US20160051800A1 - Vascular conduit device and system for implanting - Google Patents

Vascular conduit device and system for implanting Download PDF

Info

Publication number
US20160051800A1
US20160051800A1 US14/832,704 US201514832704A US2016051800A1 US 20160051800 A1 US20160051800 A1 US 20160051800A1 US 201514832704 A US201514832704 A US 201514832704A US 2016051800 A1 US2016051800 A1 US 2016051800A1
Authority
US
United States
Prior art keywords
tube
tissue wall
ring
engaging
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/832,704
Inventor
Thomas A. Vassiliades
Ajit Yoganathan
Jorge Hernan Jimenez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emory University
Georgia Tech Research Corp
Original Assignee
Emory University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/915,691 external-priority patent/US20060036313A1/en
Application filed by Emory University filed Critical Emory University
Priority to US14/832,704 priority Critical patent/US20160051800A1/en
Publication of US20160051800A1 publication Critical patent/US20160051800A1/en
Assigned to GEORGIA TECH RESEARCH CORPORATION reassignment GEORGIA TECH RESEARCH CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YOGANATHAN, AJIT, JIMENEZ, JORGE HERNAN
Assigned to EMORY UNIVERSITY reassignment EMORY UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VASSILIADES, THOMAS A.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M27/00Drainage appliance for wounds or the like, i.e. wound drains, implanted drains
    • A61M27/002Implant devices for drainage of body fluids from one part of the body to another
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/064Blood vessels with special features to facilitate anastomotic coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2493Transmyocardial revascularisation [TMR] devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • A61B2017/00247Making holes in the wall of the heart, e.g. laser Myocardial revascularization
    • A61B2017/00252Making holes in the wall of the heart, e.g. laser Myocardial revascularization for by-pass connections, i.e. connections from heart chamber to blood vessel or from blood vessel to blood vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • A61B2017/1107Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis for blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • A61B2017/1135End-to-side connections, e.g. T- or Y-connections

Definitions

  • This invention relates to devices and methods for creating and maintaining a fluid conduit in a tissue wall.
  • some embodiments of the present invention may provide an alternative conduit between the left ventricle and the aorta to create a double-outlet left ventricle.
  • AAC insertion procedure has been poorly accepted, primarily because of early valve failures using first-generation bioprostheses as well as the success of direct LVOTO repair and aortic valve replacement.
  • the unadjusted mortality for isolated aortic valve operations in 2001 remained under 4%.
  • the AAC insertion operation, with or without cardiopulmonary bypass has not been as technically straightforward as direct aortic valve replacement.
  • AAC insertion is not a familiar operation and is of historical interest only.
  • AAC insertion successfully lessens the LV-aortic pressure gradient, preserves or improves ventricular function and maintains normally distributed blood flow through the systemic and coronary circulation. While there have been several techniques described, the most commonly employed method is the lateral thoracotomy approach with placement of the AAC to the descending aorta. Other techniques include a median sternotomy approach with insertion of the distal limb of the AAC to the ascending aorta, to the transverse part of the aortic arch, or to the intra-abdominal supraceliac aorta.
  • the thoracic aorta and the left ventricle apex are exposed through a left lateral thoracotomy, and a needle is passed through the apex and into the left ventricle. While the connector is still spaced apart from the apex, the sutures that will fix the connector to the apex are threaded through a cuff on the connector and through the apex in a matching pattern. The cuff is set back from the end of the connector by 1-2 centimeters to allow the end of the connector to extend through the heart muscle and into the left ventricle.
  • a ventricular coring device is used to remove a core of ventricular muscle, and the pre-threaded sutures are then pulled to draw the connector into the opening until the cuff comes to rest: on the apex.
  • the sutures are tied off, and additional sutures may be added. Either before or after this procedure, the opposite end of the connector is attached to a valved conduit which terminates at the aorta.
  • This invention describes an improved system and method for the insertion of a vascular conduit (such as an AAC) that will significantly improve and simplify the in vivo insertion of a graft into the beating cardiac apex or other tissue walls (such as other areas of the heart including the anterior, lateral, posterior walls of the left or right ventricle, the left or right atrium, the aortic wall, ascending, transverse, or descending, or other blood vessel walls), such that vascular conduit insertions (including AAC procedures) may be rendered far more attractive to clinicians.
  • a vascular conduit such as an AAC
  • vascular conduits and systems of the present invention may be used to create alternate outflow tracts in “off-pump” procedures, the embodiments of the present invention may effectively reduce and/or negate the detrimental effects of both cardio-pulmonary by-pass (CPB) and global cardiac ischemia. Additionally, because some conduit embodiments of the present invention (for AAC procedures, for example) may be inserted into a ventricular or atrial free wall or cardiac apex, the conduction system of the heart may be avoided, along with the native coronary arteries and grafts from previous surgical revascularization.
  • CPB cardio-pulmonary by-pass
  • a small size valve (19 to 21 mm for typical adult body surface areas) is usually adequate; as the effective postoperative orifice is the sum of the native and prosthetic aortic valves.
  • the present invention provides vascular conduits that may be compatible with newer generation biologic valves, such that valved conduit failure is far less likely.
  • the present invention provides a system for implanting a vascular conduit device (such as an AAC component).
  • the system comprises a coring device for defining an aperture in a tissue wall (such as a cardiac free wall or apex and/or the aorta) having a first tissue surface and a second tissue surface.
  • the coring device may define a lumen adapted to be capable of receiving a guide wire for directing the coring device to the first or second tissue surface, depending upon whether the approach is intra- or extra-vascular, respectively.
  • the system may also comprise a conduit device for lining the aperture defined in the tissue wall and maintaining fluid communication between the first and second tissue surfaces of the tissue wall.
  • the conduit device may be adapted to be capable of being advanced over the guide wire and/or the coring device so as to be guided to the aperture defined by the coring device.
  • the conduit device may comprise, in some embodiments: a tube having proximal and distal ends, and inside and outside surfaces; a flexible flange disposed at or near the distal end, wherein the flexible flange is adapted to be capable of operably engaging the first tissue surface; and a securing ring adapted to fit over the tube and adapted to be capable of operably engaging the second tissue surface and cooperating with the flexible flange so as to secure the conduit device within the aperture.
  • the system may also comprise a hemostatic device for selectively deploying so as to temporarily occlude the aperture (so as to prevent the passage of blood through the aperture and into an adjacent body cavity, for example).
  • the hemostatic device may also be adapted to be capable of being advanced over the guide wire and/or within the lumen of the coring device such that the hemostatic device may be accurately guided to the site of the newly-formed aperture created by the coring device.
  • the hemostatic device may comprise at least one of an “umbrella” occlusion device, a dilation balloon, and/or combinations of such devices.
  • the coring device may comprise at least one of: a pulsed laser scalpel; a continuous wave laser scalpel; a mechanical coring device; a device employing ultrasonic energy (such as high-frequency focused ultra-sound); and/or combinations of such coring devices.
  • Some embodiments of the present invention may also provide a specialized delivery device for enclosing the conduit device and selectively implanting the conduit device within the aperture.
  • the delivery device may be operably engaged with an outer surface of the coring device and may comprise one or more retracting arms for dilating the aperture prior to and/or simultaneously with the implantation of the conduit device.
  • Some additional system embodiments of the present invention may also comprise a guiding catheter defining a guiding lumen for receiving and directing the coring device and the conduit device to the tissue wall via an endovascular pathway.
  • the system may be used to implant the conduit device via an endovascular pathway such that the conduit may be implanted from inside the left ventricle and/or inside another blood vessel.
  • vascular conduit device for lining an aperture defined in a tissue wall (such as the cardiac wall, apex and/or a blood vessel wall) and maintaining fluid communication between a first tissue surface and a second tissue surface of the tissue wall.
  • the vascular conduit device may comprise a tube having proximal and distal ends, and inside and outside surfaces, wherein the outside surface of the tube defines a plurality of ridges.
  • the vascular conduit device may further comprise a flexible flange disposed at or near the distal end for operably engaging the first tissue surface and a securing ring adapted to fit over the tube for operably engaging the second tissue surface.
  • the securing ring may also comprise at least one deformable pawl member for releasably engaging the plurality of ridges defined by the outer surface of the tube such that the securing ring cooperates with the flexible flange so as to secure the vascular conduit device within the aperture.
  • the flexible flange and/or securing ring may define complementary concave and/or convex profiles so as to conform more completely to the first and second tissue surfaces.
  • the flexible flange may comprise a frusto-conical assembly such that the flange may be more easily inserted into the aperture.
  • the outside surface of the tube may comprise threading on at least a portion of the outside surface of the tube and corresponding threading on an inside diameter of the securing ring such that the securing ring may be secured with respect to the flange and the tissue wall held there between.
  • the flexible flange may be soft and thin enough to bend backwards so that it can be pushed through the aperture defined in the tissue wall, but rigid enough to flex back to its original position and hold its shape once it emerges along a first tissue surface of the tissue wall.
  • the tube of the vascular conduit device may then be drawn back so that the flexible flange presses against the first tissue surface of the tissue wall.
  • the securing ring may then be deployed over the body of the connector and against the second tissue surface of the tissue wall.
  • vascular conduit device embodiments are described herein to secure the position of the second ring against a surface of the tissue wall such that no sutures may be required.
  • Such embodiments may include, but are not limited to: the ridge and pawl mechanism described above, a threaded surfaces disposed on the tube and an inner surface of the securing ring, a biasing device for biasing the securing ring toward the flange; and/or combinations of such securing devices.
  • a needle is passed through a tissue wall (such as the wall of the cardiac apex) to provide access to the first tissue surface (defining the interior of the left ventricle, for example).
  • a guide wire may then be inserted into the opening and, following dilation of the opening, an occlusion device may be threaded over the wire and into a cavity defined by the tissue wall and deployed.
  • a coring device may then be threaded in-line over the guide wire such that a core of tissue may be removed to form an aperture in the tissue wall.
  • the coring device may be removed and the vascular conduit device of the present invention may be mounted on a dilator and introduced over the guide wire and occlusion device catheter.
  • the vascular conduit device As the vascular conduit device is introduced into the aperture, the flexible flange retracts.
  • the vascular conduit device As the vascular conduit device enters the aperture, it may displace the occlusion device to allow the flange to resume its normal shape.
  • the vascular conduit device may then be drawn tight against the first tissue wall such that the securing ring may be deployed over the body of the vascular conduit device to fit snugly against the second tissue surface.
  • the occlusion device may be withdrawn and the vascular conduit device may be clamped shut while its free end is connected to a vascular graft or valved conduit that may terminate at another tissue wall (such as a blood vessel wall, for example).
  • this new vascular conduit device, system, and method will significantly improve the ease and safety of vascular conduit insertion (such as the implantation of AAC devices).
  • this method can also be, used in a minimally invasive, endoscopically assisted approach.
  • FIG. 1 is a perspective view of a first embodiment of an LV apical connector according to the invention
  • FIG. 2 is a side view of the embodiment shown in Fig: 1 ;
  • FIG. 3 is a perspective view oft second embodiment of an LV apical connector according to the invention.
  • FIG. 4 is a side view of the embodiment shown in FIG. 3 ;
  • FIG. 5 is aside view of a third embodiment of an LV apical connector according to the invention.
  • FIG. 6 is a perspective view of a vascular conduit device, including a tube, flexible flange, and securing ring, according to one embodiment of the present invention.
  • FIG. 7 is a perspective view of a vascular conduit device, including a tube, flexible flange, and securing ring, according to one embodiment of the present invention, wherein the flexible flange and securing rings define convex and concave profiles, respectively.
  • FIG. 8A is a cross-sectional view of a tissue wall and aperture defined therein in relation to one system embodiment of the present invention including a coring device for defining an aperture and a vascular conduit device for defining and maintaining the aperture.
  • FIG. 8B is a cross-sectional view of a tissue wall and aperture defined therein including a side view of a vascular conduit device, according to one embodiment of the present invention, implanted in the aperture.
  • FIG. 9A is a cross-sectional side view of a system according to one embodiment of the present invention including a delivery device for enclosing and selectively delivering the conduit device.
  • FIG. 9B is a cross-sectional side view of a system according to one embodiment of the present invention including a delivery device comprising a pair of retracting arms for dilating the aperture during implantation of the conduit device.
  • FIG. 10 is a cross-sectional side view of an exemplary apico-aortic connection (AAC) constructed using some embodiments of the present invention.
  • AAC apico-aortic connection
  • FIG. 11 is a side view of an exemplary embodiment of the conduit device of the present invention including a notch and pin arrangement for selectively engaging the conduit device with a coring device.
  • FIG. 12 is a cross-sectional side view of an exemplary apico-aortic connection (AAC) inserted via endovascular methods using system embodiments of the present invention.
  • AAC apico-aortic connection
  • vascular conduit device 100 and a system for implanting such a device to form an apico-aortic connector (AAC) between the cardiac apex and the aorta
  • AAC apico-aortic connector
  • aspects of the vascular conduit device 100 and systems of the present invention can also be used to establish and/or maintain conduits in a variety of tissue structures using minimally-invasive and/or invasive delivery techniques.
  • vascular conduit device may be used to establish valved and/or open conduits (including bypass conduits) to augment native blood vessels in order to treat a variety of vascular conditions including, but not limited to: aortic valvular disease, congestive heart failure, left ventricle outflow tract obstructions (LVOTO), peripheral arterial obstructions, small vessel obstructions, and/or other conditions.
  • aortic valvular disease congestive heart failure
  • LVOTO left ventricle outflow tract obstructions
  • peripheral arterial obstructions small vessel obstructions, and/or other conditions.
  • the vascular conduit device and system of the present invention may also be used to establish a port for inter-ventricular repairs such as, for example, valve repair and/or replacement or ablation procedures.
  • the vascular conduit device 100 described in further detail below may also comprise a threaded fluid-tight cap, and/or a cap having at least one pawl member (for engaging corresponding ridges defined on an outer surface of the vascular conduit device 100 ) for selectively sealing the proximal end 7 of the vascular conduit device 100 such that the tube 1 may serve as a re-usable port for repairing and/or treating diseased portions of the cardiac anatomy.
  • the vascular conduit device 100 and system embodiments of the present invention may also be used to implant a conduit and/or port for left ventricular assist devices.
  • some system embodiments of the present invention may also be used “from the inside out”, such that the coring device 830 and conduit device 100 may be passed from through an intravascular space (percutaneously).
  • the system embodiments of the present invention may be used to establish an apico-aortic conduit (AAC) percutaneously (see FIG. 12 ).
  • AAC apico-aortic conduit
  • the system components may be introduced (via methods that will be appreciated by one skilled in the art) into the femoral vein, across the atrial septum, through the mitral valve and out the ventricular free wall. Therefore, the ventricular conduit device (see element 100 a, FIG. 12 ) would be placed from inside the vasculature (via a guiding catheter, for example).
  • the aortic conduit device may be passed retrograde in the femoral artery (via guide wire and/or guiding catheter) or other blood vessel and implanted using the systems of the present invention from the luminal side of the aorta.
  • the two connectors would then be joined with a valved conduit introduced from either end of the system (see FIG. 12 ).
  • the vascular conduit device 100 includes tube (or conduit) 1 having an axis 3 , distal end 5 , a proximal end 7 , an outer surface 9 and an inner surface 11 .
  • Distal end 5 is provided with a flange 13 extending, from outer surface 9 in a direction away from axis 3 .
  • Flange 13 may be integrally formed with tube 1 , or it maybe formed separately and permanently attached to distal end 5 of tube 1 by known means.
  • Tube 1 should be sufficiently rigid to maintain its shape so as not to occlude the passage of blood and/or other fluids therethrough during use (see generally, element 860 , FIG. 8B ).
  • Flange 13 may be sufficiently flexible to allow introduction of the distal end 5 of the vascular conduit device 100 into an aperture 800 (see FIG. 8A ) having a diameter equal to or slightly less than the diameter of outer surface 9 , but have sufficient stiffness and/or shape memory to flex back to its original position once it has passed through the aperture 800 (which may be defined in a tissue wall 850 , as shown generally in FIGS. 8A-8B ).
  • the vascular conduit device 100 may maintain and/or provide a lining for an aperture 800 defined in a tissue wall 850 so as to maintain fluid communication 860 between a first tissue surface 853 and a second tissue surface 855 of the tissue wall 850 .
  • the vascular conduit device 100 may comprise a tube 1 having proximal 7 and distal 5 ends, and inside and outside surfaces, wherein the outside surface of the tube 1 defines a plurality of ridges 610 .
  • the vascular conduit device 100 may also comprise a flexible flange 13 disposed at or near the distal end 5 for operably engaging the first tissue surface 853 (see FIG. 8B ).
  • the vascular conduit device 100 may also comprise a securing ring 17 adapted to fit over the tube 1 for operably engaging the second tissue surface 855 .
  • the securing ring 17 may also comprise at least one deformable pawl member 620 for releasably engaging the plurality of ridges 610 defined by the outer surface of the tube 1 such that the securing ring 17 cooperates with the flexible flange 13 so as to secure the vascular conduit device 100 within the aperture 850 .
  • the vascular conduit device 100 may define a pathway for fluid communication (and/or a pathway for thoracoscopic instruments or other surgical tools) between a first tissue surface 853 and a second tissue surface 855 .
  • the proximal end 7 of the vascular conduit device 100 may be configured to receive a number of different valved and/or open conduits for creating, for example, vascular bypasses or other alternate fluid pathways within a living organism.
  • a first vascular conduit device 100 a shown generally in FIG.
  • a second vascular conduit device 100 b (shown generally in FIG. 7 ) may be implanted and/or secured within a wall 850 b of the aorta.
  • the two devices may then be connected via a commercially-available valved conduit device 1020 (including a one-way valve 1025 ) in order to create an alternative valved pathway for blood in order to augment a diminished flow of blood that may be passing through a diseased and/or damaged aortic valve.
  • the proximal end 7 of the tube 1 defining the fluid pathway through the vascular conduit device 100 may be formed so as to be compatible with one or more existing valved conduit devices 1020 .
  • the vascular conduit device 100 may be fitted with an adapter sleeve (not shown) such that the proximal end 7 of the tube may be connected in a fluid-tight manner with one or more commercially-available conduit devices 1020 for establishing a bypass and/or alternate pathway between two body cavities or blood vessels.
  • the vascular conduit device 100 of the present invention may be used to bypass and/or repair a variety of diseased and/or damaged blood vessels.
  • some embodiments of the present invention may be used to bypass an abdominal aortic aneurysm (AAA) by providing two aortic vascular conduit devices 100 b (see FIG. 7 ) for example connected by a section of conduit 1020 spanning the diseased and/or damaged portions of the abdominal aorta.
  • AAA abdominal aortic aneurysm
  • the flexible flange 13 and tube 1 of various embodiments of the vascular conduit device 100 may be altered so as to be compatible with various tissue walls 850 .
  • the vascular conduit device 100 shown in FIG. 7 may be suited for use in defining and maintaining an aperture in a large blood vessel having a curved tissue wall (such as the aorta).
  • the vascular conduit device 100 shown in FIG. 6 may be suited for use in defining and maintaining an aperture in a body cavity having a relatively thick and/or muscular tissue wall (such as the cardiac muscle of the left ventricle).
  • the flexible flange 13 may define, in some embodiments, a convex profile with respect to the proximal end 7 of the tube 1 so as to be capable of conforming to a curved first tissue surface 853 (such as a tissue surface defined by the inner wall surface of a blood vessel (such as the aorta)).
  • the securing ring 17 may also define a corresponding concave profile such that the securing ring 17 may be capable of operably engaging a curved and/or contoured second tissue surface 855 and be better capable of cooperating with the flexible flange 13 so as to secure the vascular conduit device 100 within the aperture 850 .
  • FIG. 1 the flexible flange 13 may define, in some embodiments, a convex profile with respect to the proximal end 7 of the tube 1 so as to be capable of conforming to a curved first tissue surface 853 (such as a tissue surface defined by the inner wall surface of a blood vessel (such as the aorta)).
  • the flexible flange 13 may also comprise a frusto-conical assembly such that the insertion of the flexible flange 13 into a relatively narrow tissue aperture 800 may be more easily accomplished (see generally FIG. 8A ). Furthermore, the frusto-conical assembly of some flexible flange 13 embodiments of the present invention may also prevent and/or minimize the occurrence of the accidental removal of the vascular conduit device 100 from the second tissue surface 855 of the tissue wall 850 . The relative thicknesses of the materials used to form the flexible flange 13 may also be varied so as to allow the flange 13 to be optimized based on the expected type of tissue wall 850 it may be used to engage.
  • a relatively thin and/or contoured flexible flange 13 may be used to secure vascular conduit devices 100 within more fragile and/or thin blood vessels.
  • the relatively thick and robust frusta-conical flexible flange 13 may be used to secure vascular conduit devices 100 within more substantial tissue walls (such as cardiac muscle).
  • Tube 1 and flange 13 may be made-of any suitable biocompatible material. Alternatively, tube 1 and flange 13 may be coated with a biocompatible material. According to one exemplary embodiment, the tube 1 may comprise a first polymer material having a first hardness and the flange 13 may comprise a second polymer material having a second hardness, wherein the first hardness is greater than the second hardness. Thus, according to some such embodiments, the flange 13 may be easily deformable as it is inserted into the aperture 800 defined in the tissue wall 850 , but the tube 1 may remain relatively rigid so as to maintain a path for fluid communication (see element 860 , FIG. 8B ) between the surfaces 853 , 855 of the tissue wall 850 .
  • Threading 15 may extend the entire length of tube 1 , or extend over only a portion thereof. According to one exemplary embodiment, threading 15 may be absent from a length of the distal end 5 of the tube 1 that is slightly less than the thickness of the tissue wall 850 . This alternative embodiment may serve to prevent over-tightening of the vascular conduit device 100 , which may, in some case lead to damage and/or rupture of portions of the tissue wall 850 near the aperture 800 defined therein. According to another embodiment, threading 15 may not extend all the way to the proximal end 7 such that the tube 1 (and the resulting vascular conduit device 100 ) may be used to provide a conduit through tissue walls having a variety of thicknesses.
  • External ring 17 (or securing ring 17 ) may be provided with an inner diameter 18 and an outer diameter 19 .
  • Inner diameter 18 may further define threads 23 to correspond to the threading 15 on the outer surface 9 of tube 1 .
  • the outer diameter 19 of external ring 17 may have any shape suitable to the designer, including circular or hexagonal.
  • external ring 17 may be adapted to be engaged by a tightening device (not shown) for tightening external ring 17 on tube 1 .
  • the external ring 17 may be made of any suitable biocompatible material.
  • external ring 17 may be coated with a biocompatible material.
  • the tightening device may comprise a specialized wrench device for rotating the external ring 17 relative to the tube 1 .
  • the tightening device may comprise a simple push tool capable of encircling a coring device 830 (see discussion below of FIG. 8A ) and pushing the external ring 17 towards the distal end 5 of the tube 1 such that the at least one pawl member 620 of the external ring 17 may be engaged with the plurality of ridges 610 defined on an outer surface of the tube 1 .
  • FIG. 8A a simple push tool capable of encircling a coring device 830 (see discussion below of FIG. 8A ) and pushing the external ring 17 towards the distal end 5 of the tube 1 such that the at least one pawl member 620 of the external ring 17 may be engaged with the plurality of ridges 610 defined on an outer surface of the tube 1 .
  • the vascular conduit device 100 may be selectively secured to the coring device 830 (or, in some embodiments, the delivery device 910 , discussed below) by a pin 831 and notch 101 arrangement.
  • a pin 831 may extend from an external surface of the coring device 830 (or the delivery device 910 ) and be operably engaged with a complementary notch 101 defined in the proximal end of the vascular conduit device 100 .
  • a clinician may use the coring device 830 (or the delivery device 910 ) to advance the vascular conduit device 100 to the aperture 800 and into an implanted position (see FIG.
  • the clinician may then rotate the coring device 830 (and/or the delivery device 910 ) to release the pin 831 from the notch 101 and retract the coring device 830 , leaving the vascular conduit device 100 securely implanted (as shown generally in FIG. 8B ).
  • the hemostatic device 820 may also be used to apply counter-traction force to hold the tube 1 and flexible flange 13 in place within the aperture 800 as the external ring 17 is engaged with respect to the second tissue surface 855 from a proximal position.
  • tube 1 of the vascular conduit device 100 may also be provided with an external ring 17 that is biased toward flange 13 by a biasing device 27 (such as a spring device), having proximal end 29 and distal end 31 .
  • the biasing device 27 may be configured so as to tend to force external ring 17 into contact with flange 13 .
  • the biasing device 27 may be a spring in compression.
  • any biasing device may be used, including one or more flexible bands or rods.
  • tube 1 may be provided with and/or define an engagement feature 33 , such as a ring, slot or bore, to engage the proximal end 29 of the biasing device 27 .
  • external ring 17 may be provided with an engagement feature (not shown) adapted to receive the distal end 31 of the biasing device 27 .
  • release device 37 may also be provided to releasably hold external ring 17 and biasing device 27 in pre-deployment configuration, with biasing device 27 in compression, until such a time as the flange 13 has been placed in the interior of a cavity defined by the tissue wall 850 (such as the interior of the ventricle) and the external ring 17 is ready to be deployed against the outer tissue surface 855 of the heart muscle (see generally FIG. 8B , showing the vascular conduit device 100 secured within the aperture 800 ).
  • release device 37 may include one or more hooks 39 extending from the proximal surface 41 of the external ring 17 and adapted to releasably engage an engagement feature 43 ; for example, a slot or bore, defined in tube 1 .
  • an engagement feature 43 for example, a slot or bore, defined in tube 1 .
  • the release device 37 may extend to and hook over the proximal end 7 of tube 1 .
  • a portion of tube 1 may be threaded and the inside diameter of external ring 17 threaded to permit further tightening of external ring 17 on tube 1 after deployment of the external ring 17 following removal of the release device 37 .
  • Some embodiments of the present invention further provide a system for implanting a vascular conduit device 100 , wherein the system comprises a coring device 830 for defining an aperture 800 in a tissue wall 850 having a first tissue surface 853 and a second tissue surface 855 .
  • the various components of the system embodiments of the present invention may be inserted into a patient (via, for example, a thoracoscopic, endovascular, and/or percutaneous procedure) such that a guide catheter (not shown) and/or guide wire 810 (see FIG. 8B ) may be inserted into the thoracic cavity of a patient in order to gain access to diseased vasculature and/or the heart.
  • the system of the present invention may be used to implant a vascular conduit device 100 via more invasive surgical procedures that will be appreciated by one skilled in the art.
  • the vascular conduit device 100 may also be delivered and implanted endovascularly from the inside (and/or from a first tissue surface 853 ) of the ventricle and/or aorta.
  • the coring device 830 may define a lumen adapted to be capable of receiving a guide wire 810 for directing the coring device 830 to the second tissue surface 855 .
  • the system of the present invention may also comprise a conduit device 100 (such as the vascular conduit device discussed above) for lining the aperture 800 defined in the tissue wall 850 and maintaining fluid communication between the first 853 and second tissue 855 surfaces of the tissue wall 850 .
  • the conduit device 100 may be adapted to be capable of being advanced over the guide wire 810 and coring device 830 . As described above with respect to FIGS.
  • the vascular conduit device 100 may comprise: a tube 1 having proximal 7 and distal 5 ends, and inside and outside surfaces; a flexible flange 13 disposed at or near the distal end 5 ; and a securing ring 17 (or external ring 17 ) adapted to fit over the tube 1 and adapted to be capable of operably engaging the second tissue surface 855 and cooperating with the flexible flange 13 so as to secure the conduit device 100 within a tissue aperture 800 .
  • the coring device 830 may comprise at least one of: a pulsed laser scalpel; a continuous wave laser scalpel; a mechanical coring device (such as, for example, a rotoblator catheter or other mechanical and/or catheter-based mechanical cutting device); an ultrasonic coring device (such as high-frequency focused ultra-sound); and combinations thereof.
  • the coring device 830 may comprise a pulsed excimer laser device having a light pulse duration that is less than the tissue wall's 850 time of thermal diffusion (defining how quickly the laser's imparted heat spreads to adjacent tissue) so as to provide a relatively “cool” cutting method (i.e. less than about 50 degrees C.).
  • the pulsed laser may be provided with a relatively shallow cutting depth (i.e. less than about 50 ⁇ m) such that the coring device 830 may be precisely controlled.
  • the use of a pulsed laser scalpel as the coring device 830 may thus result in minimal damage to tissue adjacent the targeted aperture 800 area, which may be especially advantageous in embodiments wherein the system is used to implant a vascular conduit device 100 in the ventricular apex, as the cardiac tissue of the left ventricle contains tissues that are vital for maintaining the electrical pacing of the heart.
  • Some system embodiments of the present invention may further comprise a hemostatic device 820 for selectively deploying so as to temporarily occlude the aperture 800 .
  • the hemostatic device 820 may be adapted to be capable of being advanced over the guide wire 810 within the lumen of the coring device 830 .
  • the hemostatic device 820 may be delivered via a delivery catheter defining a lumen for receiving the guide wire 810 and having a sufficiently small outer diameter to be guided within the lumen defined by the coring device 830 .
  • the hemostatic device 830 may comprise at least one of: an “umbrella” occlusion device; a dilation balloon; and/or combinations thereof.
  • the hemostatic device 820 (as shown in FIG. 8A ) may be used to maintain “traction” for the advance of the coring device 830 (which, in pulsed excimer laser embodiments, may comprise a circular array 835 of lasers that must be advanced into the tissue wall 850 in order to core the wall and define an aperture 800 therein).
  • a clinician may deploy the hemostatic device 820 proximal to the first tissue surface 853 of the tissue wall 850 and exert a force (using the deployed hemostatic device) against the first tissue surface 853 such that the laser array 835 of the coring device 830 may be advanced to define the aperture 800 in the tissue wall 850 .
  • the exertion of such “traction” forces using the hemostatic device 820 may be useful in instances wherein the tissue wall 850 is in motion (such as is the case with the cardiac muscle defining the walls of the left ventricle).
  • embodiments of the present invention may be successfully employed in “off-pump” procedures wherein the heart is left beating during the course of the procedure for implanting the vascular conduit device 100 .
  • the vascular conduit device 100 (as described in its various embodiments above) may be advanced along the outer surface of the coring device 830 and into position within the aperture (as shown generally in FIG. 8B ) so as to define a pathway for fluid flow 860 through the tissue wall 850 .
  • a dilator device (not shown) may be introduced (over the guide wire 810 , for example) for dilating the initial aperture 800 defined by the coring device 830 .
  • the dilator device may also be used to advance the vascular conduit device 100 into its final implanted position (see FIG.
  • the dilator device may comprise, in various embodiments, a dilation balloon, a multi-arm endoscopic and/or thoracoscopic retractor device, and/or other types of dilator devices that will be appreciated by one skilled in the art.
  • some embodiments of the present invention may comprise a dilator device that may serve as a delivery device 910 for dilating the aperture 800 formed by the coring device 830 and for percutaneously and/or thoracoscopically delivering the vascular conduit device 100 to a secured position (see FIG. 8A , for example) relative to the aperture 800 defined in the tissue wall 850 .
  • the delivery device 910 may be operably engaged with an outer surface of the coring device 830 and may comprise two or more retractor arms 912 that may be opened as the vascular conduit device 100 is pushed out from the delivery device 810 by applying an opening force to a plunger 915 .
  • the delivery device 910 may be configured to simultaneously dilate the aperture 800 (using the retractor arms 912 ) and deliver the vascular conduit device 100 .
  • the flexible flange 13 of the vascular conduit device 100 may urge the retractor arms 912 to an open position as the plunger 915 pushes the vascular conduit device 100 outward and into the aperture 800 .
  • the retractor anus 912 when deployed as shown in FIG. 9B may also serve to provide “counter-traction” such that the clinician may apply a distally-acting force on the plunger 915 , a clinician may deploy the securing ring 17 relative to the tube 1 of the vascular conduit device 100 in order to secure the vascular conduit device 100 within the aperture 800 (as shown in FIG. 8B , for example).
  • the hemostatic device 820 may also be deployed in order to provide additional “counter-traction” such that the distal end 5 of the vascular conduit device 100 (once implanted in the aperture 800 ) may contact the expanded hemostatic device 820 .
  • a clinician may deploy the securing ring 17 relative to the tube 1 of the vascular conduit device 100 in order to secure the vascular conduit device 100 within the aperture 800 (as shown in FIG. 8B , for example).
  • the system of the present invention may be used to implant vascular conduit devices 100 a, 100 b to serve as the terminal points for an apico-aortic conduit.
  • a thoracoscopic procedure may be used to insert a needle through the apex and into the left ventricle 850 a.
  • a guide wire 810 may then inserted into the opening and, following dilation of the opening (using a dilation device, for example), an hemostatic device 820 may be threaded over the wire 810 and into the left ventricle and deployed proximal to an first tissue surface 853 thereof.
  • the hemostatic device 820 may comprise, for example, known occlusion devices such as an occlusion balloon, the Guidant HeartstringTM disclosed generally at http://www.guidant.com/products, or the Baladi inverter, disclosed in U.S. Pat. Nos. 5,944,730 and 6,409,739.
  • the vascular conduit devices 100 a, 100 b may also be implanted endovascularly (i.e. from the inside of the left ventricle and/or the aorta) by introducing the system embodiments of the present invention through the vasculature via guidewire and/or guiding catheter.
  • the aortic conduit 100 b may be introduced via the system embodiments of the present invention (including a guiding catheter) inserted in the femoral artery.
  • the ventricular conduit 100 a may be introduced via the systems of the present invention (including a guiding catheter) inserted into the femoral vein, across the atrial septum, through the mitral valve and out the ventricular free wall.
  • a ventricular coring device 830 may then be threaded in-line over the hemostatic device 820 and a core of ventricular muscle is removed from the tissue wall 850 of the apex in order to form an aperture 800 .
  • annular contact laser and in some embodiments a “cool” cutting pulsed excimer laser, having elements arranged in a circular array 835 ) may be used to vaporize the tissue along the perimeter of the core. The cored tissue may then be removed according to known methods. According to a further alternative embodiment, a contact laser may be used to vaporize the entire area of the core, eliminating the need to remove cored tissue. In yet another embodiment, a mechanical coring device (such as a catheter-based rotoblator device) or an ultrasonic coring device, may be used to form the aperture 800 .
  • a mechanical coring device such as a catheter-based rotoblator device
  • ultrasonic coring device may be used to form the aperture 800 .
  • the coring device 830 may be removed while the occlusion device maintains hemostasis, and the vascular conduit device 100 of the present invention may be mounted on a dilator and-introduced over the guide wire 810 and hemostatic device 820 .
  • the vascular conduit device 100 As the vascular conduit device 100 is introduced into the aperture 800 in the apex, the flexible flange 13 may deform and/or retract. As the vascular conduit device 100 enters the-left ventricle, it may displace the hemostatic device 820 to allow the flexible flange 13 to resume its normal shape. As discussed above the vascular conduit device 100 may then be drawn tight against the first tissue surface 853 of the wall 850 of the left ventricle.
  • external ring 17 is threaded onto the tube 1 and tightened until it is snug against the second tissue surface 855 of the ventricular apex.
  • release-device 37 is released, allowing biasing device 27 to force the external ring 17 against the second tissue surface 855 of the ventricular apex.
  • threads on the inside diameter of external ring 17 may be made to engage threads on the outer surface of the tube 1 to further secure external ring 17 against the tissue wall 850 of the ventricular apex.
  • the occlusion device 820 may be retracted and withdrawn.
  • the vascular conduit device 100 may then be clamped shut and/or capped while its free end (defined by the proximal end 7 of the tube 1 ) is connected to a valved conduit and/or graft which may terminate at a complementary vascular conduit device 100 implanted in the aorta (see FIG. 7 showing an exemplary embodiment of a vascular conduit device 100 suited for implantation in the tissue wall 850 of the aorta).

Abstract

The present invention provides a vascular conduit device including a deformable flange and complementary securing ring in cooperation for securing the device within an aperture defined in a tissue wall. The present invention further provides a system for implanting such a vascular conduit device in a tissue wall. More specifically, the present invention provides a system including a coring device for defining an aperture in a tissue wall (such as a ventricle and/or a blood vessel) and securely implanting a vascular conduit device therein so as to provide fluid communication between a first and second surface of the tissue wall via the vascular conduit device.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of copending U.S. patent application Ser. No. 11/251,100, filed on Oct. 14, 2005, which is a continuation-in-part of U.S. patent application Ser. No. 10/915,691, filed on Aug. 11, 2004, each of which is hereby incorporated herein in its entirety by reference.
  • FIELD OF INVENTION
  • This invention relates to devices and methods for creating and maintaining a fluid conduit in a tissue wall. For example, some embodiments of the present invention may provide an alternative conduit between the left ventricle and the aorta to create a double-outlet left ventricle.
  • BACKGROUND OF THE INVENTION
  • Construction of an alternative conduit between the left ventricle and the aorta (an apicoaortic conduit, or AAC) to create a double-outlet left ventricle (LV) has been successfully employed to treat a variety of complex congenital LV outflow obstruction (fibrous tunnel obstruction, aortic annular hypoplasia, tubular hypoplasia of the ascending aorta, and patients with diffuse septal thickening, severe LV hypertrophy and a small LV cavity) as well as adult-onset aortic stenosis in patients with complicating preoperative conditions (previous failed annular augmentation procedures, previous infection, previous CABG with patent anterior internal mammary artery grafts, and a porcelain ascending aorta).
  • However, the AAC insertion procedure has been poorly accepted, primarily because of early valve failures using first-generation bioprostheses as well as the success of direct LVOTO repair and aortic valve replacement. In the United States, despite an aging population, the unadjusted mortality for isolated aortic valve operations in 2001 remained under 4%. Further, the AAC insertion operation, with or without cardiopulmonary bypass, has not been as technically straightforward as direct aortic valve replacement. For most surgeons, AAC insertion is not a familiar operation and is of historical interest only.
  • Nonetheless, several studies have demonstrated that AAC insertion successfully lessens the LV-aortic pressure gradient, preserves or improves ventricular function and maintains normally distributed blood flow through the systemic and coronary circulation. While there have been several techniques described, the most commonly employed method is the lateral thoracotomy approach with placement of the AAC to the descending aorta. Other techniques include a median sternotomy approach with insertion of the distal limb of the AAC to the ascending aorta, to the transverse part of the aortic arch, or to the intra-abdominal supraceliac aorta.
  • In general, the thoracic aorta and the left ventricle apex are exposed through a left lateral thoracotomy, and a needle is passed through the apex and into the left ventricle. While the connector is still spaced apart from the apex, the sutures that will fix the connector to the apex are threaded through a cuff on the connector and through the apex in a matching pattern. The cuff is set back from the end of the connector by 1-2 centimeters to allow the end of the connector to extend through the heart muscle and into the left ventricle. Once the sutures are in place, a ventricular coring device is used to remove a core of ventricular muscle, and the pre-threaded sutures are then pulled to draw the connector into the opening until the cuff comes to rest: on the apex. The sutures are tied off, and additional sutures may be added. Either before or after this procedure, the opposite end of the connector is attached to a valved conduit which terminates at the aorta.
  • The current techniques and technology available to perform AAC insertion were originally designed to be performed on-pump; either with an arrested or fibrillating heart. While off--pump cases have been described, they can be technically difficult due to the shortcomings of presently available vascular conduits and systems for installing such conduits. For example, because existing conduits require the use of sutures to reliably secure the connector in place, it is often difficult for surgeons or other clinicians to insert such sutures reliably in active cardiac and/or vascular tissue.
  • SUMMARY OF THE INVENTION
  • This invention describes an improved system and method for the insertion of a vascular conduit (such as an AAC) that will significantly improve and simplify the in vivo insertion of a graft into the beating cardiac apex or other tissue walls (such as other areas of the heart including the anterior, lateral, posterior walls of the left or right ventricle, the left or right atrium, the aortic wall, ascending, transverse, or descending, or other blood vessel walls), such that vascular conduit insertions (including AAC procedures) may be rendered far more attractive to clinicians. Because vascular conduits and systems of the present invention may be used to create alternate outflow tracts in “off-pump” procedures, the embodiments of the present invention may effectively reduce and/or negate the detrimental effects of both cardio-pulmonary by-pass (CPB) and global cardiac ischemia. Additionally, because some conduit embodiments of the present invention (for AAC procedures, for example) may be inserted into a ventricular or atrial free wall or cardiac apex, the conduction system of the heart may be avoided, along with the native coronary arteries and grafts from previous surgical revascularization. In some embodiments of the present invention, wherein the system is used to implant an AAC, a small size valve (19 to 21 mm for typical adult body surface areas) is usually adequate; as the effective postoperative orifice is the sum of the native and prosthetic aortic valves. Further, the present invention provides vascular conduits that may be compatible with newer generation biologic valves, such that valved conduit failure is far less likely.
  • In one embodiment, the present invention provides a system for implanting a vascular conduit device (such as an AAC component). According to some embodiments, the system comprises a coring device for defining an aperture in a tissue wall (such as a cardiac free wall or apex and/or the aorta) having a first tissue surface and a second tissue surface. The coring device may define a lumen adapted to be capable of receiving a guide wire for directing the coring device to the first or second tissue surface, depending upon whether the approach is intra- or extra-vascular, respectively. The system may also comprise a conduit device for lining the aperture defined in the tissue wall and maintaining fluid communication between the first and second tissue surfaces of the tissue wall. The conduit device may be adapted to be capable of being advanced over the guide wire and/or the coring device so as to be guided to the aperture defined by the coring device. The conduit device may comprise, in some embodiments: a tube having proximal and distal ends, and inside and outside surfaces; a flexible flange disposed at or near the distal end, wherein the flexible flange is adapted to be capable of operably engaging the first tissue surface; and a securing ring adapted to fit over the tube and adapted to be capable of operably engaging the second tissue surface and cooperating with the flexible flange so as to secure the conduit device within the aperture.
  • According to some embodiments of the present invention, the system may also comprise a hemostatic device for selectively deploying so as to temporarily occlude the aperture (so as to prevent the passage of blood through the aperture and into an adjacent body cavity, for example). The hemostatic device may also be adapted to be capable of being advanced over the guide wire and/or within the lumen of the coring device such that the hemostatic device may be accurately guided to the site of the newly-formed aperture created by the coring device. The hemostatic device may comprise at least one of an “umbrella” occlusion device, a dilation balloon, and/or combinations of such devices. Furthermore, according to various system embodiments of the present invention, the coring device may comprise at least one of: a pulsed laser scalpel; a continuous wave laser scalpel; a mechanical coring device; a device employing ultrasonic energy (such as high-frequency focused ultra-sound); and/or combinations of such coring devices. Some embodiments of the present invention may also provide a specialized delivery device for enclosing the conduit device and selectively implanting the conduit device within the aperture. The delivery device may be operably engaged with an outer surface of the coring device and may comprise one or more retracting arms for dilating the aperture prior to and/or simultaneously with the implantation of the conduit device.
  • Some additional system embodiments of the present invention may also comprise a guiding catheter defining a guiding lumen for receiving and directing the coring device and the conduit device to the tissue wall via an endovascular pathway. Thus, according to various system embodiments of the present invention, the system may be used to implant the conduit device via an endovascular pathway such that the conduit may be implanted from inside the left ventricle and/or inside another blood vessel.
  • Other embodiments of the present invention provide a vascular conduit device for lining an aperture defined in a tissue wall (such as the cardiac wall, apex and/or a blood vessel wall) and maintaining fluid communication between a first tissue surface and a second tissue surface of the tissue wall. According to some embodiments, the vascular conduit device may comprise a tube having proximal and distal ends, and inside and outside surfaces, wherein the outside surface of the tube defines a plurality of ridges. The vascular conduit device may further comprise a flexible flange disposed at or near the distal end for operably engaging the first tissue surface and a securing ring adapted to fit over the tube for operably engaging the second tissue surface. The securing ring may also comprise at least one deformable pawl member for releasably engaging the plurality of ridges defined by the outer surface of the tube such that the securing ring cooperates with the flexible flange so as to secure the vascular conduit device within the aperture.
  • According to some embodiments, the flexible flange and/or securing ring may define complementary concave and/or convex profiles so as to conform more completely to the first and second tissue surfaces. Furthermore, the flexible flange may comprise a frusto-conical assembly such that the flange may be more easily inserted into the aperture. According to various other embodiments of the present invention, the outside surface of the tube may comprise threading on at least a portion of the outside surface of the tube and corresponding threading on an inside diameter of the securing ring such that the securing ring may be secured with respect to the flange and the tissue wall held there between.
  • According to some embodiments of the present invention, the flexible flange may be soft and thin enough to bend backwards so that it can be pushed through the aperture defined in the tissue wall, but rigid enough to flex back to its original position and hold its shape once it emerges along a first tissue surface of the tissue wall. The tube of the vascular conduit device may then be drawn back so that the flexible flange presses against the first tissue surface of the tissue wall. The securing ring may then be deployed over the body of the connector and against the second tissue surface of the tissue wall. Various vascular conduit device embodiments are described herein to secure the position of the second ring against a surface of the tissue wall such that no sutures may be required. Such embodiments may include, but are not limited to: the ridge and pawl mechanism described above, a threaded surfaces disposed on the tube and an inner surface of the securing ring, a biasing device for biasing the securing ring toward the flange; and/or combinations of such securing devices.
  • According to one embodiment for using the new system and/or vascular conduit device of the present invention, a needle is passed through a tissue wall (such as the wall of the cardiac apex) to provide access to the first tissue surface (defining the interior of the left ventricle, for example). A guide wire may then be inserted into the opening and, following dilation of the opening, an occlusion device may be threaded over the wire and into a cavity defined by the tissue wall and deployed. A coring device may then be threaded in-line over the guide wire such that a core of tissue may be removed to form an aperture in the tissue wall. While the occlusion device maintains hemostasis, the coring device may be removed and the vascular conduit device of the present invention may be mounted on a dilator and introduced over the guide wire and occlusion device catheter. As the vascular conduit device is introduced into the aperture, the flexible flange retracts. Furthermore, as discussed above, as the vascular conduit device enters the aperture, it may displace the occlusion device to allow the flange to resume its normal shape. As discussed above, the vascular conduit device may then be drawn tight against the first tissue wall such that the securing ring may be deployed over the body of the vascular conduit device to fit snugly against the second tissue surface. Once the connector is firmly in place, the occlusion device may be withdrawn and the vascular conduit device may be clamped shut while its free end is connected to a vascular graft or valved conduit that may terminate at another tissue wall (such as a blood vessel wall, for example).
  • Use of this new vascular conduit device, system, and method will significantly improve the ease and safety of vascular conduit insertion (such as the implantation of AAC devices). As persons of ordinary skill would readily appreciate, this method can also be, used in a minimally invasive, endoscopically assisted approach.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will be better understood by reference to the Detailed Description of the
  • Invention when taken together with the attached drawings, wherein:
  • FIG. 1 is a perspective view of a first embodiment of an LV apical connector according to the invention;
  • FIG. 2 is a side view of the embodiment shown in Fig: 1;
  • FIG. 3 is a perspective view oft second embodiment of an LV apical connector according to the invention;
  • FIG. 4 is a side view of the embodiment shown in FIG. 3;
  • FIG. 5 is aside view of a third embodiment of an LV apical connector according to the invention.
  • FIG. 6 is a perspective view of a vascular conduit device, including a tube, flexible flange, and securing ring, according to one embodiment of the present invention.
  • FIG. 7 is a perspective view of a vascular conduit device, including a tube, flexible flange, and securing ring, according to one embodiment of the present invention, wherein the flexible flange and securing rings define convex and concave profiles, respectively.
  • FIG. 8A is a cross-sectional view of a tissue wall and aperture defined therein in relation to one system embodiment of the present invention including a coring device for defining an aperture and a vascular conduit device for defining and maintaining the aperture.
  • FIG. 8B is a cross-sectional view of a tissue wall and aperture defined therein including a side view of a vascular conduit device, according to one embodiment of the present invention, implanted in the aperture.
  • FIG. 9A is a cross-sectional side view of a system according to one embodiment of the present invention including a delivery device for enclosing and selectively delivering the conduit device.
  • FIG. 9B is a cross-sectional side view of a system according to one embodiment of the present invention including a delivery device comprising a pair of retracting arms for dilating the aperture during implantation of the conduit device.
  • FIG. 10 is a cross-sectional side view of an exemplary apico-aortic connection (AAC) constructed using some embodiments of the present invention.
  • FIG. 11 is a side view of an exemplary embodiment of the conduit device of the present invention including a notch and pin arrangement for selectively engaging the conduit device with a coring device.
  • FIG. 12 is a cross-sectional side view of an exemplary apico-aortic connection (AAC) inserted via endovascular methods using system embodiments of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present inventions now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the inventions are shown. Indeed, these inventions may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout. The singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.
  • Although some embodiments of the invention described herein are directed to a vascular conduit device 100 and a system for implanting such a device to form an apico-aortic connector (AAC) between the cardiac apex and the aorta, it will be appreciated by one skilled in the art that the invention is not so limited. For example, aspects of the vascular conduit device 100 and systems of the present invention can also be used to establish and/or maintain conduits in a variety of tissue structures using minimally-invasive and/or invasive delivery techniques. Furthermore, while the embodiments of the invention described herein are directed to the thoracoscopic implantation of the vascular conduit device to form at least one vascular port for establishing an AAC, it should be understood that the system and/or vascular conduit device embodiments of the present invention may be used to establish valved and/or open conduits (including bypass conduits) to augment native blood vessels in order to treat a variety of vascular conditions including, but not limited to: aortic valvular disease, congestive heart failure, left ventricle outflow tract obstructions (LVOTO), peripheral arterial obstructions, small vessel obstructions, and/or other conditions. Furthermore, the vascular conduit device and system of the present invention may also be used to establish a port for inter-ventricular repairs such as, for example, valve repair and/or replacement or ablation procedures. Thus, the vascular conduit device 100 described in further detail below may also comprise a threaded fluid-tight cap, and/or a cap having at least one pawl member (for engaging corresponding ridges defined on an outer surface of the vascular conduit device 100) for selectively sealing the proximal end 7 of the vascular conduit device 100 such that the tube 1 may serve as a re-usable port for repairing and/or treating diseased portions of the cardiac anatomy. Furthermore, the vascular conduit device 100 and system embodiments of the present invention may also be used to implant a conduit and/or port for left ventricular assist devices.
  • Furthermore, (as shown generally in FIG. 12) some system embodiments of the present invention may also be used “from the inside out”, such that the coring device 830 and conduit device 100 may be passed from through an intravascular space (percutaneously). For example, in one possible embodiment, the system embodiments of the present invention may be used to establish an apico-aortic conduit (AAC) percutaneously (see FIG. 12). The system components may be introduced (via methods that will be appreciated by one skilled in the art) into the femoral vein, across the atrial septum, through the mitral valve and out the ventricular free wall. Therefore, the ventricular conduit device (see element 100 a, FIG. 12) would be placed from inside the vasculature (via a guiding catheter, for example). In similar fashion, the aortic conduit device (see element 100 b, FIG. 12) may be passed retrograde in the femoral artery (via guide wire and/or guiding catheter) or other blood vessel and implanted using the systems of the present invention from the luminal side of the aorta. The two connectors would then be joined with a valved conduit introduced from either end of the system (see FIG. 12).
  • As shown in FIGS. 1 and 2, the vascular conduit device 100 according to one embodiment of the present invention includes tube (or conduit) 1 having an axis 3, distal end 5, a proximal end 7, an outer surface 9 and an inner surface 11. Distal end 5 is provided with a flange 13 extending, from outer surface 9 in a direction away from axis 3. Flange 13 may be integrally formed with tube 1, or it maybe formed separately and permanently attached to distal end 5 of tube 1 by known means. Tube 1 should be sufficiently rigid to maintain its shape so as not to occlude the passage of blood and/or other fluids therethrough during use (see generally, element 860, FIG. 8B). Flange 13 may be sufficiently flexible to allow introduction of the distal end 5 of the vascular conduit device 100 into an aperture 800 (see FIG. 8A) having a diameter equal to or slightly less than the diameter of outer surface 9, but have sufficient stiffness and/or shape memory to flex back to its original position once it has passed through the aperture 800 (which may be defined in a tissue wall 850, as shown generally in FIGS. 8A-8B).
  • As shown generally in FIGS. 8A-8B, the vascular conduit device 100 may maintain and/or provide a lining for an aperture 800 defined in a tissue wall 850 so as to maintain fluid communication 860 between a first tissue surface 853 and a second tissue surface 855 of the tissue wall 850. As described generally above, and as shown in FIGS. 6 and 7, the vascular conduit device 100 may comprise a tube 1 having proximal 7 and distal 5 ends, and inside and outside surfaces, wherein the outside surface of the tube 1 defines a plurality of ridges 610. According to some embodiments, the vascular conduit device 100 may also comprise a flexible flange 13 disposed at or near the distal end 5 for operably engaging the first tissue surface 853 (see FIG. 8B). As shown in FIGS. 6 and 7, the vascular conduit device 100 may also comprise a securing ring 17 adapted to fit over the tube 1 for operably engaging the second tissue surface 855. The securing ring 17 may also comprise at least one deformable pawl member 620 for releasably engaging the plurality of ridges 610 defined by the outer surface of the tube 1 such that the securing ring 17 cooperates with the flexible flange 13 so as to secure the vascular conduit device 100 within the aperture 850.
  • As shown generally in FIG. 8B, once the vascular conduit device 100 is secured within the aperture 850 defined in the tissue wall 800, the vascular conduit device 100 may define a pathway for fluid communication (and/or a pathway for thoracoscopic instruments or other surgical tools) between a first tissue surface 853 and a second tissue surface 855. Furthermore, the proximal end 7 of the vascular conduit device 100 may be configured to receive a number of different valved and/or open conduits for creating, for example, vascular bypasses or other alternate fluid pathways within a living organism. For example, according apico-aortic conduit embodiments of the present invention (see FIG. 10), a first vascular conduit device 100 a (shown generally in FIG. 6) may be implanted and/or secured in the apex 850 a of the left ventricle, and a second vascular conduit device 100 b (shown generally in FIG. 7) may be implanted and/or secured within a wall 850 b of the aorta. The two devices may then be connected via a commercially-available valved conduit device 1020 (including a one-way valve 1025) in order to create an alternative valved pathway for blood in order to augment a diminished flow of blood that may be passing through a diseased and/or damaged aortic valve. Thus, according to some embodiments, the proximal end 7 of the tube 1 defining the fluid pathway through the vascular conduit device 100 may be formed so as to be compatible with one or more existing valved conduit devices 1020. Furthermore, according to some embodiments, the vascular conduit device 100 may be fitted with an adapter sleeve (not shown) such that the proximal end 7 of the tube may be connected in a fluid-tight manner with one or more commercially-available conduit devices 1020 for establishing a bypass and/or alternate pathway between two body cavities or blood vessels. Furthermore, the vascular conduit device 100 of the present invention may be used to bypass and/or repair a variety of diseased and/or damaged blood vessels. For example, some embodiments of the present invention may be used to bypass an abdominal aortic aneurysm (AAA) by providing two aortic vascular conduit devices 100 b (see FIG. 7) for example connected by a section of conduit 1020 spanning the diseased and/or damaged portions of the abdominal aorta.
  • As discussed below, the flexible flange 13 and tube 1 of various embodiments of the vascular conduit device 100 may be altered so as to be compatible with various tissue walls 850. For example, the vascular conduit device 100 shown in FIG. 7 may be suited for use in defining and maintaining an aperture in a large blood vessel having a curved tissue wall (such as the aorta). Furthermore, the vascular conduit device 100 shown in FIG. 6 may be suited for use in defining and maintaining an aperture in a body cavity having a relatively thick and/or muscular tissue wall (such as the cardiac muscle of the left ventricle).
  • Therefore, as shown in FIG. 7, the flexible flange 13 may define, in some embodiments, a convex profile with respect to the proximal end 7 of the tube 1 so as to be capable of conforming to a curved first tissue surface 853 (such as a tissue surface defined by the inner wall surface of a blood vessel (such as the aorta)). Furthermore, in some embodiments, the securing ring 17 may also define a corresponding concave profile such that the securing ring 17 may be capable of operably engaging a curved and/or contoured second tissue surface 855 and be better capable of cooperating with the flexible flange 13 so as to secure the vascular conduit device 100 within the aperture 850. Furthermore, as shown generally in FIG. 6, the flexible flange 13 may also comprise a frusto-conical assembly such that the insertion of the flexible flange 13 into a relatively narrow tissue aperture 800 may be more easily accomplished (see generally FIG. 8A). Furthermore, the frusto-conical assembly of some flexible flange 13 embodiments of the present invention may also prevent and/or minimize the occurrence of the accidental removal of the vascular conduit device 100 from the second tissue surface 855 of the tissue wall 850. The relative thicknesses of the materials used to form the flexible flange 13 may also be varied so as to allow the flange 13 to be optimized based on the expected type of tissue wall 850 it may be used to engage. For example, a relatively thin and/or contoured flexible flange 13 (as shown generally in FIG. 7) may be used to secure vascular conduit devices 100 within more fragile and/or thin blood vessels. Furthermore, the relatively thick and robust frusta-conical flexible flange 13 (shown generally in FIG. 6) may be used to secure vascular conduit devices 100 within more substantial tissue walls (such as cardiac muscle).
  • Tube 1 and flange 13 may be made-of any suitable biocompatible material. Alternatively, tube 1 and flange 13 may be coated with a biocompatible material. According to one exemplary embodiment, the tube 1 may comprise a first polymer material having a first hardness and the flange 13 may comprise a second polymer material having a second hardness, wherein the first hardness is greater than the second hardness. Thus, according to some such embodiments, the flange 13 may be easily deformable as it is inserted into the aperture 800 defined in the tissue wall 850, but the tube 1 may remain relatively rigid so as to maintain a path for fluid communication (see element 860, FIG. 8B) between the surfaces 853, 855 of the tissue wall 850.
  • According to some other embodiments, at least a portion of the outer surface 9 of tube 1 may be threaded. Threading 15 may extend the entire length of tube 1, or extend over only a portion thereof. According to one exemplary embodiment, threading 15 may be absent from a length of the distal end 5 of the tube 1 that is slightly less than the thickness of the tissue wall 850. This alternative embodiment may serve to prevent over-tightening of the vascular conduit device 100, which may, in some case lead to damage and/or rupture of portions of the tissue wall 850 near the aperture 800 defined therein. According to another embodiment, threading 15 may not extend all the way to the proximal end 7 such that the tube 1 (and the resulting vascular conduit device 100) may be used to provide a conduit through tissue walls having a variety of thicknesses.
  • External ring 17 (or securing ring 17) may be provided with an inner diameter 18 and an outer diameter 19. Inner diameter 18 may further define threads 23 to correspond to the threading 15 on the outer surface 9 of tube 1. The outer diameter 19 of external ring 17 may have any shape suitable to the designer, including circular or hexagonal. According to one embodiment of the invention, external ring 17 may be adapted to be engaged by a tightening device (not shown) for tightening external ring 17 on tube 1. As discussed above with respect to the tube 1, the external ring 17 may be made of any suitable biocompatible material. Alternatively, external ring 17 may be coated with a biocompatible material.
  • For embodiments wherein the tube defines threading 15 and wherein the complementary external ring 17 defines threads 23, the tightening device may comprise a specialized wrench device for rotating the external ring 17 relative to the tube 1. Furthermore, in other embodiments (such as those shown generally in FIGS. 6 and 7) the tightening device may comprise a simple push tool capable of encircling a coring device 830 (see discussion below of FIG. 8A) and pushing the external ring 17 towards the distal end 5 of the tube 1 such that the at least one pawl member 620 of the external ring 17 may be engaged with the plurality of ridges 610 defined on an outer surface of the tube 1. According to some embodiments of the present invention, as shown generally in FIG. 11, the vascular conduit device 100 may be selectively secured to the coring device 830 (or, in some embodiments, the delivery device 910, discussed below) by a pin 831 and notch 101 arrangement. For example, as shown in FIG. 11 a pin 831 may extend from an external surface of the coring device 830 (or the delivery device 910) and be operably engaged with a complementary notch 101 defined in the proximal end of the vascular conduit device 100. Thus, a clinician may use the coring device 830 (or the delivery device 910) to advance the vascular conduit device 100 to the aperture 800 and into an implanted position (see FIG. 8B, for example) and subsequently apply counter-traction to the vascular conduit device 100 (via the pin 831) such that the external ring 17 may be advanced and secured relative to the vascular conduit device 100. In some embodiments, the clinician may then rotate the coring device 830 (and/or the delivery device 910) to release the pin 831 from the notch 101 and retract the coring device 830, leaving the vascular conduit device 100 securely implanted (as shown generally in FIG. 8B). Furthermore, in some embodiments, the hemostatic device 820 (see FIG. 8A) may also be used to apply counter-traction force to hold the tube 1 and flexible flange 13 in place within the aperture 800 as the external ring 17 is engaged with respect to the second tissue surface 855 from a proximal position.
  • According to the embodiment shown in FIGS. 3 and 4, tube 1 of the vascular conduit device 100 may also be provided with an external ring 17 that is biased toward flange 13 by a biasing device 27 (such as a spring device), having proximal end 29 and distal end 31. The biasing device 27 may be configured so as to tend to force external ring 17 into contact with flange 13. As shown in FIGS. 4-6, the biasing device 27 may be a spring in compression. As one of ordinary skill in the art will appreciate, any biasing device may be used, including one or more flexible bands or rods. Furthermore, tube 1 may be provided with and/or define an engagement feature 33, such as a ring, slot or bore, to engage the proximal end 29 of the biasing device 27. Likewise, external ring 17 may be provided with an engagement feature (not shown) adapted to receive the distal end 31 of the biasing device 27.
  • According to some embodiments, release device 37 may also be provided to releasably hold external ring 17 and biasing device 27 in pre-deployment configuration, with biasing device 27 in compression, until such a time as the flange 13 has been placed in the interior of a cavity defined by the tissue wall 850 (such as the interior of the ventricle) and the external ring 17 is ready to be deployed against the outer tissue surface 855 of the heart muscle (see generally FIG. 8B, showing the vascular conduit device 100 secured within the aperture 800).
  • According to the embodiment shown in FIGS. 1 and 4, release device 37 may include one or more hooks 39 extending from the proximal surface 41 of the external ring 17 and adapted to releasably engage an engagement feature 43; for example, a slot or bore, defined in tube 1. Alternatively, as shown in FIG. 5, the release device 37 may extend to and hook over the proximal end 7 of tube 1.
  • In some additional embodiments, a portion of tube 1 may be threaded and the inside diameter of external ring 17 threaded to permit further tightening of external ring 17 on tube 1 after deployment of the external ring 17 following removal of the release device 37.
  • Some embodiments of the present invention, as shown generally in FIG. 8A, further provide a system for implanting a vascular conduit device 100, wherein the system comprises a coring device 830 for defining an aperture 800 in a tissue wall 850 having a first tissue surface 853 and a second tissue surface 855. The various components of the system embodiments of the present invention may be inserted into a patient (via, for example, a thoracoscopic, endovascular, and/or percutaneous procedure) such that a guide catheter (not shown) and/or guide wire 810 (see FIG. 8B) may be inserted into the thoracic cavity of a patient in order to gain access to diseased vasculature and/or the heart. Furthermore, according to some embodiments, the system of the present invention may be used to implant a vascular conduit device 100 via more invasive surgical procedures that will be appreciated by one skilled in the art. Furthermore, as shown generally in FIG. 12, the vascular conduit device 100 may also be delivered and implanted endovascularly from the inside (and/or from a first tissue surface 853) of the ventricle and/or aorta.
  • As shown in FIG. 8A, the coring device 830 may define a lumen adapted to be capable of receiving a guide wire 810 for directing the coring device 830 to the second tissue surface 855. Furthermore, the system of the present invention may also comprise a conduit device 100 (such as the vascular conduit device discussed above) for lining the aperture 800 defined in the tissue wall 850 and maintaining fluid communication between the first 853 and second tissue 855 surfaces of the tissue wall 850. The conduit device 100 may be adapted to be capable of being advanced over the guide wire 810 and coring device 830. As described above with respect to FIGS. 1-5, the vascular conduit device 100 may comprise: a tube 1 having proximal 7 and distal 5 ends, and inside and outside surfaces; a flexible flange 13 disposed at or near the distal end 5; and a securing ring 17 (or external ring 17) adapted to fit over the tube 1 and adapted to be capable of operably engaging the second tissue surface 855 and cooperating with the flexible flange 13 so as to secure the conduit device 100 within a tissue aperture 800.
  • According to various embodiments of the system of the present invention, the coring device 830 may comprise at least one of: a pulsed laser scalpel; a continuous wave laser scalpel; a mechanical coring device (such as, for example, a rotoblator catheter or other mechanical and/or catheter-based mechanical cutting device); an ultrasonic coring device (such as high-frequency focused ultra-sound); and combinations thereof. For example, in one exemplary embodiment, the coring device 830 may comprise a pulsed excimer laser device having a light pulse duration that is less than the tissue wall's 850 time of thermal diffusion (defining how quickly the laser's imparted heat spreads to adjacent tissue) so as to provide a relatively “cool” cutting method (i.e. less than about 50 degrees C.). Furthermore, the pulsed laser may be provided with a relatively shallow cutting depth (i.e. less than about 50 μm) such that the coring device 830 may be precisely controlled. The use of a pulsed laser scalpel as the coring device 830 may thus result in minimal damage to tissue adjacent the targeted aperture 800 area, which may be especially advantageous in embodiments wherein the system is used to implant a vascular conduit device 100 in the ventricular apex, as the cardiac tissue of the left ventricle contains tissues that are vital for maintaining the electrical pacing of the heart.
  • Some system embodiments of the present invention (as shown generally in FIG. 8A) may further comprise a hemostatic device 820 for selectively deploying so as to temporarily occlude the aperture 800. As one skilled in the art will appreciate, the hemostatic device 820 may be adapted to be capable of being advanced over the guide wire 810 within the lumen of the coring device 830. Furthermore, according to some embodiments, the hemostatic device 820 may be delivered via a delivery catheter defining a lumen for receiving the guide wire 810 and having a sufficiently small outer diameter to be guided within the lumen defined by the coring device 830. According to various embodiments of the present invention, the hemostatic device 830 may comprise at least one of: an “umbrella” occlusion device; a dilation balloon; and/or combinations thereof. According to some embodiments, the hemostatic device 820 (as shown in FIG. 8A) may be used to maintain “traction” for the advance of the coring device 830 (which, in pulsed excimer laser embodiments, may comprise a circular array 835 of lasers that must be advanced into the tissue wall 850 in order to core the wall and define an aperture 800 therein). Thus, in some embodiments, a clinician may deploy the hemostatic device 820 proximal to the first tissue surface 853 of the tissue wall 850 and exert a force (using the deployed hemostatic device) against the first tissue surface 853 such that the laser array 835 of the coring device 830 may be advanced to define the aperture 800 in the tissue wall 850. The exertion of such “traction” forces using the hemostatic device 820 may be useful in instances wherein the tissue wall 850 is in motion (such as is the case with the cardiac muscle defining the walls of the left ventricle). Thus, embodiments of the present invention may be successfully employed in “off-pump” procedures wherein the heart is left beating during the course of the procedure for implanting the vascular conduit device 100.
  • Following the coring process, the vascular conduit device 100 (as described in its various embodiments above) may be advanced along the outer surface of the coring device 830 and into position within the aperture (as shown generally in FIG. 8B) so as to define a pathway for fluid flow 860 through the tissue wall 850. According to some embodiments, a dilator device (not shown) may be introduced (over the guide wire 810, for example) for dilating the initial aperture 800 defined by the coring device 830. The dilator device may also be used to advance the vascular conduit device 100 into its final implanted position (see FIG. 8B) by at least partially expanding the dilator device within the inner surface 11 of the tube 1 so as to carry the vascular conduit device 100 with the partially-expanded portion of the dilator device. The dilator device may comprise, in various embodiments, a dilation balloon, a multi-arm endoscopic and/or thoracoscopic retractor device, and/or other types of dilator devices that will be appreciated by one skilled in the art.
  • For example, as shown generally in FIGS. 9A and 9B, some embodiments of the present invention may comprise a dilator device that may serve as a delivery device 910 for dilating the aperture 800 formed by the coring device 830 and for percutaneously and/or thoracoscopically delivering the vascular conduit device 100 to a secured position (see FIG. 8A, for example) relative to the aperture 800 defined in the tissue wall 850. The delivery device 910 may be operably engaged with an outer surface of the coring device 830 and may comprise two or more retractor arms 912 that may be opened as the vascular conduit device 100 is pushed out from the delivery device 810 by applying an opening force to a plunger 915. Thus, as shown in FIG. 9B, the delivery device 910 may be configured to simultaneously dilate the aperture 800 (using the retractor arms 912) and deliver the vascular conduit device 100. As shown in FIG. 9B the flexible flange 13 of the vascular conduit device 100 may urge the retractor arms 912 to an open position as the plunger 915 pushes the vascular conduit device 100 outward and into the aperture 800. The retractor anus 912, when deployed as shown in FIG. 9B may also serve to provide “counter-traction” such that the clinician may apply a distally-acting force on the plunger 915, a clinician may deploy the securing ring 17 relative to the tube 1 of the vascular conduit device 100 in order to secure the vascular conduit device 100 within the aperture 800 (as shown in FIG. 8B, for example).
  • As described above (see FIG. 8A, for example) the hemostatic device 820 may also be deployed in order to provide additional “counter-traction” such that the distal end 5 of the vascular conduit device 100 (once implanted in the aperture 800) may contact the expanded hemostatic device 820. Thus, by applying a distally-acting force on the plunger 915, a clinician may deploy the securing ring 17 relative to the tube 1 of the vascular conduit device 100 in order to secure the vascular conduit device 100 within the aperture 800 (as shown in FIG. 8B, for example).
  • According to one exemplary embodiment, the system of the present invention (shown generally in FIGS. 8B and 10) may be used to implant vascular conduit devices 100 a, 100 b to serve as the terminal points for an apico-aortic conduit. According to such embodiments, a thoracoscopic procedure may be used to insert a needle through the apex and into the left ventricle 850 a. A guide wire 810 may then inserted into the opening and, following dilation of the opening (using a dilation device, for example), an hemostatic device 820 may be threaded over the wire 810 and into the left ventricle and deployed proximal to an first tissue surface 853 thereof. The hemostatic device 820 may comprise, for example, known occlusion devices such as an occlusion balloon, the Guidant Heartstring™ disclosed generally at http://www.guidant.com/products, or the Baladi inverter, disclosed in U.S. Pat. Nos. 5,944,730 and 6,409,739. As described above, and as shown generally in FIG. 12, the vascular conduit devices 100 a, 100 b may also be implanted endovascularly (i.e. from the inside of the left ventricle and/or the aorta) by introducing the system embodiments of the present invention through the vasculature via guidewire and/or guiding catheter. For example, the aortic conduit 100 b may be introduced via the system embodiments of the present invention (including a guiding catheter) inserted in the femoral artery. In addition, the ventricular conduit 100 a may be introduced via the systems of the present invention (including a guiding catheter) inserted into the femoral vein, across the atrial septum, through the mitral valve and out the ventricular free wall. A ventricular coring device 830 may then be threaded in-line over the hemostatic device 820 and a core of ventricular muscle is removed from the tissue wall 850 of the apex in order to form an aperture 800. In addition to known coring techniques, an annular contact laser (and in some embodiments a “cool” cutting pulsed excimer laser, having elements arranged in a circular array 835) may be used to vaporize the tissue along the perimeter of the core. The cored tissue may then be removed according to known methods. According to a further alternative embodiment, a contact laser may be used to vaporize the entire area of the core, eliminating the need to remove cored tissue. In yet another embodiment, a mechanical coring device (such as a catheter-based rotoblator device) or an ultrasonic coring device, may be used to form the aperture 800. No matter the method of coring, once coring has been-completed, the coring device 830 may be removed while the occlusion device maintains hemostasis, and the vascular conduit device 100 of the present invention may be mounted on a dilator and-introduced over the guide wire 810 and hemostatic device 820. As the vascular conduit device 100 is introduced into the aperture 800 in the apex, the flexible flange 13 may deform and/or retract. As the vascular conduit device 100 enters the-left ventricle, it may displace the hemostatic device 820 to allow the flexible flange 13 to resume its normal shape. As discussed above the vascular conduit device 100 may then be drawn tight against the first tissue surface 853 of the wall 850 of the left ventricle. According to a first embodiment, external ring 17 is threaded onto the tube 1 and tightened until it is snug against the second tissue surface 855 of the ventricular apex.
  • According to it second embodiment, once the flexible flange 13 has been introduced into the ventricle and pulled back to engage the first tissue surface 853, release-device 37 is released, allowing biasing device 27 to force the external ring 17 against the second tissue surface 855 of the ventricular apex. According to a further aspect of this embodiment of the invention, threads on the inside diameter of external ring 17 may be made to engage threads on the outer surface of the tube 1 to further secure external ring 17 against the tissue wall 850 of the ventricular apex.
  • Once the vascular conduit device 100 is firmly in place (see generally FIG. 8B), the occlusion device 820 may be retracted and withdrawn. The vascular conduit device 100 may then be clamped shut and/or capped while its free end (defined by the proximal end 7 of the tube 1) is connected to a valved conduit and/or graft which may terminate at a complementary vascular conduit device 100 implanted in the aorta (see FIG. 7 showing an exemplary embodiment of a vascular conduit device 100 suited for implantation in the tissue wall 850 of the aorta).
  • Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims (41)

1-24. (canceled)
25. A system comprising:
a conduit device configured for providing fluid communication between a first surface and a second surface of a tissue wall, the conduit device comprising:
a tube defining a lumen extending along an axis defined by the tube from a proximal end to a distal end of the tube, the tube configured for insertion within an aperture of the tissue wall extending from the first surface to the second surface of the tissue wall;
a flange attached to the tube and extending outward from an outer surface of the tube, the flange configured for engaging the first surface of the tissue wall; and
a ring attached to the tube and extending outward from the outer surface of the tube, the ring configured for engaging the second surface of the tissue wall; and
a cap configured for selectively engaging the tube such that the cap seals the proximal end of the tube.
26. The system of claim 25, wherein the cap comprises a pawl member configured for selectively engaging ridges of the tube.
27. The system of claim 25, wherein the cap comprises threads configured for selectively engaging mating threads of the tube.
28. The system of claim 25, wherein the flange is disposed at or near the distal end of the tube.
29. The system of claim 25, wherein the flange is integrally formed with the tube.
30. The system of claim 25, wherein the flange is flexible to facilitate insertion of the flange through the aperture of the tissue wall.
31. The system of claim 25, wherein the ring is removably attached to the tube.
32. The system of claim 31, wherein the ring comprises a pawl member configured for selectively engaging ridges of the tube.
33. The system of claim 31, wherein the ring comprises threads configured for selectively engaging mating threads of the tube.
34. The system of claim 25, wherein the conduit device is configured for attaching a ventricular assist device to the tissue wall.
35. A method comprising:
inserting a tube of a conduit device within an aperture of a tissue wall extending from a first surface to a second surface of the tissue wall, the tube defining a lumen extending along an axis defined by the tube from a proximal end to a distal end of the tube;
engaging the first surface of the tissue wall with a flange of the conduit device, the flange attached to the tube and extending outward from an outer surface of the tube;
engaging the second surface of the tissue wall with a ring of the conduit device, the ring attached to the tube and extending outward from the outer surface of the tube; and
engaging the tube with a cap such that the cap seals the proximal end of the tube.
36. The method of claim 35, wherein inserting the tube within the aperture of the tissue wall comprises passing the distal end of the tube through the aperture in the tissue wall.
37. The method of claim 35, wherein inserting the tube within the aperture of the tissue wall comprises passing the flange through the aperture of the tissue wall.
38. The method of claim 37, wherein passing the flange through the aperture of the tissue wall comprises deforming the flange and allowing the flange to return to an original shape.
39. The method of claim 35, wherein the flange is disposed at or near the distal end of the tube.
40. The method of claim 35, wherein the flange is integrally formed with the tube.
41. The method of claim 35, wherein the ring is removably attached to the tube.
42. The method of claim 35, wherein engaging the tube with the cap comprises selectively engaging ridges of the tube with a pawl member of the cap.
43. The method of claim 35, wherein engaging the tube with the cap comprises selectively engaging threads of the tube with mating threads of the cap.
44. The method of claim 35, further comprising disengaging the cap from the tube such that the conduit device provides fluid communication between the first surface and the second surface.
45. A system comprising:
a conduit device configured for providing fluid communication between a first surface and a second surface of a tissue wall, the conduit device comprising:
a tube defining a lumen extending along an axis defined by the tube from a proximal end to a distal end of the tube, the tube configured for insertion within an aperture of the tissue wall extending from the first surface to the second surface of the tissue wall; and
a ring defining an opening extending along an axis defined by the ring from a proximal end to a distal end of the ring and configured for removably receiving the tube therethrough, the ring configured for engaging the second surface of the tissue wall; and
a cap configured for selectively engaging the tube such that the cap seals the proximal end of the tube.
46. The system of claim 45, wherein the cap comprises a pawl member configured for selectively engaging ridges of the tube.
47. The system of claim 45, wherein the cap comprises threads configured for selectively engaging mating threads of the tube.
48. The system of claim 45, wherein the ring is configured for selectively engaging the tube via a pawl member and a ridge.
49. The system of claim 48, wherein the ring comprises the pawl member, and wherein the tube comprises the ridge.
50. The system of claim 45, wherein the ring comprises threads configured for selectively engaging mating threads of the tube.
51. The system of claim 45, wherein the conduit device further comprises a flange attached to the tube and extending outward from an outer surface of the tube.
52. The system of claim 51, wherein the flange is integrally formed with the tube.
53. The system of claim 51, wherein the flange is disposed at or near the distal end of the tube and configured for engaging the first surface of the tissue wall.
54. The system of claim 45, wherein the conduit device is configured for attaching a ventricular assist device to the tissue wall.
55. A method comprising:
inserting a tube of a conduit device within an aperture of a tissue wall extending from a first surface to a second surface of the tissue wall, the tube defining a lumen extending along an axis defined by the tube from a proximal end to a distal end of the tube;
engaging the tube with a ring of the conduit device, the ring defining an opening extending along an axis defined by the ring from a proximal end to a distal end of the ring and configured for removably receiving the tube therethrough;
engaging the second surface of the tissue wall with the ring; and
engaging the tube with a cap such that the cap seals the proximal end of the tube.
56. The method of claim 55, wherein inserting the tube within the aperture of the tissue wall comprises passing the distal end of the tube through the aperture in the tissue wall.
57. The method of claim 55, wherein engaging the tube with the ring comprises selectively engaging the tube with the ring via a pawl member and a ridge.
58. The method of claim 57, wherein the ring comprises the pawl member, and wherein the tube comprises the ridge.
59. The method of claim 55, wherein engaging the tube with the ring comprises selectively engaging threads of the ring with mating threads of the tube.
60. The method of claim 55, wherein the conduit device further comprises a flange attached to the tube and extending outward from an outer surface of the tube, and wherein engaging the tube with the ring comprises engaging the tube with the ring such that the ring is spaced apart from the flange.
61. The method of claim 60, wherein the flange is integrally formed with the tube.
62. The method of claim 55, wherein engaging the tube with the cap comprises selectively engaging ridges of the tube with a pawl member of the cap.
63. The method of claim 55, wherein engaging the tube with the cap comprises selectively engaging threads of the tube with mating threads of the cap.
64. The method of claim 55, further comprising disengaging the cap from the tube such that the conduit device provides fluid communication between the first surface and the second surface.
US14/832,704 2004-08-11 2015-08-21 Vascular conduit device and system for implanting Abandoned US20160051800A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/832,704 US20160051800A1 (en) 2004-08-11 2015-08-21 Vascular conduit device and system for implanting

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/915,691 US20060036313A1 (en) 2004-08-11 2004-08-11 Apicoaortic conduit connector and method for using
US11/251,100 US9138228B2 (en) 2004-08-11 2005-10-14 Vascular conduit device and system for implanting
US14/832,704 US20160051800A1 (en) 2004-08-11 2015-08-21 Vascular conduit device and system for implanting

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/251,100 Continuation US9138228B2 (en) 2004-08-11 2005-10-14 Vascular conduit device and system for implanting

Publications (1)

Publication Number Publication Date
US20160051800A1 true US20160051800A1 (en) 2016-02-25

Family

ID=37670864

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/251,100 Active 2029-07-10 US9138228B2 (en) 2004-08-11 2005-10-14 Vascular conduit device and system for implanting
US14/832,704 Abandoned US20160051800A1 (en) 2004-08-11 2015-08-21 Vascular conduit device and system for implanting

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/251,100 Active 2029-07-10 US9138228B2 (en) 2004-08-11 2005-10-14 Vascular conduit device and system for implanting

Country Status (2)

Country Link
US (2) US9138228B2 (en)
WO (1) WO2007047212A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150119796A1 (en) * 2013-10-26 2015-04-30 Dc Devices, Inc. Anti-Lockup Thread Attachment Mechanism and Method of Use Thereof
US9642993B2 (en) 2011-12-22 2017-05-09 Corvia Medical, Inc. Methods and devices for intra-atrial shunts having selectable flow rates
US9757107B2 (en) 2009-09-04 2017-09-12 Corvia Medical, Inc. Methods and devices for intra-atrial shunts having adjustable sizes
US9937036B2 (en) 2006-11-07 2018-04-10 Corvia Medical, Inc. Devices and methods for retrievable intra-atrial implants
US10045766B2 (en) 2006-11-07 2018-08-14 Corvia Medical, Inc. Intra-atrial implants to directionally shunt blood
US10413284B2 (en) 2006-11-07 2019-09-17 Corvia Medical, Inc. Atrial pressure regulation with control, sensing, monitoring and therapy delivery
US10568751B2 (en) 2006-11-07 2020-02-25 Corvia Medical, Inc. Devices and methods for coronary sinus pressure relief
US10610210B2 (en) 2006-11-07 2020-04-07 Corvia Medical, Inc. Methods for deploying a prosthesis
US10632292B2 (en) 2014-07-23 2020-04-28 Corvia Medical, Inc. Devices and methods for treating heart failure
US10675450B2 (en) 2014-03-12 2020-06-09 Corvia Medical, Inc. Devices and methods for treating heart failure
US11589854B2 (en) 2011-02-10 2023-02-28 Corvia Medical, Inc. Apparatus and methods to create and maintain an intra-atrial pressure relief opening

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799041B2 (en) * 2004-03-23 2010-09-21 Correx, Inc. Apparatus and method for forming a hole in a hollow organ
US20070265643A1 (en) * 2004-03-23 2007-11-15 Beane Richard M Apparatus and method for suturelessly connecting a conduit to a hollow organ
US9138228B2 (en) 2004-08-11 2015-09-22 Emory University Vascular conduit device and system for implanting
US8277465B2 (en) * 2004-12-15 2012-10-02 Correx, Inc. Apparatus and method for connecting a conduit to a hollow vessel
US20110071455A1 (en) * 2006-04-06 2011-03-24 Beane Richard M Method and apparatus for suturelessly connecting a conduit to a hollow organ
US7846123B2 (en) 2007-04-24 2010-12-07 Emory University Conduit device and system for implanting a conduit device in a tissue wall
EP2194886A2 (en) * 2007-09-25 2010-06-16 Correx, INC. Applicator, assembly, and method for connecting an inlet conduit to a hollow organ
US20110264117A1 (en) * 2008-05-02 2011-10-27 Philadelphia Health & Education Corporation d/ba Drexel University College of Medicine Tissue joining device and instrument for enabling use of a tissue joining device
US8540616B2 (en) 2008-05-05 2013-09-24 Coherex Medical, Inc. Ventricular assist device and related methods
WO2009137530A2 (en) 2008-05-05 2009-11-12 Coherex Medical, Inc. Ventricular assist device and related methods
US8728012B2 (en) * 2008-12-19 2014-05-20 St. Jude Medical, Inc. Apparatus and method for measuring blood vessels
US8905961B2 (en) * 2008-12-19 2014-12-09 St. Jude Medical, Inc. Systems, apparatuses, and methods for cardiovascular conduits and connectors
US9566146B2 (en) * 2008-12-19 2017-02-14 St. Jude Medical, Inc. Cardiovascular valve and valve housing apparatuses and systems
US20100160939A1 (en) * 2008-12-19 2010-06-24 St. Jude Medical, Inc. Systems, apparatuses, and methods for cardiovascular cutting devices and valves
US20110118829A1 (en) * 2009-11-15 2011-05-19 Thoratec Corporation Attachment device and method
US9682180B2 (en) * 2009-11-15 2017-06-20 Thoratec Corporation Attachment system, device and method
US20110118833A1 (en) * 2009-11-15 2011-05-19 Thoratec Corporation Attachment device and method
US8152845B2 (en) 2009-12-30 2012-04-10 Thoratec Corporation Blood pump system with mounting cuff
US9345484B2 (en) 2010-11-11 2016-05-24 Asfora Ip, Llc Deployment tool for sutureless vascular anastomosis connection
US9271733B2 (en) * 2010-11-11 2016-03-01 Willson T. Asfora Sutureless vascular anastomosis connection
WO2012103546A2 (en) 2011-01-28 2012-08-02 Apica Cardiovascular Limited Systems for sealing a tissue wall puncture
US9320875B2 (en) 2011-02-01 2016-04-26 Emory University Systems for implanting and using a conduit within a tissue wall
EP2677943B1 (en) 2011-02-25 2016-08-31 Thoratec Corporation Coupling system for connecting a conduit to biological tissue
WO2012119073A1 (en) 2011-03-02 2012-09-07 Thoratec Corporation Ventricular cuff
WO2012158919A2 (en) 2011-05-18 2012-11-22 Thoratec Corporation Coring knife
WO2013027107A1 (en) 2011-08-23 2013-02-28 Simcha Milo Device for creating temporary access and then closure
US8579790B2 (en) 2012-01-05 2013-11-12 Thoratec Corporation Apical ring for ventricular assist device
US9199019B2 (en) 2012-08-31 2015-12-01 Thoratec Corporation Ventricular cuff
US9981076B2 (en) 2012-03-02 2018-05-29 Tc1 Llc Ventricular cuff
WO2013162741A1 (en) 2012-04-23 2013-10-31 Thoratec Corporation Engagement device and method for deployment of anastomotic clips
EP2948104B1 (en) 2013-01-25 2019-07-24 Apica Cardiovascular Limited Systems for percutaneous access, stabilization and closure of organs
WO2014144085A1 (en) 2013-03-15 2014-09-18 Apk Advanced Medical Technologies, Inc. Devices, systems, and methods for implanting and using a connnector in a tissue wall
US10010447B2 (en) 2013-12-18 2018-07-03 Novartis Ag Systems and methods for subretinal delivery of therapeutic agents
EP3087950A4 (en) * 2013-12-27 2017-08-02 Sun Medical Technology Research Corporation Artificial-blood-vessel connector and artificial-blood-vessel unit
GB2527075A (en) 2014-03-17 2015-12-16 Daassist As Percutaneous system, devices and methods
EP3174478B8 (en) * 2014-08-01 2024-01-03 Star BP, Inc. Coring dilator for defining an aperture in a tissue wall
WO2016070025A1 (en) 2014-10-31 2016-05-06 Thoratec Corporation Apical connectors and instruments for use in a heart wall
WO2016210277A1 (en) 2015-06-26 2016-12-29 Scott & White Healthcare Vascular graft securement apparatuses and related kits and methods
US10893847B2 (en) 2015-12-30 2021-01-19 Nuheart As Transcatheter insertion system
WO2018039124A1 (en) 2016-08-22 2018-03-01 Tc1 Llc Heart pump cuff
US10335528B2 (en) 2016-10-07 2019-07-02 Nuheart As Transcatheter method and system for the delivery of intracorporeal devices
US10537672B2 (en) 2016-10-07 2020-01-21 Nuheart As Transcatheter device and system for the delivery of intracorporeal devices
DE112018000587T5 (en) * 2017-01-30 2019-11-28 Scivad Llc Flexible protection device for circulatory support apparatus and related systems and methods
WO2018156897A1 (en) 2017-02-24 2018-08-30 Tc1 Llc Minimally invasive methods and devices for ventricular assist device implantation
US10888646B2 (en) 2017-04-28 2021-01-12 Nuheart As Ventricular assist device and method
US10537670B2 (en) 2017-04-28 2020-01-21 Nuheart As Ventricular assist device and method
US10888414B2 (en) 2019-03-20 2021-01-12 inQB8 Medical Technologies, LLC Aortic dissection implant
KR20230155467A (en) * 2021-03-17 2023-11-10 3알 라이프 사이언스 코퍼레이션 Para-aortic blood pump device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6241743B1 (en) * 1999-05-13 2001-06-05 Intellicardia, Inc. Anastomosis device and method
US20050159730A1 (en) * 2004-01-20 2005-07-21 Kathrani Biten K. Method for accessing an operative space

Family Cites Families (178)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3540451A (en) 1967-02-28 1970-11-17 William V Zeman Drainage cannula with tissue connecting assemblies on both ends
US3512519A (en) 1967-10-26 1970-05-19 Robert M Hall Anatomical biopsy sampler
US3856021A (en) * 1973-10-01 1974-12-24 A Mcintosh Device for treatment of bloat of ruminants
US4336819A (en) * 1979-12-06 1982-06-29 Yokogawa Electric Works, Ltd. Pneumatic converter
US4366819A (en) 1980-11-17 1983-01-04 Kaster Robert L Anastomotic fitting
US4904264A (en) 1984-05-08 1990-02-27 Fried. Krupp Gmbh Artifical joint system
US4769031A (en) 1986-06-25 1988-09-06 Mcgough Edwin C Ventricular access device and method
US5098369A (en) 1987-02-27 1992-03-24 Vascor, Inc. Biocompatible ventricular assist and arrhythmia control device including cardiac compression pad and compression assembly
US5256160A (en) * 1989-11-06 1993-10-26 Mectra Labs, Inc. Medical device valving mechanism
US5139517A (en) 1989-11-08 1992-08-18 Corral David F Orthotopic intraventricular heart pump
US5129913A (en) 1990-10-04 1992-07-14 Norbert Ruppert Surgical punch apparatus
JP3279589B2 (en) 1991-05-23 2002-04-30 ウエスト電気株式会社 Printed wiring board
US5158563A (en) 1991-06-21 1992-10-27 Cosman Bard C Single-operator hemorrhoid ligator
US5456714A (en) * 1991-07-04 1995-10-10 Owen; Earl R. Tubular surgical implant having a locking ring and flange
US5222980A (en) 1991-09-27 1993-06-29 Medtronic, Inc. Implantable heart-assist device
FR2685208B1 (en) 1991-12-23 1998-02-27 Ela Medical Sa VENTRICULAR CANNULA DEVICE.
US5407427A (en) 1992-06-16 1995-04-18 Loma Linda University Medical Center Trocar facilitator for endoscopic surgery
US5447533A (en) 1992-09-03 1995-09-05 Pacesetter, Inc. Implantable stimulation lead having an advanceable therapeutic drug delivery system
US5797960A (en) 1993-02-22 1998-08-25 Stevens; John H. Method and apparatus for thoracoscopic intracardiac procedures
US5582616A (en) 1994-08-05 1996-12-10 Origin Medsystems, Inc. Surgical helical fastener with applicator
US5695504A (en) * 1995-02-24 1997-12-09 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US5904697A (en) 1995-02-24 1999-05-18 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US6406453B1 (en) * 1995-04-26 2002-06-18 Medtronic Xomed, Inc. Composite ventilation tube
IL124038A (en) 1995-10-13 2004-02-19 Transvascular Inc Apparatus for bypassing arterial obstructions and/or performing other transvascular procedures
US5824070A (en) 1995-10-30 1998-10-20 Jarvik; Robert Hybrid flow blood pump
US5755697A (en) 1995-11-22 1998-05-26 Jones; Calvin E. Self-tunneling, self-securing percutaneous catheterization device and method of use thereof
US6451041B1 (en) 1996-02-29 2002-09-17 Stephen P. Moenning Apparatus for protecting a port site opening in the wall of a body cavity and reducing electrosurgical injuries
US5810836A (en) 1996-03-04 1998-09-22 Myocardial Stents, Inc. Device and method for trans myocardial revascularization (TMR)
US5782844A (en) 1996-03-05 1998-07-21 Inbae Yoon Suture spring device applicator
US5810851A (en) 1996-03-05 1998-09-22 Yoon; Inbae Suture spring device
US5871495A (en) * 1996-09-13 1999-02-16 Eclipse Surgical Technologies, Inc. Method and apparatus for mechanical transmyocardial revascularization of the heart
US6984241B2 (en) 1996-09-13 2006-01-10 Tendon Technology, Ltd. Apparatus and methods for tendon or ligament repair
US5655548A (en) 1996-09-16 1997-08-12 Circulation, Inc. Method for treatment of ischemic heart disease by providing transvenous myocardial perfusion
EP1011458A2 (en) * 1996-11-08 2000-06-28 Russell A. Houser Percutaneous bypass graft and securing system
DE19650204C2 (en) 1996-12-04 2000-09-21 Aesculap Ag & Co Kg Surgical punch
US5893369A (en) 1997-02-24 1999-04-13 Lemole; Gerald M. Procedure for bypassing an occlusion in a blood vessel
US5944730A (en) * 1997-05-19 1999-08-31 Cardio Medical Solutions, Inc. Device and method for assisting end-to-side anastomosis
US6409739B1 (en) * 1997-05-19 2002-06-25 Cardio Medical Solutions, Inc. Device and method for assisting end-to side anastomosis
US5827316A (en) 1997-06-05 1998-10-27 Atrion Medical Products, Inc. Rotating aortic punch
US6022367A (en) 1997-06-18 2000-02-08 United States Surgical Surgical apparatus for forming a hole in a blood vessel
US6039748A (en) 1997-08-05 2000-03-21 Femrx, Inc. Disposable laparoscopic morcellator
US6080113A (en) 1998-09-11 2000-06-27 Imagyn Medical Technologies California, Inc. Incisional breast biopsy device
US6390976B1 (en) 1997-09-17 2002-05-21 Origin Medsystems, Inc. System to permit offpump beating heart coronary bypass surgery
US5984956A (en) 1997-10-06 1999-11-16 Heartstent Corporation Transmyocardial implant
US5976174A (en) 1997-12-15 1999-11-02 Ruiz; Carlos E. Medical hole closure device and methods of use
US6022324A (en) 1998-01-02 2000-02-08 Skinner; Bruce A. J. Biopsy instrument
US5980448A (en) 1998-01-28 1999-11-09 Vascor, Inc. Single chamber blood pump
US6007576A (en) * 1998-02-06 1999-12-28 Mcclellan; Scott B. End to side anastomic implant
US6651670B2 (en) * 1998-02-13 2003-11-25 Ventrica, Inc. Delivering a conduit into a heart wall to place a coronary vessel in communication with a heart chamber and removing tissue from the vessel or heart wall to facilitate such communication
US7027398B2 (en) * 2001-04-12 2006-04-11 General Instrument Corporation Method and apparatus for monitoring voice conversations from customer premises equipment
US6808498B2 (en) 1998-02-13 2004-10-26 Ventrica, Inc. Placing a guide member into a heart chamber through a coronary vessel and delivering devices for placing the coronary vessel in communication with the heart chamber
US20050192604A1 (en) * 1998-02-13 2005-09-01 Carson Dean F. Methods and devices for placing a conduit in fluid communication with a target vessel and a source of blood
US6296630B1 (en) 1998-04-08 2001-10-02 Biocardia, Inc. Device and method to slow or stop the heart temporarily
US20050101983A1 (en) 1998-05-29 2005-05-12 By-Pass,Inc. Method and apparatus for forming apertures in blood vessels
US6607541B1 (en) 1998-06-03 2003-08-19 Coalescent Surgical, Inc. Tissue connector apparatus and methods
EP1005294A1 (en) 1998-06-10 2000-06-07 Advanced Bypass Technologies, Inc. Sutureless anastomosis systems
AU4841799A (en) 1998-06-29 2000-01-17 Nastech Pharmaceutical Company, Inc Methods and pharmaceutical formulations for preventing and treating motion sickness
US6641610B2 (en) 1998-09-10 2003-11-04 Percardia, Inc. Valve designs for left ventricular conduits
EP1112043B1 (en) 1998-09-10 2006-04-05 Percardia, Inc. Tmr shunt
EP1112041A1 (en) 1998-09-10 2001-07-04 Percardia, Inc. Tmr shunt
US6290728B1 (en) 1998-09-10 2001-09-18 Percardia, Inc. Designs for left ventricular conduit
US6254564B1 (en) 1998-09-10 2001-07-03 Percardia, Inc. Left ventricular conduit with blood vessel graft
CA2287087C (en) 1998-10-23 2007-12-04 Ethicon Endo-Surgery, Inc. Surgical device for the collection of soft tissue
US6080176A (en) 1998-10-30 2000-06-27 Atrion Medical Products, Inc. Medical punch with high shear angle cutting edges
US6001056A (en) 1998-11-13 1999-12-14 Baxter International Inc. Smooth ventricular assist device conduit
US6024755A (en) * 1998-12-11 2000-02-15 Embol-X, Inc. Suture-free clamp and sealing port and methods of use
US6210397B1 (en) 1999-01-13 2001-04-03 A-Med Systems, Inc. Sealing cannula device
US6695859B1 (en) 1999-04-05 2004-02-24 Coalescent Surgical, Inc. Apparatus and methods for anastomosis
US6626921B2 (en) 1999-04-16 2003-09-30 Integrated Vascular Interventional Technologies, L.C. Externally positioned anvil apparatus for cutting anastomosis
AU5150600A (en) 1999-05-18 2000-12-05 Vascular Innovations, Inc. Tissue punch
US6080173A (en) 1999-05-26 2000-06-27 Idx Medical Ltd. Tissue punching instrument
AU5724000A (en) * 1999-05-28 2000-12-18 Board Of Trustees Of The Leland Stanford Junior University Anastomosis system and methods for use
US6146325A (en) 1999-06-03 2000-11-14 Arrow International, Inc. Ventricular assist device
US6699256B1 (en) 1999-06-04 2004-03-02 St. Jude Medical Atg, Inc. Medical grafting apparatus and methods
US6346071B1 (en) 1999-07-16 2002-02-12 World Heart Corporation Inflow conduit assembly for a ventricular assist device
US6458140B2 (en) * 1999-07-28 2002-10-01 Vasconnect, Inc. Devices and methods for interconnecting vessels
US6638237B1 (en) 1999-08-04 2003-10-28 Percardia, Inc. Left ventricular conduits and methods for delivery
US7033372B1 (en) 1999-08-04 2006-04-25 Percardia, Inc. Corkscrew reinforced left ventricle to coronary artery channel
FR2799362B1 (en) 1999-10-11 2002-01-18 Perouse Implant Lab COLLAR PROSTHESIS
US6669708B1 (en) 1999-12-09 2003-12-30 Michael Nissenbaum Devices, systems and methods for creating sutureless on-demand vascular anastomoses and hollow organ communication channels
US7842068B2 (en) 2000-12-07 2010-11-30 Integrated Vascular Systems, Inc. Apparatus and methods for providing tactile feedback while delivering a closure device
WO2001060261A2 (en) 2000-02-18 2001-08-23 Stryker Corporation Surgical tool system with variable length attachments
AU2001244497A1 (en) * 2000-03-20 2001-10-03 By-Pass, Inc. Transvascular bypass method and system
US6551332B1 (en) 2000-03-31 2003-04-22 Coalescent Surgical, Inc. Multiple bias surgical fastener
US7232421B1 (en) 2000-05-12 2007-06-19 C. R. Bard, Inc. Agent delivery systems
US6689147B1 (en) 2000-06-13 2004-02-10 J. Kenneth Koster, Jr. Anastomosis punch device and method
US6726648B2 (en) 2000-08-14 2004-04-27 The University Of Miami Valved apical conduit with trocar for beating-heart ventricular assist device placement
WO2002017831A2 (en) 2000-08-30 2002-03-07 John Hopkins University Devices for intraocular drug delivery
US20030158545A1 (en) 2000-09-28 2003-08-21 Arthrocare Corporation Methods and apparatus for treating back pain
US6551319B2 (en) 2000-11-08 2003-04-22 The Cleveland Clinic Foundation Apparatus for implantation into bone
US6673043B1 (en) 2000-11-14 2004-01-06 Levram Medical Devices, Ltd. Cannulation device and apparatus
US20040236170A1 (en) * 2000-11-15 2004-11-25 Ducksoo Kim Method for surgically joining a ventricular assist device to the cardiovascular system of a living subject using a piercing introducer assembly
US20020177865A1 (en) 2000-12-06 2002-11-28 Abbot Laboratories Device and method for forming a hole in a tissue wall of a patient
US20020095210A1 (en) 2001-01-16 2002-07-18 Finnegan Michael T. Heart pump graft connector and system
US6537300B2 (en) 2001-05-30 2003-03-25 Scimed Life Systems, Inc. Implantable obstruction device for septal defects
US6994666B2 (en) 2001-06-05 2006-02-07 Edwards Lifesciences Corporation Non-porous smooth ventricular assist device conduit
AU2002315480A1 (en) 2001-06-29 2003-03-03 Medquest Products, Inc. Cannulation apparatus and method
US8292908B2 (en) 2001-06-29 2012-10-23 World Heart Corporation Endoscopic cannulation apparatus and method
US20050154411A1 (en) 2001-08-23 2005-07-14 Breznock Eugene M. Method and apparatus for trephinating body vessels and hollow organ walls
US6863677B2 (en) 2001-08-23 2005-03-08 Eugene Michael Breznock Method and apparatus for trephinating body vessels and hollow organ walls
US6824071B1 (en) 2001-08-27 2004-11-30 Glas-Craft, Inc. Gel-coat application method and apparatus
US6989003B2 (en) 2001-08-31 2006-01-24 Conmed Corporation Obturator and cannula for a trocar adapted for ease of insertion and removal
US6776787B2 (en) 2001-10-05 2004-08-17 Trinh D. Phung Surgical punch device
JP3772107B2 (en) * 2001-10-12 2006-05-10 オリンパス株式会社 Endoscope system
US6942672B2 (en) 2001-10-23 2005-09-13 Vascor, Inc. Method and apparatus for attaching a conduit to the heart or a blood vessel
US8231639B2 (en) 2001-11-28 2012-07-31 Aptus Endosystems, Inc. Systems and methods for attaching a prosthesis within a body lumen or hollow organ
US7182771B1 (en) 2001-12-20 2007-02-27 Russell A. Houser Vascular couplers, techniques, methods, and accessories
US7637919B2 (en) * 2002-01-30 2009-12-29 Olympus Corporation Anastomosis system for performing anastomosis in body
US20030181843A1 (en) * 2002-06-11 2003-09-25 Scout Medical Technologies, Llc Device and method providing arterial blood flow for perfusion of ischemic myocardium
US7258694B1 (en) 2002-06-17 2007-08-21 Origin Medsystems, Inc. Medical punch and surgical procedure
US6732501B2 (en) 2002-06-26 2004-05-11 Heartware, Inc. Ventricular connector
US20040167547A1 (en) 2002-07-03 2004-08-26 Beane Richard M. Surgical suture placement device
US7258679B2 (en) 2002-08-09 2007-08-21 Vascor, Inc. Inflow conduit for ventricular assist device
CA2714875C (en) 2002-08-28 2014-01-07 Heart Leaflet Technologies, Inc. Method and device for treating diseased valve
US7018384B2 (en) 2002-08-29 2006-03-28 Medtronic, Inc. Medical passing device and method
US8066724B2 (en) 2002-09-12 2011-11-29 Medtronic, Inc. Anastomosis apparatus and methods
US6802806B2 (en) 2002-09-23 2004-10-12 Cleveland Clinic Foundation Apparatus for use with an inflow cannula of ventricular assist device
DE60317909T2 (en) 2002-09-23 2008-11-13 NMT Medical, Inc., Boston DEVICE FOR PUNCTING A SEPTUMS
WO2004028348A2 (en) 2002-09-26 2004-04-08 Savacor, Inc. Cardiovascular anchoring device and method of deploying same
US7103418B2 (en) 2002-10-02 2006-09-05 Medtronic, Inc. Active fluid delivery catheter
US7077801B2 (en) 2003-02-19 2006-07-18 Corlife Gbr Methods and devices for improving cardiac output
US7048681B2 (en) 2003-03-28 2006-05-23 Terumo Corporation Method and apparatus for adjusting a length of the inflow conduit on a ventricular assist device
US8182768B2 (en) 2003-04-14 2012-05-22 Perkinelmer Las, Inc. Interface assembly for pre-concentrating analytes in chromatography
ES2423514T3 (en) 2003-04-28 2013-09-20 Erwin De Winter Threaded anchoring device
US7494459B2 (en) 2003-06-26 2009-02-24 Biophan Technologies, Inc. Sensor-equipped and algorithm-controlled direct mechanical ventricular assist device
US7172550B2 (en) 2003-07-31 2007-02-06 Terumo Corporation Adjustable coupling mechanism for the conduit on a ventricular assist device
US20050075656A1 (en) 2003-09-30 2005-04-07 Jean Beaupre Applier for a surgical device
US20050149093A1 (en) 2003-10-30 2005-07-07 Pokorney James L. Valve bypass graft device, tools, and method
WO2005046783A1 (en) 2003-11-12 2005-05-26 Phase One Medical Llc Medical device anchor and delivery system
US7056286B2 (en) 2003-11-12 2006-06-06 Adrian Ravenscroft Medical device anchor and delivery system
ATE502672T1 (en) 2003-12-11 2011-04-15 Cook Inc HEMOSTASIS VALVE ARRANGEMENT
US20050137609A1 (en) 2003-12-17 2005-06-23 Gerald Guiraudon Universal cardiac introducer
US20050187568A1 (en) 2004-02-20 2005-08-25 Klenk Alan R. Devices and methods for closing a patent foramen ovale with a coil-shaped closure device
DE102004014337B4 (en) 2004-03-22 2012-03-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Device for connecting a device for biventricular support of a heart
US7510561B2 (en) 2004-03-23 2009-03-31 Correx, Inc. Apparatus and method for connecting a conduit to a hollow organ
US20070265643A1 (en) * 2004-03-23 2007-11-15 Beane Richard M Apparatus and method for suturelessly connecting a conduit to a hollow organ
US7799041B2 (en) 2004-03-23 2010-09-21 Correx, Inc. Apparatus and method for forming a hole in a hollow organ
US7824358B2 (en) 2004-07-22 2010-11-02 Thoratec Corporation Heart pump connector
US9138228B2 (en) 2004-08-11 2015-09-22 Emory University Vascular conduit device and system for implanting
US20060036313A1 (en) 2004-08-11 2006-02-16 Vassiliades Thomas A Apicoaortic conduit connector and method for using
CA2583591C (en) 2004-10-02 2018-10-30 Christoph Hans Huber Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support
US8277465B2 (en) 2004-12-15 2012-10-02 Correx, Inc. Apparatus and method for connecting a conduit to a hollow vessel
US8882787B2 (en) 2005-03-02 2014-11-11 St. Jude Medical, Cardiology Division, Inc. Tissue anchor apparatus
US7846179B2 (en) 2005-09-01 2010-12-07 Ovalis, Inc. Suture-based systems and methods for treating septal defects
US8337446B2 (en) 2005-09-02 2012-12-25 Pokorney James L Prosthetic heart valve housing
US9283314B2 (en) 2005-09-21 2016-03-15 Abiomed, Inc. Cannula systems
US8343028B2 (en) 2005-10-19 2013-01-01 Thoratec Corporation Ventricular pump coupling
US20070100363A1 (en) 2005-10-27 2007-05-03 Dollar Michael L Aortic lancet
US20070167969A1 (en) 2006-01-13 2007-07-19 Rajesh Pandey Surgical cutting tool for making precise and accurate incisions
US10368899B2 (en) 2006-01-13 2019-08-06 Heartware, Inc. Surgical tool for coring precise holes and providing for retrieval of tissue
US8088138B2 (en) 2006-01-23 2012-01-03 Heartware, Inc. Surgical tool
EP1990067A3 (en) 2006-02-23 2010-12-15 Levitronix LLC A pump-outflow-cannula and a blood managing system
FR2902343B1 (en) 2006-06-15 2008-09-05 Carpentier Matra Carmat DEVICE FOR RAPID CONNECTION BETWEEN A COMPLETELY IMPLANTABLE CARDIAC PROSTHESIS AND NATURAL OREILLETTES
US8556930B2 (en) 2006-06-28 2013-10-15 Abbott Laboratories Vessel closure device
US7931581B2 (en) 2006-07-06 2011-04-26 Apaxis Medical, Inc. Automated surgical connector
US20080039883A1 (en) 2006-08-10 2008-02-14 Nohilly Martin J Anti-coring device for a surgical morcellator
US7905823B2 (en) 2006-08-30 2011-03-15 Circulite, Inc. Devices, methods and systems for establishing supplemental blood flow in the circulatory system
US20080058846A1 (en) 2006-08-31 2008-03-06 Khashayar Vosough Mechanical tissue morcellator
US20080177301A1 (en) 2006-10-02 2008-07-24 The Cleveland Clinic Foundation Apparatus and method for anchoring a prosthetic structure to a body tissue
US8070799B2 (en) 2006-12-19 2011-12-06 Sorin Biomedica Cardio S.R.L. Instrument and method for in situ deployment of cardiac valve prostheses
WO2008088835A1 (en) 2007-01-18 2008-07-24 Valvexchange Inc. Tools for removal and installation of exchangeable cardiovascular valves
WO2008101193A2 (en) 2007-02-16 2008-08-21 Emory University Apparatus and methods for treating the aorta
US8308746B2 (en) 2007-04-12 2012-11-13 Applied Medical Resources Corporation Method and apparatus for tissue morcellation
US7846123B2 (en) 2007-04-24 2010-12-07 Emory University Conduit device and system for implanting a conduit device in a tissue wall
AU2008262426B2 (en) 2007-06-08 2014-10-23 St. Jude Medical, Inc. Devices for transcatheter prosthetic heart valve implantation and access closure
EP2194886A2 (en) 2007-09-25 2010-06-16 Correx, INC. Applicator, assembly, and method for connecting an inlet conduit to a hollow organ
US8480657B2 (en) 2007-10-31 2013-07-09 Ethicon Endo-Surgery, Inc. Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ
US7942805B2 (en) 2007-12-27 2011-05-17 Heartware, Inc. VAD connector plug
US20110004235A1 (en) 2008-02-08 2011-01-06 Sundt Iii Thoralf M Transapical heart port
US9566146B2 (en) 2008-12-19 2017-02-14 St. Jude Medical, Inc. Cardiovascular valve and valve housing apparatuses and systems
US9682180B2 (en) 2009-11-15 2017-06-20 Thoratec Corporation Attachment system, device and method
US20110118833A1 (en) 2009-11-15 2011-05-19 Thoratec Corporation Attachment device and method
US20120071922A1 (en) 2010-09-20 2012-03-22 Shanley John F System for providing surgical access
WO2012103546A2 (en) 2011-01-28 2012-08-02 Apica Cardiovascular Limited Systems for sealing a tissue wall puncture
US9320875B2 (en) 2011-02-01 2016-04-26 Emory University Systems for implanting and using a conduit within a tissue wall
DE102011117892A1 (en) 2011-10-31 2013-05-02 Berlin Heart Gmbh Connecting element for mounting a blood pump or a cannula on a heart
US8579790B2 (en) 2012-01-05 2013-11-12 Thoratec Corporation Apical ring for ventricular assist device
WO2014107593A1 (en) 2013-01-04 2014-07-10 Heartware, Inc. Access port

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6241743B1 (en) * 1999-05-13 2001-06-05 Intellicardia, Inc. Anastomosis device and method
US20050159730A1 (en) * 2004-01-20 2005-07-21 Kathrani Biten K. Method for accessing an operative space

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10413284B2 (en) 2006-11-07 2019-09-17 Corvia Medical, Inc. Atrial pressure regulation with control, sensing, monitoring and therapy delivery
US10624621B2 (en) 2006-11-07 2020-04-21 Corvia Medical, Inc. Devices and methods for the treatment of heart failure
US10398421B2 (en) 2006-11-07 2019-09-03 DC Devices Pty. Ltd. Devices and methods for the treatment of heart failure
US9937036B2 (en) 2006-11-07 2018-04-10 Corvia Medical, Inc. Devices and methods for retrievable intra-atrial implants
US10045766B2 (en) 2006-11-07 2018-08-14 Corvia Medical, Inc. Intra-atrial implants to directionally shunt blood
US10188375B2 (en) 2006-11-07 2019-01-29 Corvia Medical, Inc. Devices, systems, and methods to treat heart failure having an improved flow-control mechanism
US10292690B2 (en) 2006-11-07 2019-05-21 Corvia Medical, Inc. Apparatus and methods to create and maintain an intra-atrial pressure relief opening
US11690609B2 (en) 2006-11-07 2023-07-04 Corvia Medical, Inc. Devices and methods for the treatment of heart failure
US10413286B2 (en) 2006-11-07 2019-09-17 Corvia Medical, Inc. Intra-atrial implants having variable thicknesses to accommodate variable thickness in septum
US11166705B2 (en) 2006-11-07 2021-11-09 Corvia Medical, Inc. Intra-atrial implants made of non-braided material
US10610210B2 (en) 2006-11-07 2020-04-07 Corvia Medical, Inc. Methods for deploying a prosthesis
US10568751B2 (en) 2006-11-07 2020-02-25 Corvia Medical, Inc. Devices and methods for coronary sinus pressure relief
US9757107B2 (en) 2009-09-04 2017-09-12 Corvia Medical, Inc. Methods and devices for intra-atrial shunts having adjustable sizes
US11589854B2 (en) 2011-02-10 2023-02-28 Corvia Medical, Inc. Apparatus and methods to create and maintain an intra-atrial pressure relief opening
US11759339B2 (en) 2011-03-04 2023-09-19 Corvia Medical, Inc. Devices and methods for coronary sinus pressure relief
US10376680B2 (en) 2011-12-22 2019-08-13 Corvia Medical, Inc. Methods, systems, and devices for resizable intra-atrial shunts
US9642993B2 (en) 2011-12-22 2017-05-09 Corvia Medical, Inc. Methods and devices for intra-atrial shunts having selectable flow rates
US20150119796A1 (en) * 2013-10-26 2015-04-30 Dc Devices, Inc. Anti-Lockup Thread Attachment Mechanism and Method of Use Thereof
US10675450B2 (en) 2014-03-12 2020-06-09 Corvia Medical, Inc. Devices and methods for treating heart failure
US10632292B2 (en) 2014-07-23 2020-04-28 Corvia Medical, Inc. Devices and methods for treating heart failure

Also Published As

Publication number Publication date
US9138228B2 (en) 2015-09-22
US20060089707A1 (en) 2006-04-27
WO2007047212A1 (en) 2007-04-26

Similar Documents

Publication Publication Date Title
US9138228B2 (en) Vascular conduit device and system for implanting
US11027103B2 (en) Conduit device and system for implanting a conduit device in a tissue wall
US10499949B2 (en) Systems for implanting and using a conduit within a tissue wall
US9572917B2 (en) Devices, methods and systems for establishing supplemental blood flow in the circulatory system
US20060036313A1 (en) Apicoaortic conduit connector and method for using
EP2713894B1 (en) System for minimally invasive repair of heart valve leaflets
US7534260B2 (en) Treatments for a patient with congestive heart failure
US20100161040A1 (en) Cardiovascular valve and valve housing apparatuses and systems
US20070010781A1 (en) Implantable aorto-coronary sinus shunt for myocardial revascularization
US20070010780A1 (en) Methods of implanting an aorto-coronary sinus shunt for myocardial revascularization
WO2007002616A2 (en) Implantable aorto-coronary sinus shunt for myocardial revascularization and method of usng the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: EMORY UNIVERSITY, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VASSILIADES, THOMAS A.;REEL/FRAME:044301/0912

Effective date: 20060109

Owner name: GEORGIA TECH RESEARCH CORPORATION, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YOGANATHAN, AJIT;JIMENEZ, JORGE HERNAN;SIGNING DATES FROM 20171025 TO 20171102;REEL/FRAME:044301/0846

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION