. 122:5891 (2005); Walensky et al., Science 305:1466-1470 (2004); and U.S. Pat. No. 7,192,713.
  • the ⁇ , ⁇ -disubstituted amino acids and amino acid precursors disclosed in the cited references may be employed in synthesis of the peptidomimetic macrocycle precursor polypeptides.
  • the “S5-olefin amino acid” is (S)- ⁇ -(2′-pentenyl) alanine and the “R8 olefin amino acid” is (R)- ⁇ -(2′-octenyl) alanine.
  • the terminal olefins are reacted with a metathesis catalyst, leading to the formation of the peptidomimetic macrocycle.
  • the peptidomimetic macrocyles of the invention are of Formula IV or IVa. Methods for the preparation of such macrocycles are described, for example, in U.S. Pat. No. 7,202,332.
  • the synthesis of these peptidomimetic macrocycles involves a multi-step process that features the synthesis of a peptidomimetic precursor containing an azide moiety and an alkyne moiety; followed by contacting the peptidomimetic precursor with a macrocyclization reagent to generate a triazole-linked peptidomimetic macrocycle.
  • a multi-step process that features the synthesis of a peptidomimetic precursor containing an azide moiety and an alkyne moiety; followed by contacting the peptidomimetic precursor with a macrocyclization reagent to generate a triazole-linked peptidomimetic macrocycle.
  • Macrocycles or macrocycle precursors are synthesized, for example, by solution phase or solid-phase methods, and can contain both naturally-occurring and non-naturally-occurring amino acids. See, for example, Hunt, “The Non-Protein Amino Acids” in Chemistry and Biochemistry of the Amino Acids , edited by
  • an azide is linked to the ⁇ -carbon of a residue and an alkyne is attached to the ⁇ -carbon of another residue.
  • the azide moieties are azido-analogs of amino acids L-lysine, D-lysine, alpha-methyl-L-lysine, alpha-methyl-D-lysine, L-omithine, D-ornithine, alpha-methyl-L-omithine or alpha-methyl-D-ornithine.
  • the alkyne moiety is L-propargylglycine.
  • the alkyne moiety is an amino acid selected from the group consisting of L-propargylglycine, D-propargylglycine, (S)-2-amino-2-methyl-4-pentynoic acid, (R)-2-amino-2-methyl-4-pentynoic acid, (S)-2-amino-2-methyl-5-hexynoic acid, (R)-2-amino-2-methyl-5-hexynoic acid, (S)-2-amino-2-methyl-6-heptynoic acid, (R)-2-amino-2-methyl-6-heptynoic acid, (S)-2-amino-2-methyl-7-octynoic acid, (R)-2-amino-2-methyl-7-octynoic acid, (S)-2-amino-2-methyl-8-nonynoic acid and (R)-2-amino-2-methyl-8-nonynoic acid.
  • the invention provides a method for synthesizing a peptidomimetic macrocycle, the method comprising the steps of contacting a peptidomimetic precursor of Formula V or Formula VI:
  • R 12 is —H when the macrocyclization reagent is a Cu reagent and R 12 is —H or alkyl when the macrocyclization reagent is a Ru reagent; and further wherein said contacting step results in a covalent linkage being formed between the alkyne and azide moiety in Formula III or Formula IV.
  • R 12 may be methyl when the macrocyclization reagent is a Ru reagent.
  • R 1 and R 2 are alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-.
  • both R 1 and R 2 are independently alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-.
  • At least one of A, B, C, D or E is an ⁇ , ⁇ -disubstituted amino acid.
  • B is an ⁇ , ⁇ -disubstituted amino acid.
  • at least one of A, B, C, D or E is 2-aminoisobutyric acid.
  • R 1 and R 2 are alkyl, unsubstituted or substituted with halo-. In another example, both R 1 and R 2 are independently alkyl, unsubstituted or substituted with halo-. In some embodiments, at least one of R 1 and R 2 is methyl. In other embodiments, R 1 and R 2 are methyl.
  • the macrocyclization reagent may be a Cu reagent or a Ru reagent.
  • the peptidomimetic precursor is purified prior to the contacting step.
  • the peptidomimetic macrocycle is purified after the contacting step.
  • the peptidomimetic macrocycle is refolded after the contacting step.
  • the method may be performed in solution, or, alternatively, the method may be performed on a solid support.
  • Also envisioned herein is performing the method of the invention in the presence of a target macromolecule that binds to the peptidomimetic precursor or peptidomimetic macrocycle under conditions that favor said binding.
  • the method is performed in the presence of a target macromolecule that binds preferentially to the peptidomimetic precursor or peptidomimetic macrocycle under conditions that favor said binding.
  • the method may also be applied to synthesize a library of peptidomimetic macrocycles.
  • the alkyne moiety of the peptidomimetic precursor of Formula V or Formula VI is a sidechain of an amino acid selected from the group consisting of L-propargylglyeine, D-propargylglycinc, (S)-2-amino-2-methyl-4-pentynoic acid, (R)-2-amino-2-methyl-4-pentynoic acid, (S)-2-amino-2-methyl-5-hexynoic acid, (R)-2-amino-2-methyl-5-hexynoic acid, (S)-2-amino-2-methyl-6-heptynoic acid, (R)-2-amino-2-methyl-6-heptynoic acid, (S)-2-amino-2-methyl-7-octynoic acid, (R)-2-amino-2-methyl-7-octynoic acid, (S)-2-amino-2-methyl-8-nonynoic acid, and (R)-2-amino-2-
  • the azide moiety of the peptidomimetic precursor of Formula V or Formula VI is a sidechain of an amino acid selected from the group consisting of ⁇ -azido-L-lysine, ⁇ -azido-D-lysine, ⁇ -azido- ⁇ -methyl-L-lysine, ⁇ -azido- ⁇ -methyl-D-lysine, ⁇ -azido- ⁇ -methyl-L-omithine, and ⁇ -azido- ⁇ -methyl-D-ornithine.
  • x+y+z is 2, and and A, B and C are independently natural or non-natural amino acids. In other embodiments, x+y+z is 3 or 6, and and A, B and C are independently natural or non-natural amino acids.
  • the contacting step is performed in a solvent selected from the group consisting of protic solvent, aqueous solvent, organic solvent, and mixtures thereof.
  • the solvent may be chosen from the group consisting of H 2 O, THF, THF/H 2 O, tBuOH/H 2 O, DMF, DIPEA, CH 3 CN or CH 2 Cl 2 , ClCH 2 CH 2 Cl or a mixture thereof.
  • the solvent may be a solvent which favors helix formation.
  • peptidomimetic macrocycles of the invention have the structure:
  • influenza PB1 peptidomimetic macrocycles shown above are also identified as SP-8, SP-16, SP-13 and SP-41, respectively.
  • the peptidomimetic macrocycle of the invention has the structure:
  • peptidomimetic macrocycles of the invention are made, for example, by chemical synthesis methods, such as described in Fields et al., Chapter 3 in Synthetic Peptides: A User's Guide , ed. Grant, W. H. Freeman & Co., New York, N. Y., 1992, p. 77.
  • peptides are synthesized using the automated Merrifield techniques of solid phase synthesis with the amine protected by either tBoc or Fmoc chemistry using side chain protected amino acids on, for example, an automated peptide synthesizer (e.g., Applied Biosystems (Foster City, Calif.), Model 430A, 431, or 433).
  • One manner of producing the peptidomimetic precursors and peptidomimetic macrocycles described herein uses solid phase peptide synthesis (SPPS).
  • SPPS solid phase peptide synthesis
  • the C-terminal amino acid is attached to a cross-linked polystyrene resin via an acid labile bond with a linker molecule.
  • This resin is insoluble in the solvents used for synthesis, making it relatively simple and fast to wash away excess reagents and by-products.
  • the N-terminus is protected with the Fmoc group, which is stable in acid, but removable by base. Side chain functional groups are protected as necessary with base stable, acid labile groups.
  • peptidomimetic precursors are produced, for example, by conjoining individual synthetic peptides using native chemical ligation. Alternatively, the longer synthetic peptides are biosynthesized by well known recombinant DNA and protein expression techniques. Such techniques are provided in well-known standard manuals with detailed protocols.
  • To construct a gene encoding a peptidomimetic precursor of this invention the amino acid sequence is reverse translated to obtain a nucleic acid sequence encoding the amino acid sequence, preferably with codons that are optimum for the organism in which the gene is to be expressed.
  • a synthetic gene is made, typically by synthesizing oligonucleotides which encode the peptide and any regulatory elements, if necessary.
  • the synthetic gene is inserted in a suitable cloning vector and transfected into a host cell. The peptide is then expressed under suitable conditions appropriate for the selected expression system and host.
  • the peptide is purified and characterized by standard methods.
  • the peptidomimetic precursors are made, for example, in a high-throughput, combinatorial fashion using, for example, a high-throughput polychannel combinatorial synthesizer (e.g., Thuramed TETRAS multichannel peptide synthesizer from CreoSalus, Louisville, Ky. or Model Apex 396 multichannel peptide synthesizer from AAPPTEC, Inc., Louisville, Ky.).
  • a high-throughput polychannel combinatorial synthesizer e.g., Thuramed TETRAS multichannel peptide synthesizer from CreoSalus, Louisville, Ky. or Model Apex 396 multichannel peptide synthesizer from AAPPTEC, Inc., Louisville, Ky.
  • each R 1 , R 2 , R 7 and R 8 is —H; each L 1 is —(CH 2 ) 4 —; and each L 2 is —(CH 2 )—.
  • R 1 , R 2 , R 7 , R 8 , L 1 and L 2 can be independently selected from the various structures disclosed herein.
  • Synthetic Scheme 1 describes the preparation of several compounds of the invention.
  • Ni(II) complexes of Schiff bases derived from the chiral auxiliary (S)-2-[N—(N′-benzylprolyl)amino]benzophenone (BPB) and amino acids such as glycine or alanine are prepared as described in Belokon et al. (1998), Tetrahedron Asymm . 9:4249-4252.
  • the resulting complexes are subsequently reacted with alkylating reagents comprising an azido or alkynyl moiety to yield enantiomerically enriched compounds of the invention. If desired, the resulting compounds can be protected for use in peptide synthesis.
  • the peptidomimetic precursor contains an azide moiety and an alkyne moiety and is synthesized by solution-phase or solid-phase peptide synthesis (SPPS) using the commercially available amino acid N- ⁇ -Fmoc-L-propargylglycine and the N- ⁇ -Fmoc-protected forms of the amino acids (S)-2-amino-2-methyl-4-pentynoic acid, (S)-2-amino-6-heptynoic acid, (S)-2-amino-2-methyl-6-heptynoic acid, N-methyl- ⁇ -azido-L-lysine, and N-methyl- ⁇ -azido-D-lysine.
  • SPPS solution-phase or solid-phase peptide synthesis
  • the peptidomimetic precursor is then deprotected and cleaved from the solid-phase resin by standard conditions (e.g., strong acid such as 95% TFA).
  • the peptidomimetic precursor is reacted as a crude mixture or is purified prior to reaction with a macrocyclization reagent such as a Cu(I) in organic or aqueous solutions (Rostovtsev et al. (2002), Angew. Chem. Int. Ed . 41:2596-2599; Tornoe et al. (2002), J. Org. Chem . 67:3057-3064; Deiters et al. (2003), J. Am. Chem. Soc .
  • the triazole forming reaction is performed under conditions that favor helix formation.
  • the macrocyclization step is performed in a solvent chosen from the group consisting of H 2 O, THF, CH 3 CN, DMF, DIPEA, tBuOH or a mixture thereof.
  • the macrocyclization step is performed in DMF.
  • the macrocyclization step is performed in a buffered aqueous or partially aqueous solvent.
  • the peptidomimetic precursor contains an azide moiety and an alkyne moiety and is synthesized by solid-phase peptide synthesis (SPPS) using the commercially available amino acid N- ⁇ -Fmoc-L-propargylglycine and the N- ⁇ -Fmoc-protected forms of the amino acids (S)-2-amino-2-methyl-4-pentynoic acid, (S)-2-amino-6-heptynoic acid, (S)-2-amino-2-methyl-6-heptynoic acid, N-methyl- ⁇ -azido-L-lysine, and N-methyl- ⁇ -azido-D-lysine.
  • SPPS solid-phase peptide synthesis
  • the peptidomimetic precursor is reacted with a macrocyclization reagent such as a Cu(I) reagent on the resin as a crude mixture
  • a macrocyclization reagent such as a Cu(I) reagent
  • the resultant triazole-containing pcptidomimetic macrocycle is then deprotected and cleaved from the solid-phase resin by standard conditions (e.g., strong acid such as 95% TFA).
  • the macrocyclization step is performed in a solvent chosen from the group consisting of CH 2 Cl 2 , ClCH 2 CH 2 Cl, DMF, THF, NMP, DIPEA, 2,6-lutidine, pyridine, DMSO, H 2 O or a mixture thereof.
  • the macrocyclization step is performed in a buffered aqueous or partially aqueous solvent.
  • the peptidomimetic precursor contains an azide moiety and an alkyne moiety and is synthesized by solution-phase or solid-phase peptide synthesis (SPPS) using the commercially available amino acid N- ⁇ -Fmoc-L-propargylglycine and the N- ⁇ -Fmoc-protected forms of the amino acids (S)-2-amino-2-methyl-4-pentynoic acid, (S)-2-amino-6-heptynoic acid, (S)-2-amino-2-methyl-6-heptynoic acid, N-methyl- ⁇ -azido-L-lysine, and N-methyl- ⁇ -azido-D-lysine.
  • SPPS solution-phase or solid-phase peptide synthesis
  • the peptidomimetic precursor is then deprotected and cleaved from the solid-phase resin by standard conditions (e.g., strong acid such as 95% TFA).
  • the peptidomimetic precursor is reacted as a crude mixture or is purified prior to reaction with a macrocyclization reagent such as a Ru(II) reagents, for example Cp*RuCl(PPh 3 ) 2 or [Cp*RuCl] 4 (Rasmussen et al. (2007), Org. Lett . 9:5337-5339; Zhang et al. (2005), J. Am. Chem. Soc . 127:15998-15999).
  • the macrocyclization step is performed in a solvent chosen from the group consisting of DMF, CH 3 CN and THF.
  • the peptidomimetic precursor contains an azide moiety and an alkyne moiety and is synthesized by solid-phase peptide synthesis (SPPS) using the commercially available amino acidN- ⁇ -Fmoc-L-propargylglycine and the N- ⁇ -Fmoc-protected forms of the amino acids (S)-2-amino-2-methyl-4-pentynoic acid, (S)-2-amino-6-heptynoic acid, (S)-2-amino-2-methyl-6-heptynoic acid, N-methyl- ⁇ -azido-L-lysine, and N-methyl- ⁇ -azido-D-lysine.
  • SPPS solid-phase peptide synthesis
  • the peptidomimetic precursor is reacted with a macrocyclization reagent such as a Ru(II) reagent on the resin as a crude mixture.
  • a macrocyclization reagent such as a Ru(II) reagent on the resin as a crude mixture.
  • the reagent can be Cp*RuCl(PPh 3 ) 2 or [Cp*RuCl] 4 (Rasmussen et al. (2007), Org. Lett . 9:5337-5339; Zhang et al. (2005), J. Am. Chem. Soc . 127:15998-15999).
  • the macrocyclization step is performed in a solvent chosen from the group consisting of CH 2 Cl 2 , ClCH 2 CH 2 Cl, CH 3 CN, DMF, and THF.
  • the present invention contemplates the use of non-naturally-occurring amino acids and amino acid analogs in the synthesis of the peptidomimetic macrocycles described herein.
  • Any amino acid or amino acid analog amenable to the synthetic methods employed for the synthesis of stable triazole containing peptidomimetic macrocycles can be used in the present invention.
  • L-propargylglycine is contemplated as a useful amino acid in the present invention.
  • other alkyne-containing amino acids that contain a different amino acid side chain are also useful in the invention.
  • L-propargylglycine contains one methylene unit between the ⁇ -carbon of the amino acid and the alkyne of the amino acid side chain.
  • the invention also contemplates the use of amino acids with multiple methylene units between the ⁇ -carbon and the alkyne.
  • the azido-analogs of amino acids L-lysine, D-lysine, alpha-methyl-L-lysine, and alpha-methyl-D-lysine are contemplated as useful amino acids in the present invention.
  • other terminal azide amino acids that contain a different amino acid side chain are also useful in the invention.
  • the azido-analog of L-lysine contains four methylene units between the ⁇ -carbon of the amino acid and the terminal azide of the amino acid side chain.
  • the invention also contemplates the use of amino acids with fewer than or greater than four methylene units between the ⁇ -carbon and the terminal azide. Table 2 shows some amino acids useful in the preparation of peptidomimetic macrocycles of the invention.
  • the amino acids and amino acid analogs are of the D-configuration. In other embodiments they are of the L-configuration. In some embodiments, some of the amino acids and amino acid analogs contained in the peptidomimetic are of the D-configuration while some of the amino acids and amino acid analogs are of the L-configuration. In some embodiments the amino acid analogs are ⁇ , ⁇ -disubstituted, such as ⁇ -methyl-L-propargylglycine, ⁇ -methyl-D-propargylglycine, ⁇ -azido-alpha-methyl-L-lysine, and ⁇ -azido-alpha-methyl-D-lysine.
  • amino acid analogs are N-alkylatcd, e.g., N-methyl-L-propargylglycine, N-methyl-D-propargylglycine, N-methyl- ⁇ -azido-L-lysine, and N-methyl- ⁇ -azido-D-lysine.
  • the —NH moiety of the amino acid is protected using a protecting group, including without limitation -Fmoc and -Boc. In other embodiments, the amino acid is not protected prior to synthesis of the peptidomimetic macrocycle.
  • peptidomimetic macrocycles of Formula III are synthesized.
  • the preparation of such macrocycles is described, for example, in U.S. application Ser. No. 11/957,325, filed on Dec. 17, 2007.
  • the following synthetic schemes describe the preparation of such compounds.
  • the illustrative schemes depict amino acid analogs derived from L-or D-cysteine, in which L 1 and L 3 are both —(CH 2 )—.
  • L 1 and L 3 can be independently selected from the various structures disclosed herein.
  • the peptidomimetic precursor contains two —SH moieties and is synthesized by solid-phase peptide synthesis (SPPS) using commercially available N- ⁇ -Fmoc amino acids such as N- ⁇ -Fmoc-S-trityl-L-cysteine or N- ⁇ -Fmoc-S-trityl-D-cysteine.
  • SPPS solid-phase peptide synthesis
  • Alpha-methylated versions of D-cysteine or L-cysteine are generated by known methods (Seebach et al. (1996), Angew. Chem. Int. Ed. Engl .
  • N- ⁇ -Fmoc-S-trityl monomers by known methods (“ Bioorganic Chemistry: Peptides and Proteins ”, Oxford University Press, New York: 1998, the entire contents of which are incorporated herein by reference).
  • the precursor peptidomimetic is then deprotected and cleaved from the solid-phase resin by standard conditions (e.g., strong acid such as 95% TFA).
  • the precursor peptidomimetic is reacted as a crude mixture or is purified prior to reaction with X-L 2 -Y in organic or aqueous solutions.
  • the alkylation reaction is performed under dilute conditions (i.e.
  • the alkylation reaction is performed in organic solutions such as liquid NH 3 (Mosberg et al. (1985), J. Am. Chem. Soc . 107:2986-2987; Szewezuk et al. (1992), Int. J. Peptide Protein Res. 40:233-242), NH 3 /McOH, or NH 3 /DMF (Or et al. (1991), J. Org. Chem. 56:3146-3149).
  • the alkylation is performed in an aqueous solution such as 6M guanidinium HCL, pH 8 (Brunel et al. (2005), Chem. Commun. (20):2552-2554).
  • the solvent used for the alkylation reaction is DMF or dichloroethane.
  • the precursor peptidomimetic contains two or more —SH moieties, of which two are specially protected to allow their selective deprotection and subsequent alkylation for macrocycle formation.
  • the precursor peptidomimetic is synthesized by solid-phase peptide synthesis (SPPS) using commercially available N- ⁇ -Fmoc amino acids such as N- ⁇ -Fmoc-S-p-methoxytrityl-L-cysteine or N- ⁇ -Fmoc-S-p-methoxytrityl-D-cysteine.
  • SPPS solid-phase peptide synthesis
  • Alpha-methylated versions of D-cysteine or L-cysteine are generated by known methods (Seebach et al. (1996), Angew. Chem. Int. Ed.
  • the alkylation reaction is performed in organic solutions such as liquid NH 3 (Mosberg et al. (1985), J. Am. Chem. Soc . 107:2986-2987; Szewezuk et al. (1992), Int. J. Peptide Protein Res . 40:233-242), NH 3 /MeOH or NH 3 /DMF (Or et al. (1991), J. Org. Chem . 56:3146-3149).
  • the alkylation reaction is performed in DMF or dichloroethane.
  • the peptidomimetic macrocycle is then deprotected and cleaved from the solid-phase resin by standard conditions (e.g., strong acid such as 95% TFA).
  • the peptidomimetic precursor contains two or more —SH moieties, of which two are specially protected to allow their selective deprotection and subsequent alkylation for macrocycle formation.
  • the peptidomimetic precursor is synthesized by solid-phase peptide synthesis (SPPS) using commercially available N- ⁇ -Fmoc amino acids such as N- ⁇ -Fmoc-S-p-methoxytrityl-L-cysteine, N- ⁇ -Fmoc-S-p-methoxytrityl-D-cysteine, N- ⁇ -Fmoc-S—S-t-butyl-L-cysteine, and N- ⁇ -Fmoc-S—S-t-butyl-D-cysteine.
  • SPPS solid-phase peptide synthesis
  • Alpha-methylated versions of D-cysteine or L-cysteine are generated by known methods (Seebach et al. (1996), Angew. Chem. Int. Ed. Engl . 35:2708-2748, and references therein) and then converted to the appropriately protected N- ⁇ -Fmoc-S-p-methoxytrityl or N- ⁇ -Fmoc-S—S-t-butyl monomers by known methods ( Bioorganic Chemistry: Peptides and Proteins , Oxford University Press, New York: 1998, the entire contents of which are incorporated herein by reference).
  • the S—S-tButyl protecting group of the peptidomimetic precursor is selectively cleaved by known conditions (e.g., 20% 2-mercaptoethanol in DMF, reference: Gauß et al. (2005), J. Comb. Chem . 7:174-177).
  • the precursor peptidomimetic is then reacted on the resin with a molar excess of X-L 2 -Y in an organic solution. For example, the reaction takes place in the presence of a hindered base such as diisopropylethylamine.
  • the Mmt protecting group of the peptidomimetic precursor is then selectively cleaved by standard conditions (e.g., mild acid such as 1% TFA in DCM).
  • the peptidomimetic precursor is then cyclized on the resin by treatment with a hindered base in organic solutions.
  • the alkylation reaction is performed in organic solutions such as NH 3 /MeOH or NH 3 /DMF (Or et al. (1991), J. Org. Chem . 56:3146-3149).
  • the peptidomimetic macrocycle is then deprotected and cleaved from the solid-phase resin by standard conditions (e.g., strong acid such as 95% TFA).
  • the peptidomimetic precursor contains two L-cysteine moieties.
  • the peptidomimetic precursor is synthesized by known biological expression systems in living cells or by known in vitro, cell-free, expression methods.
  • the precursor peptidomimetic is reacted as a crude mixture or is purified prior to reaction with X-L2-Y in organic or aqueous solutions.
  • the alkylation reaction is performed under dilute conditions (i.e. 0.15 mmol/L) to favor macrocyclization and to avoid polymerization.
  • the alkylation reaction is performed in organic solutions such as liquid NH 3 (Mosberg et al. (1985), J. Am. Chem. Soc.
  • the alkylation is performed in an aqueous solution such as 6M guanidinium HCL, pH 8 (Brunel et al. (2005), Chem. Commun. (20):2552-2554). In other embodiments, the alkylation is performed in DMF or dichloroethane.
  • the alkylation is performed in non-denaturing aqueous solutions, and in yet another embodiment the alkylation is performed under conditions that favor helical structure formation. In yet another embodiment, the alkylation is performed under conditions that favor the binding of the precursor peptidomimetic to another protein, so as to induce the formation of the bound helical conformation during the alkylation.
  • X and Y are envisioned which are suitable for reacting with thiol groups.
  • each X or Y is independently be selected from the general category shown in Table 5.
  • X and Y are halides such as —Cl, —Br or —I.
  • Any of the macrocycle-forming linkers described herein may be used in any combination with any of the sequences shown in Tables 1-4 and also with any of the R-substituents indicated herein.
  • the present invention contemplates the use of both naturally-occurring and non-naturally-occurring amino acids and amino acid analogs in the synthesis of the peptidomimetic macrocycles of Formula (III).
  • Any amino acid or amino acid analog amenable to the synthetic methods employed for the synthesis of stable bis-sulfhydryl containing peptidomimetic macrocycles can be used in the present invention.
  • cysteine is contemplated as a useful amino acid in the present invention.
  • sulfur containing amino acids other than cysteine that contain a different amino acid side chain are also useful.
  • cysteine contains one methylene unit between the ⁇ -carbon of the amino acid and the terminal —SH of the amino acid side chain.
  • the invention also contemplates the use of amino acids with multiple methylene units between the ⁇ -carbon and the terminal —SH.
  • Non-limiting examples include ⁇ -methyl-L-homocysteine and ⁇ -methyl-D-homocysteine.
  • the amino acids and amino acid analogs are of the D-configuration. In other embodiments they are of the L-configuration.
  • some of the amino acids and amino acid analogs contained in the peptidomimetic are of the D-configuration while some of the amino acids and amino acid analogs are of the L-configuration.
  • the amino acid analogs are ⁇ , ⁇ -disubstituted, such as ⁇ -methyl-L-cysteine and ⁇ -methyl-D-cysteine.
  • the invention includes macrocycles in which macrocycle-forming linkers are used to link two or more —SII moieties in the peptidomimetic precursors to form the peptidomimetic macrocycles of the invention.
  • the macrocycle-forming linkers impart conformational rigidity, increased metabolic stability and/or increased cell penetrability.
  • the macrocycle-forming linkages stabilize a helical secondary structure of the peptidomimetic macrocyles.
  • the macrocycle-forming linkers are of the formula X-L 2 -Y, wherein both X and Y are the same or different moieties, as defined above.
  • Both X and Y have the chemical characteristics that allow one macrocycle-forming linker -L 2 - to bis alkylate the bis-sulfhydryl containing peptidomimetic precursor.
  • the linker -L 2 - includes alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, or heterocycloarylene, or —R 4 —K—R 4 —, all of which can be optionally substituted with an R 5 group, as defined above.
  • one to three carbon atoms within the macrocycle-forming linkers other than the carbons attached to the —SH of the sulfhydryl containing amino acid are optionally substituted with a heteroatom such as N, S or O.
  • the L 2 component of the macrocycle-forming linker X-L 2 -Y may be varied in length depending on, among other things, the distance between the positions of the two amino acid analogs used to form the peptidomimetic macrocycle. Furthermore, as the lengths of L 1 and/or L 3 components of the macrocycle-forming linker are varied, the length of L 2 can also be varied in order to create a linker of appropriate overall length for forming a stable peptidomimetic macrocycle. For example, if the amino acid analogs used are varied by adding an additional methylene unit to each of L 1 and L 3 , the length of L 2 are decreased in length by the equivalent of approximately two methylene units to compensate for the increased lengths of L 1 and L 3 .
  • L 2 is an alkylene group of the formula —(CH 2 ) n —, where n is an integer between about 1 and about 15. For example, n is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10. In other embodiments, L 2 is an alkenylene group. In still other embodiments, L 2 is an aryl group.
  • Table 4 shows additional embodiments of X-L 2 -Y groups.
  • Additional methods of forming peptidomimetic macrocycles which are envisioned as suitable to perform the present invention include those disclosed by Mustapa, M. Firouz Mohd et al., J. Org. Chem (2003), 68, pp. 8193-8198; Yang, Bin et al. Bioorg Med. Chem. Left. (2004), 14, pp. 1403-1406; U.S. Pat. No. 5,364,851; U.S. Pat. No. 5,446,128; U.S. Pat. No. 5,824,483; U.S. Pat. No. 6,713,280; and U.S. Pat. No. 7,202,332.
  • aminoacid precursors are used containing an additional substituent R— at the alpha position.
  • Such aminoacids are incorporated into the macrocycle precursor at the desired positions, which may be at the positions where the crosslinker is substituted or, alternatively, elsewhere in the sequence of the macrocycle precursor. Cyclization of the precursor is then effected according to the indicated method.
  • the helical macrocycle of the invention comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more Aib substitutions.
  • peptidomimetic macrocycles of the invention are assayed, for example, by using the methods described below.
  • a peptidomimetic macrocycle of the invention has improved biological properties relative to a corresponding polypeptide lacking the substituents described herein.
  • the secondary structure of polypeptides with helical domains will reach a dynamic equilibrium between random coil structures and helical structures, often expressed as a “percent helicity”.
  • unmodified helical domains may be predominantly random coils in solution, with helical content usually under 25%.
  • Peptidomimetic macrocycles with optimized linkers possess, for example, a helicity that is at least two-fold greater than that of a corresponding uncrosslinked polypeptide.
  • macrocycles of the invention will possess a helicity of greater than 50%.
  • an aqueous solution e.g.
  • Circular dichroism (CD) spectra are obtained on a spectropolarimeter (e.g., Jasco J-710) using standard measurement parameters (e.g. temperature, 20° C.; wavelength, 190-260 nm; step resolution, 0.5 nm; speed, 20 nm/sec; accumulations, 10; response, 1 sec; bandwidth, 1 nm; path length, 0.1 cm).
  • the helical content of each peptide is calculated by dividing the mean residue ellipticity (e.g. [ ⁇ ]222 obs) by the reported value for a model helical decapeptide (Yang et al. (1986), Methods Enzymol . 130:208)).
  • a peptidomimetic macrocycle of the invention comprising a secondary structure such as a helix exhibits, for example, a higher melting temperature than a corresponding uncrosslinked polypeptide.
  • peptidomimetic macrocycles of the invention exhibit Tm of >60° C. representing a highly stable structure in aqueous solutions.
  • Tm is determined by measuring the change in ellipticity over a temperature range (e.g.
  • spectropolarimeter e.g., Jasco J-710
  • standard parameters e.g. wavelength 222 nm; step resolution, 0.5 nm; speed, 20 nm/sec; accumulations, 10; response, 1 sec; bandwidth, 1 nm; temperature increase rate: 1° C./min; path length, 0.1 cm.
  • the amide bond of the peptide backbone is susceptible to hydrolysis by proteases, thereby rendering peptidic compounds vulnerable to rapid degradation in vivo. Peptide helix formation, however, typically buries the amide backbone and therefore may shield it from proteolytic cleavage.
  • the peptidomimetic macrocycles of the present invention may be subjected to in vitro trypsin proteolysis to assess for any change in degradation rate compared to a corresponding uncrosslinked polypeptide.
  • the peptidomimetic macrocycle and a corresponding uncrosslinked polypeptide are incubated with trypsin agarose and the reactions quenched at various time points by centrifugation and subsequent HPLC injection to quantitate the residual substrate by ultraviolet absorption at 280 nm.
  • the pcptidomimetic macrocycle and peptidomimetic precursor (5 mcg) are incubated with trypsin agarosc (Pierce) (S/E ⁇ 125) for 0, 10, 20, 90, and 180 minutes. Reactions are quenched by tabletop centrifugation at high speed; remaining substrate in the isolated supernatant is quantified by HPLC-based peak detection at 280 nm.
  • Peptidomimetic macrocycles with optimized linkers possess, for example, an ex vivo half-life that is at least two-fold greater than that of a corresponding uncrosslinked polypeptide, and possess an ex vivo half-life of 12 hours or more.
  • assays may be used. For example, a peptidomimetic macrocycle and a corresponding uncrosslinked polypeptide (2 meg) are incubated with fresh mouse, rat and/or human serum (2 mL) at 37° C. for 0, 1, 2, 4, 8, and 24 hours.
  • the samples are extracted by transferring 100 ⁇ l of sera to 2 ml centrifuge tubes followed by the addition of 10 ⁇ L of 50% formic acid and 500 ⁇ L acetonitrile and centrifugation at 14,000 RPM for 10 min at 4 ⁇ 2° C. The supernatants are then transferred to fresh 2 ml tubes and evaporated on Turbovap under N 2 ⁇ 10 psi, 37° C. The samples are reconstituted in 100 ⁇ L of 50:50 acetonitrile:water and submitted to LC-MS/MS analysis.
  • FPA fluorescence polarization assay
  • fluoresceinated peptidomimetic macrocycles (25 nM) are incubated with the acceptor protein (25-1000 nM) in binding buffer (140 mM NaCl, 50 mM Tris-HCL, pH 7.4) for 30 minutes at room temperature. Binding activity is measured, for example, by fluorescence polarization on a luminescence spectrophotometer (e.g. Perkin-Elmer LS50B). Kd values may be determined by nonlinear regression analysis using, for example, Graphpad Prism software (GraphPad Software, Inc., San Diego, Calif.).
  • a peptidomimetic macrocycle of the invention shows, in some instances, similar or lower Kd than a corresponding uncrosslinked polypeptide.
  • a fluorescence polarization assay utilizing a fluoresceinated peptidomimetic macrocycle derived from a peptidomimetic precursor sequence is used, for example.
  • the FPA technique measures the molecular orientation and mobility using polarized light and fluorescent tracer.
  • fluorescent tracers e.g., FITC
  • FITC-labeled peptides bound to a large protein When excited with polarized light, fluorescent tracers (e.g., FITC) attached to molecules with high apparent molecular weights (e.g. FITC-labeled peptides bound to a large protein) emit higher levels of polarized fluorescence due to their slower rates of rotation as compared to fluorescent tracers attached to smaller molecules (e.g. FITC-labeled peptides that are free in solution).
  • a compound that antagonizes the interaction between the fluoresceinated peptidomimetic macrocycle and an acceptor protein will be detected in a competitive binding FPA experiment
  • putative antagonist compounds (1 nM to 1 mM) and a fluoresceinated peptidomimetic macrocycle (25 nM) are incubated with the acceptor protein (50 nM) in binding buffer (140 mM NaCl, 50 mM Tris-HCL, pH 7.4) for 30 minutes at room temperature.
  • Antagonist binding activity is measured, for example, by fluorescence polarization on a luminescence spectrophotometer (e.g. Perkin-Elmer LS50B).
  • Kd values may be determined by nonlinear regression analysis using, for example, Graphpad Prism software (GraphPad Software, Inc., San Diego, Calif.).
  • Any class of molecule such as small organic molecules, peptides, oligonucleotides or proteins can be examined as putative antagonists in this assay.
  • FITC-labeled fluoresceinated compounds
  • lysis buffer 50 mM Tris [pH 7.6], 150 mM NaCl, 1% CHAPS and protease inhibitor cocktail
  • Extracts are centrifuged at 14,000 rpm for 15 minutes and supernatants collected and incubated with 10 ⁇ l goat anti-FITC antibody for 2 hrs, rotating at 4° C. followed by further 2 hrs incubation at 4° C. with protein A/G Sepharose (50 ⁇ l of 50% bead slurry). After quick centrifugation, the pellets are washed in lysis buffer containing increasing salt concentration (e.g., 150, 300, 500 mM). The beads are then re-equilibrated at 150 mM NaCl before addition of SDS-containing sample buffer and boiling.
  • increasing salt concentration e.g. 150, 300, 500 mM
  • the supernatants are optionally electrophoresed using 4%-12% gradient Bis-Tris gels followed by transfer into Immobilon-P membranes. After blocking, blots are optionally incubated with an antibody that detects FITC and also with one or more antibodies that detect proteins that bind to the peptidomimetic macrocycle.
  • a peptidomimetic macrocycle is, for example, more cell penetrable compared to a corresponding uncrosslinked macrocycle.
  • Peptidomimetic macrocycles with optimized linkers possess, for example, cell penetrability that is at least two-fold greater than a corresponding uncrosslinked macrocycle, and often 20% or more of the applied peptidomimetic macrocycle will be observed to have penetrated the cell after 4 hours.
  • peptidomimetic macrocycles and corresponding uncrosslinked macrocycle To measure the cell penetrability of peptidomimetic macrocycles and corresponding uncrosslinked macrocycle, intact cells are incubated with fluoresceinated peptidomimetic macrocycles or corresponding uncrosslinked macrocycle (10 ⁇ M) for 4 hrs in serum free media at 37° C., washed twice with media and incubated with trypsin (0.25%) for 10 min at 37° C. The cells are washed again and resuspended in PBS. Cellular fluorescence is analyzed, for example, by using either a FACSCalibur flow cytometer or Cellomics' KineticScan HCS Reader.
  • the compounds are, for example, administered to mice and/or rats by IV, IP, PO or inhalation routes at concentrations ranging from 0.1 to 50 mg/kg and blood specimens withdrawn at 0′, 5′, 15′, 30′, 1 hr, 4 hrs, 8 hrs and 24 hours post-injection. Levels of intact compound in 25 ⁇ L of fresh scrum are then measured by LC-MS/MS as above.
  • This influenza antiviral evaluation assay examines the effects of compounds at designated dose-response concentrations. See also Arthur, J. W., W. Severson, D. L. Arthur, L. Rasmussen, E. L. White, and C. B. Jonsson, Antiviral Res , 2007. 73(1): p. 50-9. Madin Darby canine kidney (MDCK) cells are used in the assay to test the efficacy of the compounds in preventing the cytopathic effect (CPE) induced by influenza infection. Either Ribavirin or Tamiflu is included in each run as a positive control compound.
  • MDCK Madin Darby canine kidney
  • Subconfluent cultures of MDCK cells are plated into 96-well plates for the analysis of cell viability (cytotoxicity) and antiviral activity (CPE). Drugs are added to the cells 24 hours later. At a designated time, the CPE wells also receive 100 tissue culture infectious doses (100 TCID 50 s) of titered influenza virus. 72 hours later the cell viability is determined.
  • ferrets Mustela putorius furo
  • ferrets Mustela putorius furo
  • these animals have been widely used as a model for influenza virus pathogenesis and immunity studies.
  • Ferrets are also the model of choice for the study of avian influenza virus H5N1 pathogenesis in mammals. See also Zitzow, L. A., T. Rowe, T. Morken, W.-J. Shieh, S. Zaki, and J. M. Katz, Pathogenesis of Avian Influenza A (H5N1) Viruses in Ferrets. 2002. p. 4420-4429.
  • the activities of the PB1 Stapled Peptides can be compared to Ribavirin or Oseltamivir as a positive control.
  • young adult male or female ferrets (five ferrets for each treatment group) that are serologically negative by hemagglutination inhibition assay for currently circulating human influenza A or B viruses are quarantined at least 4 days prior to infection in a BSL-3+ animal holding area, where they are housed in cages contained in bioclean portable laminar flow clean room enclosures (Lab Products, Seaford, Del.). Prior to infection, baseline temperatures are measured twice daily for at least 3 days.
  • Ferrets are anesthetized with ketamine (25 mg/kg), xylazine (2 mg/kg), and atropine (0.05 mg/kg) by the intramuscular route and infected intranasally (i.n.) with virus/ml in phosphate-buffered saline (PBS) delivered to the nostrils.
  • PBS phosphate-buffered saline
  • Control animals are mock-infected with an equivalent dilution (1:30) of noninfectious allantoic fluid.
  • Stapled Peptides are administered i.v. or i.p. one hour after virus infection.
  • Temperatures are measured twice daily using either a rectal thermometer or a subcutaneous implantable temperature transponder (BioMedic Data Systems, Inc., Seaford, Del.) with pre-infection values averaged to obtain a baseline temperature for each ferret. The change in temperature (in degrees Celsius) is calculated at each time point for each animal. Clinical signs of sneezing (before anesthesia), inappetence, dyspnea, and level of activity are assessed. A scoring system is also used to assess the activity level, and based on the daily scores for each animal in a group a relative inactivity index will be calculated. Rectal temperature and activity scores are used to assess the severity of influenza infection and the ability of Stapled Peptides to prevent flu symptoms.
  • Bimolecular Fluorescence Complementation may be used to assay the compounds of the invention.
  • N- and C-terminal fragments of fluorescent proteins e.g. CFP or its derivatives
  • the two non-functional halves of the fluorophore following the expression in cells, are brought into close proximity as a result of the specific protein interactions, which initiates folding of the fragments into an active protein and results in a detectable fluorescent signal at the site of the protein-protein complex.
  • the specific interaction between PB1 and PA subunits can be visualized, quantified and localized within live cells.
  • the BiFC signal will be reduced, indicative of the presence of potential inhibitors targeting the assembly of PB1-PA complex. See Hemerka et. al., J. Virol . 2009, 3944-3955.
  • the peptidomimetic macrocycles of the invention also include pharmaceutically acceptable derivatives or prodrugs thereof.
  • a “pharmaceutically acceptable derivative” means any pharmaceutically acceptable salt, ester, salt of an ester, pro-drug or other derivative of a compound of this invention which, upon administration to a recipient, is capable of providing (directly or indirectly) a compound of this invention.
  • Particularly favored pharmaceutically acceptable derivatives are those that increase the bioavailability of the compounds of the invention when administered to a mammal (e.g., by increasing absorption into the blood of an orally administered compound) or which increases delivery of the active compound to a biological compartment (e.g., the brain or lymphatic system) relative to the parent species.
  • Some pharmaceutically acceptable derivatives include a chemical group which increases aqueous solubility or active transport across the gastrointestinal mucosa.
  • the peptidomimetic macrocycles of the invention are modified by covalently or non-covalently joining appropriate functional groups to enhance selective biological properties.
  • modifications include those which increase biological penetration into a given biological compartment (e.g., blood, lymphatic system, central nervous system), increase oral availability, increase solubility to allow administration by injection, alter metabolism, and alter rate of excretion.
  • Pharmaceutically acceptable salts of the compounds of this invention include those derived from pharmaceutically acceptable inorganic and organic acids and bases.
  • suitable acid salts include acetate, adipate, benzoate, benzenesulfonate, butyrate, citrate, digluconate, dodecylsulfate, formate, fumarate, glycolate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, lactate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, palmoate, phosphate, picrate, pivalate, propionate, salicylate, succinate, sulfate, tartrate, tosylate and undecanoate.
  • Salts derived from appropriate bases include alkali metal (e.g., sodium), alkaline earth metal (e.g., magnesium), ammonium and N
  • pharmaceutically acceptable carriers include either solid or liquid carriers.
  • Solid form preparations include powders, tablets, pills, capsules, cachets, suppositories, and dispersible granules.
  • a solid carrier can be one or more substances, which also acts as diluents, flavoring agents, binders, preservatives, tablet disintegrating agents, or an encapsulating material. Details on techniques for formulation and administration are well described in the scientific and patent literature, see, e.g., the latest edition of Remington's Pharmaceutical Sciences, Maack Publishing Co, Easton Pa.
  • the carrier is a finely divided solid, which is in a mixture with the finely divided active component.
  • the active component is mixed with the carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired.
  • Suitable solid excipients are carbohydrate or protein fillers include, but are not limited to sugars, including lactose, sucrose, mannitol, or sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; and gums including arabic and tragacanth; as well as proteins such as gelatin and collagen.
  • disintegrating or solubilizing agents are added, such as the cross-linked polyvinyl pyrrolidone, agar, alginic acid, or a salt thereof, such as sodium alginate.
  • Liquid form preparations include solutions, suspensions, and emulsions, for example, water or water/propylene glycol solutions.
  • liquid preparations can be formulated in solution in aqueous polyethylene glycol solution.
  • the pharmaceutical preparation is preferably in unit dosage form.
  • the preparation is subdivided into unit doses containing appropriate quantities of the active component.
  • the unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packeted tablets, capsules, and powders in vials or ampoules.
  • the unit dosage form can be a capsule, tablet, cachet, or lozenge itself; or it can be the appropriate number of any of these in packaged form.
  • compositions of this invention comprise a combination of a peptidomimetic macrocycle and one or more additional therapeutic or prophylactic agents
  • both the compound and the additional agent should be present at dosage levels of between about 1 to 100%, and more preferably between about 5 to 95% of the dosage normally administered in a monotherapy regimen.
  • the additional agents are administered separately, as part of a multiple dose regimen, from the compounds of this invention.
  • those agents are part of a single dosage form, mixed together with the compounds of this invention in a single composition.
  • the invention discloses peptidomimetic macrocycles useful in the treatment of viral disorders.
  • peptidomimetic macrocycles derived from the PB1 helix sequence, or peptidomimetic macrocycles that bind selectively to the PB1 peptide binding site of the PA protein may selectively inhibit influenza RNA-dependent RNA polymerases.
  • Peptidomimetic macrocycles derived from the PB2 helix sequence, or peptidomimetic macrocycles that bind selectively to the PB2 peptide binding site of the PB1 protein may selectively inhibit influenza RNA-dependent RNA polymerases.
  • such peptidomimetic macrocycles When administered within a therapeutic window after infection, such peptidomimetic macrocycles may reduce the severity or duration of an influenza infection. When administered prophylactically, such peptidomimetic macrocycles may prevent infection by influenza viruses and thereby decrease the spread of influenza and reduce large-scale epidemics.
  • the present invention provides novel peptidomimetic macrocycles that are useful in competitive binding assays to identify agents which bind to the natural ligand(s) of the proteins or peptides upon which the peptidomimetic macrocycles am modeled.
  • labeled peptidomimetic macrocycles based on PB1 can be used in a PA binding assay along with small molecules that competitively bind to PA.
  • Competitive binding studies allow for rapid in vitro evaluation and determination of drug candidates specific for the PB1/PA system. Such binding studies may be performed with any of the peptidomimetic macrocycles disclosed herein and their binding partners.
  • the present invention provides for both prophylactic and therapeutic methods of treating a subject infected with, at risk of, or susceptible to an influenza virus. These methods comprise administering an effective amount of a compound of the invention to a warm blooded animal, including a human. In some embodiments, the administration of the compounds of the present invention prevents the proliferation or transmission of an influenza virus.
  • treatment is defined as the application or administration of a therapeutic agent to a patient, or application or administration of a therapeutic agent to an isolated tissue or cell line from a patient, who has a disease, a symptom of disease or a predisposition toward a disease, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve or affect the disease, the symptoms of disease or the predisposition toward disease.
  • peptidomimetic macrocycles of the invention are used to treat diseases induced by influenza viruses.
  • influenza virus Like other viruses, the replication of influenza virus involves six phases; transmission, entry, replication, biosynthesis, assembly, and exit. Entry occurs by endocytosis, replication and vRNP assembly takes place in the nucleus, and the virus buds from the plasma membrane. In the infected patient, the virus targets airway epithelial cells.
  • the methods described herein are also useful for development and/or identification of agents for the treatment of infections caused by viruses such as Abelson leukemia virus, Abelson murine leukemia virus, Abelson's virus, Acute laryngotracheobronchitis virus, Sydney River virus, Adeno associated virus group, Adenovirus, African horse sickness virus, African swine fever virus, AIDS virus, Aleutian mink disease parvovirus, Alpharetrovirus, Alphavirus, ALV related virus, Amapari virus, Aphthovirus, Aquareovirus, Arbovirus, Arbovirus C, arbovirus group A, arbovirus group B, Arenavirus group, Argentine hemorrhagic fever virus, Argentine hemorrhagic fever virus, Arterivirus, Astrovirus, Ateline herpesvirus group, Aujezky's disease virus, Aura virus, Ausduk disease virus, Australian bat lyssavirus, Aviadenovirus, avian erythroblastosis virus,
  • influenza virus follows a stepwise, endocytic entry program with elements shared with other viruses such as alpha-and rhabdoviruses (Marsh and Helenius 1989; Whittaker 2006).
  • the steps include: 1) Initial attachment to sialic acid containing glycoconjugates receptors on the cell surface; 2) signaling induced by the virus particle; 3) endocytosis by clathrin-dependent and clathrin-independent cellular mechanism; 4) acid-induced, hemaglutinin (HA)-mediated penetration from late endosomes; 5) acid-activated, M2 and matrix protein (M1) dependent uncoating of the capsid; and, 6) intra-cytosolic transport and nuclear import of vRNPs.
  • These steps depend on assistance from the host cell in the form of sorting receptors, vesicle formation machinery, kinase-mediated regulation, organelle acidification, and, most likely, activities of the cytoskeleton.
  • Influenza attachment to the cells surface occurs via binding of the HA1 subunit to cell surface glycoproteins and glycolipids that carry oligosaccharide moieties with terminal sialic acid residues (Skehel and Wiley 2000).
  • the linkage by which the sialic acid is connected to the next saccharide contributes to species specificity.
  • Avian strains including H5N1 prefer an a-(2,3)-link and human strains a-(2,6)-link (Matrosovich 2006).
  • binding occurs preferentially to microvilli on the apical surface, and endocytosis occurs at base of these extensions (Matlin 1982).
  • Endocytic internalization occurs within a few minutes after binding (Matlin 1982; Yoshimura and Ohnishi 1984).
  • influenza virus makes use of three different types of cellular processes; 1) preexisting clathrin coated pits, 2) virus-induced clathrin coated pits, and 3) endocytosis in vesicles without visible coat (Matlin 1982; Sieczkarski and Whittaker 2002; Rust et al. 2004).
  • Video microscopy using fluorescent viruses showed the virus particles undergoing actin-mediated rapid motion in the cell periphery followed by minus end-directed, microtubule-mediated transport to the perinuclear area of the cell.
  • Live cell imaging indicated that the virus particles first entered a subpopulation of mobile, peripheral early endosomes that carry them deeper into the cytoplasm before penetration takes place (Lakadamyali et al. 2003; Rust et al. 2004).
  • the endocytie process is regulated by protein and lipid kinases, the proteasome, as well as by Rabs and ubiquitin-dependent sorting factors (Khor et al. 2003; Whittaker 2006).
  • the membrane penetration step is mediated by low pH-mediated activation of the trimeric, metastable HA, and the conversion of this Type I viral fusion protein to a membrane fusion competent conformation (Maeda et al. 1981; White et al. 1982). This occurs about 16 min after internalization, and the pH threshold varies between strains in the 5.0-5.6 range.
  • the target membrane is the limiting membrane of intermediate or late endosomes.
  • the mechanism of fusion has been extensively studied (Kielian and Rey 2006). Further it was observed that fusion itself does not seem to require any host cell components except a lipid bilayer membrane and a functional acidification system (Maeda et al. 1981; White et al. 1982).
  • the penetration step is inhibited by agents such as lysosomotropic weak bases, carboxylic ionophores, and proton pump inhibitors (Malin 1982; Whittaker 2006).
  • the capsid has to be disassembled. This step involves acidification of the viral interior through the amantadine-sensitive M2-channels causes dissociation of M1 from the vRNPs (Bukrinskaya et al. 1982; Martin and Helenius 1991; Pinto et al. 1992). Transport of the individual vRNPs to the nuclear pore complexes and transfer into the nucleus depends on cellular nuclear transport receptors (O'Neill et al. 1995; Cros et al. 2005). Replication of the viral RNAs (synthesis of positive and negative strands), and transcription occurs in complexes tightly associated with the chromatin in the nucleus.
  • RNA polymerase activating factors e.g., RNA polymerase activating factor, a chaperone HSP90, hCLE, and a human splicing factor UAP56.
  • Viral gene expression is subject to complex cellular control at the transcriptional level, a control system dependent on cellular kinases (Whittaker 2006).
  • the final assembly of an influenza particle occurs during a budding process at the plasma membrane.
  • budding occurs at the apical membrane domain only (Rodriguez-Boulan 1983).
  • the progeny vRNPs are transported within the nucleoplasm to the nuclear envelope, then from the nucleus to the cytoplasm, and finally they accumulate in the cell periphery. Exit from the nucleus is dependent on viral protein NEP and M1, and a variety of cellular proteins including CRM1 (a nuclear export receptor), caspases, and possibly some nuclear protein chaperones.
  • Phosphorylation plays a role in nuclear export by regulating M1 and NEP synthesis, and also through the MAPK/ERK system (Bui et al. 1996; Ludwig 2006).
  • G protein and protein kinase signaling is involved in influenza virus budding from infected host cells (Hui E. and Nayak D, 2002).
  • the three membrane proteins of the virus are synthesized, folded and assembled into oligomers in the ER (Doms et al. 1993). They pass through the Golgi complex; undergo maturation through modification of their carbohydrate moieties and proteolytic cleavage. After reaching the plasma membrane they associate with M1 and the vRNPs in a budding process that results in the inclusion of all eight vRNPs and exclusion of most host cell components except lipids.
  • Influenza infection is associated with activation of several signaling cascades including the MAPK pathway (ERK, JNK, p38 and BMK-1/ERKS), the IkB/NF-kB signaling module, the Ral ⁇ /MEK/ERK cascade, and programmed cell death (Ludwig 2006).
  • MAPK pathway ERK, JNK, p38 and BMK-1/ERKS
  • IkB/NF-kB signaling module the Ral ⁇ /MEK/ERK cascade
  • programmed cell death Lidwig 2006
  • FIGS. 1 and 2 show a possible binding mode of the PB1 helix-derived sequence MDVNPTLLFLKVPAQ.
  • a peptidomimetic macrocycle of the invention is prepared starting with the corresponding uncrosslinked polypeptide sequence MDVNPTLLFLKVPAQ and replacing the 7 th and 10 th amino acids with an alpha, alpha-disubstituted amino acid (e.g. the S5 olefin amino acid).
  • An olefin metathesis reaction is performed resulting in a peptidomimetic macrocycle comprising an i to i+3 crosslink as shown in FIG. 2 b.
  • Peptidomimetic macrocycles were synthesized, purified and analyzed as previously described (Walensky et al (2004) Science 305:1466-70; Walensky et al (2006) Mol Cell 24:199-210; Bernal et al (2007) J. Am Chem Soc. 9129, 2456-2457) and as indicated below.
  • the macrocycles used in this study are shown in Table 5.
  • the corresponding uncrosslinkod polypeptides represent the natural counterparts of the peptidomimetic macrocycles of the invention.
  • Alpha,alpha-disubstituted non-natural amino acids containing olcfinic side chains were synthesized according to Williams et al. (1991) J. Am. Chem. Soc. 113:9276; Schafmeister et al. (2000) J. Am. Chem Soc. 122:5891 and Verdine et al PCT WO 2008/121767.
  • Peptidomimetic macrocycles were designed by replacing two or more naturally occurring amino acids with the corresponding synthetic amino acids. Substitutions were made at the i and i+3, i and i+4, i and i+6, and i and i+7 positions. Macrocycles were generated by solid phase peptide synthesis followed by olefin metathesis-based crosslinking of the synthetic amino acids via their olefin-containing side chains.
  • Nle represents norleucine
  • Aib represents 2-aminoisobutyric acid
  • Ac represents acetyl
  • Pr represents propionyl.
  • Amino acids represented as “$” are alpha-Me S5-pentenyl-alanine olefin amino acids connected by an all-carbon i to i+4 crosslinker comprising one double bond.
  • Amino acids represented as “$r5” are alpha-Me R5-pentenyl-alanine olefin amino acids connected by an all-carbon i to i+4 crosslinker comprising one double bond.
  • Amino acids represented as “$s8” are alpha-Me 88-octenyl-alanine olefin amino acids connected by an all-carbon i to i+7 crosslinker comprising one double bond.
  • Amino acids represented as “$r8” are alpha-Me R8-octenyl-alanine olefin amino acids connected by an all-carbon i to i+7 crosslinker comprising one double bond.
  • “Ahx” represents an aminocyclohexyl linker.
  • the crosslinkers are linear all-carbon crosslinker comprising eight or eleven carbon atoms between the alpha carbons of each amino acid.
  • Amino acids represented as “$/” are alpha-Me S5-pentenyl-alanine olefin amino acids that are not connected by any crosslinker.
  • Amino acids represented as “$/r5” are alpha-Me R5-pentenyl-alanine olefin amino acids that are not connected by any crosslinker.
  • Amino acids represented as “$/s8” are alpha-Me S8-octenyl-alanine olefin amino acids that are not connected by any crosslinker.
  • Amino acids represented as “$/r8” are alpha-Me R8-octenyl-alanine olefin amino acids that are not connected by any crosslinker.
  • the non-natural amino acids were characterized by nuclear magnetic resonance (NMR) spectroscopy (Varian Mercury 400) and mass spectrometry (Micromass LCT). Peptide synthesis was performed either manually or on an automated peptide synthesizer (Applied Biosystems, model 433A), using solid phase conditions, rink amide AM resin (Novabiochem), and Fmoc main-chain protecting group chemistry.
  • the synthesized peptides include a norleucine replacement for methionine to avoid issues with unwanted thioether oxidation.
  • the proline residue is replaced with a 2-aminoisobutyric acid residue (Aib) to increase helicity, and the effect of Glu-to-Arg substitution on cell penetrability was also explored.
  • the N-termini of the synthetic peptides were acetylated, while the C-termini were amidated.
  • Table 5 shows a list of peptidomimetic macrocycles of the invention prepared.
  • PB1 peptidomimetic macrocycles were tested for PK properties in single N dose in rats.
  • the in-life portion of the study was conducted at ViviSource Laboratories (Waltham, Mass.).
  • a single intravenous dose of 3 mg/kg Stapled Peptide formulated in water continuing 5% PEG-400 and 2% Dextrose was administered to a pair of jugular vein-cannulated male Sprague-Dawley rats.
  • the N dose was mostly well-tolerated and animals appeared healthy within the study duration.
  • Blood samples were collected over thirteen sampling times up to 24 hours and the plasma samples were shipped on dry ice to Tandem Bioanalytical Facilities, Inc. (Woburn, Mass.) for the analytical phase of the study.
  • Quantification in plasma samples was preceded by the preparation of sample extracts by combining 50 ⁇ l of ammonium hydroxide (14.5 M ammonia), 1 mL of a 1:1 acetonitrile/methanol solution, and 50 ⁇ l of internal standard with 50 ⁇ l of each plasma sample. The mixtures were centrifuged to separate liquid supernatant from solid precipitate and supernatants were dried at 40° C. under flowing nitrogen gas. The dried sample extracts were reconstituted in 50 ⁇ l of a 1:1 water/methanol solution that contained 0.1% (v/v) trifluoroacetic acid.
  • Plasma sample extracts were analyzed by a liquid chromatography-mass spectrometry method that utilized an API 5000 (Applied Biosystems) instrument operated in positive ionization mode at a temperature of 500° C. using a multiple reaction monitoring mode of detection (MRM).
  • the analytical column for liquid chromatography was a Varian Metasil C18, 50 mm ⁇ 2 mm and mobile phases A (0.1% formic acid in water) and B (0.1% formic acid in acetonitrile) were pumped at a flow rate of 0.5 ml/min.
  • Quantification in plasma extracts was made by linear regression analysis employing a pure reference standard Stapled Peptide diluted in normal rat plasma to prepare eight calibration standards over the working concentration range of 20-10,000 ng/ml.
  • the calibration standards were extracted in identical fashion as sample extracts and analyzed before and after the sample extracts.
  • Pharmacokinetic parameters were calculated using a non-compartmental model using the PK Functions add-in for Microsoft Excel.
  • the terminal elimination half-life was calculated as ln(2)/( ⁇ z), where the rate constant ( ⁇ z) was calculated as ⁇ 1 times the estimated slope of the log-concentration versus time data over 2-12 hr.
  • AUC values (hr*ng/ml) were calculated by statistical moment and linear trapezoidal approximation methods over time points of 0-24 hours and 24 hour concentration values were divided by ( ⁇ z) was added in order to extrapolate AUMC and AUC values to infinite time.
  • Total body clearance (per kg body weight) was calculated as dose divided by AUC.
  • Vss volume of distribution at steady state
  • MRT mean residence time

Abstract

The present invention provides novel peptidomimetic macrocycles and methods of using such macrocycles for the treatment of viral disease.

Description

    CROSS REFERENCE
  • This application claims the benefit of U.S. Provisional Application No. 61/144,706, filed Jan. 14, 2009, which is incorporated herein in its entirety by reference.
  • BACKGROUND OF THE INVENTION
  • Seasonal influenza infection is a major health concern for first-world and developing nations alike. Each year in the United States, five- to twenty-percent of the population gets the flu, more than 200,000 people are hospitalized from flu complications, and about 36,000 people die from flu. Worldwide, influenza causes tens of millions of respiratory illnesses and 250,000 to 500,000 deaths each year. New strains of avian influenza that are transmissible to humans are a critical concern for global health because these flu strains could yield pandemic disease for which no immunity exists, potentially resulting in millions of fatalities. “Avian flu” refers to a pathogenic avian influenza subtype that is highly contagious among birds and causes high mortality among domestic poultry. Outbreaks of avian flu among poultry and wild birds are ongoing in a number of countries, and at least three subgroups of avian flu viruses have infected humans to date. While avian flu infections of humans are rare, and most cases have been associated with direct poultry contact during outbreaks among livestock, infection in humans is very serious when it does occur: to date, over half of all reported human cases have been fatal. Since first reported in Hong Kong in 1996, the World Health Organization has carefully tracked avian flu and instances of animal-to-human influenza transmission, with confirmed cases reported from China, Indonesia, and Southeast Asia; Pakistan; Iraq; Egypt; and elsewhere, with 385 cases resulting in 243 deaths worldwide. While there is no evidence of sustained human-to-human transmission, instances of human-to-human spread of avian flu may have occurred. Since all influenza viruses have the ability to rapidly mutate, there is considerable concern that avian flu may be able to infect humans more easily and become communicable from one person to another. Also, avian flu virus strains have not infected many humans worldwide, so there is little or no immune protection against these strains in the human population; therefore, an influenza pandemic could easily occur if sustained avian flu virus transmission were to develop.
  • Three classes of influenza viruses, A, B and C, are responsible for human flu, with influenza A and B viruses causing seasonal epidemics of disease almost every winter. Influenza A viruses are divided into subtypes based on characteristics of two proteins, hemagglutinin (H) and neuraminidase (N), on the surface of the virus. There are 16 different hemagglutinin subtypes and 9 different neuraminidase subtypes, with H1N1 and H3N2 being the most common subtypes found in humans. The avian flu virus refers to influenza A H5N1. Influenza A is a negative-sense (3′ to 5′) single-stranded RNA virus. Its viral genome, which encodes 11 proteins (HA, NA, NP, M1, M2, NS1, NEP, PA, PB1, PB1-F2, PB2) in its RNA, cannot be translated into protein directly; rather, the virus depends on its RNA-dependent RNA polymerase to transcribe its genome to positive-sense RNA prior to translation. RNA-dependent RNA polymerases have no mammalian counterpart, which renders species selectivity less problematic in the development of therapeutics that target this enzyme. Other examples of viral RNA-dependent RNA polymerases include polioviral 3Dpol, vesicular stomatitis virus L, and hepatitis C virus NS5b; the latter is an active target for development of hepatitis C antiviral therapies. Unlike current flu targets (e.g., neuraminidase for Tamiflu), the influenza RNA polymerase is highly conserved and therefore less likely to suffer the resistance issues that current drugs face.
  • Recently, researchers reported the first atomic-resolution structural details of the influenza protein RNA polymerase, a critical enzyme for viral replication and a novel target for both therapeutic intervention and prophylaxis during influenza outbreaks (He, X., et al., Nature, 2008. 454: p. 1123-6; Obayashi, E., et al., Nature, 2008. 454: p. 1127-31). The influenza RNA-dependent RNA polymerase is a heterotrimer of three subunits, PA, PB1, and PB2, with the 310-helical N-terminal region of PB1 binding between the “jaws” of the PA protein. The PB1 helix is thought to be important for complex formation and nuclear transport and inhibits influenza A viral replication by interfering with polymerase activity. Recently, the PB2 subunit has also been shown to play an essential role in activity of the viral polymerase complex, for instance through contacts with the PB1 subunit. See Sugiyama et al, EMBO Journal, 2009, 28, 1803-1811. However, little is known about compounds capable of interfering with the binding and activity of these proteins. In general, there remains a need for therapeutic methods of treating viral diseases in which RNA-dependent RNA polymerases play a role, and for compositions and methods capable of modifying the activity such polymerases.
  • SUMMARY OF THE INVENTION
  • The present invention addresses these and other needs. In one aspect, the present invention provides a peptidomimetic macrocycle capable of binding to a viral RNA-dependent RNA polymerase. Such a macrocycle may, for example, be capable of disrupting the assembly of subunits of a viral RNA-dependent RNA polymerase complex. In one embodiment, such a macrocycle may compete with the binding of a peptide of the sequence MDVNPTLLFLKVPAQ or MERIKELRNLM to said viral RNA-dependent RNA polymerase. In one embodiment, a peptidomimetic macrocycle of the invention comprises an amino acid sequence which is at least about 60%, 80%, 90%, or 95% identical to the amino acid sequence MDVNPTLLFLKVPAQ (PB1) or MERIKELRNLM (PB2). Alternatively, the amino acid sequence of said peptidomimetic macrocycle is identified and optimized for its ability to bind to either the PB1 peptide binding site of the PA protein or the PB2 peptide binding site of the PB1 protein, for example through affinity selection with the PA or PB1 target protein or by structure-based design, with such a mechanism of action being confirmed by biophysical/structural studies and/or competitive displacement assays with the PB1 or PB2 peptide. In some embodiments, the peptidomimetic macrocycle comprises a helix, such as a 310 helix or an α-helix. In other embodiments, the peptidomimetic macrocycle comprises an α,α-disubstituted amino acid. A peptidomimetic macrocycle of the invention may comprise a crosslinkcr linking the α-positions of at least two amino acids. At least one of said two amino acids may be an α,α-disubstituted amino acid.
  • In some embodiments, the pcptidomimetic macrocyclic has the formula:
  • Figure US20160068573A1-20160310-C00001
  • wherein:
    each A, C, D, and E is independently a natural or non-natural amino acid;
    B is a natural or non-natural amino acid, amino acid analog,
  • Figure US20160068573A1-20160310-C00002
  • [—NH-L3-CO—], [—NH-L3-SO2—], or [—NH-L3-];
  • R1 and R2 are independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-;
  • R3 is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5;
  • L is a macrocycle-forming linker of the formula -L1-L2-;
  • L1 and L2 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene, or [—R4—K—R4-]n, each being optionally substituted with R5;
  • each R4 is alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;
    each K is O, S, SO, SO2, CO, CO2, or CONR3;
    each R5 is independently halogen, alkyl, —OR6, —N(R6)2, —SR6, —SOR6, —SO2R6, —CO2R6, a fluorescent moiety, a radioisotope or a therapeutic agent;
    each R6 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope or a therapeutic agent;
    R7 is —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5, or part of a cyclic structure with a D residue;
    R8 is —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5, or part of a cyclic structure with an D residue;
    v and w are independently integers from 1-1000;
    u, x, y and z are independently integers from 0-10; and
    n is an integer from 1-5.
  • In other embodiments, the peptidomimetic macrocycle may comprise a crosslinker linking a backbone amino group of a first amino acid to a second amino acid within the peptidomimetic macrocycle. For example, the invention provides peptidomimetic macrocycles of the formula (IV) or (IVa):
  • Figure US20160068573A1-20160310-C00003
  • wherein:
    each A, C, D, and E is independently a natural or non-natural amino acid;
    B is a natural or non-natural amino acid, amino acid analog,
  • Figure US20160068573A1-20160310-C00004
  • [—NH-L3-CO—], [—NH-L3-SO2—], or [—NH-L3-];
  • R1 and R2 are independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-, or part of a cyclic structure with an E residue;
    R3 is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5;
    L1 and L2 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene, or [—R4—K—R4-]n, each being optionally substituted with R5;
    each R4 is alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;
    each K is O, S, SO, SO2, CO, CO2, or CONR3;
    each R5 is independently halogen, alkyl, —OR6, —N(R6)2, —SR6, —SOR6, —SO2R6, —CO2R6, a fluorescent moiety, a radioisotope or a therapeutic agent;
    each R6 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope or a therapeutic agent;
    R7 is —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5;
    v and w are independently integers from 1-1000;
    u, x, y and z are independently integers from 0-10; and
    n is an integer from 1-5.
  • In some embodiments, x+y+z is 2, 3, 5 or 6.
  • Additionally, the invention provides a method of treating influenza virus infection in a subject comprising administering to the subject a pcptidomimetic macrocycle of the invention. Also provided is a method of preventing infection by an influenza virus in a subject comprising administering to the subject a peptidomimetic macrocycle of the invention, or a method of inhibiting the activity of the RNA-dependent RNA polymerase of an influenza virus in a subject comprising administering to the subject such a pcptidomimetic macrocycle.
  • INCORPORATION BY REFERENCE
  • All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
  • FIG. 1 a shows a bound PB1 helix in complex with the PA subunit of a RNA-dependent RNA polymerase. Leu7 and Leu10 (light color) are candidate residues for i, i+3 macrocycle formation to stabilize a 310 helix.
  • FIG. 1 b shows a macrocycle derived from the sequence in FIG. 1 a.
  • FIG. 2 a shows the sequence of FIG. 1 a excised from its complex with the PA subunit of a RNA-dependent RNA polymerase.
  • FIG. 2 b shows the macrocycle derived from the sequence in FIG. 1 b excised from its complex with the PA subunit of a RNA-dependent RNA polymerase.
  • FIG. 3 describes the plasma stability of several peptidomimetic macrocycles of the invention.
  • FIG. 4 shows in vivo pharmacokinetic properties of several peptidomimetic macrocycles of the invention.
  • FIGS. 5 a-5 f illustrate in vivo pharmacokinetic properties of peptidomimetic macrocycles of the invention.
  • FIG. 6 shows selected pharmacokinetic parameters for several peptidomimetic macrocycles of the invention.
  • FIG. 7 illustrates pharmacokinetic properties for intravenous and subcutaneous modes of administration for a peptidomimetic macrocycle of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As used herein, the term “macrocycle” refers to a molecule having a chemical structure including a ring or cycle formed by at least 9 covalently bonded atoms.
  • As used herein, the term “peptidomimetic macrocycle” or “crosslinked polypeptide” refers to a compound comprising a plurality of amino acid residues joined by a plurality of peptide bonds and at least one macrocycle-forming linker which forms a macrocycle between a first naturally-occurring or non-naturally-occurring amino acid residue (or analog) and a second naturally-occurring or non-naturally-occurring amino acid residue (or analog) within the same molecule. Pcptidomimetic macrocycle include embodiments where the macrocycle-forming linker connects the α carbon of the first amino acid residue (or analog) to the α carbon of the second amino acid residue (or analog). The peptidomimetic macrocycles optionally include one or more non-peptide bonds between one or more amino acid residues and/or amino acid analog residues, and optionally include one or more non-naturally-occurring amino acid residues or amino acid analog residues in addition to any which form the macrocycle. A “corresponding uncrosslinked polypeptide” when referred to in the context of a peptidomimetic macrocycle is understood to relate to a polypeptide of the same length as the macrocycle and comprising the equivalent natural amino acids of the wild-type sequence corresponding to the macrocycle.
  • As used herein, the term “stability” refers to the maintenance of a defined secondary structure in solution by a peptidomimetic macrocycle of the invention as measured by circular dichroism, NMR or another biophysical measure, or resistance to proteolytic degradation in vitro or in vivo. Non-limiting examples of secondary structures contemplated in this invention are helices, β-turns, and β-pleated sheets. In general, the term “helix” or “helical” is used to refer to any type of helical secondary structure, including 310-helices, α-helices, and π-helices.
  • As used herein, the term “helical stability” refers to the maintenance of helical structure by a peptidomimetic macrocycle of the invention as measured by circular dichroism or NMR. For example, in some embodiments, the peptidomimetic macrocycles of the invention exhibit at least a 1.25, 1.5, 1.75 or 2-fold increase in helicity as determined by circular dichroism compared to a corresponding uncrosslinked macrocycle.
  • The term “α-amino acid” or simply “amino acid” refers to a molecule containing both an amino group and a carboxyl group bound to a carbon which is designated the α-carbon. Suitable amino acids include, without limitation, both the D-and L-isomers of the naturally-occurring amino acids, as well as non-naturally occurring amino acids prepared by organic synthesis or other metabolic routes. Unless the context specifically indicates otherwise, the term amino acid, as used herein, is intended to include amino acid analogs.
  • The term “naturally occurring amino acid” refers to any one of the twenty amino acids commonly found in peptides synthesized in nature, and known by the one letter abbreviations A, R, N, C, D, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y and V.
  • The term “amino acid analog” or “non-natural amino acid” refers to a molecule which is structurally similar to an amino acid and which can be substituted for an amino acid in the formation of a peptidomimetic macrocycle. Amino acid analogs include, without limitation, compounds which are structurally identical to an amino acid, as defined herein, except for the inclusion of one or more additional methylene groups between the amino and carboxyl group (e.g., α-amino β-carboxy acids), or for the substitution of the amino or carboxy group by a similarly reactive group (e.g., substitution of the primary amine with a secondary or tertiary amine, or substitution or the carboxy group with an ester).
  • A “non-essential” amino acid residue is a residue that can be altered from the wild-type sequence of a polypeptide (e.g., a BH3 domain or the p53 MDM2 binding domain) without abolishing or substantially altering its essential biological or biochemical activity (e.g., receptor binding or activation). An “essential” amino acid residue is a residue that, when altered from the wild-type sequence of the polypeptide, results in abolishing or substantially abolishing the polypeptide's essential biological or biochemical activity.
  • A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., K, R, H), acidic side chains (e.g., D, E), uncharged polar side chains (e.g., G, N, Q, S, T, Y, C), nonpolar side chains (e.g., A, V, L, I, P, F, M, W), beta-branched side chains (e.g., T, V, I) and aromatic side chains (e.g., Y, F, W, H). Thus, a predicted nonessential amino acid residue in a polypeptide, for example, is preferably replaced with another amino acid residue from the same side chain family. Other examples of acceptable substitutions are substitutions based on isosteric considerations (e.g. norleucine for methionine) or other properties (e.g. 2-thienylalanine for phenylalanine).
  • The term “member” as used herein in conjunction with macrocycles or macrocycle-forming linkers refers to the atoms that form or can form the macrocycle, and excludes substituent or side chain atoms. By analogy, cyclodecane, 1,2-difluoro-decane and 1,3-dimethyl cyclodecane are all considered ten-membered macrocycles as the hydrogen or fluoro substituents or methyl side chains do not participate in forming the macrocycle.
  • The symbol “
    Figure US20160068573A1-20160310-P00001
    ” when used as part of a molecular structure refers to a single bond or a trans or cis double bond.
  • The term “amino acid side chain” refers to a moiety attached to the α-carbon in an amino acid. For example, the amino acid side chain for alanine is methyl, the amino acid side chain for phenylalanine is phenylmethyl, the amino acid side chain for cysteine is thiomethyl, the amino acid side chain for aspartate is carboxymethyl, the amino acid side chain for tyrosine is 4-hydroxyphenylmethyl, etc. Other non-naturally occurring amino acid side chains are also included, for example, those that occur in nature (e.g., an amino acid metabolite) or those that are made synthetically (e.g., an α,α di-substituted amino acid).
  • The term “α,α di-substituted amino” acid refers to a molecule or moiety containing both an amino group and a carboxyl group bound to a carbon (the α-carbon) that is attached to two natural or non-natural amino acid side chains.
  • The term “polypeptide” encompasses two or more naturally or non-naturally-occurring amino acids joined by a covalent bond (e.g., an amide bond). Polypeptides as described herein include full length proteins (e.g., fully processed proteins) as well as shorter amino acid sequences (e.g., fragments of naturally-occurring proteins or synthetic polypeptide fragments).
  • The term “macrocyclization reagent” or “macrocycle-forming reagent” as used herein refers to any reagent which may be used to prepare a peptidomimetic macrocycle of the invention by mediating the reaction between two reactive groups. Reactive groups may be, for example, an azide and alkyne, in which case macrocyclization reagents include, without limitation, Cu reagents such as reagents which provide a reactive Cu(I) species, such as CuBr, CuI or CuOTf, as well as Cu(II) salts such as Cu(CO2CH3)2, CuSO4, and CuCl2 that can be converted in situ to an active Cu(I) reagent by the addition of a reducing agent such as ascorbic acid or sodium ascorbate. Macrocyclization reagents may additionally include, for example, Ru reagents known in the art such as Cp*RuCl(PPh3)2, [Cp*RuCl]4 or other Ru reagents which may provide a reactive Ru(II) species. In other cases, the reactive groups are terminal olefins. In such embodiments, the macrocyclization reagents or macrocycle-forming reagents are metathesis catalysts including, but not limited to, stabilized, late transition metal carbene complex catalysts such as Group VIII transition metal carbene catalysts. For example, such catalysts are Ru and Os metal centers having a +2 oxidation state, an electron count of 16 and pentacoordinated. Additional catalysts are disclosed in Grubbs et al., “Ring Closing Metathesis and Related Processes in Organic Synthesis” Acc. Chem. Res. 1995, 28, 446-452, and U.S. Pat. No. 5,811,515. In yet other cases, the reactive groups are thiol groups. In such embodiments, the macrocyclization reagent is, for example, a linker fuictionalized with two thiol-reactive groups such as halogen groups.
  • The term “halo” or “halogen” refers to fluorine, chlorine, bromine or iodine or a radical thereof.
  • The term “alkyl” refers to a hydrocarbon chain that is a straight chain or branched chain, containing the indicated number of carbon atoms. For example, C1-C10 indicates that the group has from 1 to 10 (inclusive) carbon atoms in it. In the absence of any numerical designation, “alkyl” is a chain (straight or branched) having 1 to 20 (inclusive) carbon atoms in it.
  • The term “alkylene” refers to a divalent alkyl (i.e., —R—).
  • The term “alkenyl” refers to a hydrocarbon chain that is a straight chain or branched chain having one or more carbon-carbon double bonds. The alkenyl moiety contains the indicated number of carbon atoms. For example, C2-C10 indicates that the group has from 2 to 10 (inclusive) carbon atoms in it. The term “lower alkenyl” refers to a C2-C6 alkenyl chain. In the absence of any numerical designation, “alkenyl” is a chain (straight or branched) having 2 to 20 (inclusive) carbon atoms in it.
  • The term “alkynyl” refers to a hydrocarbon chain that is a straight chain or branched chain having one or more carbon-carbon triple bonds. The alkynyl moiety contains the indicated number of carbon atoms. For example, C2-C10 indicates that the group has from 2 to 10 (inclusive) carbon atoms in it. The term “lower alkynyl” refers to a C2-C6 alkynyl chain. In the absence of any numerical designation, “alkynyl” is a chain (straight or branched) having 2 to 20 (inclusive) carbon atoms in it.
  • The term “aryl” refers to a 6-carbon monocyclic or 10-carbon bicyclic aromatic ring system wherein 0, 1, 2, 3, or 4 atoms of each ring are substituted by a substituent. Examples of aryl groups include phenyl, naphthyl and the like. The term “arylalkyl” or the term “aralkyl” refers to alkyl substituted with an aryl. The term “arylalkoxy” refers to an alkoxy substituted with aryl.
  • “Arylalkyl” refers to an aryl group, as defined above, wherein one of the aryl group's hydrogen atoms has been replaced with a C1-C5 alkyl group, as defined above. Representative examples of an arylalkyl group include, but are not limited to, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2-ethylphenyl, 3-ethylphenyl, 4-ethylphenyl, 2-propylphenyl, 3-propylphenyl, 4-propylphenyl, 2-butylphenyl, 3-butylphenyl, 4-butylphenyl, 2-pentylphenyl, 3-pentylphenyl, 4-pentylphenyl, 2-isopropylphenyl, 3-isopropylphenyl, 4-isopropylphenyl, 2-isobutylphenyl, 3-isobutylphenyl, 4-isobutylphenyl, 2-sec-butylphenyl, 3-sec-butylphenyl, 4-sec-butylphenyl, 2-t-butylphenyl, 3-t-butylphenyl and 4-t-butylphenyl.
  • “Arylamido” refers to an aryl group, as defined above, wherein one of the aryl group's hydrogen atoms has been replaced with one or more —C(O)NH2 groups. Representative examples of an arylamido group include 2-C(O)NH2-phenyl, 3-C(O)NH2-phenyl, 4-C(O)NH2-phenyl, 2-C(O)NH2-pyridyl, 3-C(O)NH2-pyridyl, and 4-C(O)NH2-pyridyl,
  • “Alkylheterocycle” refers to a C1-C5 alkyl group, as defined above, wherein one of the C1-C5 alkyl group's hydrogen atoms has been replaced with a heterocycle. Representative examples of an alkylheterocycle group include, but are not limited to, —CH2CH2-morpholine, —CH2CH2-piperidine, —CH2CH2CH2-morpholine, and —CH2CH2CH2-imidazole.
  • “Alkylamido” refers to a C1-C5 alkyl group, as defined above, wherein one of the C1-C5 alkyl group's hydrogen atoms has been replaced with a —C(O)NH2 group. Representative examples of an alkylamido group include, but are not limited to, —CH2—C(O)NH2, —CH2CH2—C(O)NH2, —CH2CH2CH2C(O)NH2, —CH2CH2CH2CH2C(O)NH2, —CH2CH2CH2CH2CH2C(O)NH2, —CH2CH(C(O)NH2)CH3, —CH2CH(C(O)NH2)CH2CH3, —CH(C(O)NH2)CH2CH3, —C(CH3)2CH2C(O)NH2, —CH2—CH2—NH—C(O)—CH3, —CH2—CH2—NH—C(O)—CH3—CH3, and —CH2—CH2—NH—C(O)—CH═H2.
  • “Alkanol” refers to a C1-C5 alkyl group, as defined above, wherein one of the C1-C5 alkyl group's hydrogen atoms has been replaced with a hydroxyl group. Representative examples of an alkanol group include, but are not limited to, —CH2OH, —CH2CH2OH, —CH2CH2CH2OH, —CH2CH2CH2CH2OH, —CH2CH2CH2CH2CH2OH, —CH2CH(OH)CH3, —CH2CH(OH)CH2CH3, —CH(OH)CH3 and —C(CH3)2CH2OH.
  • “Alkylcarboxy” refers to a C1-C5 alkyl group, as defined above, wherein one of the C1-C5 alkyl group's hydrogen atoms has been replaced with a —COOH group. Representative examples of an alkylcarboxy group include, but are not limited to, —CH2COOH, —CH2CH2COOH, —CH2CH2CH2COOH, —CH2CH2CH2CH2COOH, —CH2CH(COOH)CH3, —CH2CH2CH2CH2CH2COOH, —CH2CH(COOH)CH2CH3, —CH(COOH)CH2CH3 and —C(CH3)2CH2COOH.
  • The term “cycloalkyl” as employed herein includes saturated and partially unsaturated cyclic hydrocarbon groups having 3 to 12 carbons, preferably 3 to 8 carbons, and more preferably 3 to 6 carbons, wherein the cycloalkyl group additionally is optionally substituted. Some cycloalkyl groups include, without limitation, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, and cyclooctyl.
  • The term “heteroaryl” refers to an aromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of O, N, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein 0, 1, 2, 3, or 4 atoms of each ring are substituted by a substituent. Examples of heteroaryl groups include pyridyl, furyl or furanyl, imidazolyl, benzimidazolyl, pyrimidinyl, thiophenyl or thienyl, quinolinyl, indolyl, thiazolyl, and the like.
  • The term “heteroarylalkyl” or the term “heteroaralkyl” refers to an alkyl substituted with a heteroaryl. The term “heteroarylalkoxy” refers to an alkoxy substituted with heteroaryl.
  • The term “heteroarylalkyl” or the term “heteroaralkyl” refers to an alkyl substituted with a heteroaryl. The term “heteroarylalkoxy” refers to an alkoxy substituted with heteroaryl.
  • The term “heterocyclyl” refers to a nonaromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of O, N, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein 0, 1, 2 or 3 atoms of each ring are substituted by a substituent. Examples of heterocyclyl groups include piperazinyl, pyrrolidinyl, dioxanyl, morpholinyl, tetrahydrofuranyl, and the like.
  • The term “substituent” refers to a group replacing a second atom or group such as a hydrogen atom on any molecule, compound or moiety. Suitable substituents include, without limitation, halo, hydroxy, mercapto, oxo, nitro, haloalkyl, alkyl, alkaryl, aryl, aralkyl, alkoxy, thioalkoxy, aryloxy, amino, alkoxycarbonyl, amido, carboxy, alkanesulfonyl, alkylcarbonyl, and cyano groups.
  • In some embodiments, the compounds of this invention contain one or more asymmetric centers and thus occur as racemates and racemic mixtures, single enantiomers, individual diastereomers and diastereomeric mixtures. All such isomeric forms of these compounds are included in the present invention unless expressly provided otherwise. In some embodiments, the compounds of this invention are also represented in multiple tautomeric forms, in such instances, the invention includes all tautomeric forms of the compounds described herein (e.g., if alkylation of a ring system results in alkylation at multiple sites, the invention includes all such reaction products). All such isomeric forms of such compounds are included in the present invention unless expressly provided otherwise. All crystal forms of the compounds described herein are included in the present invention unless expressly provided otherwise.
  • As used herein, the terms “increase” and “decrease” mean, respectively, to cause a statistically significantly (i.e., p<0.1) increase or decrease of at least 5%.
  • As used herein, the recitation of a numerical range for a variable is intended to convey that the invention may be practiced with the variable equal to any of the values within that range. Thus, for a variable which is inherently discrete, the variable is equal to any integer value within the numerical range, including the end-points of the range. Similarly, for a variable which is inherently continuous, the variable is equal to any real value within the numerical range, including the end-points of the range. As an example, and without limitation, a variable which is described as having values between 0 and 2 takes the values 0, 1 or 2 if the variable is inherently discrete, and takes the values 0.0, 0.1, 0.01, 0.001, or any other real values ≧0 and ≦2 if the variable is inherently continuous.
  • As used herein, unless specifically indicated otherwise, the word “or” is used in the inclusive sense of “and/or” and not the exclusive sense of “either/or.”
  • The term “on average” represents the mean value derived from performing at least three independent replicates for each data point.
  • The term “biological activity” encompasses structural and functional properties of a macrocycle of the invention. Biological activity is, for example, structural stability, helicity (including, e.g. alpha-helicity), affinity for a target, resistance to proteolytic degradation, cell penetrability, intracellular stability, in vivo stability, or any combination thereof.
  • The details of one or more particular embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
  • Design of Peptidomimetic Macrocycles
  • In general, peptidomimetic macrocycles are prepared that target or interact with proteins that a virus needs for infection or replication within a host cell. Such viruses may be, for example, influenza viruses belonging to Orthomyxoviridae family of viruses. This family also includes Thogoto viruses and Dhoriviruses. There are several types and subtypes of influenza viruses known, which infect humans and other species. Influenza type A viruses infect people, birds, pigs, horses, seals and other animals, but wild birds are the natural hosts for these viruses. Influenza type A viruses are divided into subtypes and named on the basis of two proteins on the surface of the virus: hemagglutinin (HA) and neuraminidase (NA). For example, an “H7N2 virus” designates an influenza A subtype that has an HA 7 protein and an NA 2 protein. Similarly an “H5N1” virus has an HA 5 protein and an NA 1 protein. There are 16 known HA subtypes and 9 known NA subtypes. Many different combinations of HA and NA proteins are possible. Only some influenza A subtypes (i.e., H1N1, H1N2, and H3N2) are currently in general circulation among people. Other subtypes are found most commonly in other animal species. For example, H7N7 and H3N8 viruses cause illness in horses, and H3N8 also has recently been shown to cause illness in dogs (http://www.cdc.gov/flu/avian/gen-info/flu-viruses.htm).
  • Antiviral agents according to the invention can be used to protect high-risk groups (hospital units, institutes caring for elderly, immuno-suppressed individuals), and on a case by case basis. A potential use for antiviral agents is to limit the spread and severity of the future pandemics whether caused by avian H5N1 or other strains of influenza virus. Avian influenza A viruses of the subtypes H5 and H7, including H5N1, H7N7, and H7N3 viruses, have been associated with high pathogenicity, and human infection with these viruses have ranged from mild (H7N3, H7N7) to severe and fatal disease (H7N7, H5N1). Human illness due to infection with low pathogenicity viruses has been documented, including very mild symptoms (e.g., conjunctivitis) to influenza-like illness. Examples of low pathogenicity viruses that have infected humans include H7N7, H9N2, and H7N2. (http://www.cdc.gov/flu/avian/gen-info/flu-viruses.htm).
  • Influenza B viruses are usually found in humans but can also infect seals. Unlike influenza A viruses, these viruses are not classified according to subtype. Influenza B viruses can cause morbidity and mortality among humans, but in general are associated with less severe epidemics than influenza A viruses. Although influenza type B viruses can cause human epidemics, they have not caused pandemics. (http://www.cdc.gov/flu/avian/gen-info/flu-viruses.htm).
  • Influenza type C viruses cause mild illness in humans and do not cause epidemics or pandemics. These viruses can also infect dogs and pigs. These viruses are not classified according to subtype. (http://www.cdc.gov/flu/avian/gen-info/flu-viruses.htm).
  • Influenza viruses differ from each other in respect to cell surface receptor specificity and cell tropism, however they use common entry pathways. Charting these pathways and identification of host cell proteins involved in virus influenza transmission, entry, replication, biosynthesis, assembly, or exit allows the development of general agents against existing and emerging strains of influenza. The agents may also prove useful against unrelated viruses that use similar pathways. For example, the agents may protect airway epithelial cells against a number of different viruses in addition to influenza viruses.
  • In one embodiment the targeted virus is an adenovirus. Adenoviruses most commonly cause respiratory illness; symptoms of respiratory illness caused by adenovirus infection range from the common cold syndrome to pneumonia, croup, and bronchitis. Patients with compromised immune systems are especially susceptible to severe complications of adenovirus infection. Acute respiratory disease (ARD), first recognized among military recruits during World War II, can be caused by adenovirus infections during conditions of crowding and stress. Adenoviruses are medium-sized (90-100 nm), nonenveloped icosohedral viruses containing double-stranded DNA. There are 49 immunologically distinct types (6 subgenera: A through F) that can cause human infections. Adenoviruses are unusually stable to chemical or physical agents and adverse pH conditions, allowing for prolonged survival outside of the body. Some adenoviruses, such as AD2 and Ad5 (species C) use clathrin mediated endocytosis and macropinocytosis for infectious entry. Other adenoviruses, such as Ad3 (species B) use dynamin dependent endocytosis and macropinocytosis for infectious entry.
  • In one embodiment the targeted virus is a respiratory syncytial virus (RSV). RSV is the most common cause of bronchiolitis and pneumonia among infants and children under 1 year of age. Illness begins most frequently with fever, runny nose, cough, and sometimes wheezing. During their first RSV infection, between 25% and 40% of infants and young children have signs or symptoms of bronchiolitis or pneumonia, and 0.5% to 2% require hospitalization. Most children recover from illness in 8 to 15 days. The majority of children hospitalized for RSV infection are under 6 months of age. RSV also causes repeated infections throughout life, usually associated with moderate-to-severe cold-like symptoms; however, severe lower respiratory tract disease may occur at any age, especially among the elderly or among those with compromised cardiac, pulmonary, or immune systems. RSV is a negative-sense, enveloped RNA virus. The virion is variable in shape and size (average diameter of between 120 and 300 nm), is unstable in the environment (surviving only a few hours on environmental surfaces), and is readily inactivated with soap and water and disinfectants.
  • In one embodiment the targeted virus is a human parainfluenza virus (HPIV). HPIVs are second to respiratory syncytial virus (RSV) as a common cause of lower respiratory tract disease in young children. Similar to RSV, HPIVs can cause repeated infections throughout life, usually manifested by an upper respiratory tract illness (e.g., a cold and/or sore throat). HPIVs can also cause serious lower respiratory tract disease with repeat infection (e.g., pneumonia, bronchitis, and bronchiolitis), especially among the elderly, and among patients with compromised immune systems. Each of the four HPIVs has different clinical and epidemiologic features. The most distinctive clinical feature of HPIV-1 and HPIV-2 is croup (i.e., laryngotracheobronchitis); HPIV-1 is the leading cause of croup in children, whereas HPIV-2 is less frequently detected. Both HPIV-1 and -2 can cause other upper and lower respiratory tract illnesses. HPIV-3 is more often associated with bronchiolitis and pneumonia. HPIV-4 is infrequently detected, possibly because it is less likely to cause severe disease. The incubation period for HPIVs is generally from 1 to 7 days. HPIVs are negative-sense, single-stranded RNA viruses that possess fusion and hemagglutinin-neuraminidase glycoprotein “spikes” on their surface. There are four serotypes types of HPIV (1 through 4) and two subtypes (4a and 4b). The virion varies in size (average diameter between 150 and 300 nm) and shape, is unstable in the environment (surviving a few hours on environmental surfaces), and is readily inactivated with soap and water.
  • In one embodiment the targeted virus is a coronavirus. Coronavirus is a genus of animal virus belonging to the family Coronaviridae. Coronaviruses are enveloped viruses with a positive-sense single-stranded RNA genome and a helical symmetry. The genomic size of coronaviruses ranges from approximately 16 to 31 kilobases, extraordinarily large for an RNA virus. The name “coronavirus” is derived from the Latin corona, meaning crown, as the virus envelope appears under electron microscopy to be crowned by a characteristic ring of small bulbous structures. This morphology is actually formed by the viral spike peplomers, which are proteins that populate the surface of the virus and determine host tropism. Coronaviruses are grouped in the order Nidovirales, named for the Latin nidus, meaning nest, as all viruses in this order produce a 3′ co-terminal nested set of subgenomic mRNA's during infection. Proteins that contribute to the overall structure of all coronaviruses are the spike, envelope, membrane and nucleocapsid. In the specific case of SARS a defined receptor-binding domain on S mediates the attachment of the virus to its cellular receptor, angiotensin-converting enzyme 2.
  • In one embodiment the targeted virus is a rhinovirus. Rhinovirus (from the Greek rhin-, which means “nose”) is a genus of the Picornaviridae family of viruses. Rhinoviruses are the most common viral infective agents in humans, and a causative agent of the common cold. There are over 105 serologic virus types that cause cold symptoms, and rhinoviruses are responsible for approximately 50% of all cases. Rhinoviruses have single-stranded positive sense RNA genomes of between 7.2 and 8.5 kb in length. At the 5′ end of the genome is a virus-encoded protein, and like mammalian mRNA, there is a 3′ poly-A tail. Structural proteins are encoded in the 5′ region of the genome and non structural at the end. This is the same for all picornaviruses. The viral particles themselves are not enveloped and are icosahedral in structure.
  • Any secondary structure of a viral protein (or of a host cell protein involved in viral infectivity) can form the basis of the methods of the invention. For example, a viral proteins comprising a secondary structure which is a helix may be used to design peptidomimetic macrocycles based on said helix.
  • In one embodiment, the peptidomimetic macrocycle of the invention is designed based on the PR1 or PB2 sequence of an influenza virus. The PB1 sequence is highly conserved across all known strains of influenza A virus, which may result in less drug resistance should than that observed with the current standard of care. An alignment of the first 25 N-terminal amino acids of PB1 from the NCBI data bank's 2,485 influenza A virus strains (Ghanem, 2007) demonstrates the remarkable sequence conservation in the PA interaction domain of PB1. Therefore, antiviral therapies based on the PB1 sequence may block most if not all, influenza A virus strains. Additionally, sequence modification of a peptidomimetic macrocycle based on these few variations in PB1 may enable an antiviral cocktail of PB1 inhibitors to eliminate resistance due to escape mutants.
  • A non-limiting exemplary list of sequences suitable for macrocyclization as well as macrocyclic peptides for use in the present invention is given below:
  • TABLE 1a
    Exemplary PB1 peptidomimetic macrocycles of the invention.
    Influenza PB1 Sequences For Macrocyclization (bold = critical residue; X = cross-linked amino acid)
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    Ac— Met Asp Val Asn Pro Thr Leu Leu Phe Leu Lys Val Pro Ala Gln —NH2 Wt,
    backbone
    H—
    bonds
    Ac— Met Asp Val Asn Pro Thr Leu Leu Phe Leu Lys Val Pro Ala Gln —NH2 wt,
    side-
    chain
    H—
    bonds
    contacts
    Ac— Met Asp Val Asn Pro Thr Leu Leu Phe Leu Lys Val Pro Ala Gln —NH2 wt,
    side-
    chain
    hydrophobic
    contacts
    Ac— Met/ Asp Val Asn X Thr/ Leu X Phe Leu Lys Val Pro/ Ala/ Gln/ —NH2 i--> i + 3
    Nle Aib Aib Aib Arg x-link
    #1
    Ac— Met/ Asp Val Asn Pro/ X Leu Leu X Leu Lys Val Pro/ Ala/ Gln/ —NH2 i--> i + 3
    Nle Aib Aib Aib Arg x-link
    #2
    Ac— Met/ Asp Val Asn Pro/ Thr/ X Leu Phe X Lys Val Pro/ Ala/ Gln/ —NH2 i--> i + 3
    Nle Aib Aib Aib Aib Arg x-link
    #3
    Ac— Met/ Asp Val Asn Pro/ Thr/ Leu Leu X Leu Lys X Pro/ Ala/ Gln/ —NH2 i--> i + 3
    Nle Aib Aib Aib Aib Arg x-link
    #4
    Ac— Met/ Asp Val Asn Pro/ Thr/ Leu Leu Phe X Lys Val X Ala/ Gln/ —NH2 i--> i + 3
    Nle Aib Aib Aib Arg x-link
    #5
    Ac— Met/ Asp Val Asn Pro/ Thr/ Leu Leu Phe Leu Lys X Pro/ Ala/ X —NH2 i --> i + 3
    Nle Aib Aib Aib Aib x-link
    #6
    X Thr/ Leu Leu Phe Leu Lys Val Pro/ Ala/ Gln/ —NH2 Formula
    Aib Aib Aib Arg IV x-
    link #1
    Charge
    PB1 Peptidomimetic Macrocycles (bold = mutated residue; $ = S5-olefin amino acid; % = Formula IV x-link) at pH
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 7.4
    Ac— Met Asp Val Asn $ Thr Leu $ Phe Leu Lys Val Pro Ala Gln —NH2 0
    Ac— Nle Asp Val Asn $ Aib Leu $ Phe Leu Lys Val Aib Aib Gln —NH2 0
    Ac— Nle Asp Val Asn $ Aib Leu $ Phe Leu Lys Val Aib Aib Arg —NH2 1
    Ac— Met Asp Val Asn Pro $ Leu Leu $ Leu Lys Val Pro Ala Gln —NH2 0
    Ac— Nle Asp Val Asn Aib $ Leu Leu $ Leu Lys Val Aib Aib Gln —NH2 0
    Ac— Nle Asp Val Asn Aib $ Leu Leu $ Leu Lys Val Aib Aib Arg —NH2 1
    Ac— Met Asp Val Asn Pro Thr $ Leu Phe $ Lys Val Pro Ala Gln —NH2 0
    Ac— Nle Asp Val Asn Aib Aib $ Leu Phe $ Lys Val Aib Aib Gln —NH2 0
    Ac— Nle Asp Val Asn Aib Aib $ Leu Phe $ Lys Val Aib Aib Arg —NH2 1
    Ac— Met Asp Val Asn Pro Thr Leu Leu $ Leu Lys $ Pro Ala Gln —NH2 0
    Ac— Nle Asp Val Asn Aib Aib Leu Leu $ Leu Lys $ Aib Aib Gln —NH2 0
    Ac— Nle Asp Val Asn Aib Aib Leu Leu $ Leu Lys $ Aib Aib Arg —NH2 1
    Ac— Met Asp Val Asn Pro Thr Leu Leu Phe $ Lys Val $ Ala Gln —NH2 0
    Ac— Nle Asp Val Asn Aib Aib Leu Leu Phe $ Lys Val $ Aib Gln —NH2 0
    Ac— Nle Asp Val Asn Aib Aib Leu Leu Phe $ Lys Val $ Aib Arg —NH2 1
    Ac— Met Asp Val Asn Pro Thr Leu Leu Phe Leu Lys $ Pro Ala $ —NH2 0
    Ac— Nle Asp Val Asn Aib Aib Leu Leu Phe Leu Lys $ Aib Aib $ —NH2 0
    % Thr Leu Leu Phe Leu Lys Val Pro Ala Gln —NH2 1
    % Aib Leu Leu Phe Leu Lys Val Aib Aib Gln —NH2 1
    % Aib Leu Leu Phe Leu Lys Val Aib Aib Arg —NH2 2
  • TABLE 1b
    Exemplary PB2 peptidomimetic macrocycles of the invention
    Influenza PB2 Sequences For Macrocyclization (bold = critical residue; X = cross-linked amino acid)
    1 2 3 4 5 6 7 8 9 10 11 Design Notes
    Ac— Met/Nle Glu Arg Ile Lys Glu Leu Arg Asn Leu Met/Nle —NH2 wt, side-
    chain H—
    bonds
    contacts
    Ac— Met/Nle Glu Arg Ile Lys Glu Leu Arg Asn Leu Met/Nle —NH2 wt, side-
    chain
    hydrophobic
    contacts
    Ac— X Glu Arg Ile X Glu Leu Arg Asn Leu Met/Nle —NH2 i--> i + 4 x-
    link #1
    Ac— Met/Nle Glu Arg Ile X Glu Leu Arg X Leu Met/Nle —NH2 i--> i + 4 x-
    link #2
    Ac— Met/Nle X Arg Ile Lys X Leu Arg Asn Leu Met/Nle —NH2 i--> i + 4 x-
    link #3
    Ac— X Glu Arg Ile Lys Glu Leu X Asn Leu Met/Nle —NH2 i--> i + 7 x-
    link #1
    Ac— Met/Nle X Arg Ile Lys Glu Leu Arg X Leu Met/Nle —NH2 i--> i + 7 x-
    link #2
    X Met/Nle Glu XArg He Lys Glu Leu Arg Asn Leu Met/Nle —NH2 Formula IV
    x-link #1
    X Met/Nle Glu XAla Ile Lys Glu Leu Arg Asn Leu Met/Nle —NH2 Formula IV
    x-link #2
    X Met/Nle Glu XGly Ile Lys Glu Leu Arg Asn Leu Met/Nle —NH2 Formula IV
    x-link #3
    Influenza PB2 Peptidomimetic Macrocycles (bold = mutated residue;
    S5 = S5-olefin aa; R8 = R8-olefin aa; % = Formula IV x-link) Charge at
    1 2 3 4 5 6 7 8 9 10 11 pH 7.4
    Ac— S5 Glu Arg Ile S5 Glu Leu Arg Asn Leu Met —NH2 0
    Ac— Met Glu Arg Ile S5 Glu Leu Arg S5 Leu Met —NH2 0
    Ac— Met S5 Arg Ile Lys S5 Leu Arg Asn Leu Met —NH2 3
    Ac— R8 Glu Arg Ile Lys Glu Leu S5 Asn Leu Met —NH2 0
    Ac— Met R8 Arg Ile Lys Glu Leu Arg S5 Leu Met —NH2 2
    % Met Glu % Arg Ile Lys Glu Leu Arg Asn Leu Met —NH2 1
    % Met Glu % Ala Ile Lys Glu Leu Arg Asn Leu Met —NH2 0
    % Met Glu % Gly Ile Lys Glu Leu Arg Asn Leu Met —NH2 0
    Ac— S5 Glu Arg Ile S5 Glu Leu Arg Asn Leu Nle —NH2 0
    Ac— Nle Glu Arg Ile S5 Glu Leu Arg S5 Leu Nle —NH2 0
    Ac— Nle S5 Arg Ile Lys S5 Leu Arg Asn Leu Nle —NH2 3
    Ac— R8 Glu Arg Ile Lys Glu Leu S5 Asn Leu Nle —NH2 0
    Ac— Nle R8 Arg Ile Lys Glu Leu Arg S5 Leu Nle —NH2 2
    % Nle Glu % Arg Ile Lys Glu Leu Arg Asn Leu Nle —NH2 1
    % Nle Glu % Ala Ile Lys Glu Leu Arg Asn Leu Nle —NH2 0
    % Nle Glu % Gly Ile Lys Glu Leu Arg Asn Leu Nle —NH2 0
  • Peptidomimetic Macrocycles of the Invention
  • In some embodiments, a peptidomimetic macrocycle of the invention has the Formula (I):
  • Figure US20160068573A1-20160310-C00005
  • wherein:
    each A, C, D, and E is independently a natural or non-natural amino acid;
  • B is a natural or non-natural amino acid, amino acid analog
  • Figure US20160068573A1-20160310-C00006
  • [—NH-L3-CO—], [—NH-L3-SO2—], or [—NH-L3-];
  • R1 and R2 are independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-;
    R3 is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5;
    L is a macrocycle-forming linker of the formula -L1-L2-;
    L1 and L2 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene, or [—R4—K—R4-]m, each being optionally substituted with R5;
    each R4 is alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;
    each K is O, S, SO, SO2, CO, CO2, or CONR3;
    each R5 is independently halogen, alkyl, —OR6, —N(R6)2, —SR6, —SOR6, —SO2R6, —CO2R6, a fluorescent moiety, a radioisotope or a therapeutic agent;
    each R6 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope or a therapeutic agent;
    R7 is —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5, or part of a cyclic structure with a D residue;
    R8 is —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5, or part of a cyclic structure with an E residue;
    v and w are independently integers from 1-1000;
    u, x, y and z are independently integers from 0-10; and
    n is an integer from 1-5.
  • In one example, at least one of R1 and R2 is alkyl, unsubstituted or substituted with halo-. In another example, both R1 and R2 are independently alkyl, unsubstituted or substituted with halo-. In some embodiments, at least one of R1 and R2 is methyl. In other embodiments, R1 and R2 are methyl.
  • In some embodiments of the invention, x+y+z is at least 2. In other embodiments of the invention, x+y+z is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10. Each occurrence of A, B, C, D or E in a macrocycle or macrocycle precursor of the invention is independently selected. For example, a sequence represented by the formula [A]x, when x is 3, encompasses embodiments where the amino acids are not identical, e.g. Gln-Asp-Ala as well as embodiments where the amino acids are identical, e.g. Gln-Gln-Gln. This applies for any value of x, y, or z in the indicated ranges. Similarly, when u is greater than 1, each compound of the invention may encompass peptidomimetic macrocycles which are the same or different. For example, a compound of the invention may comprise peptidomimetic macrocycles comprising different linker lengths or chemical compositions.
  • In some embodiments, the peptidomimetic macrocycle of the invention comprises a secondary structure which is a helix and R8 is —H, allowing intrahelical hydrogen bonding. In some embodiments, at least one of A, B, C, D or E is an α,α-disubstituted amino acid. In one example, B is an α,α-disubstituted amino acid. For instance, at least one of A, B, C, D or E is 2-aminoisobutyric acid. In other embodiments, at least one of A, B, C, D or E is
  • Figure US20160068573A1-20160310-C00007
  • In other embodiments, the length of the macrocycle-forming linker L as measured from a first Cα to a second Cα is selected to stabilize a desired secondary peptide structure, such as a helix formed by residues of the peptidomimetic macrocycle including, but not necessarily limited to, those between the first Cα to a second Cα.
  • In one embodiment, the peptidomimetic macrocycle of Formula (I) is:
  • Figure US20160068573A1-20160310-C00008
  • wherein each R1 and R2 is independently independently H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo.
  • In related embodiments, the peptidomimetic macrocycle of Formula (I) is:
  • Figure US20160068573A1-20160310-C00009
  • Exemplary embodiments of the macrocycle-forming linker L are shown below.
  • Figure US20160068573A1-20160310-C00010
  • In some embodiments, the peptidomimetic macrocycles of the invention have the Formula (II):
  • Figure US20160068573A1-20160310-C00011
  • wherein:
    each A, C, D, and E is independently a natural or non-natural amino acid;
    B is a natural or non-natural amino acid, amino acid analog,
  • Figure US20160068573A1-20160310-C00012
  • [—NH-L3-CO—], [—NH-L3-SO2—], or [—NH-L3-];
  • R1 and R2 are independently H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo;
    R3 is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5;
    L is a macrocycle-forming linker of the formula
  • Figure US20160068573A1-20160310-C00013
  • L1, L2 and L3 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene, or [—R4—K—R4-]n, each being optionally substituted with R5;
    each R4 is alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;
    each K is O, S, SO, SO2, CO, CO2, or CONR3;
    each R5 is independently halogen, alkyl, —OR6, —N(R6)2, —SR6, —SOR6, —SO2R6, —CO2R6, a fluorescent moiety, a radioisotope or a therapeutic agent;
    each R6 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope or a therapeutic agent;
    R7 is —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5, or part of a cyclic structure with a D residue;
    R8 is —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5, or part of a cyclic structure with an F residue;
    v and w are independently integers from 1-1000;
    u, x, y and z are independently integers from 0-10; and
    n is an integer from 1-5.
  • In one example, at least one of R1 and R2 is alkyl, unsubstituted or substituted with halo-. In another example, both R1 and R2 are independently alkyl, unsubstituted or substituted with halo. In some embodiments, at least one of R1 and R2 is methyl. In other embodiments, R1 and R2 are methyl.
  • In some embodiments of the invention, x+y+z is at least 2. In other embodiments of the invention, x+y+z is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10. Each occurrence of A, B, C, D or E in a macrocycle or macrocycle precursor of the invention is independently selected. For example, a sequence represented by the formula [A]x, when x is 3, encompasses embodiments where the amino acids are not identical, e.g. Gln Asp Ala as well as embodiments where the amino acids are identical, e.g. Gln Gln Gln. This applies for any value of x, y, or z in the indicated ranges.
  • In some embodiments, the peptidomimetic macrocycle of the invention comprises a secondary structure which is a helix and R8 is —H, allowing intrahelical hydrogen bonding. In some embodiments, at least one of A, B, C, D or F is an α,α-disubstituted amino acid. In one example, B is an α,α-disubstituted amino acid. For instance, at least one of A, B, C, D or E is 2-aminoisobutyric acid. In other embodiments, at least one of A, B, C, D or E is
  • Figure US20160068573A1-20160310-C00014
  • In other embodiments, the length of the macrocycle-forming linker L as measured from a first Cα to a second Cα is selected to stabilize a desired secondary peptide structure, such as a helix formed by residues of the peptidomimetic macrocycle including, but not necessarily limited to, those between the first Cα to a second Cα.
  • Exemplary embodiments of the macrocycle-forming linker L are shown below.
  • Figure US20160068573A1-20160310-C00015
    Figure US20160068573A1-20160310-C00016
    Figure US20160068573A1-20160310-C00017
    Figure US20160068573A1-20160310-C00018
    Figure US20160068573A1-20160310-C00019
    Figure US20160068573A1-20160310-C00020
    Figure US20160068573A1-20160310-C00021
    Figure US20160068573A1-20160310-C00022
    Figure US20160068573A1-20160310-C00023
  • In other embodiments, the invention provides peptidomimetic macrocycles of Formula (II):
  • Figure US20160068573A1-20160310-C00024
  • wherein:
    each A, C, D, and F is independently a natural or non-natural amino acid;
    B is a natural or non-natural amino acid, amino acid analog,
  • Figure US20160068573A1-20160310-C00025
  • [—NH-L4-CO—], [—NH-L4-SO2—], or [—NH-L4-];
  • R1 and R2 are independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-;
    R3 is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, unsubstituted or substituted with R5;
    L1, L2, L3 and L4 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene or [—R4—K—R4-]n, each being unsubstituted or substituted with R5;
  • K is O, S, SO, SO2, CO, CO2, or CONR3;
  • each R4 is alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;
    each R5 is independently halogen, alkyl, —OR6, —N(R6)2, —SR6, —SO2R6, —SO2R6, —CO2R6, a fluorescent moiety, a radioisotope or a therapeutic agent;
    each R6 is independently —II, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope or a therapeutic agent;
    R7 is —II, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, unsubstituted or substituted with R5, or part of a cyclic structure with a D residue;
    R8 is —II, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, unsubstituted or substituted with R5, or part of a cyclic structure with an E residue;
    v and w are independently integers from 1-1000;
    u, x, y and z are independently integers from 0-10; and
    n is an integer from 1-5.
  • In one example, at least one of R1 and R2 is alkyl, unsubstituted or substituted with halo-. In another example, both R1 and R2 are independently alkyl, unsubstituted or substituted with halo-. In some embodiments, at least one of R1 and R2 is methyl. In other embodiments, R1 and R2 are methyl.
  • In some embodiments of the invention, x+y+z is at least 2. In other embodiments of the invention, x+y+z is 3, 4, 5, 6, 7, 8, 9 or 10. Each occurrence of A, B, C, D or E in a macrocycle or macrocycle precursor of the invention is independently selected. For example, a sequence represented by the formula [A]x when x is 3, encompasses embodiments where the amino acids are not identical, e.g. Gln-Asp-Ala as well as embodiments where the amino acids are identical, e.g. Gln-Gln-Gln. This applies for any value of x, y, or z in the indicated ranges.
  • In some embodiments, the peptidomimetic macrocycle of the invention comprises a secondary structure which is a helix and R8 is —H, allowing intrahelical hydrogen bonding. In some embodiments, at least one of A, B, C, D or E is an α,α-disubstituted amino acid. In one example, B is an α,α-disubstituted amino acid. For instance, at least one of A, B, C, D or E is 2-aminoisobutyric acid. In other embodiments, at least one of A, B, C, D or E is
  • Figure US20160068573A1-20160310-C00026
  • In other embodiments, the length of the macrocycle-forming linker [-L1-S-L2-S-L3-] as measured from a first Cα to a second Cα is selected to stabilize a desired secondary peptide structure, such as a helix (including, but not limited to a 310 helix or an α-helix) formed by residues of the peptidomimetic macrocycle including, but not necessarily limited to, those between the first Cα to a second Cα.
  • Macrocycles or macrocycle precursors are synthesized, for example, by solution phase or solid-phase methods, and can contain both naturally-occurring and non-naturally-occurring amino acids. See, for example, Hunt, “The Non-Protein Amino Acids” in Chemistry and Biochemistry of the Amino Acids, edited by G. C. Barrett, Chapman and Hall, 1985. In some embodiments, the thiol moieties are the side chains of the amino acid residues L-cysteine, D-cysteine, α-methyl-L cysteine, α-methyl-D-cysteine, L-homocysteine, D-homocysteine, α-methyl-L-homocysteine or α-methyl-D-homocysteine. A bis-alkylating reagent is of the general formula X-L2-Y wherein L2 is a linker moiety and X and Y are leaving groups that are displaced by —SH moieties to form bonds with L2. In some embodiments, X and Y are halogens such as I, Br, or Cl.
  • In other embodiments, D and/or E in the compound of Formula I, II or III are further modified in order to facilitate cellular uptake. In some embodiments, lipidating or PEGylating a peptidomimetic macrocycle facilitates cellular uptake, increases bioavailability, increases blood circulation, alters pharmacokinetics, decreases immunogenicity and/or decreases the needed frequency of administration.
  • In other embodiments, at least one of [D] and [E] in the compound of Formula I, II or III represents a moiety comprising an additional macrocycle-forming linker such that the peptidomimetic macrocycle comprises at least two macrocycle-forming linkers. In a specific embodiment, a peptidomimetic macrocycle comprises two macrocycle-forming linkers.
  • In the peptidomimetic macrocycles of the invention, any of the macrocycle-forming linkers described herein may be used in any combination with any of the sequences shown in Tables 1-4 and also with any of the R substituents indicated herein.
  • In some embodiments, the peptidomimetic macrocycle of the invention comprises at least one helical motif such as a 310 or an α-helix motif. For example, A, B and/or C in the compound of Formula I, II or III include one or more helices. As a general matter, helices include between 3 and 4 amino acid residues per turn. In some embodiments, the helix of the peptidomimetic macrocycle includes 1 to 5 turns and, therefore, 3 to 20 amino acid residues. In specific embodiments, the helix includes 1 turn, 2 turns, 3 turns, 4 turns, or 5 turns. In some embodiments, the macrocycle-forming linker stabilizes a helix motif included within the peptidomimetic macrocycle. Thus, in some embodiments, the length of the macrocycle-forming linker L from a first Cα to a second Cα is selected to increase the stability of a helix. In some embodiments, the macrocycle-forming linker spans from 1 turn to 5 turns of the helix. In some embodiments, the macrocycle-forming linker spans approximately 1 turn, 2 turns, 3 turns, 4 turns, or 5 turns of the helix. In some embodiments, the length of the macrocycle-forming linker is approximately 5 Å to 9 Å per turn of the helix, or approximately 6 Å to 8 Å per turn of the helix. Where the macrocycle-forming linker spans approximately 1 turn of a helix, the length is equal to approximately 5 carbon-carbon bonds to 13 carbon-carbon bonds, approximately 7 carbon-carbon bonds to 11 carbon-carbon bonds, or approximately 9 carbon-carbon bonds. Where the macrocycle-forming linker spans approximately 2 turns of a helix, the length is equal to approximately 8 carbon-carbon bonds to 16 carbon-carbon bonds, approximately 10 carbon-carbon bonds to 14 carbon-carbon bonds, or approximately 12 carbon-carbon bonds. Where the macrocycle-forming linker spans approximately 3 turns of a helix, the length is equal to approximately 14 carbon-carbon bonds to 22 carbon-carbon bonds, approximately 16 carbon-carbon bonds to 20 carbon-carbon bonds, or approximately 18 carbon-carbon bonds. Where the macrocycle-forming linker spans approximately 4 turns of a helix, the length is equal to approximately 20 carbon-carbon bonds to 28 carbon-carbon bonds, approximately 22 carbon-carbon bonds to 26 carbon-carbon bonds, or approximately 24 carbon-carbon bonds. Where the macrocycle-forming linker spans approximately 5 turns of a helix, the length is equal to approximately 26 carbon-carbon bonds to 34 carbon-carbon bonds, approximately 28 carbon-carbon bonds to 32 carbon-carbon bonds, or approximately 30 carbon-carbon bonds. Where the macrocycle-forming linker spans approximately 1 turn of a helix, the linkage contains approximately 4 atoms to 12 atoms, approximately 6 atoms to 10 atoms, or approximately 8 atoms. Where the macrocycle-forming linker spans approximately 2 turns of the helix, the linkage contains approximately 7 atoms to 15 atoms, approximately 9 atoms to 13 atoms, or approximately 11 atoms. Where the macrocycle-forming linker spans approximately 3 turns of the helix, the linkage contains approximately 13 atoms to 21 atoms, approximately 15 atoms to 19 atoms, or approximately 17 atoms. Where the macrocycle-forming linker spans approximately 4 turns of the helix, the linkage contains approximately 19 atoms to 27 atoms, approximately 21 atoms to 25 atoms, or approximately 23 atoms. Where the macrocycle-forming linker spans approximately 5 turns of the helix, the linkage contains approximately 25 atoms to 33 atoms, approximately 27 atoms to 31 atoms, or approximately 29 atoms. Where the macrocycle-forming linker spans approximately 1 turn of the helix, the resulting macrocycle forms a ring containing approximately 17 members to 25 members, approximately 19 members to 23 members, or approximately 21 members. Where the macrocycle-forming linker spans approximately 2 turns of the helix, the resulting macrocycle forms a ring containing approximately 29 members to 37 members, approximately 31 members to 35 members, or approximately 33 members. Where the macrocycle-forming linker spans approximately 3 turns of the helix, the resulting macrocycle forms a ring containing approximately 44 members to 52 members, approximately 46 members to 50 members, or approximately 48 members. Where the macrocycle-forming linker spans approximately 4 turns of the helix, the resulting macrocycle forms a ring containing approximately 59 members to 67 members, approximately 61 members to 65 members, or approximately 63 members. Where the macrocycle-forming linker spans approximately 5 turns of the helix, the resulting macrocycle forms a ring containing approximately 74 members to 82 members, approximately 76 members to 80 members, or approximately 78 members.
  • In other embodiments, the invention provides peptidomimetic macrocycles of Formula (IV) or (IVa):
  • Figure US20160068573A1-20160310-C00027
  • wherein:
    each A, C, D, and E is independently a natural or non-natural amino acid;
    B is a natural or non-natural amino acid, amino acid analog,
  • Figure US20160068573A1-20160310-C00028
  • [—NH-L3-CO—], [—NH-L3-SO2—], or [—NH-L3-];
  • R1 and R2 are independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-, or part of a cyclic structure with an E residue;
    R3 is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5;
    L is a macrocycle-forming linker of the formula -L1-L2-;
    L1 and L2 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene, or [—R4—K—R4-]m, each being optionally substituted with R5;
    each R4 is alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;
    each K is O, S, SO, SO2, CO, CO2, or CONR3;
    each R5 is independently halogen, alkyl, —OR6, —N(R6)2, —SR6, —SO2R6, —SO2R6, —CO2R6, a fluorescent moiety, a radioisotope or a therapeutic agent;
    each R6 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope or a therapeutic agent;
    R7 is —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5;
    v and w are independently integers from 1-1000;
    u, x, y and z are independently integers from 0-10; and
    n is an integer from 1-5.
  • In one example, at least one of R1 and R2 is alkyl, unsubstituted or substituted with halo-. In another example, both R1 and R2 are independently alkyl, unsubstituted or substituted with halo-. In some embodiments, at least one of R1 and R2 is methyl. In other embodiments, R1 and R2 are methyl.
  • In some embodiments of the invention, x+y+z is at least 1. In other embodiments of the invention, x+y+z is at least 2. In other embodiments of the invention, x+y+z is 3, 4, 5, 6, 7, 8, 9 or 10. Each occurrence of A, B, C, D or E in a macrocycle or macrocycle precursor of the invention is independently selected. For example, a sequence represented by the formula [A]x, when x is 3, encompasses embodiments where the amino acids are not identical, e.g. Gln-Asp-Ala as well as embodiments where the amino acids are identical, e.g. Gln-Gln-Gln. This applies for any value of x, y, or z in the indicated ranges.
  • In some embodiments, the peptidomimetic macrocycle of the invention comprises a secondary structure which is a helix and R is —H, allowing intrahelical hydrogen bonding. In some embodiments, at least one of A, B, C, D or E is an α,α-disubstituted amino acid. In one example, B is an α,α-disubstituted amino acid. For instance, at least one of A, B, C, D or E is 2-aminoisobutyric acid. In other embodiments, at least one of A, B, C, D or E is
  • Figure US20160068573A1-20160310-C00029
  • In other embodiments, the length of the macrocycle-forming linker L as measured from a first Cα to a second Cα is selected to stabilize a desired secondary peptide structure, such as a helix (including a 310 helix or α-helix) formed by residues of the peptidomimetic macrocycle including, but not necessarily limited to, those between the first Cα to a second Cα.
  • Exemplary embodiments of the macrocycle-forming linker -L1-L2- are shown below.
  • Figure US20160068573A1-20160310-C00030
  • Preparation of Peptidomimetic Macrocycles
  • Pcptidomimetic macrocycles of the invention may be prepared by any of a variety of methods known in the art. For example, any of the residues indicated by “X” in Table 1 may be substituted with a residue capable of forming a crosslinker with a second residue in the same molecule or a precursor of such a residue.
  • Various methods to effect formation of peptidomimetic macrocycles are known in the art. For example, the preparation of peptidomimetic macrocycles of Formula I is described in Schafmeister et al., J. Am. Chem. Soc. 122:5891-5892 (2000); Schafmeister & Verdine, J. Am. Chem. Soc. 122:5891 (2005); Walensky et al., Science 305:1466-1470 (2004); and U.S. Pat. No. 7,192,713. The α,α-disubstituted amino acids and amino acid precursors disclosed in the cited references may be employed in synthesis of the peptidomimetic macrocycle precursor polypeptides. For example, the “S5-olefin amino acid” is (S)-α-(2′-pentenyl) alanine and the “R8 olefin amino acid” is (R)-α-(2′-octenyl) alanine. Following incorporation of such amino acids into precursor polypeptides, the terminal olefins are reacted with a metathesis catalyst, leading to the formation of the peptidomimetic macrocycle.
  • In other embodiments, the peptidomimetic macrocyles of the invention are of Formula IV or IVa. Methods for the preparation of such macrocycles are described, for example, in U.S. Pat. No. 7,202,332.
  • In some embodiments, the synthesis of these peptidomimetic macrocycles involves a multi-step process that features the synthesis of a peptidomimetic precursor containing an azide moiety and an alkyne moiety; followed by contacting the peptidomimetic precursor with a macrocyclization reagent to generate a triazole-linked peptidomimetic macrocycle. Such a process is described, for example, in U.S. application Ser. No. 12/037,041, filed on Feb. 25, 2008. Macrocycles or macrocycle precursors are synthesized, for example, by solution phase or solid-phase methods, and can contain both naturally-occurring and non-naturally-occurring amino acids. See, for example, Hunt, “The Non-Protein Amino Acids” in Chemistry and Biochemistry of the Amino Acids, edited by G. C. Barrett, Chapman and Hall, 1985.
  • In some embodiments, an azide is linked to the α-carbon of a residue and an alkyne is attached to the α-carbon of another residue. In some embodiments, the azide moieties are azido-analogs of amino acids L-lysine, D-lysine, alpha-methyl-L-lysine, alpha-methyl-D-lysine, L-omithine, D-ornithine, alpha-methyl-L-omithine or alpha-methyl-D-ornithine. In another embodiment, the alkyne moiety is L-propargylglycine. In yet other embodiments, the alkyne moiety is an amino acid selected from the group consisting of L-propargylglycine, D-propargylglycine, (S)-2-amino-2-methyl-4-pentynoic acid, (R)-2-amino-2-methyl-4-pentynoic acid, (S)-2-amino-2-methyl-5-hexynoic acid, (R)-2-amino-2-methyl-5-hexynoic acid, (S)-2-amino-2-methyl-6-heptynoic acid, (R)-2-amino-2-methyl-6-heptynoic acid, (S)-2-amino-2-methyl-7-octynoic acid, (R)-2-amino-2-methyl-7-octynoic acid, (S)-2-amino-2-methyl-8-nonynoic acid and (R)-2-amino-2-methyl-8-nonynoic acid.
  • In some embodiments, the invention provides a method for synthesizing a peptidomimetic macrocycle, the method comprising the steps of contacting a peptidomimetic precursor of Formula V or Formula VI:
  • Figure US20160068573A1-20160310-C00031
  • with a macrocyclization reagent;
    wherein v, w, x, y, z, A, B, C, D, E, R1, R2, R7, R8, L1 and L2 are as defined for Formula (II); R12 is —H when the macrocyclization reagent is a Cu reagent and R12 is —H or alkyl when the macrocyclization reagent is a Ru reagent; and further wherein said contacting step results in a covalent linkage being formed between the alkyne and azide moiety in Formula III or Formula IV. For example, R12 may be methyl when the macrocyclization reagent is a Ru reagent.
  • In the peptidomimetic macrocycles of the invention, at least one of R1 and R2 is alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-. In some embodiments, both R1 and R2 are independently alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-. In some embodiments, at least one of A, B, C, D or E is an α,α-disubstituted amino acid. In one example, B is an α,α-disubstituted amino acid. For instance, at least one of A, B, C, D or E is 2-aminoisobutyric acid.
  • For example, at least one of R1 and R2 is alkyl, unsubstituted or substituted with halo-. In another example, both R1 and R2 are independently alkyl, unsubstituted or substituted with halo-. In some embodiments, at least one of R1 and R2 is methyl. In other embodiments, R1 and R2 are methyl. The macrocyclization reagent may be a Cu reagent or a Ru reagent.
  • In some embodiments, the peptidomimetic precursor is purified prior to the contacting step. In other embodiments, the peptidomimetic macrocycle is purified after the contacting step. In still other embodiments, the peptidomimetic macrocycle is refolded after the contacting step. The method may be performed in solution, or, alternatively, the method may be performed on a solid support.
  • Also envisioned herein is performing the method of the invention in the presence of a target macromolecule that binds to the peptidomimetic precursor or peptidomimetic macrocycle under conditions that favor said binding. In some embodiments, the method is performed in the presence of a target macromolecule that binds preferentially to the peptidomimetic precursor or peptidomimetic macrocycle under conditions that favor said binding. The method may also be applied to synthesize a library of peptidomimetic macrocycles.
  • In some embodiments, the alkyne moiety of the peptidomimetic precursor of Formula V or Formula VI is a sidechain of an amino acid selected from the group consisting of L-propargylglyeine, D-propargylglycinc, (S)-2-amino-2-methyl-4-pentynoic acid, (R)-2-amino-2-methyl-4-pentynoic acid, (S)-2-amino-2-methyl-5-hexynoic acid, (R)-2-amino-2-methyl-5-hexynoic acid, (S)-2-amino-2-methyl-6-heptynoic acid, (R)-2-amino-2-methyl-6-heptynoic acid, (S)-2-amino-2-methyl-7-octynoic acid, (R)-2-amino-2-methyl-7-octynoic acid, (S)-2-amino-2-methyl-8-nonynoic acid, and (R)-2-amino-2-methyl-8-nonynoic acid. In other embodiments, the azide moiety of the peptidomimetic precursor of Formula V or Formula VI is a sidechain of an amino acid selected from the group consisting of ε-azido-L-lysine, ε-azido-D-lysine, ε-azido-α-methyl-L-lysine, ε-azido-α-methyl-D-lysine, δ-azido-α-methyl-L-omithine, and δ-azido-α-methyl-D-ornithine.
  • In some embodiments, x+y+z is 2, and and A, B and C are independently natural or non-natural amino acids. In other embodiments, x+y+z is 3 or 6, and and A, B and C are independently natural or non-natural amino acids.
  • In some embodiments, the contacting step is performed in a solvent selected from the group consisting of protic solvent, aqueous solvent, organic solvent, and mixtures thereof. For example, the solvent may be chosen from the group consisting of H2O, THF, THF/H2O, tBuOH/H2O, DMF, DIPEA, CH3CN or CH2Cl2, ClCH2CH2Cl or a mixture thereof. The solvent may be a solvent which favors helix formation.
  • Alternative but equivalent protecting groups, leaving groups or reagents are substituted, and certain of the synthetic steps are performed in alternative sequences or orders to produce the desired compounds. Synthetic chemistry transformations and protecting group methodologies (protection and deprotection) useful in synthesizing the compounds described herein include, for example, those such as described in Larock, Comprehensive Organic Transformations, VCH Publishers (1989); Greene and Wuts, Protective Groups in Organic Synthesis, 2d. Ed., John Wiley and Sons (1991); Fieser and Fieser, Fieser and Fieser's Reagents for Organic Synthesis, John Wiley and Sons (1994); and Paquette, ed., Encyclopedia of Reagents for Organic Synthesis, John Wiley and Sons (1995), and subsequent editions thereof.
  • In some embodiments, peptidomimetic macrocycles of the invention have the structure:
  • Figure US20160068573A1-20160310-C00032
  • The influenza PB1 peptidomimetic macrocycles shown above are also identified as SP-8, SP-16, SP-13 and SP-41, respectively. In other embodiments, the peptidomimetic macrocycle of the invention has the structure:
  • Figure US20160068573A1-20160310-C00033
  • Preparation of Peptidomimetic Macrocycles.
  • The peptidomimetic macrocycles of the invention are made, for example, by chemical synthesis methods, such as described in Fields et al., Chapter 3 in Synthetic Peptides: A User's Guide, ed. Grant, W. H. Freeman & Co., New York, N. Y., 1992, p. 77. Hence, for example, peptides are synthesized using the automated Merrifield techniques of solid phase synthesis with the amine protected by either tBoc or Fmoc chemistry using side chain protected amino acids on, for example, an automated peptide synthesizer (e.g., Applied Biosystems (Foster City, Calif.), Model 430A, 431, or 433).
  • One manner of producing the peptidomimetic precursors and peptidomimetic macrocycles described herein uses solid phase peptide synthesis (SPPS). The C-terminal amino acid is attached to a cross-linked polystyrene resin via an acid labile bond with a linker molecule. This resin is insoluble in the solvents used for synthesis, making it relatively simple and fast to wash away excess reagents and by-products. The N-terminus is protected with the Fmoc group, which is stable in acid, but removable by base. Side chain functional groups are protected as necessary with base stable, acid labile groups.
  • Longer peptidomimetic precursors are produced, for example, by conjoining individual synthetic peptides using native chemical ligation. Alternatively, the longer synthetic peptides are biosynthesized by well known recombinant DNA and protein expression techniques. Such techniques are provided in well-known standard manuals with detailed protocols. To construct a gene encoding a peptidomimetic precursor of this invention, the amino acid sequence is reverse translated to obtain a nucleic acid sequence encoding the amino acid sequence, preferably with codons that are optimum for the organism in which the gene is to be expressed. Next, a synthetic gene is made, typically by synthesizing oligonucleotides which encode the peptide and any regulatory elements, if necessary. The synthetic gene is inserted in a suitable cloning vector and transfected into a host cell. The peptide is then expressed under suitable conditions appropriate for the selected expression system and host. The peptide is purified and characterized by standard methods.
  • The peptidomimetic precursors are made, for example, in a high-throughput, combinatorial fashion using, for example, a high-throughput polychannel combinatorial synthesizer (e.g., Thuramed TETRAS multichannel peptide synthesizer from CreoSalus, Louisville, Ky. or Model Apex 396 multichannel peptide synthesizer from AAPPTEC, Inc., Louisville, Ky.).
  • The following synthetic schemes are provided solely to illustrate the present invention and are not intended to limit the scope of the invention, as described herein. To simplify the drawings, the illustrative schemes depict azido amino acid analogs ε-azido-α-methyl-L-lysine and ε-azido-α-methyl-D-lysine, and alkyne amino acid analogs L-propargylglycine, (S)-2-amino-2-methyl-4-pentynoic acid, and (S)-2-amino-2-methyl-6-heptynoic acid. Thus, in the following synthetic schemes, each R1, R2, R7 and R8 is —H; each L1 is —(CH2)4—; and each L2 is —(CH2)—. However, as noted throughout the detailed description above, many other amino acid analogs can be employed in which R1, R2, R7, R8, L1 and L2 can be independently selected from the various structures disclosed herein.
  • Figure US20160068573A1-20160310-C00034
    Figure US20160068573A1-20160310-C00035
  • Synthetic Scheme 1 describes the preparation of several compounds of the invention. Ni(II) complexes of Schiff bases derived from the chiral auxiliary (S)-2-[N—(N′-benzylprolyl)amino]benzophenone (BPB) and amino acids such as glycine or alanine are prepared as described in Belokon et al. (1998), Tetrahedron Asymm. 9:4249-4252. The resulting complexes are subsequently reacted with alkylating reagents comprising an azido or alkynyl moiety to yield enantiomerically enriched compounds of the invention. If desired, the resulting compounds can be protected for use in peptide synthesis.
  • Figure US20160068573A1-20160310-C00036
  • In the general method for the synthesis of peptidomimetic macrocycles shown in Synthetic Scheme 2, the peptidomimetic precursor contains an azide moiety and an alkyne moiety and is synthesized by solution-phase or solid-phase peptide synthesis (SPPS) using the commercially available amino acid N-α-Fmoc-L-propargylglycine and the N-α-Fmoc-protected forms of the amino acids (S)-2-amino-2-methyl-4-pentynoic acid, (S)-2-amino-6-heptynoic acid, (S)-2-amino-2-methyl-6-heptynoic acid, N-methyl-ε-azido-L-lysine, and N-methyl-ε-azido-D-lysine. The peptidomimetic precursor is then deprotected and cleaved from the solid-phase resin by standard conditions (e.g., strong acid such as 95% TFA). The peptidomimetic precursor is reacted as a crude mixture or is purified prior to reaction with a macrocyclization reagent such as a Cu(I) in organic or aqueous solutions (Rostovtsev et al. (2002), Angew. Chem. Int. Ed. 41:2596-2599; Tornoe et al. (2002), J. Org. Chem. 67:3057-3064; Deiters et al. (2003), J. Am. Chem. Soc. 125:11782-11783; Punna et al. (2005), Angew. Chem. Int. Ed. 44:2215-2220). In one embodiment, the triazole forming reaction is performed under conditions that favor helix formation. In one embodiment, the macrocyclization step is performed in a solvent chosen from the group consisting of H2O, THF, CH3CN, DMF, DIPEA, tBuOH or a mixture thereof. In another embodiment, the macrocyclization step is performed in DMF. In some embodiments, the macrocyclization step is performed in a buffered aqueous or partially aqueous solvent.
  • Figure US20160068573A1-20160310-C00037
  • In the general method for the synthesis of peptidomimetic macrocycles shown in Synthetic Scheme 3, the peptidomimetic precursor contains an azide moiety and an alkyne moiety and is synthesized by solid-phase peptide synthesis (SPPS) using the commercially available amino acid N-α-Fmoc-L-propargylglycine and the N-α-Fmoc-protected forms of the amino acids (S)-2-amino-2-methyl-4-pentynoic acid, (S)-2-amino-6-heptynoic acid, (S)-2-amino-2-methyl-6-heptynoic acid, N-methyl-ε-azido-L-lysine, and N-methyl-ε-azido-D-lysine. The peptidomimetic precursor is reacted with a macrocyclization reagent such as a Cu(I) reagent on the resin as a crude mixture (Rostovtsev et al. (2002), Angew. Chem. Int. Ed. 41:2596-2599; Tornoe et al. (2002), J. Org. Chem. 67:3057-3064; Deiters et al. (2003), J. Am. Chem. Soc. 125:11782-11783; Punna et al. (2005), Angew. Chem. Int. Ed. 44:2215-2220). The resultant triazole-containing pcptidomimetic macrocycle is then deprotected and cleaved from the solid-phase resin by standard conditions (e.g., strong acid such as 95% TFA). In some embodiments, the macrocyclization step is performed in a solvent chosen from the group consisting of CH2Cl2, ClCH2CH2Cl, DMF, THF, NMP, DIPEA, 2,6-lutidine, pyridine, DMSO, H2O or a mixture thereof. In some embodiments, the macrocyclization step is performed in a buffered aqueous or partially aqueous solvent.
  • Figure US20160068573A1-20160310-C00038
  • In the general method for the synthesis of peptidomimetic macrocycles shown in Synthetic Scheme 4, the peptidomimetic precursor contains an azide moiety and an alkyne moiety and is synthesized by solution-phase or solid-phase peptide synthesis (SPPS) using the commercially available amino acid N-α-Fmoc-L-propargylglycine and the N-α-Fmoc-protected forms of the amino acids (S)-2-amino-2-methyl-4-pentynoic acid, (S)-2-amino-6-heptynoic acid, (S)-2-amino-2-methyl-6-heptynoic acid, N-methyl-ε-azido-L-lysine, and N-methyl-ε-azido-D-lysine. The peptidomimetic precursor is then deprotected and cleaved from the solid-phase resin by standard conditions (e.g., strong acid such as 95% TFA). The peptidomimetic precursor is reacted as a crude mixture or is purified prior to reaction with a macrocyclization reagent such as a Ru(II) reagents, for example Cp*RuCl(PPh3)2 or [Cp*RuCl]4 (Rasmussen et al. (2007), Org. Lett. 9:5337-5339; Zhang et al. (2005), J. Am. Chem. Soc. 127:15998-15999). In some embodiments, the macrocyclization step is performed in a solvent chosen from the group consisting of DMF, CH3CN and THF.
  • Figure US20160068573A1-20160310-C00039
  • In the general method for the synthesis of peptidomimetic macrocycles shown in Synthetic Scheme 5, the peptidomimetic precursor contains an azide moiety and an alkyne moiety and is synthesized by solid-phase peptide synthesis (SPPS) using the commercially available amino acidN-α-Fmoc-L-propargylglycine and the N-α-Fmoc-protected forms of the amino acids (S)-2-amino-2-methyl-4-pentynoic acid, (S)-2-amino-6-heptynoic acid, (S)-2-amino-2-methyl-6-heptynoic acid, N-methyl-ε-azido-L-lysine, and N-methyl-ε-azido-D-lysine. The peptidomimetic precursor is reacted with a macrocyclization reagent such as a Ru(II) reagent on the resin as a crude mixture. For example, the reagent can be Cp*RuCl(PPh3)2 or [Cp*RuCl]4 (Rasmussen et al. (2007), Org. Lett. 9:5337-5339; Zhang et al. (2005), J. Am. Chem. Soc. 127:15998-15999). In some embodiments, the macrocyclization step is performed in a solvent chosen from the group consisting of CH2Cl2, ClCH2CH2Cl, CH3CN, DMF, and THF.
  • The present invention contemplates the use of non-naturally-occurring amino acids and amino acid analogs in the synthesis of the peptidomimetic macrocycles described herein. Any amino acid or amino acid analog amenable to the synthetic methods employed for the synthesis of stable triazole containing peptidomimetic macrocycles can be used in the present invention. For example, L-propargylglycine is contemplated as a useful amino acid in the present invention. However, other alkyne-containing amino acids that contain a different amino acid side chain are also useful in the invention. For example, L-propargylglycine contains one methylene unit between the α-carbon of the amino acid and the alkyne of the amino acid side chain. The invention also contemplates the use of amino acids with multiple methylene units between the α-carbon and the alkyne. Also, the azido-analogs of amino acids L-lysine, D-lysine, alpha-methyl-L-lysine, and alpha-methyl-D-lysine are contemplated as useful amino acids in the present invention. However, other terminal azide amino acids that contain a different amino acid side chain are also useful in the invention. For example, the azido-analog of L-lysine contains four methylene units between the α-carbon of the amino acid and the terminal azide of the amino acid side chain. The invention also contemplates the use of amino acids with fewer than or greater than four methylene units between the α-carbon and the terminal azide. Table 2 shows some amino acids useful in the preparation of peptidomimetic macrocycles of the invention.
  • TABLE 2
    Figure US20160068573A1-20160310-C00040
    Figure US20160068573A1-20160310-C00041
    Figure US20160068573A1-20160310-C00042
    Figure US20160068573A1-20160310-C00043
    Figure US20160068573A1-20160310-C00044
    Figure US20160068573A1-20160310-C00045
    Figure US20160068573A1-20160310-C00046
    Figure US20160068573A1-20160310-C00047
    Figure US20160068573A1-20160310-C00048
    Figure US20160068573A1-20160310-C00049
    Figure US20160068573A1-20160310-C00050
    Figure US20160068573A1-20160310-C00051
    Figure US20160068573A1-20160310-C00052
    Figure US20160068573A1-20160310-C00053
    Figure US20160068573A1-20160310-C00054
    Figure US20160068573A1-20160310-C00055
    Figure US20160068573A1-20160310-C00056
    Figure US20160068573A1-20160310-C00057
    Figure US20160068573A1-20160310-C00058
    Figure US20160068573A1-20160310-C00059
      • Table 2 shows exemplary amino acids useful in the preparation of peptidomimetic macrocycles of the invention.
  • In some embodiments the amino acids and amino acid analogs are of the D-configuration. In other embodiments they are of the L-configuration. In some embodiments, some of the amino acids and amino acid analogs contained in the peptidomimetic are of the D-configuration while some of the amino acids and amino acid analogs are of the L-configuration. In some embodiments the amino acid analogs are α,α-disubstituted, such as α-methyl-L-propargylglycine, α-methyl-D-propargylglycine, α-azido-alpha-methyl-L-lysine, and ε-azido-alpha-methyl-D-lysine. In some embodiments the amino acid analogs are N-alkylatcd, e.g., N-methyl-L-propargylglycine, N-methyl-D-propargylglycine, N-methyl-ε-azido-L-lysine, and N-methyl-ε-azido-D-lysine.
  • In some embodiments, the —NH moiety of the amino acid is protected using a protecting group, including without limitation -Fmoc and -Boc. In other embodiments, the amino acid is not protected prior to synthesis of the peptidomimetic macrocycle.
  • In other embodiments, peptidomimetic macrocycles of Formula III are synthesized. The preparation of such macrocycles is described, for example, in U.S. application Ser. No. 11/957,325, filed on Dec. 17, 2007. The following synthetic schemes describe the preparation of such compounds. To simplify the drawings, the illustrative schemes depict amino acid analogs derived from L-or D-cysteine, in which L1 and L3 are both —(CH2)—. However, as noted throughout the detailed description above, many other amino acid analogs can be employed in which L1 and L3 can be independently selected from the various structures disclosed herein. The symbols “[AA]m”, “[AA]n”, “[AA]o” represent a sequence of amide bond-linked moieties such as natural or unnatural amino acids. As described previously, each occurrence of “AA” is independent of any other occurrence of “AA”, and a formula such as “[AA]m” encompasses, for example, sequences of non-identical amino acids as well as sequences of identical amino acids.
  • Figure US20160068573A1-20160310-C00060
  • In Scheme 6, the peptidomimetic precursor contains two —SH moieties and is synthesized by solid-phase peptide synthesis (SPPS) using commercially available N-α-Fmoc amino acids such as N-α-Fmoc-S-trityl-L-cysteine or N-α-Fmoc-S-trityl-D-cysteine. Alpha-methylated versions of D-cysteine or L-cysteine are generated by known methods (Seebach et al. (1996), Angew. Chem. Int. Ed. Engl. 35:2708-2748, and references therein) and then converted to the appropriately protected N-α-Fmoc-S-trityl monomers by known methods (“Bioorganic Chemistry: Peptides and Proteins”, Oxford University Press, New York: 1998, the entire contents of which are incorporated herein by reference). The precursor peptidomimetic is then deprotected and cleaved from the solid-phase resin by standard conditions (e.g., strong acid such as 95% TFA). The precursor peptidomimetic is reacted as a crude mixture or is purified prior to reaction with X-L2-Y in organic or aqueous solutions. In some embodiments the alkylation reaction is performed under dilute conditions (i.e. 0.15 mmol/L) to favor macrocyclization and to avoid polymerization. In some embodiments, the alkylation reaction is performed in organic solutions such as liquid NH3 (Mosberg et al. (1985), J. Am. Chem. Soc. 107:2986-2987; Szewezuk et al. (1992), Int. J. Peptide Protein Res. 40:233-242), NH3/McOH, or NH3/DMF (Or et al. (1991), J. Org. Chem. 56:3146-3149). In other embodiments, the alkylation is performed in an aqueous solution such as 6M guanidinium HCL, pH 8 (Brunel et al. (2005), Chem. Commun. (20):2552-2554). In other embodiments, the solvent used for the alkylation reaction is DMF or dichloroethane.
  • Figure US20160068573A1-20160310-C00061
  • In Scheme 7, the precursor peptidomimetic contains two or more —SH moieties, of which two are specially protected to allow their selective deprotection and subsequent alkylation for macrocycle formation. The precursor peptidomimetic is synthesized by solid-phase peptide synthesis (SPPS) using commercially available N-α-Fmoc amino acids such as N-α-Fmoc-S-p-methoxytrityl-L-cysteine or N-α-Fmoc-S-p-methoxytrityl-D-cysteine. Alpha-methylated versions of D-cysteine or L-cysteine are generated by known methods (Seebach et al. (1996), Angew. Chem. Int. Ed. Engl. 35:2708-2748, and references therein) and then converted to the appropriately protected N-α-Fmoc-S-p-methoxytrityl monomers by known methods (Bioorganic Chemistry: Peptides and Proteins, Oxford University Press, New York: 1998, the entire contents of which are incorporated herein by reference). The Mmt protecting groups of the peptidomimetic precursor are then selectively cleaved by standard conditions (e.g., mild acid such as 1% TFA in DCM). The precursor peptidomimetic is then reacted on the resin with X-L2-Y in an organic solution. For example, the reaction takes place in the presence of a hindered base such as diisopropylethylamine. In some embodiments, the alkylation reaction is performed in organic solutions such as liquid NH3 (Mosberg et al. (1985), J. Am. Chem. Soc. 107:2986-2987; Szewezuk et al. (1992), Int. J. Peptide Protein Res. 40:233-242), NH3/MeOH or NH3/DMF (Or et al. (1991), J. Org. Chem. 56:3146-3149). In other embodiments, the alkylation reaction is performed in DMF or dichloroethane. The peptidomimetic macrocycle is then deprotected and cleaved from the solid-phase resin by standard conditions (e.g., strong acid such as 95% TFA).
  • Figure US20160068573A1-20160310-C00062
  • In Scheme 8, the peptidomimetic precursor contains two or more —SH moieties, of which two are specially protected to allow their selective deprotection and subsequent alkylation for macrocycle formation. The peptidomimetic precursor is synthesized by solid-phase peptide synthesis (SPPS) using commercially available N-α-Fmoc amino acids such as N-α-Fmoc-S-p-methoxytrityl-L-cysteine, N-α-Fmoc-S-p-methoxytrityl-D-cysteine, N-α-Fmoc-S—S-t-butyl-L-cysteine, and N-α-Fmoc-S—S-t-butyl-D-cysteine. Alpha-methylated versions of D-cysteine or L-cysteine are generated by known methods (Seebach et al. (1996), Angew. Chem. Int. Ed. Engl. 35:2708-2748, and references therein) and then converted to the appropriately protected N-α-Fmoc-S-p-methoxytrityl or N-α-Fmoc-S—S-t-butyl monomers by known methods (Bioorganic Chemistry: Peptides and Proteins, Oxford University Press, New York: 1998, the entire contents of which are incorporated herein by reference). The S—S-tButyl protecting group of the peptidomimetic precursor is selectively cleaved by known conditions (e.g., 20% 2-mercaptoethanol in DMF, reference: Galande et al. (2005), J. Comb. Chem. 7:174-177). The precursor peptidomimetic is then reacted on the resin with a molar excess of X-L2-Y in an organic solution. For example, the reaction takes place in the presence of a hindered base such as diisopropylethylamine. The Mmt protecting group of the peptidomimetic precursor is then selectively cleaved by standard conditions (e.g., mild acid such as 1% TFA in DCM). The peptidomimetic precursor is then cyclized on the resin by treatment with a hindered base in organic solutions. In some embodiments, the alkylation reaction is performed in organic solutions such as NH3/MeOH or NH3/DMF (Or et al. (1991), J. Org. Chem. 56:3146-3149). The peptidomimetic macrocycle is then deprotected and cleaved from the solid-phase resin by standard conditions (e.g., strong acid such as 95% TFA).
  • Figure US20160068573A1-20160310-C00063
  • In Scheme 9, the peptidomimetic precursor contains two L-cysteine moieties. The peptidomimetic precursor is synthesized by known biological expression systems in living cells or by known in vitro, cell-free, expression methods. The precursor peptidomimetic is reacted as a crude mixture or is purified prior to reaction with X-L2-Y in organic or aqueous solutions. In some embodiments the alkylation reaction is performed under dilute conditions (i.e. 0.15 mmol/L) to favor macrocyclization and to avoid polymerization. In some embodiments, the alkylation reaction is performed in organic solutions such as liquid NH3 (Mosberg et al. (1985), J. Am. Chem. Soc. 107:2986-2987; Szewezuk et al. (1992), Int. J. Peptide Protein Res. 40:233-242), NH3/MeOH, or NH3/DMF (Or et al. (1991), J. Org. Chem. 56:3146-3149). In other embodiments, the alkylation is performed in an aqueous solution such as 6M guanidinium HCL, pH 8 (Brunel et al. (2005), Chem. Commun. (20):2552-2554). In other embodiments, the alkylation is performed in DMF or dichloroethane. In another embodiment, the alkylation is performed in non-denaturing aqueous solutions, and in yet another embodiment the alkylation is performed under conditions that favor helical structure formation. In yet another embodiment, the alkylation is performed under conditions that favor the binding of the precursor peptidomimetic to another protein, so as to induce the formation of the bound helical conformation during the alkylation.
  • Various embodiments for X and Y are envisioned which are suitable for reacting with thiol groups. In general, each X or Y is independently be selected from the general category shown in Table 5. For example, X and Y are halides such as —Cl, —Br or —I. Any of the macrocycle-forming linkers described herein may be used in any combination with any of the sequences shown in Tables 1-4 and also with any of the R-substituents indicated herein.
  • TABLE 3
    Examples of Reactive Groups Capable of
    Reacting with Thiol Groups and Resulting Linkages
    X or Y Resulting Covalent Linkage
    acrylamide Thioether
    halide (e.g. alkyl or aryl halide) Thioether
    sulfonate Thioether
    aziridine Thioether
    epoxide Thioether
    haloacetamide Thioether
    maleimide Thioether
    sulfonate ester Thioether
  • The present invention contemplates the use of both naturally-occurring and non-naturally-occurring amino acids and amino acid analogs in the synthesis of the peptidomimetic macrocycles of Formula (III). Any amino acid or amino acid analog amenable to the synthetic methods employed for the synthesis of stable bis-sulfhydryl containing peptidomimetic macrocycles can be used in the present invention. For example, cysteine is contemplated as a useful amino acid in the present invention. However, sulfur containing amino acids other than cysteine that contain a different amino acid side chain are also useful. For example, cysteine contains one methylene unit between the α-carbon of the amino acid and the terminal —SH of the amino acid side chain. The invention also contemplates the use of amino acids with multiple methylene units between the α-carbon and the terminal —SH. Non-limiting examples include α-methyl-L-homocysteine and α-methyl-D-homocysteine. In some embodiments the amino acids and amino acid analogs are of the D-configuration. In other embodiments they are of the L-configuration. In some embodiments, some of the amino acids and amino acid analogs contained in the peptidomimetic are of the D-configuration while some of the amino acids and amino acid analogs are of the L-configuration. In some embodiments the amino acid analogs are α,α-disubstituted, such as α-methyl-L-cysteine and α-methyl-D-cysteine.
  • The invention includes macrocycles in which macrocycle-forming linkers are used to link two or more —SII moieties in the peptidomimetic precursors to form the peptidomimetic macrocycles of the invention. As described above, the macrocycle-forming linkers impart conformational rigidity, increased metabolic stability and/or increased cell penetrability. Furthermore, in some embodiments, the macrocycle-forming linkages stabilize a helical secondary structure of the peptidomimetic macrocyles. The macrocycle-forming linkers are of the formula X-L2-Y, wherein both X and Y are the same or different moieties, as defined above. Both X and Y have the chemical characteristics that allow one macrocycle-forming linker -L2- to bis alkylate the bis-sulfhydryl containing peptidomimetic precursor. As defined above, the linker -L2- includes alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, or heterocycloarylene, or —R4—K—R4—, all of which can be optionally substituted with an R5 group, as defined above. Furthermore, one to three carbon atoms within the macrocycle-forming linkers other than the carbons attached to the —SH of the sulfhydryl containing amino acid, are optionally substituted with a heteroatom such as N, S or O.
  • The L2 component of the macrocycle-forming linker X-L2-Y may be varied in length depending on, among other things, the distance between the positions of the two amino acid analogs used to form the peptidomimetic macrocycle. Furthermore, as the lengths of L1 and/or L3 components of the macrocycle-forming linker are varied, the length of L2 can also be varied in order to create a linker of appropriate overall length for forming a stable peptidomimetic macrocycle. For example, if the amino acid analogs used are varied by adding an additional methylene unit to each of L1 and L3, the length of L2 are decreased in length by the equivalent of approximately two methylene units to compensate for the increased lengths of L1 and L3.
  • In some embodiments, L2 is an alkylene group of the formula —(CH2)n—, where n is an integer between about 1 and about 15. For example, n is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10. In other embodiments, L2 is an alkenylene group. In still other embodiments, L2 is an aryl group.
  • Table 4 shows additional embodiments of X-L2-Y groups.
  • TABLE 4
    Exemplary X—L2—Y groups of the invention.
    Figure US20160068573A1-20160310-C00064
    Figure US20160068573A1-20160310-C00065
    Figure US20160068573A1-20160310-C00066
    Figure US20160068573A1-20160310-C00067
    Figure US20160068573A1-20160310-C00068
    Figure US20160068573A1-20160310-C00069
    Figure US20160068573A1-20160310-C00070
    Figure US20160068573A1-20160310-C00071
    Figure US20160068573A1-20160310-C00072
    Figure US20160068573A1-20160310-C00073
    Figure US20160068573A1-20160310-C00074
    Figure US20160068573A1-20160310-C00075
    Figure US20160068573A1-20160310-C00076
    Figure US20160068573A1-20160310-C00077
    Figure US20160068573A1-20160310-C00078
    Figure US20160068573A1-20160310-C00079
    Figure US20160068573A1-20160310-C00080
    Figure US20160068573A1-20160310-C00081
    Figure US20160068573A1-20160310-C00082
    Figure US20160068573A1-20160310-C00083
    Figure US20160068573A1-20160310-C00084
    Figure US20160068573A1-20160310-C00085
    Figure US20160068573A1-20160310-C00086
    Figure US20160068573A1-20160310-C00087
    Figure US20160068573A1-20160310-C00088
    Figure US20160068573A1-20160310-C00089
    Figure US20160068573A1-20160310-C00090
    Figure US20160068573A1-20160310-C00091
    Figure US20160068573A1-20160310-C00092
    Figure US20160068573A1-20160310-C00093
    Figure US20160068573A1-20160310-C00094
    Figure US20160068573A1-20160310-C00095
    Figure US20160068573A1-20160310-C00096
    Figure US20160068573A1-20160310-C00097
    Figure US20160068573A1-20160310-C00098
    Figure US20160068573A1-20160310-C00099
    Figure US20160068573A1-20160310-C00100
    Figure US20160068573A1-20160310-C00101
    Figure US20160068573A1-20160310-C00102
    Figure US20160068573A1-20160310-C00103
    Figure US20160068573A1-20160310-C00104
    Figure US20160068573A1-20160310-C00105
    Figure US20160068573A1-20160310-C00106
    Each X and Y in this table, is, for example, independently Cl—, Br— or I—.
  • Additional methods of forming peptidomimetic macrocycles which are envisioned as suitable to perform the present invention include those disclosed by Mustapa, M. Firouz Mohd et al., J. Org. Chem (2003), 68, pp. 8193-8198; Yang, Bin et al. Bioorg Med. Chem. Left. (2004), 14, pp. 1403-1406; U.S. Pat. No. 5,364,851; U.S. Pat. No. 5,446,128; U.S. Pat. No. 5,824,483; U.S. Pat. No. 6,713,280; and U.S. Pat. No. 7,202,332. In such embodiments, aminoacid precursors are used containing an additional substituent R— at the alpha position. Such aminoacids are incorporated into the macrocycle precursor at the desired positions, which may be at the positions where the crosslinker is substituted or, alternatively, elsewhere in the sequence of the macrocycle precursor. Cyclization of the precursor is then effected according to the indicated method.
  • In some embodiments, it is desirable to modify the configuration of the resulting peptidomimetic macrocycle. For instance, when a 310 helical configuration is more desirable, additional substitutions or modifications to the macrocycle can be made to induce or bias such conformations, such as substituting 2-aminoisobutyric acid (Aib) for one or more amino acids in the sequence of the invention. See, for example, Boal et. al., J. Am. Chem. Soc. 2007, 129, 6986-6987. In one embodiments, the helical macrocycle of the invention comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more Aib substitutions.
  • Assays
  • The properties of the peptidomimetic macrocycles of the invention are assayed, for example, by using the methods described below. In some embodiments, a peptidomimetic macrocycle of the invention has improved biological properties relative to a corresponding polypeptide lacking the substituents described herein.
  • Assay to Determine Helicity.
  • In solution, the secondary structure of polypeptides with helical domains will reach a dynamic equilibrium between random coil structures and helical structures, often expressed as a “percent helicity”. Thus, for example, unmodified helical domains may be predominantly random coils in solution, with helical content usually under 25%. Peptidomimetic macrocycles with optimized linkers, on the other hand, possess, for example, a helicity that is at least two-fold greater than that of a corresponding uncrosslinked polypeptide. In some embodiments, macrocycles of the invention will possess a helicity of greater than 50%. To assay the helicity of peptidomimetic macrocyles of the invention, the compounds are dissolved in an aqueous solution (e.g. 50 mM potassium phosphate solution at pH 7, or distilled H2O, to concentrations of 25-50 μM). Circular dichroism (CD) spectra are obtained on a spectropolarimeter (e.g., Jasco J-710) using standard measurement parameters (e.g. temperature, 20° C.; wavelength, 190-260 nm; step resolution, 0.5 nm; speed, 20 nm/sec; accumulations, 10; response, 1 sec; bandwidth, 1 nm; path length, 0.1 cm). The helical content of each peptide is calculated by dividing the mean residue ellipticity (e.g. [Φ]222 obs) by the reported value for a model helical decapeptide (Yang et al. (1986), Methods Enzymol. 130:208)).
  • Assay to Determine Melting Temperature (Tm).
  • A peptidomimetic macrocycle of the invention comprising a secondary structure such as a helix exhibits, for example, a higher melting temperature than a corresponding uncrosslinked polypeptide. Typically peptidomimetic macrocycles of the invention exhibit Tm of >60° C. representing a highly stable structure in aqueous solutions. To assay the effect of macrocycle formation on meltine temperature, peptidomimetic macrocycles or unmodified peptides are dissolved in distilled H2O (e.g. at a final concentration of 50 μM) and the Tm is determined by measuring the change in ellipticity over a temperature range (e.g. 4 to 95° C.) on a spectropolarimeter (e.g., Jasco J-710) using standard parameters (e.g. wavelength 222 nm; step resolution, 0.5 nm; speed, 20 nm/sec; accumulations, 10; response, 1 sec; bandwidth, 1 nm; temperature increase rate: 1° C./min; path length, 0.1 cm).
  • Protease Resistance Assay.
  • The amide bond of the peptide backbone is susceptible to hydrolysis by proteases, thereby rendering peptidic compounds vulnerable to rapid degradation in vivo. Peptide helix formation, however, typically buries the amide backbone and therefore may shield it from proteolytic cleavage. The peptidomimetic macrocycles of the present invention may be subjected to in vitro trypsin proteolysis to assess for any change in degradation rate compared to a corresponding uncrosslinked polypeptide. For example, the peptidomimetic macrocycle and a corresponding uncrosslinked polypeptide are incubated with trypsin agarose and the reactions quenched at various time points by centrifugation and subsequent HPLC injection to quantitate the residual substrate by ultraviolet absorption at 280 nm. Briefly, the pcptidomimetic macrocycle and peptidomimetic precursor (5 mcg) are incubated with trypsin agarosc (Pierce) (S/E ˜125) for 0, 10, 20, 90, and 180 minutes. Reactions are quenched by tabletop centrifugation at high speed; remaining substrate in the isolated supernatant is quantified by HPLC-based peak detection at 280 nm. The proteolytic reaction displays first order kinetics and the rate constant, k, is determined from a plot of ln [S] versus time (k=−1Xslope).
  • Ex Vivo Stability Assay.
  • Peptidomimetic macrocycles with optimized linkers possess, for example, an ex vivo half-life that is at least two-fold greater than that of a corresponding uncrosslinked polypeptide, and possess an ex vivo half-life of 12 hours or more. For ex vivo serum stability studies, a variety of assays may be used. For example, a peptidomimetic macrocycle and a corresponding uncrosslinked polypeptide (2 meg) are incubated with fresh mouse, rat and/or human serum (2 mL) at 37° C. for 0, 1, 2, 4, 8, and 24 hours. To determine the level of intact compound, the following procedure may be used: The samples are extracted by transferring 100 μl of sera to 2 ml centrifuge tubes followed by the addition of 10 μL of 50% formic acid and 500 μL acetonitrile and centrifugation at 14,000 RPM for 10 min at 4±2° C. The supernatants are then transferred to fresh 2 ml tubes and evaporated on Turbovap under N2<10 psi, 37° C. The samples are reconstituted in 100 μL of 50:50 acetonitrile:water and submitted to LC-MS/MS analysis.
  • In Vitro Binding Assays.
  • To assess the binding and affinity of peptidomimetic macrocycles and peptidomimetic precursors to acceptor proteins, a fluorescence polarization assay (FPA) issued, for example. The FPA technique measures the molecular orientation and mobility using polarized light and fluorescent tracer. When excited with polarized light, fluorescent tracers (e.g., FITC) attached to molecules with high apparent molecular weights (e.g. FITC-labeled peptides bound to a large protein) emit higher levels of polarized fluorescence due to their slower rates of rotation as compared to fluorescent tracers attached to smaller molecules (e.g. FITC-labeled peptides that are free in solution).
  • For example, fluoresceinated peptidomimetic macrocycles (25 nM) are incubated with the acceptor protein (25-1000 nM) in binding buffer (140 mM NaCl, 50 mM Tris-HCL, pH 7.4) for 30 minutes at room temperature. Binding activity is measured, for example, by fluorescence polarization on a luminescence spectrophotometer (e.g. Perkin-Elmer LS50B). Kd values may be determined by nonlinear regression analysis using, for example, Graphpad Prism software (GraphPad Software, Inc., San Diego, Calif.). A peptidomimetic macrocycle of the invention shows, in some instances, similar or lower Kd than a corresponding uncrosslinked polypeptide.
  • In Vitro Displacement Assays to Characterize Antagonists of Peptide-Protein Interactions.
  • To assess the binding and affinity of compounds that antagonize the interaction between a peptide and an acceptor protein, a fluorescence polarization assay (FPA) utilizing a fluoresceinated peptidomimetic macrocycle derived from a peptidomimetic precursor sequence is used, for example. The FPA technique measures the molecular orientation and mobility using polarized light and fluorescent tracer. When excited with polarized light, fluorescent tracers (e.g., FITC) attached to molecules with high apparent molecular weights (e.g. FITC-labeled peptides bound to a large protein) emit higher levels of polarized fluorescence due to their slower rates of rotation as compared to fluorescent tracers attached to smaller molecules (e.g. FITC-labeled peptides that are free in solution). A compound that antagonizes the interaction between the fluoresceinated peptidomimetic macrocycle and an acceptor protein will be detected in a competitive binding FPA experiment.
  • For example, putative antagonist compounds (1 nM to 1 mM) and a fluoresceinated peptidomimetic macrocycle (25 nM) are incubated with the acceptor protein (50 nM) in binding buffer (140 mM NaCl, 50 mM Tris-HCL, pH 7.4) for 30 minutes at room temperature. Antagonist binding activity is measured, for example, by fluorescence polarization on a luminescence spectrophotometer (e.g. Perkin-Elmer LS50B). Kd values may be determined by nonlinear regression analysis using, for example, Graphpad Prism software (GraphPad Software, Inc., San Diego, Calif.).
  • Any class of molecule, such as small organic molecules, peptides, oligonucleotides or proteins can be examined as putative antagonists in this assay.
  • Binding Assays in Intact Cells.
  • It is possible to measure binding of peptides or peptidomimetic macrocycles to their natural acceptors in intact cells by immunoprecipitation experiments. For example, intact cells are incubated with fluoresceinated (FITC-labeled) compounds for 4 hrs in the absence of serum, followed by serum replacement and further incubation that ranges from 4-18 hrs. Cells are then pelleted and incubated in lysis buffer (50 mM Tris [pH 7.6], 150 mM NaCl, 1% CHAPS and protease inhibitor cocktail) for 10 minutes at 4° C. Extracts are centrifuged at 14,000 rpm for 15 minutes and supernatants collected and incubated with 10 μl goat anti-FITC antibody for 2 hrs, rotating at 4° C. followed by further 2 hrs incubation at 4° C. with protein A/G Sepharose (50 μl of 50% bead slurry). After quick centrifugation, the pellets are washed in lysis buffer containing increasing salt concentration (e.g., 150, 300, 500 mM). The beads are then re-equilibrated at 150 mM NaCl before addition of SDS-containing sample buffer and boiling. After centrifugation, the supernatants are optionally electrophoresed using 4%-12% gradient Bis-Tris gels followed by transfer into Immobilon-P membranes. After blocking, blots are optionally incubated with an antibody that detects FITC and also with one or more antibodies that detect proteins that bind to the peptidomimetic macrocycle.
  • Cellular Penetrability Assays
  • A peptidomimetic macrocycle is, for example, more cell penetrable compared to a corresponding uncrosslinked macrocycle. Peptidomimetic macrocycles with optimized linkers possess, for example, cell penetrability that is at least two-fold greater than a corresponding uncrosslinked macrocycle, and often 20% or more of the applied peptidomimetic macrocycle will be observed to have penetrated the cell after 4 hours. To measure the cell penetrability of peptidomimetic macrocycles and corresponding uncrosslinked macrocycle, intact cells are incubated with fluoresceinated peptidomimetic macrocycles or corresponding uncrosslinked macrocycle (10 μM) for 4 hrs in serum free media at 37° C., washed twice with media and incubated with trypsin (0.25%) for 10 min at 37° C. The cells are washed again and resuspended in PBS. Cellular fluorescence is analyzed, for example, by using either a FACSCalibur flow cytometer or Cellomics' KineticScan HCS Reader.
  • In Vivo Stability Assay.
  • To investigate the in vivo stability of the peptidomimetic macrocycles, the compounds are, for example, administered to mice and/or rats by IV, IP, PO or inhalation routes at concentrations ranging from 0.1 to 50 mg/kg and blood specimens withdrawn at 0′, 5′, 15′, 30′, 1 hr, 4 hrs, 8 hrs and 24 hours post-injection. Levels of intact compound in 25 μL of fresh scrum are then measured by LC-MS/MS as above.
  • In Vitro Testing for Inhibition of Influenza Replication
  • This influenza antiviral evaluation assay examines the effects of compounds at designated dose-response concentrations. See also Noah, J. W., W. Severson, D. L. Noah, L. Rasmussen, E. L. White, and C. B. Jonsson, Antiviral Res, 2007. 73(1): p. 50-9. Madin Darby canine kidney (MDCK) cells are used in the assay to test the efficacy of the compounds in preventing the cytopathic effect (CPE) induced by influenza infection. Either Ribavirin or Tamiflu is included in each run as a positive control compound. Subconfluent cultures of MDCK cells are plated into 96-well plates for the analysis of cell viability (cytotoxicity) and antiviral activity (CPE). Drugs are added to the cells 24 hours later. At a designated time, the CPE wells also receive 100 tissue culture infectious doses (100 TCID50s) of titered influenza virus. 72 hours later the cell viability is determined. The effective compound concentrations which reduce viral-induced CPE by 25% (IC25), 50% (IC50), and 90% (IC90) are calculated by regression analysis with semi-log curve fitting. Cell viability is assessed using CellTiter-Glo (Promega). The toxic concentration of drug that reduces cell numbers by 50% and 90% (IC50 and TC90, respectively) are calculated as well. Selectivity (therapeutic) indices (SI=TC/IC) are also calculated.
  • In Vivo Testing for Inhibition of Influenza Replication
  • In vivo testing of compounds of the invention can be performed, including testing on mammals such as rats or ferrets. Because ferrets (Mustela putorius furo) are naturally susceptible to infection with human influenza A and B viruses and their disease resembles that of human influenza, these animals have been widely used as a model for influenza virus pathogenesis and immunity studies. Sec Sidwell, R. W. and D. F. Smee, Antiviral Res, 2000. 48(1): p. 1-16; and Colacino, J. M., D. C. DeLong, J. R. Nelson, W. A. Spitzer, J. Tang, F. Victor, and C. Y. Wu, Antimicrob Agents Chemother, 1990. 34(11): p. 2156-63. Ferrets are also the model of choice for the study of avian influenza virus H5N1 pathogenesis in mammals. See also Zitzow, L. A., T. Rowe, T. Morken, W.-J. Shieh, S. Zaki, and J. M. Katz, Pathogenesis of Avian Influenza A (H5N1) Viruses in Ferrets. 2002. p. 4420-4429. The activities of the PB1 Stapled Peptides can be compared to Ribavirin or Oseltamivir as a positive control.
  • Briefly, young adult male or female ferrets (five ferrets for each treatment group) that are serologically negative by hemagglutination inhibition assay for currently circulating human influenza A or B viruses are quarantined at least 4 days prior to infection in a BSL-3+ animal holding area, where they are housed in cages contained in bioclean portable laminar flow clean room enclosures (Lab Products, Seaford, Del.). Prior to infection, baseline temperatures are measured twice daily for at least 3 days. Ferrets are anesthetized with ketamine (25 mg/kg), xylazine (2 mg/kg), and atropine (0.05 mg/kg) by the intramuscular route and infected intranasally (i.n.) with virus/ml in phosphate-buffered saline (PBS) delivered to the nostrils. Control animals are mock-infected with an equivalent dilution (1:30) of noninfectious allantoic fluid. Stapled Peptides are administered i.v. or i.p. one hour after virus infection. Temperatures are measured twice daily using either a rectal thermometer or a subcutaneous implantable temperature transponder (BioMedic Data Systems, Inc., Seaford, Del.) with pre-infection values averaged to obtain a baseline temperature for each ferret. The change in temperature (in degrees Celsius) is calculated at each time point for each animal. Clinical signs of sneezing (before anesthesia), inappetence, dyspnea, and level of activity are assessed. A scoring system is also used to assess the activity level, and based on the daily scores for each animal in a group a relative inactivity index will be calculated. Rectal temperature and activity scores are used to assess the severity of influenza infection and the ability of Stapled Peptides to prevent flu symptoms.
  • Assaying Inhibition of Viral Polymerase Complex Assembly and Activity.
  • The technique of Bimolecular Fluorescence Complementation (“BiFC”) may be used to assay the compounds of the invention. In this technique, N- and C-terminal fragments of fluorescent proteins (e.g. CFP or its derivatives) are fused to interacting proteins. The two non-functional halves of the fluorophore, following the expression in cells, are brought into close proximity as a result of the specific protein interactions, which initiates folding of the fragments into an active protein and results in a detectable fluorescent signal at the site of the protein-protein complex. Thus, through BiFC, the specific interaction between PB1 and PA subunits can be visualized, quantified and localized within live cells. By disrupting PB1-PA interaction with a compound of the invention, the BiFC signal will be reduced, indicative of the presence of potential inhibitors targeting the assembly of PB1-PA complex. See Hemerka et. al., J. Virol. 2009, 3944-3955.
  • Pharmaceutical Compositions and Routes of Administration
  • The peptidomimetic macrocycles of the invention also include pharmaceutically acceptable derivatives or prodrugs thereof. A “pharmaceutically acceptable derivative” means any pharmaceutically acceptable salt, ester, salt of an ester, pro-drug or other derivative of a compound of this invention which, upon administration to a recipient, is capable of providing (directly or indirectly) a compound of this invention. Particularly favored pharmaceutically acceptable derivatives are those that increase the bioavailability of the compounds of the invention when administered to a mammal (e.g., by increasing absorption into the blood of an orally administered compound) or which increases delivery of the active compound to a biological compartment (e.g., the brain or lymphatic system) relative to the parent species. Some pharmaceutically acceptable derivatives include a chemical group which increases aqueous solubility or active transport across the gastrointestinal mucosa.
  • In some embodiments, the peptidomimetic macrocycles of the invention are modified by covalently or non-covalently joining appropriate functional groups to enhance selective biological properties. Such modifications include those which increase biological penetration into a given biological compartment (e.g., blood, lymphatic system, central nervous system), increase oral availability, increase solubility to allow administration by injection, alter metabolism, and alter rate of excretion.
  • Pharmaceutically acceptable salts of the compounds of this invention include those derived from pharmaceutically acceptable inorganic and organic acids and bases. Examples of suitable acid salts include acetate, adipate, benzoate, benzenesulfonate, butyrate, citrate, digluconate, dodecylsulfate, formate, fumarate, glycolate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, lactate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, palmoate, phosphate, picrate, pivalate, propionate, salicylate, succinate, sulfate, tartrate, tosylate and undecanoate. Salts derived from appropriate bases include alkali metal (e.g., sodium), alkaline earth metal (e.g., magnesium), ammonium and N-(alkyl)4 + salts.
  • For preparing pharmaceutical compositions from the compounds of the present invention, pharmaceutically acceptable carriers include either solid or liquid carriers. Solid form preparations include powders, tablets, pills, capsules, cachets, suppositories, and dispersible granules. A solid carrier can be one or more substances, which also acts as diluents, flavoring agents, binders, preservatives, tablet disintegrating agents, or an encapsulating material. Details on techniques for formulation and administration are well described in the scientific and patent literature, see, e.g., the latest edition of Remington's Pharmaceutical Sciences, Maack Publishing Co, Easton Pa.
  • In powders, the carrier is a finely divided solid, which is in a mixture with the finely divided active component. In tablets, the active component is mixed with the carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired.
  • Suitable solid excipients are carbohydrate or protein fillers include, but are not limited to sugars, including lactose, sucrose, mannitol, or sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; and gums including arabic and tragacanth; as well as proteins such as gelatin and collagen. If desired, disintegrating or solubilizing agents are added, such as the cross-linked polyvinyl pyrrolidone, agar, alginic acid, or a salt thereof, such as sodium alginate.
  • Liquid form preparations include solutions, suspensions, and emulsions, for example, water or water/propylene glycol solutions. For parenteral injection, liquid preparations can be formulated in solution in aqueous polyethylene glycol solution.
  • The pharmaceutical preparation is preferably in unit dosage form. In such form the preparation is subdivided into unit doses containing appropriate quantities of the active component. The unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packeted tablets, capsules, and powders in vials or ampoules. Also, the unit dosage form can be a capsule, tablet, cachet, or lozenge itself; or it can be the appropriate number of any of these in packaged form.
  • When the compositions of this invention comprise a combination of a peptidomimetic macrocycle and one or more additional therapeutic or prophylactic agents, both the compound and the additional agent should be present at dosage levels of between about 1 to 100%, and more preferably between about 5 to 95% of the dosage normally administered in a monotherapy regimen. In some embodiments, the additional agents are administered separately, as part of a multiple dose regimen, from the compounds of this invention. Alternatively, those agents are part of a single dosage form, mixed together with the compounds of this invention in a single composition.
  • Methods of Use
  • Generally, the invention discloses peptidomimetic macrocycles useful in the treatment of viral disorders. For example, peptidomimetic macrocycles derived from the PB1 helix sequence, or peptidomimetic macrocycles that bind selectively to the PB1 peptide binding site of the PA protein, may selectively inhibit influenza RNA-dependent RNA polymerases. Peptidomimetic macrocycles derived from the PB2 helix sequence, or peptidomimetic macrocycles that bind selectively to the PB2 peptide binding site of the PB1 protein, may selectively inhibit influenza RNA-dependent RNA polymerases. When administered within a therapeutic window after infection, such peptidomimetic macrocycles may reduce the severity or duration of an influenza infection. When administered prophylactically, such peptidomimetic macrocycles may prevent infection by influenza viruses and thereby decrease the spread of influenza and reduce large-scale epidemics.
  • In one aspect, the present invention provides novel peptidomimetic macrocycles that are useful in competitive binding assays to identify agents which bind to the natural ligand(s) of the proteins or peptides upon which the peptidomimetic macrocycles am modeled. For example, in the PB1/PA system, labeled peptidomimetic macrocycles based on PB1 can be used in a PA binding assay along with small molecules that competitively bind to PA. Competitive binding studies allow for rapid in vitro evaluation and determination of drug candidates specific for the PB1/PA system. Such binding studies may be performed with any of the peptidomimetic macrocycles disclosed herein and their binding partners.
  • In other aspects, the present invention provides for both prophylactic and therapeutic methods of treating a subject infected with, at risk of, or susceptible to an influenza virus. These methods comprise administering an effective amount of a compound of the invention to a warm blooded animal, including a human. In some embodiments, the administration of the compounds of the present invention prevents the proliferation or transmission of an influenza virus.
  • As used herein, the term “treatment” is defined as the application or administration of a therapeutic agent to a patient, or application or administration of a therapeutic agent to an isolated tissue or cell line from a patient, who has a disease, a symptom of disease or a predisposition toward a disease, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve or affect the disease, the symptoms of disease or the predisposition toward disease.
  • In some embodiments, peptidomimetic macrocycles of the invention are used to treat diseases induced by influenza viruses. Like other viruses, the replication of influenza virus involves six phases; transmission, entry, replication, biosynthesis, assembly, and exit. Entry occurs by endocytosis, replication and vRNP assembly takes place in the nucleus, and the virus buds from the plasma membrane. In the infected patient, the virus targets airway epithelial cells.
  • The methods described herein are also useful for development and/or identification of agents for the treatment of infections caused by viruses such as Abelson leukemia virus, Abelson murine leukemia virus, Abelson's virus, Acute laryngotracheobronchitis virus, Adelaide River virus, Adeno associated virus group, Adenovirus, African horse sickness virus, African swine fever virus, AIDS virus, Aleutian mink disease parvovirus, Alpharetrovirus, Alphavirus, ALV related virus, Amapari virus, Aphthovirus, Aquareovirus, Arbovirus, Arbovirus C, arbovirus group A, arbovirus group B, Arenavirus group, Argentine hemorrhagic fever virus, Argentine hemorrhagic fever virus, Arterivirus, Astrovirus, Ateline herpesvirus group, Aujezky's disease virus, Aura virus, Ausduk disease virus, Australian bat lyssavirus, Aviadenovirus, avian erythroblastosis virus, avian infectious bronchitis virus, avian leukemia virus, avian leukosis virus, avian lymphomatosis virus, avian myeloblastosis virus, avian paramyxovirus, avian pneumoencephalitis virus, avian reticuloendotheliosis virus, avian sarcoma virus, avian type C retrovirus group, Avihepadnavirus, Avipoxvirus, B virus, B19 virus, Babanki virus, baboon herpesvirus, baculovirus, Barmah Forest virus, Bebaru virus, Berrimah virus, Betaretrovirus, Birnavirus, Bittner virus, BK virus, Black Creek Canal virus, bluetongue virus, Bolivian hemorrhagic fever virus, Boma disease virus, border disease of sheep virus, boma virus, bovine alphaherpesvirus 1, bovine alphaherpesvirus 2, bovine coronavirus, bovine ephemeral fever virus, bovine immunodeficiency virus, bovine leukemia virus, bovine leukosis virus, bovine mammillitis virus, bovine papillomavirus, bovine papular stomatitis virus, bovine parvovirus, bovine syncytial virus, bovine type C oncovirus, bovine viral diarrhea virus, Buggy Creek virus, bullet shaped virus group, Bunyamwcra virus supergroup, Bunyavirus, Burkitt's lymphoma virus, Bwamba Fever, CA virus, Calicivirus, California encephalitis virus, camelpox virus, canarypox virus, canid herpesvirus, canine coronavirus, canine distemper virus, canine herpesvirus, canine minute virus, canine parvovirus, Cano Delgadito virus, caprine arthritis virus, caprine encephalitis virus, Caprine Herpes Virus, Capripox virus, Cardiovirus, caviid herpesvirus 1, Cercopithecid herpesvirus 1, cercopithecine herpesvirus 1, Cercopithecine herpesvirus 2, Chandipura virus, Changuinola virus, channel catfish virus, Charleville virus, chickenpox virus, Chikungunya virus, chimpanzee herpesvirus, chub rcovints, chum salmon virus, Cocal virus, Coho salmon reovirus, coital exanthema virus, Colorado tick fever virus, Coltivirus, Columbia SK virus, common cold virus, contagious ecthyma virus, contagious pustular dermatitis virus, Coronavirus, Corriparta virus, coryza virus, cowpox virus, coxsackie virus, CPV (cytoplasmic polyhedrosis virus), cricket paralysis virus, Crimean-Congo hemorrhagic fever virus, croup associated virus, Cryptovirus, Cypovirus, Cytomegalovirus, cytomegalovirus group, cytoplasmic polyhedrosis virus, deer papillomavirus, deltaretrovirus, dengue virus, Densovirus, Dependovirus, Dhori virus, diploma virus, Drosophila C virus, duck hepatitis B virus, duck hepatitis virus 1, duck hepatitis virus 2, duovirus, Duvenhage virus, Deformed wing virus DWV, eastern equine encephalitis virus, eastern equine encephalomyelitis virus, ER virus, Ebola virus, Ebola-like virus, echo virus, echovirus, echovirus 10, echovirus 28, echovirus 9, ectromelia virus, EEE virus, EIA virus, EIA virus, encephalitis virus, encephalomyocarditis group virus, encephalomyocarditis virus, Enterovirus, enzyme elevating virus, enzyme elevating virus (LDH), epidemic hemorrhagic fever virus, epizootic hemorrhagic disease virus, Epstein-Barr virus, equid alphaherpesvirus 1, equid alphaherpesvirus 4, equid herpesvirus 2, equine abortion virus, equine arteritis virus, equine encephalosis virus, equine infectious anemia virus, equine morbillivirus, equine rhinopneumonitis virus, equine rhinovirus, Euhenangu virus, European elk papillomavirus, European swine fever virus, Everglades virus, Eyach virus, felid herpesvirus 1, feline calicivirus, feline fibrosarcoma virus, feline herpesvirus, feline immunodeficiency virus, feline infectious peritonitis virus, feline leukemia/sarcoma virus, feline leukemia virus, feline panleukopcnia virus, feline parvovirus, feline sarcoma virus, feline syncytial virus, Filovirus, Flanders virus, Flavivirus, foot and mouth disease virus, Fort Morgan virus, Four Corners hantavirus, fowl adenovirus 1, fowlpox virus, Friend virus, Gammaretrovirus, GB hepatitis virus, GB virus, German measles virus, Getah virus, gibbon ape leukemia virus, glandular fever virus, goatpox virus, golden shinner virus, Gonometa virus, goose parvovirus, granulosis virus, Gross' virus, ground squirrel hepatitis B virus, group A arbovirus, Guanarito virus, guinea pig cytomegalovirus, guinea pig type C virus, Hantaan virus, Hantavirus, hard clam reovirus, hare fibroma virus, HCMV (human cytomegalovirus), hemadsorption virus 2, hemagglutinating virus of Japan, hemorrhagic fever virus, hendra virus, Henipaviruses, Hepadnavirus, hepatitis A virus, hepatitis B virus group, hepatitis C virus, hepatitis D virus, hepatitis delta virus, hepatitis E virus, hepatitis F virus, hepatitis G virus, hepatitis nonA nonB virus, hepatitis virus, hepatitis virus (nonhuman), hepatoencephalomyelitis reovirus 3, Hepatovirus, heron hepatitis B virus, herpes B virus, herpes simplex virus, herpes simplex virus 1, herpes simplex virus 2, herpesvirus, herpesvirus 7, Herpesvirus ateles, Herpesvirus hominis, Herpesvirus infection, Herpesvirus saimiri, Herpesvirus suis, Herpesvirus varicellae, Highlands J virus, Hirame rhabdovirus, hog cholera virus, human adenovirus 2, human alphaherpesvirus 1, human alphaherpesvirus 2, human alphaherpesvirus 3, human B lymphotropic virus, human betaherpesvirus 5, human coronavirus, human cytomegalovirus group, human foamy virus, human gammaherpesvirus 4, human gammaherpesvirus 6, human hepatitis A virus, human herpesvirus 1 group, human herpesvirus 2 group, human herpesvirus 3 group, human herpesvirus 4 group, human herpesvirus 6, human herpesvirus 8, human immunodeficiency virus, human immunodeficiency virus 1, human immunodeficiency virus 2, human papillomavirus, human T cell leukemia virus, human T cell leukemia virus I, human T cell leukemia virus II, human T cell leukemia virus DI, human T cell lymphoma virus I, human T cell lymphoma virus II, human T cell lymphotropic virus type 1, human T cell lymphotropic virus type 2, human T lymphotropic virus I, human T lymphotropic virus II, human T lymphotropic virus III, Ichnovirus, infantile gastroenteritis virus, infectious bovine rhinotracheitis virus, infectious haematopoietic necrosis virus, infectious pancreatic necrosis virus, influenza virus A, influenza virus B, influenza virus C, influenza virus D, influenza virus pr8, insect iridescent virus, insect virus, iridovirus, Japanese B virus, Japanese encephalitis virus, JC virus, Junin virus, Kaposi's sarcoma-associated herpesvirus, Kemerovo virus, Kilham's rat virus, Klamath virus, Kolongo virus, Korean hemorrhagic fever virus, kumba virus, Kysanur forest disease virus, Kyzylagach virus, La Crosse virus, lactic dehydrogenase elevating virus, lactic dehydrogenase virus, Lagos bat virus, Langur virus, lapine parvovirus, Lassa fever virus, Lassa virus, latent rat virus, LCM virus, Leaky virus, Lentivirus, Leporipoxvirus, leukemia virus, leukovirus, lumpy skin disease virus, lymphadenopathy associated virus, Lymphocryptovirus, lymphocytic choriomeningitis virus, lymphoproliferative virus group, Machupo virus, mad itch virus, mammalian type B oncovirus group, mammalian type B retroviruses, mammalian type C retrovirus group, mammalian type D retroviruses, mammary tumor virus, Mapuera virus, Marburg virus, Marburg-like virus, Mason Pfizer monkey virus, Mastadenovirus, Mayaro virus, ME virus, measles virus, Menangle virus, Mengo virus, Mengovirus, Middelburg virus, milkers nodule virus, mink enteritis virus, minute virus of mice, MLV related virus, MM virus, Mokola virus, Molluscipoxvirus, Molluscum contagiosum virus, monkey B virus, monkeypox virus, Mononegavirales, Morbillivirus, Mount Elgon bat virus, mouse cytomegalovirus, mouse encephalomyelitis virus, mouse hepatitis virus, mouse K virus, mouse leukemia virus, mouse mammary tumor virus, mouse minute virus, mouse pneumonia virus, mouse poliomyelitis virus, mouse polyomavirus, mouse sarcoma virus, mouscpox virus, Mozambique virus, Mucambo virus, mucosal disease virus, mumps virus, murid betaherpesvirus 1, murid eytomegalovirus 2, murine cytomegalovirus group, murine encephalomyelitis virus, murine hepatitis virus, murine leukemia virus, murine nodule inducing virus, murine polyomavirus, murine sarcoma virus, Muromegalovirus, Murray Valley encephalitis virus, myxoma virus, Myxovirus, Myxovirus multiforme, Myxovirus parotitidis, Nairobi sheep disease virus, Nairovirus, Nanimavirus, Nariva virus, Ndumo virus, Neethling virus, Nelson Bay virus, neurotropic virus, New World Arenavirus, newborn pneumonitis virus, Newcastle disease virus, Nipah virus, noncytopathogenic virus, Norwalk virus, nuclear polyhedrosis virus (NPV), nipple neck virus, O'nyong'nyong virus, Ockelbo virus, oncogenic virus, oncogenic viruslike particle, oncomavirus, Orbivirus, Orf virus, Oropouche virus, Orthohepadnavirus, Orthomyxovirus, Orthopoxvirus, Orthoreovirus, Orungo, ovine papillomavirus, ovine catarrhal fever virus, owl monkey herpesvirus, Palyam virus, Papillomavirus, Papillomavirus sylvilagi, Papovavirus, parainfluenza virus, parainfluenza virus type 1, parainfluenza virus type 2, parainfluenza virus type 3, parainfluenza virus type 4, Paramyxovirus, Parapoxvirus, paravaccinia virus, Parvovirus, Parvovirus B19, parvovirus group, Pestivirus, Phlebovirus, phocine distemper virus, Picodnavirus, Picornavirus, pig cytomegalovirus-pigconpox virus, Piry virus, Pixuna virus, pneumonia virus of mice, Pneumovirus, poliomyelitis virus, poliovirus, Polydnavirus, polyhedral virus, polyoma virus, Polyomavirus, Polyomavirus bovis, Polyomavirus cercopitheci, Polyomavirus hominis 2, Polyomavirus maccacac 1, Polyomavirus muris 1, Polyomavirus muris 2, Polyomavirus papionis 1, Polyomavirus papionis 2, Polyomavirus sylvilagi, Pongine herpesvirus 1, porcine epidemic diarrhea virus, porcine hemagglutinating encephalomyelitis virus, porcine parvovirus, porcine transmissible gastroenteritis virus, porcine type C virus, pox virus, poxvirus, poxvirus variolac, Prospect Hill virus, Provirus, pseudocowpox virus, pseudorabies virus, psittacincpox virus, quailpox virus, rabbit fibroma virus, rabbit kidney vaculolating virus, rabbit papillomavirus, rabies virus, raccoon parvovirus, raccoonpox virus, Ranikhet virus, rat cytomegalovirus, rat parvovirus, rat virus, Rauscher's virus, recombinant vaccinia virus, recombinant virus, reovirus, reovirus 1, reovirus 2, reovirus 3, reptilian type C virus, respiratory infection virus, respiratory syncytial virus, respiratory virus, reticuloendotheliosis virus, Rhabdovirus, Rhabdovirus carpia, Rhadinovirus, Rhinovirus, Rhizidiovirus, Rift Valley fever virus, Riley's virus, rinderpest virus, RNA tumor virus, Ross River virus, Rotavirus, rougeole virus, Rous sarcoma virus, rubella virus, rubeola virus, Rubivirus, Russian autumn encephalitis virus, SA 11 simian virus, SA2 virus, Sabia virus, Sagiyama virus, Saimirine herpesvirus 1, salivary gland virus, sandfly fever virus group, Sandjimba virus, SARS virus, SDAV (sialodacryoadenitis virus), sealpox virus, Semliki Forest Virus, Seoul virus, sheeppox virus, Shope fibroma virus, Shope papilloma virus, simian foamy virus, simian hepatitis A virus, simian human immunodeficiency virus, simian immunodeficiency virus, simian parainfluenza virus, simian T cell lymphotrophic virus, simian virus, simian virus 40, Simplexvirus, Sin Nombre virus, Sindhis virus, smallpox virus, South American hemorrhagic fever viruses, sparrowpox virus, Spumavirus, squirrel fibroma virus, squirrel monkey retrovirus, SSV 1 virus group, STLV (simian T lymphotropic virus) type I, STLV (simian T lymphotropic virus) type II, STLV (simian T lymphotropic virus) type III, stomatitis papulosa virus, submaxillary virus, suid alphaherpesvirus 1, suid herpesvirus 2, Suipoxvirus, swamp fever virus, swinepox virus, Swiss mouse leukemia virus, TAC virus, Tacaribe complex virus, Tacaribe virus, Tanapox virus, Taterapox virus, Tench reovirus, Theiler's encephalomyelitis virus, Theiler's virus, Thogoto virus, Thottapalayam virus, Tick borne encephalitis virus, Tioman virus, Togavirus, Torovirus, tumor virus, Tupaia virus, turkey rhinotracheitis virus, turkcypox virus, type C retroviruses, type D oncovirus, type D retrovirus group, ulcerative disease rhabdovirus, Una virus, Uukuniemi virus group, vaccinia virus, vacuolating virus, varicella zoster virus, Varicellovirus, Varicola virus, variola major virus, variola virus, Vasin Gishu disease virus, VEE virus, Venezuelan equine encephalitis virus, Venezuelan equine encephalomyelitis virus, Venezuelan hemorrhagic fever virus, vesicular stomatitis virus, Vesiculovirus, Vilyuisk virus, viper retrovirus, viral haemorrhagic septicemia virus, Visna Maedi virus, Visna virus, volepox virus, VSV (vesicular stomatitis virus), Wallal virus, Warrego virus, wart virus, WEE virus, West Nile virus, western equine encephalitis virus, western equine encephalomyelitis virus, Whataroa virus, Winter Vomiting Virus, woodchuck hepatitis B virus, woolly monkey sarcoma virus, wound tumor virus, WRSV virus, Yaba monkey tumor virus, Yaba virus, Yatapoxvirus, yellow fever virus, and the Yug Bogdanovac virus. In one embodiment an infectome will be produced for each virus that includes an inventory of the host cellular genes involved in virus infection during a specific phase of viral infection, such cellular entry or the replication cycle.
  • For some viruses a great deal of progress has been made in the elucidation of the steps involved during infection of host cells, and any of these steps may be targeted using peptidomimetic macrocycles of the invention. For example, experiments initiated in the early 1980s showed that influenza virus follows a stepwise, endocytic entry program with elements shared with other viruses such as alpha-and rhabdoviruses (Marsh and Helenius 1989; Whittaker 2006). The steps include: 1) Initial attachment to sialic acid containing glycoconjugates receptors on the cell surface; 2) signaling induced by the virus particle; 3) endocytosis by clathrin-dependent and clathrin-independent cellular mechanism; 4) acid-induced, hemaglutinin (HA)-mediated penetration from late endosomes; 5) acid-activated, M2 and matrix protein (M1) dependent uncoating of the capsid; and, 6) intra-cytosolic transport and nuclear import of vRNPs. These steps depend on assistance from the host cell in the form of sorting receptors, vesicle formation machinery, kinase-mediated regulation, organelle acidification, and, most likely, activities of the cytoskeleton.
  • Influenza attachment to the cells surface occurs via binding of the HA1 subunit to cell surface glycoproteins and glycolipids that carry oligosaccharide moieties with terminal sialic acid residues (Skehel and Wiley 2000). The linkage by which the sialic acid is connected to the next saccharide contributes to species specificity. Avian strains including H5N1 prefer an a-(2,3)-link and human strains a-(2,6)-link (Matrosovich 2006). In epithelial cells, binding occurs preferentially to microvilli on the apical surface, and endocytosis occurs at base of these extensions (Matlin 1982). Whether receptor binding induces signals that prepare the cell for the invasion is not yet known, but it is likely because activation of protein kinase C and synthesis of phopshatidylinositol-3-phosphate (PI3P) are required for efficient entry (Sieczkarski et al. 2003; Whittaker 2006).
  • Endocytic internalization occurs within a few minutes after binding (Matlin 1982; Yoshimura and Ohnishi 1984). In tissue culture cells influenza virus makes use of three different types of cellular processes; 1) preexisting clathrin coated pits, 2) virus-induced clathrin coated pits, and 3) endocytosis in vesicles without visible coat (Matlin 1982; Sieczkarski and Whittaker 2002; Rust et al. 2004). Video microscopy using fluorescent viruses showed the virus particles undergoing actin-mediated rapid motion in the cell periphery followed by minus end-directed, microtubule-mediated transport to the perinuclear area of the cell. Live cell imaging indicated that the virus particles first entered a subpopulation of mobile, peripheral early endosomes that carry them deeper into the cytoplasm before penetration takes place (Lakadamyali et al. 2003; Rust et al. 2004). The endocytie process is regulated by protein and lipid kinases, the proteasome, as well as by Rabs and ubiquitin-dependent sorting factors (Khor et al. 2003; Whittaker 2006).
  • The membrane penetration step is mediated by low pH-mediated activation of the trimeric, metastable HA, and the conversion of this Type I viral fusion protein to a membrane fusion competent conformation (Maeda et al. 1981; White et al. 1982). This occurs about 16 min after internalization, and the pH threshold varies between strains in the 5.0-5.6 range. The target membrane is the limiting membrane of intermediate or late endosomes. The mechanism of fusion has been extensively studied (Kielian and Rey 2006). Further it was observed that fusion itself does not seem to require any host cell components except a lipid bilayer membrane and a functional acidification system (Maeda et al. 1981; White et al. 1982). The penetration step is inhibited by agents such as lysosomotropic weak bases, carboxylic ionophores, and proton pump inhibitors (Malin 1982; Whittaker 2006).
  • To allow nuclear import of the incoming vRNPs, the capsid has to be disassembled. This step involves acidification of the viral interior through the amantadine-sensitive M2-channels causes dissociation of M1 from the vRNPs (Bukrinskaya et al. 1982; Martin and Helenius 1991; Pinto et al. 1992). Transport of the individual vRNPs to the nuclear pore complexes and transfer into the nucleus depends on cellular nuclear transport receptors (O'Neill et al. 1995; Cros et al. 2005). Replication of the viral RNAs (synthesis of positive and negative strands), and transcription occurs in complexes tightly associated with the chromatin in the nucleus. It is evident that, although many of the steps are catalyzed by the viral polymerase, cellular factors are involved including RNA polymerase activating factors, a chaperone HSP90, hCLE, and a human splicing factor UAP56. Viral gene expression is subject to complex cellular control at the transcriptional level, a control system dependent on cellular kinases (Whittaker 2006).
  • The final assembly of an influenza particle occurs during a budding process at the plasma membrane. In epithelial cells, budding occurs at the apical membrane domain only (Rodriguez-Boulan 1983). First, the progeny vRNPs are transported within the nucleoplasm to the nuclear envelope, then from the nucleus to the cytoplasm, and finally they accumulate in the cell periphery. Exit from the nucleus is dependent on viral protein NEP and M1, and a variety of cellular proteins including CRM1 (a nuclear export receptor), caspases, and possibly some nuclear protein chaperones. Phosphorylation plays a role in nuclear export by regulating M1 and NEP synthesis, and also through the MAPK/ERK system (Bui et al. 1996; Ludwig 2006). G protein and protein kinase signaling is involved in influenza virus budding from infected host cells (Hui E. and Nayak D, 2002).
  • The three membrane proteins of the virus are synthesized, folded and assembled into oligomers in the ER (Doms et al. 1993). They pass through the Golgi complex; undergo maturation through modification of their carbohydrate moieties and proteolytic cleavage. After reaching the plasma membrane they associate with M1 and the vRNPs in a budding process that results in the inclusion of all eight vRNPs and exclusion of most host cell components except lipids.
  • Influenza infection is associated with activation of several signaling cascades including the MAPK pathway (ERK, JNK, p38 and BMK-1/ERKS), the IkB/NF-kB signaling module, the Ral/MEK/ERK cascade, and programmed cell death (Ludwig 2006). These result in a variety of effects that limit the progress of infection such as transcriptional activation of IFNb, apoptotic cell death, and a block in virus escape of from late endosomes (Ludwig 2006).
  • Example 1
  • FIGS. 1 and 2 show a possible binding mode of the PB1 helix-derived sequence MDVNPTLLFLKVPAQ. A peptidomimetic macrocycle of the invention is prepared starting with the corresponding uncrosslinked polypeptide sequence MDVNPTLLFLKVPAQ and replacing the 7th and 10th amino acids with an alpha, alpha-disubstituted amino acid (e.g. the S5 olefin amino acid). An olefin metathesis reaction is performed resulting in a peptidomimetic macrocycle comprising an i to i+3 crosslink as shown in FIG. 2 b.
  • Example 2
  • Peptidomimetic macrocycles were synthesized, purified and analyzed as previously described (Walensky et al (2004) Science 305:1466-70; Walensky et al (2006) Mol Cell 24:199-210; Bernal et al (2007) J. Am Chem Soc. 9129, 2456-2457) and as indicated below. The macrocycles used in this study are shown in Table 5. The corresponding uncrosslinkod polypeptides represent the natural counterparts of the peptidomimetic macrocycles of the invention.
  • Alpha,alpha-disubstituted non-natural amino acids containing olcfinic side chains were synthesized according to Williams et al. (1991) J. Am. Chem. Soc. 113:9276; Schafmeister et al. (2000) J. Am. Chem Soc. 122:5891 and Verdine et al PCT WO 2008/121767. Peptidomimetic macrocycles were designed by replacing two or more naturally occurring amino acids with the corresponding synthetic amino acids. Substitutions were made at the i and i+3, i and i+4, i and i+6, and i and i+7 positions. Macrocycles were generated by solid phase peptide synthesis followed by olefin metathesis-based crosslinking of the synthetic amino acids via their olefin-containing side chains.
  • In the sequences shown, the following abbreviations are used: “Nle” represents norleucine, “Aib” represents 2-aminoisobutyric acid, “Ac” represents acetyl, and “Pr” represents propionyl. Amino acids represented as “$” are alpha-Me S5-pentenyl-alanine olefin amino acids connected by an all-carbon i to i+4 crosslinker comprising one double bond. Amino acids represented as “$r5” are alpha-Me R5-pentenyl-alanine olefin amino acids connected by an all-carbon i to i+4 crosslinker comprising one double bond. Amino acids represented as “$s8” are alpha-Me 88-octenyl-alanine olefin amino acids connected by an all-carbon i to i+7 crosslinker comprising one double bond. Amino acids represented as “$r8” are alpha-Me R8-octenyl-alanine olefin amino acids connected by an all-carbon i to i+7 crosslinker comprising one double bond. “Ahx” represents an aminocyclohexyl linker. The crosslinkers are linear all-carbon crosslinker comprising eight or eleven carbon atoms between the alpha carbons of each amino acid. Amino acids represented as “$/” are alpha-Me S5-pentenyl-alanine olefin amino acids that are not connected by any crosslinker. Amino acids represented as “$/r5” are alpha-Me R5-pentenyl-alanine olefin amino acids that are not connected by any crosslinker. Amino acids represented as “$/s8” are alpha-Me S8-octenyl-alanine olefin amino acids that are not connected by any crosslinker. Amino acids represented as “$/r8” are alpha-Me R8-octenyl-alanine olefin amino acids that are not connected by any crosslinker.
  • The non-natural amino acids (R and S enantiomers of the 5-carbon olefinic amino acid and the S enantiomer of the 8-carbon olefinic amino acid) were characterized by nuclear magnetic resonance (NMR) spectroscopy (Varian Mercury 400) and mass spectrometry (Micromass LCT). Peptide synthesis was performed either manually or on an automated peptide synthesizer (Applied Biosystems, model 433A), using solid phase conditions, rink amide AM resin (Novabiochem), and Fmoc main-chain protecting group chemistry. For the coupling of natural Fmoc-protected amino acids (Novabiochem), 10 equivalents of amino acid and a 1:1:2 molar ratio of coupling reagents HBTU/HOBt (Novabiochem)/DIEA were employed. Non-natural amino acids (4 equiv) were coupled with a 1:1:2 molar ratio of HATU (Applied Biosystems)/HOBt/DIEA. Olefin metathesis was performed in the solid phase using 10 mM Grubbs catalyst (Blackewell et al. 1994 supra) (Strem Chemicals) dissolved in degassed dichloromethane and reacted for 2 hours at room temperature. Isolation of metathesized compounds was achieved by trifluoroacetic acid-mediated deprotection and cleavage, ether precipitation to yield the crude product, and high performance liquid chromatography (HPLC) (Varian ProStar) on a reverse phase C18 column (Varian) to yield the pure compounds. Chemical composition of the pure products was confirmed by LC/MS mass spectrometry (Micromass LCT interfaced with Agilent 1100 HPLC system) and amino acid analysis (Applied Biosystems, model 420A).
  • The synthesized peptides include a norleucine replacement for methionine to avoid issues with unwanted thioether oxidation. In several peptides, the proline residue is replaced with a 2-aminoisobutyric acid residue (Aib) to increase helicity, and the effect of Glu-to-Arg substitution on cell penetrability was also explored. The N-termini of the synthetic peptides were acetylated, while the C-termini were amidated. Table 5 shows a list of peptidomimetic macrocycles of the invention prepared.
  • TABLE 5
    PB1 Peptidomimetic macrocycles of the invention.
    Found
    Macrocycle Sequence EMW M + 2H M + 2H
    SP-1 Ac-NleDVNPTLLFLKVPAQ-NH2 1707.99 854.995 854.86
    SP-2 Ac-NleDVNAibTLLFLKVAibAQ-NH2 1683.99 842.995 843.35
    SP-3 Ac-NleDVNPTLLFLKVPAR-NH2 1736.04 869.02 869.21
    SP-4 Ac-TLLFLKVPAQ-NH2 1169.72 585.86 585.71
    SP-5 Ac-TLLF$KVA$Q-NH2 1209.75 605.875 605.75
    SP-6 Ac-NleDVNAibTLLF$KVA$R-NH2 1764.07 883.035 882.91
    SP-7 Ac-NleDVNAibTL$FLK$AAR-NH2 1736.04 869.02 869.35
    SP-8 Ac-NleDVNAibTLLF$KVA$Q-NH2 1736.02 869.01 868.82
    SP-9 Ac-NleDVNAibTL$FLK$AAQ-NH2 1707.99 854.995 854.86
    SP-10 Ac-NleDVNPTL$FLK$AAQ-NH2 1719.99 860.995 860.82
    SP-11 Ac-NleDVNPTLLF$KVA$R-NH2 1776.07 889.035 888.87
    SP-12 Ac-NleDVNPTL$FLK$AAR-NH2 1748.04 875.02 874.91
    SP-13 Ac-NleDVNPT$rLFLKV$AQ-NH2 1790.07 896.035 895.88
    SP-14 Ac-NleDVNAibT$r8LFLKVA$Q-NH2 1778.07 890.035 890.22
    SP-15 Ac-NlcDVNAibT$r8LFLKVA$R-NH2 1806.11 904.055 904.25
    SP-16 Ac-NleDVNPT$r8LFLKVA$Q-NH2 1790.07 896.035 896.24
    SP-17 Ac-NleDVNPT$r8LFLKVA$R-NH2 1818.11 910.055 910.26
    SP-18 Ac-NleDVNATLLF$KVA$R-NH2 1750.05 876.025 876.19
    SP-19 Ac-NleDVNATL$FLK$AAR-NH2 1722.02 862.01 862.23
    SP-20 Ac-NleDVNATLLF$KVA$Q-NH2 1722.01 862.005 862.23
    SP-21 Ac-NleDVNATL$FLK$AAQ-NH2 1693.98 847.99 848.21
    SP-22 Ac-TL$FLK$AAQ-NH2 1181.72 591.86 592.07
    SP-23 FITC-AhxNleDVNAibTLLF$KVA$Q-NH2 2196.13 1099.065 1099.28
    SP-24 5-FAM-AhxNleDVNAibTLLFLKVAibAQ- 2113.11 1057.555 1057.85
    NH2
    SP-25 5-FAM-AhxNleDVNAibTL$FLK$AAQ-NH2 2137.11 1069.555 1069.82
    SP-26 5-FAM-AhxNleDVNPTL$FLK$AAQ-NH2 2149.11 1075.555 1075.71
    SP-27 5-FAM-AhxNleDVNAibT$r8LFLKVA$Q-NH2 2207.19 1104.595 1104.98
    SP-28 5-FAM-AhxNleDVNPT$r8LFLKVA$Q-NH2 2219.19 1110.595 1110.81
    SP-29 5-FAM-AhxNleDVNAibT$r5LF$KVAibAR- 2165.16 1083.58 1083.94
    NH2
    SP-30 5-FAM-AhxNleDVNAibTLLF$/KVA$/Q-NH2 2193.18 1097.59 1097.92
    SP-31 Ac-NleDVNAibTLLF$/KVA$/R-NH2 1792.1 897.05 897.3
    SP-32 Ac-NlcDVNPTLLF$/KVA$/R-NH2 1804.1 903.05 903.32
    SP-33 Ac-NleDVNPTL$/FLK$/AAR-NH2 1776.07 889.035 889.27
    SP-34 Ac-NleDVNAibTL$/FLK$/AAR-NH2 1764.07 883.035 883.25
    SP-35 Ac-NleDVNAibT$/r5LF$/KVAibAR-NH2 1764.07 883.035 883.31
    SP-36 Ac-NleDVNAibTLL$/r5LK$/AAR-NH2 1730.08 866.04 866.29
    SP-37 Ac-NleDVNAibT$/r8LFLKVA$/R-NH2 1834.15 918.075 918.34
    SP-38 Ac-NleDVNPT$/r8LFLKVA$/R-NH2 1846.15 924.075 924.36
    SP-39 Ac-NleDVNPT$/r8LFLKVA$/Q-NH2 1818.1 910.05 910.31
    SP-40 Ac-NleDVNAT$/r8LFLKVA$/Q-NH2 1792.09 897.045 897.3
    SP-41 Ac-NleDVNAibT$r5LF$KVAibAR-NH2 1736.04 869.02 869.21
    SP-42 Ac-NleDVNAibTLL$r5LK$AAR-NH2 1702.05 852.025 852.25
    SP-43 Ac-NleDVNAT$r8LFLKVA$Q-NH2 1764.06 883.03 883.31
    SP-44 5-FAM-AhxNleDVNAibTLLF$KVA$Q-NH2 2165.15 1083.575 1083.81
    SP-45 Ac-NleDVNP$LLF$KVAibAR-NH2 1760.07 881.035 881.31
    SP-46 Ac-NleDVNPTLL$LKV$AR-NH2 1742.08 872.04 872.31
    SP-47 Ac-NleDVNAibTLL$LKV$AR-NH2 1730.08 866.04 866.29
    SP-48 Ac-NleDVN$TLL$LKVAibAQ-NH2 1702.04 852.02 852.3
    SP-49 Ac-NleDVNP$LLF$KVAibAQ-NH2 1732.03 867.015 867.26
    SP-50 Ac-NleDVNP$/LLF$/KVAibAR-NH2 1788.1 895.05 895.29
    SP-51 Ac-NleDVNPTLL$/LKV$/AR-NH2 1770.11 886.055 886.36
    SP-52 Ac-NleDVNAibTLL$/LKV$/AR-NH2 1758.11 880.055 880.34
    SP-53 Ac-NlcDVN$/TLL$/LKVAibAQ-NH2 1730.07 866.035 866.29
    SP-54 Ac-NleDVNP$/LLF$/KVAibAQ-NH2 1760.06 881.03 881.31
    SP-55 Ac-NleDVNAibTLLFLKVAAQ-NH2 1669.98 835.99 836.19
    SP-56 5-FAM-AhxNleDVNAibTLLF$KVA$R-NH2 2193.19 1097.595 1098.31
    SP-57 5-FAM-AhxNleDVNPTLLF$KVA$R-NH2 2205.19 1103.595 1104.27
    SP-58 5-FAM-AhxNlcDVNPTL$FLK$AAR-NH2 2177.16 1089.58 1090.15
    SP-59 5-FAM-AhxNleDVNAibTLSFLK$AAR-NH2 2165.16 1083.58 1084.26
    SP-60 5-FAM-AhxNleDVNAibTLL$r5LBC$AAR-NH2 2131.17 1066.585 1067.29
    SP-61 5-FAM-AhxNleDVNAibT$r8LFLKVA$R-NH2 2235.23 1118.615 1119.29
    SP-62 5-FAM-AhxNleDYNPT$r8LFLKVA$R-NH2 2247.23 1124.615 1125.31
    SP-63 5-FAM-AhxNleDVNAT$r8LFLKVA$Q-NH2 2193.18 1097.59 1098.25
    SP-64 5-FAM-AhxNleDVNAibTLLFLKVAAQ-NH2 2099.1 1050.55 1050.78
  • Example 3
  • The ex vivo serum stability of several PB1 peptidomimetic macrocycles was tested by incubating them at 5000 ng/mL (2 μM at MW=2500) with fresh human serum at 37° C. and taking samples at 0, 0.5, 1, 2, 4, 6 and 24 hours. At each time point the samples were flash-frozen until analysis in duplicate, then extracted by transferring 100 μl of sera to 2 ml centrifuge tubes followed by the addition of 10 μL of 50% formic acid and 500 μL acetonitrile and centrifugation at 14,000 RPM for 10 min at 4±2° C. After protein precipitation, the supernatants were then transferred to fresh 2 ml tubes and evaporated on Turbovap under N2 at <10 psi, 37° C. The samples were reconstituted in 100 μL of 50:50 acetonitrile/water and quantified by LC-MS/MS analysis. The response for each compound was normalized to estimate a percent decrease in concentration versus time; the results are shown in FIG. 3.
  • Example 4
  • Several PB1 peptidomimetic macrocycles were tested for PK properties in single N dose in rats. The in-life portion of the study was conducted at ViviSource Laboratories (Waltham, Mass.). A single intravenous dose of 3 mg/kg Stapled Peptide formulated in water continuing 5% PEG-400 and 2% Dextrose was administered to a pair of jugular vein-cannulated male Sprague-Dawley rats. The N dose was mostly well-tolerated and animals appeared healthy within the study duration. Blood samples were collected over thirteen sampling times up to 24 hours and the plasma samples were shipped on dry ice to Tandem Bioanalytical Facilities, Inc. (Woburn, Mass.) for the analytical phase of the study.
  • Quantification in plasma samples was preceded by the preparation of sample extracts by combining 50 μl of ammonium hydroxide (14.5 M ammonia), 1 mL of a 1:1 acetonitrile/methanol solution, and 50 μl of internal standard with 50 μl of each plasma sample. The mixtures were centrifuged to separate liquid supernatant from solid precipitate and supernatants were dried at 40° C. under flowing nitrogen gas. The dried sample extracts were reconstituted in 50 μl of a 1:1 water/methanol solution that contained 0.1% (v/v) trifluoroacetic acid. Plasma sample extracts were analyzed by a liquid chromatography-mass spectrometry method that utilized an API 5000 (Applied Biosystems) instrument operated in positive ionization mode at a temperature of 500° C. using a multiple reaction monitoring mode of detection (MRM). The analytical column for liquid chromatography was a Varian Metasil C18, 50 mm×2 mm and mobile phases A (0.1% formic acid in water) and B (0.1% formic acid in acetonitrile) were pumped at a flow rate of 0.5 ml/min. Quantification in plasma extracts was made by linear regression analysis employing a pure reference standard Stapled Peptide diluted in normal rat plasma to prepare eight calibration standards over the working concentration range of 20-10,000 ng/ml. The calibration standards were extracted in identical fashion as sample extracts and analyzed before and after the sample extracts.
  • Pharmacokinetic parameters were calculated using a non-compartmental model using the PK Functions add-in for Microsoft Excel. The terminal elimination half-life was calculated as ln(2)/(λz), where the rate constant (λz) was calculated as −1 times the estimated slope of the log-concentration versus time data over 2-12 hr. AUC values (hr*ng/ml) were calculated by statistical moment and linear trapezoidal approximation methods over time points of 0-24 hours and 24 hour concentration values were divided by (λz) was added in order to extrapolate AUMC and AUC values to infinite time. Total body clearance (per kg body weight) was calculated as dose divided by AUC. The volume of distribution at steady state (Vss) was calculated as the product of clearance and mean residence time (MRT=AUC/AUMC). The PK results are shown graphically in FIGS. 4, 5 a-5 f, and a table of determined PK parameters is shown in FIG. 6.
  • An experiment was also performed to compare different modes of administration. Subcutaneous injection of peptidomimetic macrocycle was performed and compared to intravenous administration. Two groups of two animals each were injected subcutaneously with a 3 mg/kg dose. Plasma was collected at regular time points (e.g. 5, 20 minutes; 1, 2, 4, 8 12, and 48 hours) and the samples were analyzed as indicated above. The results are plotted in FIG. 7.
  • While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims (20)

1.-23. (canceled)
24. A peptidomimetic macrocycle comprising a crosslinker linking the α-positions of at least two amino acids and an amino acid sequence that is at least 60% identical to the amino acid sequence MDVNPTLLFLKVPAQ (SEQ ID NO: 1).
25. The peptidomimetic macrocycle of claim 24, wherein the peptidomimetic macrocycle comprises an amino acid sequence that is at least about 80% identical to the amino acid sequence MDVNPTLLFLKVPAQ (SEQ ID NO: 1).
26. The peptidomimetic macrocycle of claim 24, wherein the peptidomimetic macrocycle comprises an amino acid sequence that is at least about 90% identical to the amino acid sequence MDVNPTLLFLKVPAQ (SEQ ID NO: 1).
27. The peptidomimetic macrocycle of claim 24, wherein the peptidomimetic macrocycle comprises an amino acid sequence that is at least about 60% identical to the amino acid sequence NleDVNAibTLLFLKVAAQ (SEQ ID NO: 64).
28. The peptidomimetic macrocycle of claim 24, wherein the peptidomimetic macrocycle comprises an amino acid sequence that is at least about 80% identical to the amino acid sequence NleDVNAibTLLFLKVAAQ (SEQ ID NO: 64).
29. The peptidomimetic macrocycle of claim 24, wherein the peptidomimetic macrocycle comprises an amino acid sequence that is at least about 60% identical to the amino acid sequence NleDVNAibTLLFLKVAibAQ (SEQ ID NO: 2).
30. The peptidomimetic macrocycle of claim 24, wherein the peptidomimetic macrocycle comprises an amino acid sequence that is at least about 80% identical to the amino acid sequence NleDVNAibTLLFLKVAibAQ (SEQ ID NO: 2).
31. The peptidomimetic macrocycle of claim 24, wherein the peptidomimetic macrocycle comprises a helix.
32. The peptidomimetic macrocycle of claim 24, wherein the peptidomimetic macrocycle comprises a 310 helix.
33. The peptidomimetic macrocycle of claim 24, wherein the peptidomimetic macrocycle comprises an α,α-disubstituted amino acid.
34. The peptidomimetic macrocycle of claim 24, wherein the peptidomimetic macrocycle comprises an alpha helix.
35. The peptidomimetic macrocycle of claim 24, wherein the peptidomimetic macrocycle has a structure of Formula (I):
Figure US20160068573A1-20160310-C00107
wherein:
each A, C, D, and E is independently a natural or non-natural amino acid;
each B is independently a natural or non-natural amino acid, amino acid analog, or
Figure US20160068573A1-20160310-C00108
each R1 and R2 are independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-;
each R3 is independently hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5;
each L is independently a macrocycle-forming linker of the formula -L1-L2-;
each L1 and L2 is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene, or [—R4—K—R4—]n, each being optionally substituted with R5;
each R4 is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;
each K is independently O, S, SO, SO2, CO, CO2, or CONR3;
each R5 is independently halogen, alkyl, —OR6, —N(R6)2, —SR6, —SOR6, —SO2R6, —CO2R6, a fluorescent moiety, a radioisotope or a therapeutic agent;
each R6 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope or a therapeutic agent;
each R7 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5, or part of a cyclic structure with a D residue;
each R8 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R5, or part of a cyclic structure with an E residue;
each v and w are independently integers from 1-1000;
u is an integer from 1-10;
each x, y and z are independently integers from 0-10; and
each n is independently an integer from 1-5.
36. The peptidomimetic macrocycle of claim 35, wherein x+y+z is 3.
37. The peptidomimetic macrocycle of claim 35, wherein x+y+z=6.
38. The peptidomimetic macrocycle of claim 35, wherein R1 is alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-.
39. The peptidomimetic macrocycle of claim 35, wherein R1 and R2 are independently alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-.
40. The peptidomimetic macrocycle of claim 35, wherein R1 and R2 are methylene.
41. The peptidomimetic macrocycle of claim 24, wherein the peptidomimetic macrocycle binds to a viral polymerase or an influenza virus.
42. A method of treating influenza infection in a subject, the method comprising administering to the subject a peptidomimetic macrocycle of claim 24.
US14/853,894 2009-01-14 2015-09-14 Peptidomimetic macrocycles Abandoned US20160068573A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/853,894 US20160068573A1 (en) 2009-01-14 2015-09-14 Peptidomimetic macrocycles
US15/093,373 US10022422B2 (en) 2009-01-14 2016-04-07 Peptidomimetic macrocycles
US15/093,335 US20160251399A1 (en) 2009-01-14 2016-04-07 Peptidomimetic macrocycles
US16/002,977 US20180339014A1 (en) 2009-01-14 2018-06-07 Peptidomimetic macrocycles

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US14470609P 2009-01-14 2009-01-14
PCT/US2010/021091 WO2010083347A2 (en) 2009-01-14 2010-01-14 Peptidomimetic macrocycles
US201113129118A 2011-11-01 2011-11-01
US14/853,894 US20160068573A1 (en) 2009-01-14 2015-09-14 Peptidomimetic macrocycles

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2010/021091 Continuation WO2010083347A2 (en) 2009-01-14 2010-01-14 Peptidomimetic macrocycles
US13/129,118 Continuation US9175047B2 (en) 2009-01-14 2010-01-14 Peptidomimetic macrocycles

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/093,373 Continuation US10022422B2 (en) 2009-01-14 2016-04-07 Peptidomimetic macrocycles
US15/093,335 Continuation US20160251399A1 (en) 2009-01-14 2016-04-07 Peptidomimetic macrocycles

Publications (1)

Publication Number Publication Date
US20160068573A1 true US20160068573A1 (en) 2016-03-10

Family

ID=42340294

Family Applications (5)

Application Number Title Priority Date Filing Date
US13/129,118 Expired - Fee Related US9175047B2 (en) 2009-01-14 2010-01-14 Peptidomimetic macrocycles
US14/853,894 Abandoned US20160068573A1 (en) 2009-01-14 2015-09-14 Peptidomimetic macrocycles
US15/093,373 Expired - Fee Related US10022422B2 (en) 2009-01-14 2016-04-07 Peptidomimetic macrocycles
US15/093,335 Abandoned US20160251399A1 (en) 2009-01-14 2016-04-07 Peptidomimetic macrocycles
US16/002,977 Abandoned US20180339014A1 (en) 2009-01-14 2018-06-07 Peptidomimetic macrocycles

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/129,118 Expired - Fee Related US9175047B2 (en) 2009-01-14 2010-01-14 Peptidomimetic macrocycles

Family Applications After (3)

Application Number Title Priority Date Filing Date
US15/093,373 Expired - Fee Related US10022422B2 (en) 2009-01-14 2016-04-07 Peptidomimetic macrocycles
US15/093,335 Abandoned US20160251399A1 (en) 2009-01-14 2016-04-07 Peptidomimetic macrocycles
US16/002,977 Abandoned US20180339014A1 (en) 2009-01-14 2018-06-07 Peptidomimetic macrocycles

Country Status (8)

Country Link
US (5) US9175047B2 (en)
EP (1) EP2376100B1 (en)
JP (1) JP2012515172A (en)
CN (1) CN102256615A (en)
AU (1) AU2010204648B2 (en)
BR (1) BRPI1006139A2 (en)
CA (1) CA2744088A1 (en)
WO (1) WO2010083347A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9493509B2 (en) 2007-02-23 2016-11-15 Aileron Therapeutics, Inc. Triazole macrocycle systems
US9522947B2 (en) 2011-10-18 2016-12-20 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US9675661B2 (en) 2006-12-14 2017-06-13 Aileron Therapeutics, Inc. Bis-sulfhydryl macrocyclization systems
US9845287B2 (en) 2012-11-01 2017-12-19 Aileron Therapeutics, Inc. Disubstituted amino acids and methods of preparation and use thereof
US9957299B2 (en) 2010-08-13 2018-05-01 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US10022422B2 (en) 2009-01-14 2018-07-17 Alleron Therapeutics, Inc. Peptidomimetic macrocycles
US10059741B2 (en) 2015-07-01 2018-08-28 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US10253067B2 (en) 2015-03-20 2019-04-09 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
US10301351B2 (en) 2007-03-28 2019-05-28 President And Fellows Of Harvard College Stitched polypeptides
US10300109B2 (en) 2009-09-22 2019-05-28 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US10471120B2 (en) 2014-09-24 2019-11-12 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
US10905739B2 (en) 2014-09-24 2021-02-02 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and formulations thereof

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010034034A1 (en) 2008-09-22 2010-03-25 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
WO2010060112A1 (en) 2008-11-24 2010-05-27 Aileron Therapeutics, Inc. Peptidomimetic macrocycles with improved properties
CN102655875A (en) * 2009-10-14 2012-09-05 爱勒让治疗公司 Improved peptidomimetic macrocycles
WO2012051405A1 (en) 2010-10-13 2012-04-19 Bristol-Myers Squibb Company Methods for preparing macrocycles and macrocycle stabilized peptides
WO2013123267A1 (en) 2012-02-15 2013-08-22 Aileron Therapeutics, Inc. Triazole-crosslinked and thioether-crosslinked peptidomimetic macrocycles
RU2017145921A (en) 2012-02-15 2019-02-21 Эйлерон Терапьютикс, Инк. PEPTIDOMIMETIC MACROCYCLES
WO2014138429A2 (en) 2013-03-06 2014-09-12 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and use thereof in regulating hif1alpha
US9644002B2 (en) * 2013-07-25 2017-05-09 Yale University Allosteric modulators of EGFR and constitutively active mutants
CN105792851B (en) 2013-09-13 2023-10-10 斯克利普斯研究所 Modified therapeutic agents and compositions thereof
AU2014364589B2 (en) 2013-12-18 2020-02-27 The California Institute For Biomedical Research Modified therapeutic agents, stapled peptide lipid conjugates, and compositions thereof
CA2944651A1 (en) * 2014-04-02 2015-10-08 University Of Rochester Macrocyclic peptidomimetics for alpha-helix mimicry
JP2018528217A (en) 2015-09-10 2018-09-27 エルロン・セラピューティクス・インコーポレイテッドAileron Therapeutics,Inc. Peptidomimetic macrocycles as modulators of MCL-1
WO2017205786A1 (en) * 2016-05-27 2017-11-30 Aileron Therapeutics, Inc. Cell permeable peptidomimetic macrocycles
WO2018115400A1 (en) * 2016-12-22 2018-06-28 Universite De Montpellier New stapled-peptides and uses thereof
WO2019118893A1 (en) 2017-12-15 2019-06-20 Dana-Farber Cancer Institute, Inc. Stabilized peptide-mediated targeted protein degradation
AU2019218786A1 (en) 2018-02-07 2020-07-30 Dana-Farber Cancer Institute, Inc. Cell-permeable stapled peptide modules for cellular delivery
US11091522B2 (en) 2018-07-23 2021-08-17 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
CN115811984A (en) * 2020-03-04 2023-03-17 丹娜法伯癌症研究院 Antiviral structurally stable SARS-CoV-2 peptides and uses thereof
WO2021229238A1 (en) * 2020-05-15 2021-11-18 Bicycletx Limited Anti-infective bicyclic peptide ligands
EP4274843A1 (en) * 2021-01-08 2023-11-15 BicycleTx Limited Anti-infective bicyclic peptide ligands

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100291040A1 (en) * 2006-06-15 2010-11-18 Ben-Gu-Rion University Of The Negev Research And Development Authority Virus-like particles for treatment of viral infections

Family Cites Families (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3704108A (en) 1970-09-25 1972-11-28 Hydrocarbon Research Inc Hydroconversion of waste natural and synthetic rubbers
US4000259A (en) 1975-06-16 1976-12-28 American Home Products Corporation Cyclic dodecapeptide analogs of somatostatin and intermediates
US4438270A (en) 1977-07-11 1984-03-20 Merrell Toraude Et Compagnie α-Halomethyl derivatives of α-amino acids
US4191754A (en) 1979-02-28 1980-03-04 Merck & Co., Inc. Bicyclic somatostatin analogs
US4730006A (en) 1986-01-27 1988-03-08 Merrell Dow Pharmaceuticals Inc. Derivatives of 2,6-diamino-3-haloheptanedioic acid
AU3439589A (en) 1988-03-24 1989-10-16 Terrapin Diagnostics, Inc. Molecular sticks for controlling protein conformation
US5120859A (en) 1989-09-22 1992-06-09 Genentech, Inc. Chimeric amino acid analogues
US5650133A (en) 1990-01-19 1997-07-22 Nycomed Salutar Macrocyclic polyaza dichelates linked through ring nitrogens via an amide or ester functionality
US5712418A (en) 1989-10-23 1998-01-27 Research Corporation Technologies, Inc. Synthesis and use of amino acid fluorides as peptide coupling reagents
US5245009A (en) 1990-03-23 1993-09-14 The Salk Institute For Biological Studies CRF antagonists
CA2047042A1 (en) 1990-07-19 1992-01-20 John Hannah Cyclic hiv principal neutralizing determinant peptides
DE69118826T2 (en) 1990-11-27 1996-11-14 Fuji Photo Film Co Ltd Propenamide derivatives, their polymers, copolymers and their use
JPH06505486A (en) 1991-02-07 1994-06-23 モレキュメティクス,リミティド Conformationally restricted mimetics of β-turns and β-bulges and peptides containing them
US5364851A (en) 1991-06-14 1994-11-15 International Synthecon, Llc Conformationally restricted biologically active peptides, methods for their production and uses thereof
GB9114949D0 (en) 1991-07-11 1991-08-28 Smithkline Beecham Plc Novel compounds
JPH07505054A (en) 1992-03-23 1995-06-08 インペリアル・キヤンサー・リサーチ・テクノロジー・リミテツド leucine zipper
EP0773948A4 (en) 1992-04-03 1998-09-02 California Inst Of Techn High activity ruthenium or osmium metal carbene complexes for olefin metathesis reactions and synthesis thereof
US5411860A (en) 1992-04-07 1995-05-02 The Johns Hopkins University Amplification of human MDM2 gene in human tumors
AU6770794A (en) 1993-04-23 1994-11-21 Herbert J. Evans Polypeptides that include conformation-constraining groups which flank a protein-protein interaction site
US5446128A (en) 1993-06-18 1995-08-29 The Board Of Trustees Of The University Of Illinois Alpha-helix mimetics and methods relating thereto
US5622852A (en) 1994-10-31 1997-04-22 Washington University Bcl-x/Bcl-2 associated cell death regulator
US5536814A (en) 1993-09-27 1996-07-16 La Jolla Cancer Research Foundation Integrin-binding peptides
US6287787B1 (en) 1993-11-24 2001-09-11 Torrey Pines Institute For Molecular Studies Dimeric oligopeptide mixture sets
US5824483A (en) 1994-05-18 1998-10-20 Pence Inc. Conformationally-restricted combinatiorial library composition and method
IL109943A (en) 1994-06-08 2006-08-01 Develogen Israel Ltd Conformationally constrained backbone cyclized peptide analogs
US6407059B1 (en) 1994-06-08 2002-06-18 Peptor Limited Conformationally constrained backbone cyclized peptide analogs
US5807746A (en) 1994-06-13 1998-09-15 Vanderbilt University Method for importing biologically active molecules into cells
US7553929B2 (en) 1994-06-13 2009-06-30 Vanderbilt University Cell permeable peptides for inhibition of inflammatory reactions and methods of use
US5770377A (en) 1994-07-20 1998-06-23 University Of Dundee Interruption of binding of MDM2 and P53 protein and therapeutic application thereof
US6169073B1 (en) 1995-02-16 2001-01-02 Bayer Corporation Peptides and peptidomimetics with structural similarity to human p53 that activate p53 function
EP0729972A1 (en) 1995-02-28 1996-09-04 F. Hoffmann-La Roche Ag Peptide derivatives of tetrahydronaphthalene
US5675001A (en) 1995-03-14 1997-10-07 Hoffman/Barrett, L.L.C. Heteroatom-functionalized porphyrazines and multimetallic complexes and polymers derived therefrom
US5731408A (en) 1995-04-10 1998-03-24 Arizona Board Of Regents On Behalf Of The University Of Arizona Peptides having potent antagonist and agonist bioactivities at melanocortin receptors
US6054556A (en) 1995-04-10 2000-04-25 The Arizona Board Of Regents On Behalf Of The University Of Arizona Melanocortin receptor antagonists and agonists
US5672584A (en) 1995-04-25 1997-09-30 The University Of Kansas Cyclic prodrugs of peptides and peptide nucleic acids having improved metabolic stability and cell membrane permeability
US6184344B1 (en) 1995-05-04 2001-02-06 The Scripps Research Institute Synthesis of proteins by native chemical ligation
DK0832096T3 (en) 1995-05-04 2001-10-01 Scripps Research Inst Synthesis of proteins by native chemical ligation
US5730723A (en) 1995-10-10 1998-03-24 Visionary Medical Products Corporation, Inc. Gas pressured needle-less injection device and method
US6051554A (en) 1995-06-07 2000-04-18 Peptor Limited Conformationally constrained backbone cyclized somatostatin analogs
US5811515A (en) 1995-06-12 1998-09-22 California Institute Of Technology Synthesis of conformationally restricted amino acids, peptides, and peptidomimetics by catalytic ring closing metathesis
US5840833A (en) 1995-10-27 1998-11-24 Molecumetics, Ltd Alpha-helix mimetics and methods relating thereto
US5849954A (en) 1996-01-18 1998-12-15 Research Corporation Technologies, Inc. Method of peptide synthesis
US5849691A (en) 1996-02-20 1998-12-15 The United States Of America As Represented By The Department Of Health And Human Services Peptidomimetic inhibitors of cathepsin D and plasmepsins I and II
GB9607549D0 (en) 1996-04-11 1996-06-12 Weston Medical Ltd Spring-powered dispensing device
US5817752A (en) 1996-06-06 1998-10-06 La Jolla Pharmaceutical Company Cyclic polypeptides comprising a thioether linkage and methods for their preparation
US5663316A (en) 1996-06-18 1997-09-02 Clontech Laboratories, Inc. BBC6 gene for regulation of cell death
WO1998001467A2 (en) 1996-07-05 1998-01-15 Novartis Ag Inhibitors of the interaction between p53 and mdm2
US7083983B2 (en) 1996-07-05 2006-08-01 Cancer Research Campaign Technology Limited Inhibitors of the interaction between P53 and MDM2
EP0937103B1 (en) 1996-07-12 2007-11-28 McGILL UNIVERSITY Compounds and methods for modulating cell adhesion
US20020168761A1 (en) 2000-01-24 2002-11-14 Gour Barbara J. Peptidomimetic modulators of cell adhesion
US5955593A (en) 1996-09-09 1999-09-21 Washington University BH3 interacting domain death agonist
US20020064546A1 (en) 1996-09-13 2002-05-30 J. Milton Harris Degradable poly(ethylene glycol) hydrogels with controlled half-life and precursors therefor
US5965703A (en) 1996-09-20 1999-10-12 Idun Pharmaceuticals Human bad polypeptides, encoding nucleic acids and methods of use
US5856445A (en) 1996-10-18 1999-01-05 Washington University Serine substituted mutants of BCL-XL /BCL-2 associated cell death regulator
US6271198B1 (en) 1996-11-06 2001-08-07 Genentech, Inc. Constrained helical peptides and methods of making same
WO1998022122A1 (en) 1996-11-21 1998-05-28 Promega Corporation Alkyl peptide amides and applications
CA2281204A1 (en) 1997-02-20 1998-08-27 Yeda Research And Development Co., Ltd. Antipathogenic synthetic peptides and compositions comprising them
US6849428B1 (en) 1997-03-05 2005-02-01 New England Biolabs, Inc. Intein-mediated protein ligation of expressed proteins
US5851775A (en) 1997-03-20 1998-12-22 Johns Hopkins University β-catenin, Tcf-4, and APC interact to prevent cancer
JP2002506423A (en) 1997-04-11 2002-02-26 イーライ・リリー・アンド・カンパニー Combinatorial library of peptidomimetic macrocycles and methods therefor
US7064193B1 (en) 1997-09-17 2006-06-20 The Walter And Eliza Hall Institute Of Medical Research Therapeutic molecules
US6165732A (en) 1997-10-14 2000-12-26 Washington University Method for identifying apoptosis modulating compounds
US6875594B2 (en) 1997-11-13 2005-04-05 The Rockefeller University Methods of ligating expressed proteins
ES2211033T3 (en) 1998-01-07 2004-07-01 Debio Recherche Pharmaceutique S.A. DEGRADABLE HETEROBIFUNCTIONAL POLYETHYLENGLYCOL ACRYLATES AND GELS AND CONJUGATES DERIVED FROM SUCH ACRYLATES
IT1298087B1 (en) 1998-01-08 1999-12-20 Fiderm S R L DEVICE FOR CHECKING THE PENETRATION DEPTH OF A NEEDLE, IN PARTICULAR APPLICABLE TO A SYRINGE FOR INJECTIONS
US6030997A (en) 1998-01-21 2000-02-29 Eilat; Eran Acid labile prodrugs
FR2775187B1 (en) 1998-02-25 2003-02-21 Novartis Ag USE OF EPOTHILONE B FOR THE MANUFACTURE OF AN ANTIPROLIFERATIVE PHARMACEUTICAL PREPARATION AND A COMPOSITION COMPRISING EPOTHILONE B AS AN IN VIVO ANTIPROLIFERATIVE AGENT
AU767185B2 (en) 1998-03-23 2003-11-06 President And Fellows Of Harvard College Synthesis of compounds and libraries of compounds
CN1163504C (en) 1998-04-15 2004-08-25 阿温蒂斯药物公司 Process for the preparation of resin-bound cyclic peptides
US6277824B1 (en) 1998-07-10 2001-08-21 Adherex Technologies Compounds and methods for modulating adhesion molecule function
US6326354B1 (en) 1998-08-19 2001-12-04 Washington University Modulation of apoptosis with bid
US7173005B2 (en) 1998-09-02 2007-02-06 Antyra Inc. Insulin and IGF-1 receptor agonists and antagonists
CA2363077A1 (en) 1999-03-01 2000-09-08 Variagenics, Inc. Methods for targeting rna molecules
CZ20013407A3 (en) 1999-03-29 2002-02-13 The Procter & Gamble Company Cyclic peptide analog and preparation thereof
US6713280B1 (en) 1999-04-07 2004-03-30 Thomas Jefferson University Enhancement of peptide cellular uptake
US7192713B1 (en) 1999-05-18 2007-03-20 President And Fellows Of Harvard College Stabilized compounds having secondary structure motifs
CA2284459C (en) 1999-10-04 2012-12-11 Neokimia Inc. Combinatorial synthesis of libraries of macrocyclic compounds useful in drug discovery
US6348558B1 (en) 1999-12-10 2002-02-19 Shearwater Corporation Hydrolytically degradable polymers and hydrogels made therefrom
DE10009341A1 (en) 2000-02-22 2001-09-06 Florian Kern Method for antigen-specific stimulation of T lymphocytes
US6495674B1 (en) 2000-02-25 2002-12-17 The Salk Institute For Biological Studies Evectins and their use
US7049290B2 (en) 2000-07-28 2006-05-23 Universität Zürich Essential downstream component of the wingless signaling pathway and therapeutic and diagnostic applications based thereon
AU2001284942A1 (en) 2000-08-16 2002-02-25 Georgetown University Medical Center Small molecule inhibitors targeted at bcl-2
EP1343884A2 (en) 2000-12-19 2003-09-17 The Johns Hopkins University Jfy1 protein induces rapid apoptosis
WO2002072597A2 (en) 2001-03-09 2002-09-19 University Of Louisville Helicomimetics and stabilized lxxll peptidomimetics
US20040106548A1 (en) 2001-09-07 2004-06-03 Schmidt Michelle A Conformationally constrained labeled peptides for imaging and therapy
WO2003057158A2 (en) 2001-12-31 2003-07-17 Dana-Farber Cancer Institute, Inc. Method of treating apoptosis and compositions thereof
WO2003059933A2 (en) 2002-01-03 2003-07-24 Yissum Research Development Company Of The Hebrew University Of Jerusalem Conformationally constrained c-backbone cyclic peptides
AU2003211093A1 (en) 2002-02-15 2003-09-09 The Regents Of The University Of Michigan Inhibitors of rgs proteins
US20030166138A1 (en) 2002-02-21 2003-09-04 Todd Kinsella Cyclic peptides and analogs useful to treat allergies
AU2003234196A1 (en) 2002-04-22 2003-11-03 University Of Florida Functionalized nanoparticles and methods of use
WO2003101972A1 (en) 2002-05-30 2003-12-11 The Scripps Research Institute Copper-catalysed ligation of azides and acetylenes
SE0201863D0 (en) 2002-06-18 2002-06-18 Cepep Ab Cell penetrating peptides
WO2004022766A1 (en) 2002-09-06 2004-03-18 Kaneka Corporation PROCESS FOR PRODUCING L-α-METHYLCYSTEINE DERIVATIVE
US20040171809A1 (en) 2002-09-09 2004-09-02 Korsmeyer Stanley J. BH3 peptides and method of use thereof
AU2003277891A1 (en) 2002-09-23 2004-04-08 Medivir Ab Hcv ns-3 serine protease inhibitors
JP4641941B2 (en) 2002-11-07 2011-03-02 コーサン バイオサイエンシーズ, インコーポレイテッド Trans-9,10-dehydroepothilone C and D, their analogs, and methods of making them
PL210871B1 (en) 2002-11-08 2012-03-30 Hoffmann La Roche Substituted 4-alkoxyoxazol derivatives as ppar agonists
US7166575B2 (en) 2002-12-17 2007-01-23 Nastech Pharmaceutical Company Inc. Compositions and methods for enhanced mucosal delivery of peptide YY and methods for treating and preventing obesity
WO2004058804A1 (en) 2002-12-24 2004-07-15 Walter And Eliza Hall Institute Of Medical Research Peptides and therapeutic uses thereof
EP1452868A2 (en) 2003-02-27 2004-09-01 Pepscan Systems B.V. Method for selecting a candidate drug compound
AU2003902743A0 (en) 2003-06-02 2003-06-19 Promics Pty Limited Process for the preparation of cyclic peptides
WO2005007675A2 (en) 2003-07-09 2005-01-27 The Scripps Research Institute TRIAZOLE &epsiv;-AMINO ACIDS
GB0317815D0 (en) 2003-07-30 2003-09-03 Amersham Health As Imaging agents
WO2005032471A2 (en) 2003-10-03 2005-04-14 Merck & Co., Inc. Benzylether and benzylamino beta-secretase inhibitors for the treatment of alzheimer's disease
WO2005040202A2 (en) 2003-10-16 2005-05-06 Aplagen Gmbh Stabilized alpha-helical peptides
CA2830063C (en) 2003-11-05 2017-10-31 Dana-Farber Cancer Institute, Inc. Stabilized alpha helical peptides and uses thereof
GB0404731D0 (en) 2004-03-03 2004-04-07 Indp Administrative Inst Nims Method and products for the selective degradation of proteins
US8193310B2 (en) 2004-03-19 2012-06-05 The University Of Queensland Alpha helical mimics, their uses and methods for their production
WO2005118620A2 (en) 2004-05-27 2005-12-15 New York University Methods for preparing internally constraied peptides and peptidomimetics
US7501397B2 (en) 2004-06-04 2009-03-10 The Brigham And Women's Hospital, Inc. Helical peptidomimetics with enhanced activity
CN100335467C (en) 2004-06-04 2007-09-05 中国科学院上海有机化学研究所 Synthesis of 5-iodo-1,4-twice substituted-1,2,3-trioxazole compound
EP1602663A1 (en) 2004-06-04 2005-12-07 Chiralix B.V. Triazole-linked glycoamino acids and glycopeptides
DE102004033312A1 (en) 2004-07-08 2006-01-26 Boehringer Ingelheim Pharma Gmbh & Co. Kg Continuous metathesis process with ruthenium catalysts
EP1765378B1 (en) 2004-07-12 2014-04-16 Medical Research Fund of Tel Aviv Sourasky Medical Center Agent capable of downregulating an msf-a-dependent hif-1a and use thereof in cancer treatment
CN101087762A (en) 2004-10-29 2007-12-12 先灵公司 Substituted 5-carboxyamide pyrazoles and [1,2,4]triazoles as antiviral agents
WO2006069001A2 (en) 2004-12-20 2006-06-29 Baylor College Of Medicine Structural requirements for stat3 binding and recruitment to phosphototyrosine ligands
JP5372380B2 (en) 2005-01-24 2013-12-18 ペプスキャン システムズ ベー.フェー. Binding compounds, immunogenic compounds and peptidomimetics
WO2006103666A2 (en) 2005-03-28 2006-10-05 Yeda Research And Development Co. Ltd. Isolated bid polypeptides, polynucleotides encoding same and antibodies directed thereagainst and methods of using same for inducing cell cycle arrest or apoptosis
US20070020620A1 (en) 2005-07-14 2007-01-25 Finn M G Compositions and methods for coupling a plurality of compounds to a scaffold
US20070161544A1 (en) 2006-01-06 2007-07-12 Peter Wipf Selective targeting agents for mitcochondria
US7745573B2 (en) 2006-02-17 2010-06-29 Polychip Pharmaceuticals Pty Ltd. Conotoxin analogues and methods for synthesis of intramolecular dicarba bridge-containing peptides
US7538190B2 (en) 2006-02-17 2009-05-26 Polychip Pharmaceuticals Pty Ltd Methods for the synthesis of two or more dicarba bridges in organic compounds
GB0611405D0 (en) 2006-06-09 2006-07-19 Univ Belfast FKBP-L: A novel inhibitor of angiogenesis
AU2007277556B2 (en) 2006-07-26 2012-11-29 Pepscan Systems B.V. Immunogenic compounds and protein mimics
US20080213175A1 (en) 2006-09-15 2008-09-04 Kolb Hartmuth C Click chemistry-derived cyclic peptidomimetics as integrin markers
WO2008045238A2 (en) 2006-10-05 2008-04-17 New York Blood Center, Inc. Stabilized therapeutic small helical antiviral peptides
EP2091552A4 (en) 2006-11-15 2010-01-06 Dana Farber Cancer Inst Inc Stabilized maml peptides and uses thereof
US7932397B2 (en) 2006-11-22 2011-04-26 Massachusetts Institute Of Technology Olefin metathesis catalysts and related methods
CA2686827C (en) 2006-12-14 2014-09-16 Aileron Therapeutics, Inc. Bis-sulfhydryl macrocyclization systems
US7981998B2 (en) 2006-12-14 2011-07-19 Aileron Therapeutics, Inc. Bis-sulfhydryl macrocyclization systems
WO2008074895A1 (en) 2006-12-21 2008-06-26 Cytos Biotechnology Ag Circular ccr5 peptide conjugates and uses thereof
WO2008095063A1 (en) 2007-01-31 2008-08-07 Dana-Farber Cancer Institute, Inc. Stabilized p53 peptides and uses thereof
AU2008218116B2 (en) 2007-02-23 2012-04-05 Aileron Therapeutics, Inc. Triazole macrocycle systems
ES2430067T3 (en) 2007-03-28 2013-11-18 President And Fellows Of Harvard College Sewn polypeptides
US10716828B2 (en) 2007-05-02 2020-07-21 Dana-Farber Cancer Institute, Inc. Methods of modulating cellular homeostatic pathways and cellular survival
US8921323B2 (en) 2007-09-26 2014-12-30 Dana Farber Cancer Institute, Inc. Methods and compositions for modulating BCL-2 family polypeptides
CA2710964A1 (en) 2007-12-31 2009-09-11 New York University Control of viral-host membrane fusion with hydrogen bond surrogate-based artificial helices
ES2774337T3 (en) 2008-01-07 2020-07-20 Amgen Inc Method for manufacturing heterodimeric Fc molecules of antibodies using electrostatic conduction effects
EP2247606B1 (en) 2008-01-23 2019-08-21 Dana-Farber Cancer Institute, Inc. Compositions and methods for the treatment of viral infections
CN103951541A (en) 2008-01-25 2014-07-30 波士顿学院董事会 Method for catalyzing metathesis reactons including enantioselective olefin metathesis
BRPI0907754A2 (en) 2008-02-08 2015-07-21 Aileron Therapeutics Inc Therapeutic peptidomimetic macrocycles
US20090326192A1 (en) 2008-04-08 2009-12-31 Aileron Therapeutics, Inc. Biologically active peptidomimetic macrocycles
US20110144303A1 (en) 2008-04-08 2011-06-16 Aileron Therapeutics, Inc. Biologically Active Peptidomimetic Macrocycles
WO2009149214A2 (en) 2008-06-03 2009-12-10 Aileron Therapeutics, Inc. Compositions and methods for enhancing cellular transport of biomolecules
WO2010011313A2 (en) 2008-07-23 2010-01-28 President And Fellows Of Harvard College Ligation of stapled polypeptides
CN102216322A (en) 2008-09-18 2011-10-12 纽约大学 Inhibiting interaction between the hif-1alpha and p300/cbp with hydrogen bond surrogate-based
EP3492492A1 (en) 2008-09-22 2019-06-05 Aileron Therapeutics, Inc. Methods for preparing purified polypeptide compositions
EP2329015A1 (en) 2008-09-22 2011-06-08 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
AU2009294874A1 (en) 2008-09-22 2010-03-25 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
WO2010034034A1 (en) 2008-09-22 2010-03-25 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
EP2331567A1 (en) 2008-09-22 2011-06-15 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
CN102197046A (en) 2008-09-22 2011-09-21 爱勒让治疗公司 Peptidomimetic marcrocycles
WO2010060112A1 (en) 2008-11-24 2010-05-27 Aileron Therapeutics, Inc. Peptidomimetic macrocycles with improved properties
EP3549951A3 (en) 2008-12-09 2019-11-20 Dana Farber Cancer Institute, Inc. Methods and compositions for specific modulation of mcl-1
US9175047B2 (en) 2009-01-14 2015-11-03 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
AU2010273220B2 (en) 2009-07-13 2015-10-15 President And Fellows Of Harvard College Bifunctional stapled polypeptides and uses thereof
CN102712675A (en) 2009-09-22 2012-10-03 爱勒让治疗公司 Peptidomimetic macrocycles
CN102655875A (en) 2009-10-14 2012-09-05 爱勒让治疗公司 Improved peptidomimetic macrocycles
WO2011097642A1 (en) 2010-02-08 2011-08-11 Trustees Of Boston College Efficient methods for z- or cis-selective cross-metathesis
WO2011163423A2 (en) 2010-06-22 2011-12-29 University Of Central Florida Research Foundation, Inc. Methods and compositions for cell permeable stat3 inhibitor
ES2711526T3 (en) 2010-08-13 2019-05-06 Aileron Therapeutics Inc Peptidomimetic macrocycles
WO2012040459A2 (en) 2010-09-22 2012-03-29 President And Fellows Of Harvard College Beta-catenin targeting peptides and uses thereof
WO2012122059A1 (en) 2011-03-04 2012-09-13 New York University Hydrogen bond surrogate macrocycles as modulators of ras
WO2012173846A2 (en) 2011-06-06 2012-12-20 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
JP2014520120A (en) 2011-06-17 2014-08-21 プレジデント アンド フェローズ オブ ハーバード カレッジ Stabilized mutant MAML peptides and uses thereof
WO2012174423A1 (en) 2011-06-17 2012-12-20 President And Fellows Of Harvard College Stabilized polypeptides as regulators of rab gtpase function
IN2014CN02398A (en) 2011-08-31 2015-06-19 Univ New York
WO2013059530A2 (en) 2011-10-18 2013-04-25 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
KR20140100937A (en) 2011-10-18 2014-08-18 에일러론 테라퓨틱스 인코포레이티드 Peptidomimetic macrocycles
WO2013123267A1 (en) 2012-02-15 2013-08-22 Aileron Therapeutics, Inc. Triazole-crosslinked and thioether-crosslinked peptidomimetic macrocycles
RU2017145921A (en) 2012-02-15 2019-02-21 Эйлерон Терапьютикс, Инк. PEPTIDOMIMETIC MACROCYCLES
SI2920197T1 (en) 2012-09-26 2021-08-31 President And Fellows Of Harvard College Proline-locked stapled peptides and uses thereof
WO2014055564A1 (en) 2012-10-01 2014-04-10 President And Fellows Of Harvard College Stabilized polypeptide insulin receptor modulators
CN104812384B (en) 2012-11-01 2020-09-18 爱勒让治疗公司 Disubstituted amino acids and methods of making and using the same
WO2014138429A2 (en) 2013-03-06 2014-09-12 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and use thereof in regulating hif1alpha
WO2015157508A1 (en) 2014-04-09 2015-10-15 Aileron Therapeutics, Inc. Peptidomimetic macrocycles with pth activity
JP2017533889A (en) 2014-09-24 2017-11-16 エルロン・セラピューティクス・インコーポレイテッドAileron Therapeutics,Inc. Peptidomimetic macrocycles and uses thereof
CN107106642B (en) 2014-09-24 2021-02-26 艾瑞朗医疗公司 Peptidomimetic macrocycles and formulations thereof
US10253067B2 (en) 2015-03-20 2019-04-09 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
US10059741B2 (en) 2015-07-01 2018-08-28 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
EP3317294B1 (en) 2015-07-02 2023-03-15 Dana-Farber Cancer Institute, Inc. Stabilized anti-microbial peptides
WO2017023933A2 (en) 2015-08-03 2017-02-09 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
WO2017040990A1 (en) 2015-09-03 2017-03-09 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
JP2018528217A (en) 2015-09-10 2018-09-27 エルロン・セラピューティクス・インコーポレイテッドAileron Therapeutics,Inc. Peptidomimetic macrocycles as modulators of MCL-1
WO2017218949A2 (en) 2016-06-17 2017-12-21 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100291040A1 (en) * 2006-06-15 2010-11-18 Ben-Gu-Rion University Of The Negev Research And Development Authority Virus-like particles for treatment of viral infections

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Designing Custom Peptides," from SIGMA Genosys, pp. 1-2. Accessed 12/16/2004. *
Berendsen HJC, "A Glimpse of the Holy Grail?" Science, 1998, 282: 642-643. *
Bradley CM, Barrick D, "Limits of Cooperativity in a Structurally Modular Protein: Response of the Notch Ankyrin Domain to Analogous Alanine Substitutions in Each Repeat," J. Mol. Biol., 2002, 324: 373-386. *
Ngo JT, Marks J, Karplus M, "Computational Complexity, Protein Structure Prediction, and the Levinthal Paradox," The Protein Folding Problem and Tertiary Structure Prediction, K. Merc Jr. and S. Le Grand Edition, 1994, pp. 491-495. *
Rudinger J, "Characteristics of the amino acids as components of a peptide hormone sequence," Peptide Hormones, JA Parsons Edition, University Park Press, June 1976, pp. 1-7. *
Schinzel R, Drueckes P, "The phosphate recognition site of Escherichia coli maltodextrin phosphorylase," FEBS, July 1991, 286(1,2): 125-128. *
Voet D, Voet JG, Biochemistry, Second Edition, John Wiley & Sons, Inc., 1995, pp. 235-241. *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9675661B2 (en) 2006-12-14 2017-06-13 Aileron Therapeutics, Inc. Bis-sulfhydryl macrocyclization systems
US10328117B2 (en) 2006-12-14 2019-06-25 Aileron Therapeutics, Inc. Bis-sulfhydryl macrocyclization systems
US9957296B2 (en) 2007-02-23 2018-05-01 Aileron Therapeutics, Inc. Triazole macrocycle systems
US10030049B2 (en) 2007-02-23 2018-07-24 Aileron Therapeutics, Inc. Triazole macrocycle systems
US9493509B2 (en) 2007-02-23 2016-11-15 Aileron Therapeutics, Inc. Triazole macrocycle systems
US10301351B2 (en) 2007-03-28 2019-05-28 President And Fellows Of Harvard College Stitched polypeptides
US10022422B2 (en) 2009-01-14 2018-07-17 Alleron Therapeutics, Inc. Peptidomimetic macrocycles
US10300109B2 (en) 2009-09-22 2019-05-28 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US11008366B2 (en) 2010-08-13 2021-05-18 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US10703780B2 (en) 2010-08-13 2020-07-07 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US9957299B2 (en) 2010-08-13 2018-05-01 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US10308699B2 (en) 2011-10-18 2019-06-04 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US9522947B2 (en) 2011-10-18 2016-12-20 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US10669230B2 (en) 2012-11-01 2020-06-02 Aileron Therapeutics, Inc. Disubstituted amino acids and methods of preparation and use thereof
US9845287B2 (en) 2012-11-01 2017-12-19 Aileron Therapeutics, Inc. Disubstituted amino acids and methods of preparation and use thereof
US10471120B2 (en) 2014-09-24 2019-11-12 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
US10905739B2 (en) 2014-09-24 2021-02-02 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and formulations thereof
US10253067B2 (en) 2015-03-20 2019-04-09 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
US10059741B2 (en) 2015-07-01 2018-08-28 Aileron Therapeutics, Inc. Peptidomimetic macrocycles

Also Published As

Publication number Publication date
US20160250278A1 (en) 2016-09-01
US10022422B2 (en) 2018-07-17
AU2010204648B2 (en) 2016-09-01
CN102256615A (en) 2011-11-23
BRPI1006139A2 (en) 2017-05-30
WO2010083347A3 (en) 2010-09-10
CA2744088A1 (en) 2010-07-22
EP2376100B1 (en) 2017-10-25
WO2010083347A2 (en) 2010-07-22
JP2012515172A (en) 2012-07-05
US20120040889A1 (en) 2012-02-16
US20160251399A1 (en) 2016-09-01
EP2376100A4 (en) 2013-08-14
AU2010204648A1 (en) 2010-07-22
US20180339014A1 (en) 2018-11-29
US9175047B2 (en) 2015-11-03
EP2376100A2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
US10022422B2 (en) Peptidomimetic macrocycles
US10059741B2 (en) Peptidomimetic macrocycles
US20210299211A1 (en) Peptidomimetic macrocycles and formulations thereof
WO2017205786A1 (en) Cell permeable peptidomimetic macrocycles
US9290545B2 (en) Compositions and methods for the treatment of viral infections
JP2022088370A (en) Peptide as antiviral agent, and uses therefor
WO2022202816A1 (en) Peptide and peptide-containing composition
US11376306B2 (en) Peptides and uses therefor as antiviral agents
WO2020171028A1 (en) Hemagglutinin-binding peptide
Zima Preparation of Influenza Neuraminidase and Polymerase Inhibitors
CN117062826A (en) Antiinfective bicyclic peptide ligands

Legal Events

Date Code Title Description
AS Assignment

Owner name: AILERON THERAPEUTICS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NASH, HUM M.;ANNIS, DAVID ALLEN;SIGNING DATES FROM 20110726 TO 20110804;REEL/FRAME:036774/0073

AS Assignment

Owner name: AILERON THERAPEUTICS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NASH, HUW M.;ANNIS, DAVID ALLEN;SIGNING DATES FROM 20110726 TO 20110804;REEL/FRAME:036777/0101

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION