US20150312280A1 - Media gateway and media gateway control unit - Google Patents

Media gateway and media gateway control unit Download PDF

Info

Publication number
US20150312280A1
US20150312280A1 US14/792,804 US201514792804A US2015312280A1 US 20150312280 A1 US20150312280 A1 US 20150312280A1 US 201514792804 A US201514792804 A US 201514792804A US 2015312280 A1 US2015312280 A1 US 2015312280A1
Authority
US
United States
Prior art keywords
media gateway
signaling
data
control unit
message
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/792,804
Inventor
Thomas Belling
Franz Kalleitner
Norbert Seitter
Andreas Trapp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to US14/792,804 priority Critical patent/US20150312280A1/en
Publication of US20150312280A1 publication Critical patent/US20150312280A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/66Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/102Gateways
    • H04L65/1023Media gateways
    • H04L65/103Media gateways in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1016IP multimedia subsystem [IMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/102Gateways
    • H04L65/1043Gateway controllers, e.g. media gateway control protocol [MGCP] controllers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M7/00Arrangements for interconnection between switching centres
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M7/00Arrangements for interconnection between switching centres
    • H04M7/0024Services and arrangements where telephone services are combined with data services
    • H04M7/0039Services and arrangements where telephone services are combined with data services where the data service is provided by a stream of packets which are rendered in real time by the receiving terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M7/00Arrangements for interconnection between switching centres
    • H04M7/0093Arrangements for interconnection between switching centres signalling arrangements in networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M7/00Arrangements for interconnection between switching centres
    • H04M7/06Arrangements for interconnection between switching centres using auxiliary connections for control or supervision, e.g. where the auxiliary connection is a signalling system number 7 link
    • H04M7/066Arrangements for interconnection between switching centres using auxiliary connections for control or supervision, e.g. where the auxiliary connection is a signalling system number 7 link where the auxiliary connection is via an Internet Protocol network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q3/00Selecting arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q3/00Selecting arrangements
    • H04Q3/0016Arrangements providing connection between exchanges
    • H04Q3/0025Provisions for signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements

Definitions

  • the invention relates, inter alia, to a method for forwarding signaling data in an interworking unit, with the operation:
  • CS first data transmission network
  • IMS second data transmission network
  • IMS IP Multimedia Subsystem
  • the IMS is also used for other access networks, for example “Wireless Local Area Network” (WLAN) and “Digital Subscriber Line” (DSL). It is precisely in these scenarios that it is initially to be expected that voice and video telephony will be undertaken via the IMS.
  • Video telephony can also be used in a public telephone network, i.e. a Public Switched Telephone Network (PSTN), with the same in-band video-telephony-specific protocols being used as a rule for transport and signaling as in the 3GPP CS domain. Interworking from the PSTN to the IMS is also necessary.
  • PSTN Public Switched Telephone Network
  • the standard has merely described interworking between IMS and CS domain or PSTN for voice telephony only.
  • the present invention relates to the appropriate interworking for other services, especially for multimedia services, for example for video telephony.
  • a demand for this is to be foreseen, since video telephony is increasing in significance both in the 3GPP CS domain and also in IMS, here in particular for access networks such as WLAN or DSL, or newly-arising network access options (e.g. Worldwide Interoperability for Microwave Access (WiMAX).
  • WiMAX Worldwide Interoperability for Microwave Access
  • the interworking between IMS and a CS network i.e. a PSTN or a 3GPP CS domain, is specified in 3GPP TS 29.163 from 3GPP Release 6 onwards only for pure voice telephony.
  • the interworking of what is known as the call-control signaling takes place in the Media Gateway Control Function (MGCF).
  • the interworking of the payload connection i.e. the onward transfer and repackaging as well as if necessary the transcoding of the payload data, is undertaken in the so-called Internet Multimedia—Media Gateway (IM-MGW).
  • the MGCF controls the IM-MGW by the H.248 protocol standardized by the ITU-T via the Mn interface, as further described in 3GPP TS 29.332.
  • BICC Bearer Independent Call Control
  • ITU-T International Telecommunication Union—Telecommunication Standardization Sector
  • ISUP ISDN User Part
  • ITU-T Q.761 ff ITU-T Q.761 ff
  • TDM Time Division Multiplex
  • IP Internet Protocol
  • ATM Asynchronous Transfer mode
  • the negotiation about whether pure voice telephony or video telephony are used can be undertaken for ISUP during the call control signaling for setting up the call by the so-called ISUP UDI Fallback procedure.
  • this negotiation can occur by means the Service Change and UDI Fallback (SCUDIF) standardized in 3GPP TS 23.172, which also allows a change between voice telephony and video telephony during a call.
  • SCUDIF Service Change and UDI Fallback
  • Both UDI Fallback and SCUDIF use out-of-band signaling.
  • ISUP and BICC it is possible both for ISUP and BICC to not use the procedure and only attempt a call setup for video telephony, and, in the event of video telephony not being supported, abort the call setup.
  • the negotiation of the voice and video codecs used for video telephony is undertaken “in-band”, after video telephony has already been selected beforehand and a corresponding bearer connection has been established.
  • a so-called BS30 data connection with a bandwidth of 64 kbyte/s is used for video telephony in the network.
  • the H.324 protocol suite standardized by the ITU-T is used, with the variant H.324M adapted for mobile telephony being selected in the 3GPP CS domain.
  • the configuration of the multimedia connection is negotiated in-band via the ITU-T standardized H.245 protocol, in particular the video codec and speech codec used and the details of the respective codec configuration Voice and video as well as the signaling data are multiplexed by the H.223 protocol in the same bearer connection.
  • the 3GPP CS domain TS 26.110 further describes the use of the H.324 protocol suite or protocol series, with especially the so-called H.324M configuration being selected.
  • the capabilities of the station sending the message are transmitted by so-called “Terminal Capability Set” H.245 messages. Such messages are sent independently of the two stations. These described capabilities contain the following information: Audio and video codec and their specific characteristics or their variants. Functional scope of the multiplexer, in detail which adaptation layer is supported (e.g. simple or nested multiplexing) and its mobile-specific extensions.
  • the answering party After receiving this message the answering party sends an SDP Answer message containing the codec from the list that it also supports and wishes to use.
  • the answering party may not specify any codecs that were not contained in the list of the SDP offer.
  • RTP Real Time Transport Protocol
  • IETF RFC 3550 IETF RFC 3550.
  • 3GPP IMS over the General Packet Radio Service (GPRS) access network
  • 3GPP TS 26.235 describes the codecs to be used for video telephony.
  • Video codec Support of H.263 prescribed
  • MP4V-ES simple video profile level 0
  • Speech codec Support of NB-AMR (Narrow Band Adaptive MultiRate) prescribed
  • WB-AMR Wide Band AMR
  • IMS codecs for GPRS (General Packet Radio Service) access network
  • Video codec Support of H.263 prescribed
  • MP4V-ES simple video profile level 0
  • Speech codec Support of NB-AMR and WB-AMR prescribed.
  • MPEG-4 IETF RFC 3016 parallel RTP media streams are synchronized by RTP timestamps which are negotiated by the Real Time Control Protocol (RTCP, see IETF RFC 3550).
  • RTCP Real Time Control Protocol
  • codecs can also be supported by the stations, especially if the CS stations are located in the PSTN or the IMS stations do not use GPRS as the access network.
  • An aspect of the embodiments is to specify a simple method for signaling between two different data transmission networks.
  • an aspect is to specify simple methods for interworking of the signaling between two different data transmission networks, with signaling in the first data transmission network being sent or received in-band in a bearer which is assigned to a transmission service between two stations or a group of stations assigned from a network interface unit (e.g. IM-MGW) whereas the signaling in the second data transmission network is sent or received out-of-band in a control unit (e.g. MGCF) which exchanges messages with the first network unit.
  • a network interface unit e.g. IM-MGW
  • a control unit e.g. MGCF
  • the method in accordance with the invention contains the following operations:
  • the data transmission connection is a connection at a protocol level which is located above the protocol layer for physical data transmission.
  • the data transmission connection is set up and also cleared down with the aid of signaling messages.
  • the data transmission connection is assigned its own identifier.
  • the data transmission connection is a logical channel, i.e. a connection at a higher protocol level.
  • the data transmission connection is used for transmission of at least two different types of payload data, especially voice data and video data.
  • multimedia is also used in this context.
  • the separation is undertaken in one development with the aid of the values of the received data, especially by reading this data and subsequently comparing it with comparison data.
  • the first signaling method is a signaling method in which signaling data and payload data are transmitted over the same transmission link, i.e. a so-called in-band method.
  • the second signaling method by contrast is a signaling method in which signaling data is transmitted over a different transmission link from the payload data, i.e. an out-of-band method.
  • the first data transmission network is a circuit-switched data transmission network, a data transmission network with data transmission in accordance with IP (Internet Protocol) or an ATM (Asynchronous Transfer) data transmission network.
  • the circuit-switched data transmission network is for example a PSTN (Public Switching Telephone Network), an ISDN (Integrated Services Digital Network), a PLMN (GSM (Global System for Mobile Communications) Public Land Mobile Network) or a 3GPP CS domain.
  • the second data transmission network by contrast is a data transmission network operating in accordance with the Internet Protocol, i.e. in which the payload data is transmitted in accordance with Internet protocol of the IETF (Internet Engineering Task Force) and in which signaling is especially in accordance with SIP, for example an IMS.
  • the signaling data is transmitted in signaling data packets and the payload data in payload data packets.
  • the separation is undertaken on the basis of an H.223 multiplex code which specifies a part data stream which is transmitted over the data transmission connection or over the bearer connection.
  • the multiplex code with the value 0 is used for signaling in accordance with H.223.
  • interworking unit and control unit This enables interworking unit and control unit to be manufactured separately from each other. In the choice of sites too there is a greater degree of freedom by comparison with an embodiment in which the interworking unit and control unit are accommodated in the same housing and are supplied with power by the same AC adapter.
  • control unit also processes signaling data with signaling messages in accordance with BICC or ISUP. This means that the control unit can be used for the processing of a number of signaling protocols and is more universally applicable.
  • control unit causes the data to be forwarded by transmitting an H.248 message containing a code (e.g. H245Signalling) which specifies what is to be forwarded.
  • the code is especially an H.248 event code, e.g. an event name such as “H245Signalling”.
  • interworking unit forwards a signaling message with an H.248-Notify-Request message containing as a parameter the signaling message to be forwarded.
  • the parameter in one development is a parameter of an H.248 event, of which the code (e.g. H245Signalling) specifies that a message will be forwarded.
  • the same code as the H.248 message first mentioned in this paragraph can be used.
  • the use of these messages means that the H.248 standard only has to be extended slightly and only a few signaling messages are necessary.
  • the signaling data is forwarded unchanged by the interworking unit to the control unit, this process also being referred to as tunneling.
  • the interworking unit does not evaluate the signaling data, apart from the read processes required for separation.
  • the interworking unit only tests whether signaling data is involved or not. However the interworking unit does not determine which signaling message is involved.
  • control function first terminates signaling in accordance with the first signaling method, i.e. it concludes the signaling, with a signaling message in accordance with second signaling method also being sent in one embodiment, or it begins signaling in accordance with the first signaling method for example on the basis of a signaling message received in accordance with the second signaling method.
  • the control function transfers to the interworking unit in another development a signaling message in accordance with first signaling method as parameter in a message, e.g. an H.248 message, especially in an H.248-Modify-Request message, with the H.248 message containing a code (e.g. H245Message) which specifies that a message in accordance with the first signaling method will be forwarded as a parameter.
  • a code e.g. H245Message
  • the forwarded message is transmitted unchanged from the interworking unit to a station side in the first data transmission network. This procedure means that messages already standardized barely have to be changed.
  • the signaling data and the payload data are transmitted to the interworking unit in accordance with a multiplex method, especially in accordance with the method defined in the ITU-T H.223 standard.
  • Such multiplex methods are especially suitable for multimedia data transmission and allow a transmission which is adapted to the respective data volume in the individual multimedia channels.
  • signaling data can be transmitted not only before but also during payload data transmission in order to change the multiplexing.
  • Payload data is especially voice data, picture data, video data, text data, program data etc.
  • control unit causes the interworking unit to begin the negotiation of an H.223 multiplex level, preferably by transmitting an H.248 message which specifies an H.248 signal code (e.g. H223MultiplexingLevelNegotiation) which specifies that the multiplexing level negotiation is to be started.
  • H.248 signal code e.g. H223MultiplexingLevelNegotiation
  • control function causes the interworking unit to transmit a message to the control function in which the value of a negotiated multiplexing level is specified, especially by transmission of an H.248 message which contains a code (e.g. H223Establishment) which specifies that the value of the multiplexing level is to be transmitted to the control function, especially an H.248 event code.
  • the value of the multiplexing level is a measure for the complexity of a multiplexing method.
  • the interworking unit of the control unit transfers the value of the multiplexing level in an H.248 message, especially in a H.248-Notify-Request message
  • the control unit detects on the basis of the receipt of a message with the value of the negotiated multiplexing level, or on the basis of the absence of such a message, whether a multimedia connection has been established, especially a video telephony connection.
  • the first signaling method is a method in accordance with the ITU-T H.245 protocol which is used particularly widely. However other suitable methods are also used.
  • the second signaling method is the SIP signaling method or an equivalent signaling method.
  • control function takes into consideration when creating a signaling message in accordance with the first signaling protocol the characteristics of the interworking unit, preferably in the creation of a TerminalCapabilitySet message in accordance with H.245.
  • the result achieved by this is that the payload data transmission can be set optimally at the network boundaries.
  • interworking unit is effectively also used for forwarding signaling data in the other direction of transmission.
  • the embodiments also relates, in a second aspect, to a method for forwarding signaling data in a control unit with the following operations:
  • the invention further relates to an interworking unit which is especially suited to executing the method in accordance with the first aspect or one of its developments.
  • an interworking unit which is especially suited to executing the method in accordance with the first aspect or one of its developments.
  • the technical effect described above also applies to the embodied interworking unit.
  • the invention further relates to a control unit which is especially suited to executing the method in accordance with the first, but especially in accordance with the second aspect, so that the technical effects described above likewise apply.
  • FIG. 1 is a typical network configuration
  • FIG. 2 is a block diagram for a control unit and for an interworking unit
  • FIG. 3 shows method operations and signaling messages for a control unit and an interworking unit
  • FIG. 4 shows the context for a video telephony call.
  • a method for exchanging suitable information relating to the negotiation of the voice and video codec, e.g. by H.245 and the establishment of the bearer connection, e.g. by H.223 between MGCF and IM-MGW, is the subject matter of the present exemplary embodiment. This largely avoids transcoding, for video telephony for example.
  • the MGCF and the IM-MGW connect a CS network, that is a PSTN or a 3GPP CS domain for example, as well as an IP network which uses SIP and SDP for negotiation of the codec, i.e. the IMS for example. In other exemplary embodiments however transcoding is executed.
  • the H.245 Client i.e. the functional unit which terminates the H.245 protocol, is located in the MGCF. This is advantageous since it enables the H.245 client to simply exchange information via internal interfaces relating to the selection of the codec and of the execution sequence of the call setup with the functional components responsible for the call control, preferably with the functional component(s), which are responsible on the IMS side for the treatment of the SIP and of the SDP.
  • H.245 messages received from the CS network can be unpacked by the IM-MGW from the H.223 protocol and then forwarded transparently in the IM-MGW, i.e. unchanged and without any Interpretation of the content being needed, packed in the H.248 protocol via the Mn interface to the MGCF.
  • H.245 messages are created in the MGCF and transmitted packed in the H.248 protocol to the IM-MGW.
  • the IM-MGW takes these messages from the H.248 protocol and then packs them transparently within the H.223 protocol.
  • the MGCF configures the IM-MGW so that it receives H.245 messages and forwards or tunnels received H.245 messages unprocessed.
  • the IM-MGW uses for this purpose a new so-called H.248 event still to be standardized, which the MGCF specifies when it sets up a termination responsible for handling the multiplexed H.223 protocol.
  • H.248 Notify message in which it specifies the newly-defined event and specifies the H.245 message(s) as parameter of the event.
  • the MGCF In order to send one or more H.245 message(s) to the IM-MGW, the MGCF preferably uses an H.248 Modify message, into which it preferably inserts a new H.248 signal yet to be standardized and specifies the H.245 message(s) as parameter of the signal.
  • the MGCF If the MGCF detects or assumes from the call control signaling that video telephony in accordance with H.324 is desired on the CS side, the MGCF first configures at the IM-MGW a termination for handling the H.223 protocol.
  • the reader is referred to the literature about H.248 for a more precise meaning of a termination.
  • the MGCF instructs the IM-MGW to execute the H.223 negotiation of the multiplex level autonomously and to notify it after finishing the negotiation about the level negotiated.
  • the MGCF uses the received information on the one hand to subsequently make correct settings in the H.245 Terminal Capability Set message which it creates.
  • the MGCF can establish from the absence of the notification that the network-side bearer connection will not or will not yet be used for video telephony and to react to this in the call control signaling, for example by reconfiguring the call to another service such as for voice telephony or to end the connection.
  • the MGCF uses a new H.248 signal yet to be standardized within an H.248 Add or Modify message in order to request the IM-MGW to begin the H.223 negotiation of the multiplex level.
  • the IM-MGW uses a new H.248 event yet to be standardized within the same message to request the MGCF to notify it about the multiplex level. If, in the description below, the IM-MGW has negotiated the level, it uses an H.248 Notify message in which it specifies the newly-defined event and specifies the level as a parameter of the event.
  • H.245 command messages and control messages can be transmitted at this early point in time in special data packets.
  • the H.245 messages are packed for example in the Numbered Simple Retransmission Protocol” (NSRP).
  • NSRP Numbered Simple Retransmission Protocol
  • no new H.245 message may be sent unless an acknowledgement for the last NSRP message sent has been received. It is advantageous for the H.245 protocol to be transported packed in the NSRP via the Mn interface and for the H.245 client in the MGCF also to be responsible for the termination of the MSRP.
  • the MGCF configures the IM-MGW so that it forwards the BS30 packet data service transparently, for example using what is known as the clearmode codec, IETF RFC 4040.
  • the MGCF negotiates the transparent transport of the data service by the SIP/SDP signaling exchanged with the other MGCF.
  • the MGCF configures the IM-MGW initially only for the BS30 service, and does not yet switch the data connections through.
  • the MGCF can detect whether video telephony is involved, and in this case configures the IM-MGW so that it starts the in-band H.223 negotiation. If on the other hand a transparent transport is selected, no reconfiguration of the IM-MGW is necessary.
  • H.245 Terminal Capability Set message This message describes the functions of the H.324 protocol which will be supported at the H.324 end point in the IM-MGW and MGCF. This includes at least one item of the following information:
  • the MGCF must take account of the capabilities of the IM-MGW, i.e. for example which H.223 protocol options (e.g. the nesting depth for multiplexing) and which codecs the IM-MGW supports.
  • the MGCF possesses either configured knowledge about this capability, or it queries this capability by an H.248 AuditCapabilities message from the IM-MGW.
  • the MGCF preferably also takes into account information from the SIP/SDP signaling in selecting the capability specifies in the Terminal Capability Set, especially as regards the specified codec.
  • the MGCF selects codecs that are supported both on the MGCF side and on the IMS side, in order to avoid transcoding.
  • the MGCF forward information regarding the codec in the SIP/SDP signaling contained in a received H.245 Terminal Capability Set message.
  • H.245 Open logical Channel messages which the MGCF sends or receives
  • the MGCF inventively configures the IM-MGW so that it transfers the media stream between the CS network side and the IMS side.
  • the MGCF specifies for the two sides the codec which has been selected. If the same codec in the same configuration was selected on both sides, the IM-MGW does not need to use a transcoder.
  • FIG. 1 shows a typical network configuration of a data transmission network 40 , which makes it possible for a mobile station MS 1 connected to the 3GPP CS domain to communicate with a mobile station MS 2 connected to the IMS.
  • the CS domain is connected to the IMS with the aid of a Media Gateway Control Function (MGCF) and an IMS Media Gateway (IM-MGW).
  • the MGCF controls the IM-MGW by the H.248 protocol standardized by the ITU-T via the Mn interface.
  • MSC Mobile Switching Center
  • the CS MGWs are connected to each other and to the IM-MGW via the Nb interface.
  • the BS30 bearer service is used for video telephony.
  • MS 1 is connected by a radio access network, for example a UTRAN (UMTS Terrestrial Radio Access Network), to an MSC server of a CS MGW.
  • the MGCF communicates via an interface Mg with the aid of the SIP Call Control protocol with call session control functions (CSCF) which forward the signaling via an interface Gm and the Gateway GPRS support node (GGSN) and a radio access network, for example a UTRAN, to the mobile station MS 2 .
  • GGSN Gateway GPRS support node
  • Data is transported from the IMS Media Gateway via the Mb interface to the GGSN, which likewise passes it on via the radio access network to the MS.
  • FIG. 2 shows a block diagram or key functional components in the MGCF and IM-MGW.
  • An H.245 Client 50 i.e. the functional unit which terminates the H.245 protocol, is located in the MGCF and exchanges via internal interfaces information regarding the selection of the codec and the execution sequence of call setup with the functional components responsible for call control or with a call signaling unit 52 , preferably the functional component or components that are responsible on the IMS side for handling the SIP and the SDP.
  • H.245 messages received are forwarded within the H.223 protocol from an H.223 multiplexer/demultiplexer 60 in the IM-MGW via an H.245 encapsulation/decapsulation unit in the IM-MGW which packs the messages for transport with the aid of the H.248 protocol and passes on the Mn interface to the H.245 client 50 .
  • the H.245 Client 50 thus exchanges information regarding the H.223 protocol with the H.223 multiplexer/demultiplexer 60 .
  • Media streams for audio and video are handled separately in the IM-MGW.
  • a transparent forwarding of the data a so-called re-framing, i.e. a simple change of the transport format but also a complete conversion of the data between different codecs by a transcoder can be necessary.
  • the method explained here allows a transcoding, especially for video codecs, to be largely avoided.
  • the MGCF also contains:
  • the IM-MGW also contains:
  • FIG. 3 shows method operations and signaling messages of the Media Gateway Control Function MGCF and the IMS media gateway IM-MWG.
  • the signaling operations for setting up a video telephony connection between the mobile station MS 1 and the mobile station MS 2 are individually as follows:
  • the MGCF decides to set up an H.324 connection for video telephony on the CS side. Initially the MGCF configures the physical termination on the CS network side. To this end the MGCF generates a new termination for packet transport in a new H.248 context with the aid of an H.248 Add command. For TDM (Time Division Multiplexing) transport the MGCF can instead move into a new context an existing termination which represents a fixed time slot in a physical line. The termination is allocated an H.248 stream, here for example the stream with the value 1.
  • TDM Time Division Multiplexing
  • the IM-MGW creates the termination accordingly and returns the code T 1 for the termination and C 1 for the context.
  • the MGCF creates in accordance with the existing H.248.1 and H.248.20 (Gateway control protocol: The use of local and remote descriptors with H.221 and H.223 multiplexing) standard a specific logical H.248 termination for describing the multiplexing in the same context C 1 and expresses using the Mux parameter that the multiplexing is described in termination T 1 and occurs in accordance with the H.223 standard. It describes the logical channel of the H.223 protocol that is to be used for H.245 signaling by a separate stream which is assigned the so called “logical channel number” (LCN) with value 0.
  • LPN logical channel number
  • the MGCF instructs the IM-MGW to begin the H.223 negotiation of the multiplexing level, preferably by a new H.248 signal which is called H223MultiplexingLevelNegotiation here.
  • the MGCF also instructs the IM-MGW to send the MGCF a message with the agreed multiplexing level as soon as the H.223 negotiation of the multiplexing level is concluded, preferably by a new H.248 event which is called H223Establishment here.
  • the MGCF also instructs the IM-MGW to send the MGCF a message with received H.245 signaling If the IM-MGW receives H.245 messages.
  • the MGCF uses a new H.248 event to do this, which is called H245Signalling here.
  • the IM-MGW creates the new termination accordingly and returns the identifier T 2 .
  • the IM-MGW creates the H.223 connection and in doing so negotiates the multiplexing level with the CS-side mobile station, i.e. with MS 1 , in the example with the value 2.
  • the IM-MGW notifies the MGCF that the negotiation of the H.223 multiplexing level is concluded and which level was selected.
  • the MGCF needs this information subsequently in order to specify the corresponding capability in the H.245 Terminal Capability Set message 16 .
  • the IM-MGW uses an H.248 Notify message with the new event H223Establishment which contains a suitable parameter, called MultiplexingLevel here, to specify the agreed multiplexing level.
  • the MGCF confirms the receipt of the Notify message.
  • the IM-MGW receives from the CS-side mobile station MS 1 a Terminal Capability Set H.245 which can be combined with a Master-Slave Determination H.245 message.
  • the IM-MGW forwards the received H.245 message or messages transparently, i.e. unchanged. To do so the IM-MGW preferably uses an H.248 Notify message with the new event H245Signalling which contains a suitable parameter for specifying the H.245 signaling.
  • the MGCF confirms the receipt of the Notify message in accordance with H.248.
  • the Terminal Capability Set H.245 message and the Master-Slave Determination H.245 messages require an acknowledgement. Since the MGCF terminates the H.245 signaling, the MGCF decides to send the required H.245 messages Terminal Capability Set Ack and Master-Slave Determination Ack via the IM-MGW in the H.245 connection. The MGCF creates the H.245 messages, forwards the messages to the IM-MGW and instructs the IM-MGW to forward the messages within the H.223 connection.
  • the IM-MGW preferably uses an H.248 Modify message with the new signal, which is called H245Message here, and which contains a suitable parameter, called “information” here, to specify the H.245 signaling and is related to the stream parameter, i.e. the “stream” allocated in message 4 to the logical H.223 channel for the H.245 signaling
  • the IM-MGW forwards the received H.245 messages transparently in the H.223 connection through to the CS network side.
  • the IM-MGW acknowledges the Modify message 12 .
  • the MGCF decides to send an H.245 message via the IM-MGW in the H.245 connection, in the example a Terminal Capability Set H.245 message which can be combined with a Master-Slave Determination H.245 message.
  • the MGCF In the H.245 Terminal Capability Set message the MGCF must take account of the negotiated multiplexing level as well as capabilities of the IM-MGW, for example which H.223 protocol options (e.g. the nesting depth for multiplexing) and which codecs the IM-MGW supports.
  • the MGCF possesses either configured knowledge about this capability, or it queries this capability by an H.248 AuditCapabilities message from the IM-MGW.
  • the MGCF preferably also takes into account information from the SIP/SDP signaling in the selection of the capability specified in the Terminal Capability Set, especially as regards the specified codec.
  • the MGCF preferably selects codecs supported on both the IMS and on the CS network side in order to avoid transcoding.
  • the MGCF creates the H.245 messages, forwards the messages to the IM-MGW and instructs the IM-MGW to forward the messages within the H.245 connection as already described in message 12 .
  • the IM-MGW receives from MS 1 a Terminal Capability Set Ack H.245 message, which is combined with a Master-Slave Determination Ack H.245 message.
  • the MGCF selects codecs for the video telephony, in which case it takes account of information from the SIP/SDP signaling on the IMS side as well as that contained in the Terminal Capability Set H.245 message 9 .
  • the MGCF preferably selects codecs supported on both the IMS and on the CS network side, in order to avoid transcoding.
  • the MGCF also extracts from the Terminal Capability Set H.245 messages 9 or 16 the H.223 logical channel number (LCN) corresponding to a selected voice or video codec.
  • the MGCF creates an open logical channel H.245 message and then specifies the LCN of the selected codec.
  • the MGCF creates the H.245 messages, forwards the messages to the IM-MGW and instructs the IM-MGW to forward the messages within the H.245 connection as already described in message 12 .
  • the MGCF receives via the IM-MGW from the CS network an Open Logical Channel H.245 message.
  • the capability has been selected in the CS network from capabilities offered in the Terminal Capability Set message 16 .
  • the IM-MGW receives an Open Logical Channel Ack H.245 message from the CS side.
  • the MGCF instructs the IM-MGW to create the logical H.223 channel which was already agreed with the aid of messages 21 to 26 via H.245 signaling.
  • the IM-MGW sends an H.248 Modify message regarding the multiplexing termination T 2 in which it describes a new stream 3 , in which case it specifies the LCN and the codec as in message 21 .
  • the IM-MGW acknowledges the Modify message.
  • the MGCF instructs the IM-MGW to create a termination on the IMS side with which stream 3 is to be connected, so that the IM-MGW forwards the data assigned to the stream 3 on the IMS side or the CS network side to the other side in each case.
  • the IM-MGW sends an H.248 Add message relating to context C 1 , and specifies in the message that stream 3 is to be transported and the codec which is to be used for this purpose. If the same codec is specified in message 27 and 29 , the IM-MGW recognizes that no transcoding is required.
  • the IM-MGW acknowledges the Modify message.
  • Operations similar to operations 21 through 30 are executed to configure a stream 4 for the bearer for transport of voice and to configure the corresponding speech codec for a termination T 4 .
  • FIG. 4 shows the context for a video call, with the following then applying: Termination:
  • services other than video telephony are involved, for example voice telephony and text messages.
  • Protocols other than the stated protocols are also employed in other exemplary embodiments.
  • IM-MGW and MGCF are provided by one unit, especially by a data processing unit, so that there is no external transmission link between IM-MGW and MGCF.
  • a network configuration different from that shown in FIG. 1 is used.
  • an IP station in the IMS which is connected via another access network, e.g. via DSL or WLAN or WiMAX.
  • another network which employs SIP can also instead of the IMS.
  • another station for example a fixed network telephone, can also be used in the CS network.
  • stations other than those depicted in FIG. 1 are used in both networks.
  • the system also includes permanent or removable storage, such as magnetic and optical discs, RAM, ROM, etc. on which the process and data structures of the present invention can be stored and distributed.
  • the processes can also be distributed via, for example, downloading over a network such as the Internet.
  • the system can output the results to a display device, printer, readily accessible memory or another computer on a network.

Abstract

A network interface unit (IM-MGW) in which signaling data is separated from useful data by the values of received data. The signaling data is tunneled to a control unit (MGCF). Two different data transmission networks (CS, IMS) can thus be simply combined, in particular, for video telephony.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. application Ser. No. 13/064,589 filed Apr. 1, 2011, which is a continuation of U.S. application Ser. No. 12/083,875, filed Apr. 21, 2008, which is based on and hereby claims priority to German Application No. 10 2005 050 587.2 filed on Oct. 21, 2005, the contents of all of which are hereby incorporated by reference.
  • BACKGROUND
  • The invention relates, inter alia, to a method for forwarding signaling data in an interworking unit, with the operation:
  • Receiving data in an interworking unit or a gateway from a first data transmission network (CS) over a data transmission connection or over a bearer connection, in which, for a data transmission service between two mobile stations (MS1, MS2) or a group of stations, signaling data and payload data are transmitted, with the interworking unit transmitting payload data between the first data transmission network (CS) in which signaling is in accordance with a first signaling method and a second data transmission network (IMS) in which signaling is in accordance with a second signaling method, with the first signaling method differing from the second signaling method.
  • In addition to the so-called “Circuit Switched (CS) domain” of a mobile radio network based on the 3rd Generation Partnership Project (3GPP), the so-called “IP Multimedia Subsystem” (IMS) is used for voice and video telephony and a so-called “interworking” of the relevant services, i.e. a connection of the services by a suitable conversion of the signaling used and of the bearer format of the data used is necessary between IMS and CS domain. As well as being used for the 3GPP “Global System for Mobile Communications” (GSM) and “Universal Mobile Telecommunications System” (UMTS) access networks, the IMS is also used for other access networks, for example “Wireless Local Area Network” (WLAN) and “Digital Subscriber Line” (DSL). It is precisely in these scenarios that it is initially to be expected that voice and video telephony will be undertaken via the IMS. Video telephony can also be used in a public telephone network, i.e. a Public Switched Telephone Network (PSTN), with the same in-band video-telephony-specific protocols being used as a rule for transport and signaling as in the 3GPP CS domain. Interworking from the PSTN to the IMS is also necessary.
  • Previously the standard has merely described interworking between IMS and CS domain or PSTN for voice telephony only. The present invention relates to the appropriate interworking for other services, especially for multimedia services, for example for video telephony. A demand for this is to be foreseen, since video telephony is increasing in significance both in the 3GPP CS domain and also in IMS, here in particular for access networks such as WLAN or DSL, or newly-arising network access options (e.g. Worldwide Interoperability for Microwave Access (WiMAX).
  • The interworking between IMS and a CS network, i.e. a PSTN or a 3GPP CS domain, is specified in 3GPP TS 29.163 from 3GPP Release 6 onwards only for pure voice telephony. In accordance with TS 29.163, the interworking of what is known as the call-control signaling takes place in the Media Gateway Control Function (MGCF). The interworking of the payload connection, i.e. the onward transfer and repackaging as well as if necessary the transcoding of the payload data, is undertaken in the so-called Internet Multimedia—Media Gateway (IM-MGW). The MGCF controls the IM-MGW by the H.248 protocol standardized by the ITU-T via the Mn interface, as further described in 3GPP TS 29.332.
  • In the CS network Bearer Independent Call Control (BICC), see ITU-T (International Telecommunication Union—Telecommunication Standardization Sector) Q.1902.x, or ISDN User Part (ISUP), see ITU-T Q.761 ff, is used for out-of-band call control signaling. In the case in which the call control signaling is routed separately from the bearer connections, this method is also referred as out-of-band signaling. Subsequently there also the option within the bearer connection of exchanging signaling messages, which is referred to as in-band signaling. In the case of ISUP, Time Division Multiplex (TDM) is used as bearer in the CS network, and in the case of BICC packet transport by Internet Protocol (IP) or Asynchronous Transfer mode (ATM). The negotiation about whether pure voice telephony or video telephony are used can be undertaken for ISUP during the call control signaling for setting up the call by the so-called ISUP UDI Fallback procedure. For BICC this negotiation can occur by means the Service Change and UDI Fallback (SCUDIF) standardized in 3GPP TS 23.172, which also allows a change between voice telephony and video telephony during a call. Both UDI Fallback and SCUDIF use out-of-band signaling. In addition it is possible both for ISUP and BICC to not use the procedure and only attempt a call setup for video telephony, and, in the event of video telephony not being supported, abort the call setup. By contrast with optional negotiation between voice and video the negotiation of the voice and video codecs used for video telephony is undertaken “in-band”, after video telephony has already been selected beforehand and a corresponding bearer connection has been established. A so-called BS30 data connection with a bandwidth of 64 kbyte/s is used for video telephony in the network. Within this data connection the H.324 protocol suite standardized by the ITU-T is used, with the variant H.324M adapted for mobile telephony being selected in the 3GPP CS domain. After the data connection is set up in this case the configuration of the multimedia connection is negotiated in-band via the ITU-T standardized H.245 protocol, in particular the video codec and speech codec used and the details of the respective codec configuration Voice and video as well as the signaling data are multiplexed by the H.223 protocol in the same bearer connection. For the 3GPP CS domain TS 26.110 further describes the use of the H.324 protocol suite or protocol series, with especially the so-called H.324M configuration being selected.
  • The most important execution sequences in setting up a 3G-324M session are as follows:
  • 1. After the start of the ISUP or BICC call setup signaling, necessary resources are reserved that are needed for the desired “bearer” and subsequently the bearer is set up.
  • 2. Start of the “in-band” negotiation. Initially negotiation of the H.223 multiplexer level which is to be used for this bearer.
  • 3. Recognition of the master station which is opening the multistream connection by H.245 negotiation if necessary. This function is only needed if a conflict arises within the context of opening a bidirectional logical channel. This function is referred to as Master or Slave Determination (MSD).
  • 4. The capabilities of the station sending the message are transmitted by so-called “Terminal Capability Set” H.245 messages. Such messages are sent independently of the two stations. These described capabilities contain the following information: Audio and video codec and their specific characteristics or their variants. Functional scope of the multiplexer, in detail which adaptation layer is supported (e.g. simple or nested multiplexing) and its mobile-specific extensions.
  • 5. Setting up of “logical” channels for each media stream by H.245 signaling. From this point in time onwards, either with MSD or without, the station or the IM-MGW are ready to open logical channels to allow the exchange of voice, and/or video payload data. In the creation of a bidirectional logical channel, the channel number and the final media capabilities to be used are defined.
  • 6. Definition of the multiplex characteristics by H.245.
  • 7. Start of the transmission of video, audio/voice or data
  • Negotiation for video telephony is undertaken “out-of-band” in the IMS with the aid of the Session Description Protocol” (SDP), IETF (Internet Engineering Task Force) RFC (Request for Comment) 2327, which is transported by the Session Initiation Protocol (SIP), IETF RFC 3261. In this case the negotiation as to whether voice telephony or video telephony is used in linked to the negotiation of the codec used and is undertaken before or during of the setting up of the bearer. The SDP offer-answer mechanism in accordance with RFC 3264 is used. In this case the offering party sends a list of supported codecs in the SDP Offer message. After receiving this message the answering party sends an SDP Answer message containing the codec from the list that it also supports and wishes to use. The answering party may not specify any codecs that were not contained in the list of the SDP offer. By contrast with the CS domain, two separate bearers are used for voice and video, which each use the Real Time Transport Protocol (RTP), IETF RFC 3550. For the 3GPP IMS over the General Packet Radio Service (GPRS) access network 3GPP TS 26.235 describes the codecs to be used for video telephony.
  • Summarized below once again are the protocols and codecs used on the CS domain side and on the IMS side for video telephony.
  • CS network (especially 3GPP CS domain):
  • Call Control: BICC or ISUP.
  • Negotiation between pure voice telephony networks and video telephony can be undertaken for ISUP by UDI Fallback and for BICC by SCUDIF.
  • Multimedia Protocol suite: ITU-T H.324M (ITU-T H.324 Annex C)
  • Codec negotiation: ITU-T H.245 in-band negotiation about the CS bearer set up with 64 kbit/s (kilobits per second)
  • Video codec: Support of H.263 prescribed
  • ITU-T H.261 optional
  • MP4V-ES (simple video profile level 0) optional
  • Speech codec: Support of NB-AMR (Narrow Band Adaptive MultiRate) prescribed
  • WB-AMR (Wide Band AMR) optional
  • ITU-T G.723.1 recommended
  • Transport Multiplexing of voice and video in a bearer in accordance with ITU-T H.223 Annex A+B
  • IMS (codecs for GPRS (General Packet Radio Service) access network)
  • Call Control: SIP
  • Includes both negotiation between pure voice telephony networks and video telephony, and also codec negotiation.
  • Codec negotiation: Before setup of the bearer, out-of-band by SDP, which is transported in SIP.
  • Video codec: Support of H.263 prescribed
  • ITU-T H.264 optional,
  • MP4V-ES (simple video profile level 0) optional
  • Speech codec: Support of NB-AMR and WB-AMR prescribed.
  • Transport Two separate RTP bearers for voice and video using different so-called RTP Payload” formats:
  • Voice NB-AMR+WB-AMR: IETF RFC 3267
  • Video: H.263: IETF RFC 2429
  • H.264 (AVC): IETF RFC 3984
  • MPEG-4: IETF RFC 3016 parallel RTP media streams are synchronized by RTP timestamps which are negotiated by the Real Time Control Protocol (RTCP, see IETF RFC 3550).
  • As well as or in place of the codec specified here, other codecs can also be supported by the stations, especially if the CS stations are located in the PSTN or the IMS stations do not use GPRS as the access network.
  • With interworking for exclusively voice telephony out-of-band signaling is used in both networks. A conversion of the signaling protocol can thus be comparatively easily performed at the borders of the two data transmission networks because all signaling messages can be merged in a simple manner at one unit. On the other hand in-band signaling is used in the CS network with video telephony for example which is received by the IM-MWG, whereas in the IMS out-of-band signaling is used which is received by the MGCF.
  • However the problem of merging the signaling between the two data transmission networks also occurs with other multimedia services or with other services.
  • SUMMARY
  • An aspect of the embodiments is to specify a simple method for signaling between two different data transmission networks. In particular an aspect is to specify simple methods for interworking of the signaling between two different data transmission networks, with signaling in the first data transmission network being sent or received in-band in a bearer which is assigned to a transmission service between two stations or a group of stations assigned from a network interface unit (e.g. IM-MGW) whereas the signaling in the second data transmission network is sent or received out-of-band in a control unit (e.g. MGCF) which exchanges messages with the first network unit. Associated units are also to be specified.
  • In addition to the operations listed above, the method in accordance with the invention contains the following operations:
      • In the interworking unit preferably with the aid of the values of the received data, separation of signaling data and payload data,
      • Forwarding of the received signaling data in unchanged form from the network interface unit to a control unit,
      • optionally in the control unit (MGCF) based on a signaling message defined by the signaling data, creation in accordance with the first signaling method of at least one signaling message in accordance with second signaling method, and
      • In the network interface unit, forwarding of the payload data from the first data transmission network into the second data transmission network
  • In particular automatic separation based on the values of the signaling enables a simple decision about forwarding to be made. This is the prerequisite for a plurality of options for influencing the signaling at the boundaries between the two data transmission networks. The unchanged forwarding of the signaling messages makes a plurality of new applications possible, with which an external control unit can especially be used.
  • In one development the data transmission connection is a connection at a protocol level which is located above the protocol layer for physical data transmission. In a further development the data transmission connection is set up and also cleared down with the aid of signaling messages. In such cases the data transmission connection is assigned its own identifier. For example the data transmission connection is a logical channel, i.e. a connection at a higher protocol level.
  • In one development the data transmission connection is used for transmission of at least two different types of payload data, especially voice data and video data. The term multimedia is also used in this context.
  • The separation is undertaken in one development with the aid of the values of the received data, especially by reading this data and subsequently comparing it with comparison data.
  • In a further development of the embodied method the first signaling method is a signaling method in which signaling data and payload data are transmitted over the same transmission link, i.e. a so-called in-band method. The second signaling method by contrast is a signaling method in which signaling data is transmitted over a different transmission link from the payload data, i.e. an out-of-band method. The developments still allow the signaling data to be forwarded between the two data transmission networks.
  • In another development of the embodied method the first data transmission network is a circuit-switched data transmission network, a data transmission network with data transmission in accordance with IP (Internet Protocol) or an ATM (Asynchronous Transfer) data transmission network. The circuit-switched data transmission network is for example a PSTN (Public Switching Telephone Network), an ISDN (Integrated Services Digital Network), a PLMN (GSM (Global System for Mobile Communications) Public Land Mobile Network) or a 3GPP CS domain. The second data transmission network by contrast is a data transmission network operating in accordance with the Internet Protocol, i.e. in which the payload data is transmitted in accordance with Internet protocol of the IETF (Internet Engineering Task Force) and in which signaling is especially in accordance with SIP, for example an IMS.
  • In a further development of the embodied method the signaling data is transmitted in signaling data packets and the payload data in payload data packets. The separation is undertaken on the basis of an H.223 multiplex code which specifies a part data stream which is transmitted over the data transmission connection or over the bearer connection. The multiplex code with the value 0 is used for signaling in accordance with H.223.
  • In a next development of the embodied method the following operations are executed:
      • Forwarding of the signaling data to the control unit via an external transmission link, and
      • Creation of the signaling message in accordance with the second signaling method in the control unit.
  • This enables interworking unit and control unit to be manufactured separately from each other. In the choice of sites too there is a greater degree of freedom by comparison with an embodiment in which the interworking unit and control unit are accommodated in the same housing and are supplied with power by the same AC adapter.
  • In a further development the control unit also processes signaling data with signaling messages in accordance with BICC or ISUP. This means that the control unit can be used for the processing of a number of signaling protocols and is more universally applicable.
  • In another development signaling messages are transmitted in accordance with Standard ITU-T H.248 or MEGACO or in accordance with MGCP (Media Gateway Control Protocol) of the IETF between the control unit and the interworking unit. However other protocols which allow interworking of units from different manufacturers are also suitable.
  • In a further development of the embodied method the following operation is executed:
      • Causing the control unit to forward or to separate the data. This enables a separation to be initiated automatically and optionally, with different configurations also able to be set.
  • In one development the control unit causes the data to be forwarded by transmitting an H.248 message containing a code (e.g. H245Signalling) which specifies what is to be forwarded. The code is especially an H.248 event code, e.g. an event name such as “H245Signalling”. In another development the interworking unit forwards a signaling message with an H.248-Notify-Request message containing as a parameter the signaling message to be forwarded. The parameter in one development is a parameter of an H.248 event, of which the code (e.g. H245Signalling) specifies that a message will be forwarded. Thus the same code as the H.248 message first mentioned in this paragraph can be used. The use of these messages means that the H.248 standard only has to be extended slightly and only a few signaling messages are necessary.
  • In the embodiments the signaling data is forwarded unchanged by the interworking unit to the control unit, this process also being referred to as tunneling. In particular the interworking unit does not evaluate the signaling data, apart from the read processes required for separation. The interworking unit only tests whether signaling data is involved or not. However the interworking unit does not determine which signaling message is involved.
  • In one development the control function (MGCF) first terminates signaling in accordance with the first signaling method, i.e. it concludes the signaling, with a signaling message in accordance with second signaling method also being sent in one embodiment, or it begins signaling in accordance with the first signaling method for example on the basis of a signaling message received in accordance with the second signaling method.
  • The control function transfers to the interworking unit in another development a signaling message in accordance with first signaling method as parameter in a message, e.g. an H.248 message, especially in an H.248-Modify-Request message, with the H.248 message containing a code (e.g. H245Message) which specifies that a message in accordance with the first signaling method will be forwarded as a parameter. In another development the forwarded message is transmitted unchanged from the interworking unit to a station side in the first data transmission network. This procedure means that messages already standardized barely have to be changed.
  • In a next development the signaling data and the payload data are transmitted to the interworking unit in accordance with a multiplex method, especially in accordance with the method defined in the ITU-T H.223 standard. Such multiplex methods are especially suitable for multimedia data transmission and allow a transmission which is adapted to the respective data volume in the individual multimedia channels. Thus signaling data can be transmitted not only before but also during payload data transmission in order to change the multiplexing. Payload data is especially voice data, picture data, video data, text data, program data etc.
  • In one development the control unit causes the interworking unit to begin the negotiation of an H.223 multiplex level, preferably by transmitting an H.248 message which specifies an H.248 signal code (e.g. H223MultiplexingLevelNegotiation) which specifies that the multiplexing level negotiation is to be started.
  • In a next development the control function causes the interworking unit to transmit a message to the control function in which the value of a negotiated multiplexing level is specified, especially by transmission of an H.248 message which contains a code (e.g. H223Establishment) which specifies that the value of the multiplexing level is to be transmitted to the control function, especially an H.248 event code. The value of the multiplexing level is a measure for the complexity of a multiplexing method. In a further development, after negotiation of a H.223 multiplexing level, the interworking unit of the control unit transfers the value of the multiplexing level in an H.248 message, especially in a H.248-Notify-Request message In one embodiment the control unit detects on the basis of the receipt of a message with the value of the negotiated multiplexing level, or on the basis of the absence of such a message, whether a multimedia connection has been established, especially a video telephony connection.
  • As an alternative or in addition the first signaling method is a method in accordance with the ITU-T H.245 protocol which is used particularly widely. However other suitable methods are also used.
  • In one development the second signaling method is the SIP signaling method or an equivalent signaling method.
  • In one development the control function takes into consideration when creating a signaling message in accordance with the first signaling protocol the characteristics of the interworking unit, preferably in the creation of a TerminalCapabilitySet message in accordance with H.245. The result achieved by this is that the payload data transmission can be set optimally at the network boundaries.
  • In a next development the following operations are executed:
      • Receipt in the interworking unit of signaling data coming via a first transmission link from a control function at the boundary between the first data transmission network and the second data transmission network,
      • Receipt in the interworking unit of payload data from the second data transmission network via a second transmission link, with the payload data being affected by the signaling data,
      • Transmission in the interworking unit of the received signaling data and the received payload data via the same transmission link, especially in the same data transmission connection.
  • Thus the interworking unit is effectively also used for forwarding signaling data in the other direction of transmission.
  • The embodiments also relates, in a second aspect, to a method for forwarding signaling data in a control unit with the following operations:
      • In a control unit, which is used for transmission of signaling data between a first data transmission network (CS) with a first signaling method and a second data transmission network with a second signaling method, receipt of signaling data in accordance with the first signaling method with the first signaling method being a signaling method in which a bearer connection is used in which, for a data transmission service between two stations (MS1, MS2) or a group of stations, the signaling data in accordance with the first signaling method and payload data are transmitted, and with the second signaling method being a signaling method in which signaling data and payload data are transmitted over different transmission links from one another.
      • Preferably on the basis of a signaling message defined in accordance with the first signaling method, creation of a signaling message in accordance with the second signaling method or a number of signaling messages in accordance with second signaling method in the control unit.
  • The method in accordance with the second aspect is closely related to the method in accordance with first aspect, so that the advantages stated above apply.
  • In a development of the method in accordance with the second aspect the following operations are executed:
      • Causing the signaling data to be sent from an interworking unit by the control unit, with the interworking unit forwarding payload data affected by the signaling data between the first data transmission network and the second data transmission network. Here too the reader is referred to the advantages given above, especially to a flexible control of the interworking unit by the control unit.
  • In another development of the method in accordance with the second aspect the following operations are executed:
      • Receipt in the control unit of signaling data in accordance with the second signaling method,
      • Creation, on the basis of a signaling message defined by the received signaling data in accordance with the second signaling method, of a signaling message in accordance with the first signaling method. Thus the control unit operates in both directions of transmission and modules in the control unit can be used multiple times.
  • The invention further relates to an interworking unit which is especially suited to executing the method in accordance with the first aspect or one of its developments. Thus the technical effect described above also applies to the embodied interworking unit.
  • The invention further relates to a control unit which is especially suited to executing the method in accordance with the first, but especially in accordance with the second aspect, so that the technical effects described above likewise apply.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other aspects and advantages will become more apparent and more readily appreciated from the following description of the exemplary embodiments, taken in conjunction with the accompanying drawings of which:
  • FIG. 1 is a typical network configuration,
  • FIG. 2 is a block diagram for a control unit and for an interworking unit,
  • FIG. 3 shows method operations and signaling messages for a control unit and an interworking unit, and
  • FIG. 4 shows the context for a video telephony call.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Reference will now be made in detail to the preferred embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout.
  • It is desirable for example to use the same video codec and if possible also the same speech codec on the CS side and in the IMS in order to avoid any transcoding. Transcoding especially of the video codec, but to a small extent of the speech codec too, would demand significant computing power and resources in the IM-MGW. In addition the transmission would be delayed and the quality of the picture or of the speech would be worsened. If the required bandwidth for the codec on the CS domain side and the IMS is different, additional bandwidth would be used on one side, without this improving the picture or speech quality.
  • To this end it is necessary for example for the MGCF and the IM-MGW to exchange suitable information:
      • For example in relation to the negotiation of the voice and video codec by H.245 and SIP/SDP and in relation to the establishment of the bearer connection by H.223.
  • A method for exchanging suitable information relating to the negotiation of the voice and video codec, e.g. by H.245 and the establishment of the bearer connection, e.g. by H.223 between MGCF and IM-MGW, is the subject matter of the present exemplary embodiment. This largely avoids transcoding, for video telephony for example. The MGCF and the IM-MGW connect a CS network, that is a PSTN or a 3GPP CS domain for example, as well as an IP network which uses SIP and SDP for negotiation of the codec, i.e. the IMS for example. In other exemplary embodiments however transcoding is executed.
  • The H.245 Client, i.e. the functional unit which terminates the H.245 protocol, is located in the MGCF. This is advantageous since it enables the H.245 client to simply exchange information via internal interfaces relating to the selection of the codec and of the execution sequence of the call setup with the functional components responsible for the call control, preferably with the functional component(s), which are responsible on the IMS side for the treatment of the SIP and of the SDP.
  • A central idea of the exemplary embodiment is that H.245 messages received from the CS network can be unpacked by the IM-MGW from the H.223 protocol and then forwarded transparently in the IM-MGW, i.e. unchanged and without any Interpretation of the content being needed, packed in the H.248 protocol via the Mn interface to the MGCF. Likewise H.245 messages are created in the MGCF and transmitted packed in the H.248 protocol to the IM-MGW. The IM-MGW takes these messages from the H.248 protocol and then packs them transparently within the H.223 protocol.
  • On call setup the MGCF configures the IM-MGW so that it receives H.245 messages and forwards or tunnels received H.245 messages unprocessed. Preferably the IM-MGW uses for this purpose a new so-called H.248 event still to be standardized, which the MGCF specifies when it sets up a termination responsible for handling the multiplexed H.223 protocol. In the description below, if the IM-MGW receives one or more H.245 message(s), it inventively uses an H.248 Notify message, in which it specifies the newly-defined event and specifies the H.245 message(s) as parameter of the event.
  • In order to send one or more H.245 message(s) to the IM-MGW, the MGCF preferably uses an H.248 Modify message, into which it preferably inserts a new H.248 signal yet to be standardized and specifies the H.245 message(s) as parameter of the signal.
  • If the MGCF detects or assumes from the call control signaling that video telephony in accordance with H.324 is desired on the CS side, the MGCF first configures at the IM-MGW a termination for handling the H.223 protocol. The reader is referred to the literature about H.248 for a more precise meaning of a termination. The MGCF instructs the IM-MGW to execute the H.223 negotiation of the multiplex level autonomously and to notify it after finishing the negotiation about the level negotiated. The MGCF uses the received information on the one hand to subsequently make correct settings in the H.245 Terminal Capability Set message which it creates. On the other hand the MGCF can establish from the absence of the notification that the network-side bearer connection will not or will not yet be used for video telephony and to react to this in the call control signaling, for example by reconfiguring the call to another service such as for voice telephony or to end the connection.
  • Preferably the MGCF uses a new H.248 signal yet to be standardized within an H.248 Add or Modify message in order to request the IM-MGW to begin the H.223 negotiation of the multiplex level. Preferably the IM-MGW uses a new H.248 event yet to be standardized within the same message to request the MGCF to notify it about the multiplex level. If, in the description below, the IM-MGW has negotiated the level, it uses an H.248 Notify message in which it specifies the newly-defined event and specifies the level as a parameter of the event.
  • After successful negotiation of the multiplexer level H.223 protocol data can be sent. H.245 command messages and control messages can be transmitted at this early point in time in special data packets. To this end the H.245 messages are packed for example in the Numbered Simple Retransmission Protocol” (NSRP). In accordance with the NSRP Specification as defined in H.324, no new H.245 message may be sent unless an acknowledgement for the last NSRP message sent has been received. It is advantageous for the H.245 protocol to be transported packed in the NSRP via the Mn interface and for the H.245 client in the MGCF also to be responsible for the termination of the MSRP.
  • In the case of a call set up from the CS network side in the direction of the IMS it can occur that the connection setup is forwarded by the IMS to another MGCF. In this case it is advantageous for the MGCF to configure the IM-MGW so that it forwards the BS30 packet data service transparently, for example using what is known as the clearmode codec, IETF RFC 4040. The MGCF negotiates the transparent transport of the data service by the SIP/SDP signaling exchanged with the other MGCF. In one embodiment the MGCF configures the IM-MGW initially only for the BS30 service, and does not yet switch the data connections through. As soon as the MGCF receives from the IMS side signaling relating to the selected codec, the MGCF can detect whether video telephony is involved, and in this case configures the IM-MGW so that it starts the in-band H.223 negotiation. If on the other hand a transparent transport is selected, no reconfiguration of the IM-MGW is necessary.
  • In accordance with the H.245 standard the MGCF must, as H.245 client, create what is referred to as an H.245 Terminal Capability Set message. This message describes the functions of the H.324 protocol which will be supported at the H.324 end point in the IM-MGW and MGCF. This includes at least one item of the following information:
      • Audio and video codec and their specific characteristics or their variants
      • Functional scope of the multiplexer, in detail which adaptation layer will be supported (e.g. the nesting depth of the multiplexing, i.e. simple or nested multiplexing) and its mobile-specific extensions.
  • To provide this information the MGCF must take account of the capabilities of the IM-MGW, i.e. for example which H.223 protocol options (e.g. the nesting depth for multiplexing) and which codecs the IM-MGW supports. The MGCF possesses either configured knowledge about this capability, or it queries this capability by an H.248 AuditCapabilities message from the IM-MGW. The MGCF preferably also takes into account information from the SIP/SDP signaling in selecting the capability specifies in the Terminal Capability Set, especially as regards the specified codec. Preferably the MGCF selects codecs that are supported both on the MGCF side and on the IMS side, in order to avoid transcoding.
  • It is advantageous for the MGCF to forward information regarding the codec in the SIP/SDP signaling contained in a received H.245 Terminal Capability Set message.
  • As soon as a codec and a logical H.245 channel have been defined for a media data stream, for example an audio or video media stream, by H.245 Open logical Channel messages which the MGCF sends or receives, the MGCF inventively configures the IM-MGW so that it transfers the media stream between the CS network side and the IMS side. The MGCF specifies for the two sides the codec which has been selected. If the same codec in the same configuration was selected on both sides, the IM-MGW does not need to use a transcoder.
  • FIG. 1 shows a typical network configuration of a data transmission network 40, which makes it possible for a mobile station MS1 connected to the 3GPP CS domain to communicate with a mobile station MS2 connected to the IMS. The CS domain is connected to the IMS with the aid of a Media Gateway Control Function (MGCF) and an IMS Media Gateway (IM-MGW). The MGCF controls the IM-MGW by the H.248 protocol standardized by the ITU-T via the Mn interface. On the CS domain side Mobile Switching Center (MSC) servers, which communicate with one another via BICC signaling, see interface Nc, and with the MGCF see interface Mc, are located in the core network. They each control CS MGWs. The CS MGWs are connected to each other and to the IM-MGW via the Nb interface. The BS30 bearer service is used for video telephony. MS1 is connected by a radio access network, for example a UTRAN (UMTS Terrestrial Radio Access Network), to an MSC server of a CS MGW. On the IMS side the MGCF communicates via an interface Mg with the aid of the SIP Call Control protocol with call session control functions (CSCF) which forward the signaling via an interface Gm and the Gateway GPRS support node (GGSN) and a radio access network, for example a UTRAN, to the mobile station MS2. Data is transported from the IMS Media Gateway via the Mb interface to the GGSN, which likewise passes it on via the radio access network to the MS.
  • FIG. 2 shows a block diagram or key functional components in the MGCF and IM-MGW. An H.245 Client 50, i.e. the functional unit which terminates the H.245 protocol, is located in the MGCF and exchanges via internal interfaces information regarding the selection of the codec and the execution sequence of call setup with the functional components responsible for call control or with a call signaling unit 52, preferably the functional component or components that are responsible on the IMS side for handling the SIP and the SDP. From the CS side, H.245 messages received are forwarded within the H.223 protocol from an H.223 multiplexer/demultiplexer 60 in the IM-MGW via an H.245 encapsulation/decapsulation unit in the IM-MGW which packs the messages for transport with the aid of the H.248 protocol and passes on the Mn interface to the H.245 client 50.
  • The H.245 Client 50 thus exchanges information regarding the H.223 protocol with the H.223 multiplexer/demultiplexer 60. Media streams for audio and video are handled separately in the IM-MGW. Depending on the video codec selected on the IMS side and CS side and the details of its transport format in these networks, a transparent forwarding of the data, a so-called re-framing, i.e. a simple change of the transport format but also a complete conversion of the data between different codecs by a transcoder can be necessary. The method explained here allows a transcoding, especially for video codecs, to be largely avoided.
  • The MGCF also contains:
      • A call controller 70, which signals in accordance with ISUP/BICC into the CS network and which exchanges signaling messages with the call controller 52 in accordance with a proprietary protocol for example. For example the call controller 52 then performs a protocol conversion i.e. a transmission of individual signaling messages of the one signaling protocol into signaling messages of the other signaling protocol.
      • A transceiver unit 72, which sends or receives signaling messages in accordance with TCP (Transmission Control Protocol) or UDP (User Datagram Protocol) to and from the IMS.
  • The IM-MGW also contains:
      • A transceiver unit 80, which sends or receives payload data in accordance with TCP (Transmission Control Protocol) or UDP (User Datagram Protocol) to and from the IMS.
  • FIG. 3 shows method operations and signaling messages of the Media Gateway Control Function MGCF and the IMS media gateway IM-MWG. The signaling operations for setting up a video telephony connection between the mobile station MS1 and the mobile station MS2 are individually as follows:
  • 1. The MGCF decides to set up an H.324 connection for video telephony on the CS side. Initially the MGCF configures the physical termination on the CS network side. To this end the MGCF generates a new termination for packet transport in a new H.248 context with the aid of an H.248 Add command. For TDM (Time Division Multiplexing) transport the MGCF can instead move into a new context an existing termination which represents a fixed time slot in a physical line. The termination is allocated an H.248 stream, here for example the stream with the value 1.
  • 2. The IM-MGW creates the termination accordingly and returns the code T1 for the termination and C1 for the context.
  • 3. The CS-side bearer connection is established.
  • 4. The MGCF creates in accordance with the existing H.248.1 and H.248.20 (Gateway control protocol: The use of local and remote descriptors with H.221 and H.223 multiplexing) standard a specific logical H.248 termination for describing the multiplexing in the same context C1 and expresses using the Mux parameter that the multiplexing is described in termination T1 and occurs in accordance with the H.223 standard. It describes the logical channel of the H.223 protocol that is to be used for H.245 signaling by a separate stream which is assigned the so called “logical channel number” (LCN) with value 0. The MGCF instructs the IM-MGW to begin the H.223 negotiation of the multiplexing level, preferably by a new H.248 signal which is called H223MultiplexingLevelNegotiation here. The MGCF also instructs the IM-MGW to send the MGCF a message with the agreed multiplexing level as soon as the H.223 negotiation of the multiplexing level is concluded, preferably by a new H.248 event which is called H223Establishment here. The MGCF also instructs the IM-MGW to send the MGCF a message with received H.245 signaling If the IM-MGW receives H.245 messages. Preferably the MGCF uses a new H.248 event to do this, which is called H245Signalling here.
  • 5. The IM-MGW creates the new termination accordingly and returns the identifier T2.
  • 6. The IM-MGW creates the H.223 connection and in doing so negotiates the multiplexing level with the CS-side mobile station, i.e. with MS1, in the example with the value 2.
  • 7. The IM-MGW notifies the MGCF that the negotiation of the H.223 multiplexing level is concluded and which level was selected. The MGCF needs this information subsequently in order to specify the corresponding capability in the H.245 Terminal Capability Set message 16. Preferably the IM-MGW uses an H.248 Notify message with the new event H223Establishment which contains a suitable parameter, called MultiplexingLevel here, to specify the agreed multiplexing level.
  • 8. The MGCF confirms the receipt of the Notify message.
  • 9. The IM-MGW receives from the CS-side mobile station MS1 a Terminal Capability Set H.245 which can be combined with a Master-Slave Determination H.245 message.
  • 10. The IM-MGW forwards the received H.245 message or messages transparently, i.e. unchanged. To do so the IM-MGW preferably uses an H.248 Notify message with the new event H245Signalling which contains a suitable parameter for specifying the H.245 signaling.
  • 11. The MGCF confirms the receipt of the Notify message in accordance with H.248.
  • 12. In accordance with H.245 the Terminal Capability Set H.245 message and the Master-Slave Determination H.245 messages require an acknowledgement. Since the MGCF terminates the H.245 signaling, the MGCF decides to send the required H.245 messages Terminal Capability Set Ack and Master-Slave Determination Ack via the IM-MGW in the H.245 connection. The MGCF creates the H.245 messages, forwards the messages to the IM-MGW and instructs the IM-MGW to forward the messages within the H.223 connection. To do this, the IM-MGW preferably uses an H.248 Modify message with the new signal, which is called H245Message here, and which contains a suitable parameter, called “information” here, to specify the H.245 signaling and is related to the stream parameter, i.e. the “stream” allocated in message 4 to the logical H.223 channel for the H.245 signaling
  • 13. The IM-MGW forwards the received H.245 messages transparently in the H.223 connection through to the CS network side.
  • 14. The IM-MGW acknowledges the Modify message 12.
  • 15. The MGCF decides to send an H.245 message via the IM-MGW in the H.245 connection, in the example a Terminal Capability Set H.245 message which can be combined with a Master-Slave Determination H.245 message. In the H.245 Terminal Capability Set message the MGCF must take account of the negotiated multiplexing level as well as capabilities of the IM-MGW, for example which H.223 protocol options (e.g. the nesting depth for multiplexing) and which codecs the IM-MGW supports. The MGCF possesses either configured knowledge about this capability, or it queries this capability by an H.248 AuditCapabilities message from the IM-MGW. The MGCF preferably also takes into account information from the SIP/SDP signaling in the selection of the capability specified in the Terminal Capability Set, especially as regards the specified codec. The MGCF preferably selects codecs supported on both the IMS and on the CS network side in order to avoid transcoding. The MGCF creates the H.245 messages, forwards the messages to the IM-MGW and instructs the IM-MGW to forward the messages within the H.245 connection as already described in message 12.
  • 16. and 17. Similar to messages 13 and 14, i.e. forwarding the H.245 messages to the CS side and confirmation to the MGCF by the IM-MGW.
  • 18. The IM-MGW receives from MS1 a Terminal Capability Set Ack H.245 message, which is combined with a Master-Slave Determination Ack H.245 message.
  • 19. and 20. Similar to messages 10 and 11.
  • 21. The MGCF selects codecs for the video telephony, in which case it takes account of information from the SIP/SDP signaling on the IMS side as well as that contained in the Terminal Capability Set H.245 message 9. The MGCF preferably selects codecs supported on both the IMS and on the CS network side, in order to avoid transcoding. In particular the MGCF also extracts from the Terminal Capability Set H.245 messages 9 or 16 the H.223 logical channel number (LCN) corresponding to a selected voice or video codec. The MGCF creates an open logical channel H.245 message and then specifies the LCN of the selected codec. The MGCF creates the H.245 messages, forwards the messages to the IM-MGW and instructs the IM-MGW to forward the messages within the H.245 connection as already described in message 12.
  • In a case not shown here it can also occur that the MGCF receives via the IM-MGW from the CS network an Open Logical Channel H.245 message. In this case the capability has been selected in the CS network from capabilities offered in the Terminal Capability Set message 16.
  • 22. and 23. Similar to messages 13 and 14, i.e. forwarding and confirmation by the IM-MGW.
  • 24. The IM-MGW receives an Open Logical Channel Ack H.245 message from the CS side.
  • 25. and 26. Similar to messages 10 and 11, i.e. forwarding of the H.245 message from the IM-MGW to the MGCF and confirmation of the receipt of this message by the MGCF to the IM-MGW.
  • 27. The MGCF instructs the IM-MGW to create the logical H.223 channel which was already agreed with the aid of messages 21 to 26 via H.245 signaling. To this end the IM-MGW sends an H.248 Modify message regarding the multiplexing termination T2 in which it describes a new stream 3, in which case it specifies the LCN and the codec as in message 21.
  • 28. The IM-MGW acknowledges the Modify message.
  • 29. The MGCF instructs the IM-MGW to create a termination on the IMS side with which stream 3 is to be connected, so that the IM-MGW forwards the data assigned to the stream 3 on the IMS side or the CS network side to the other side in each case. To this end the IM-MGW sends an H.248 Add message relating to context C1, and specifies in the message that stream 3 is to be transported and the codec which is to be used for this purpose. If the same codec is specified in message 27 and 29, the IM-MGW recognizes that no transcoding is required.
  • 30. The IM-MGW acknowledges the Modify message.
  • 31. Operations similar to operations 21 through 30 are executed to configure a stream 4 for the bearer for transport of voice and to configure the corresponding speech codec for a termination T4.
  • Similar method operations will also be used for clearing down the video telephony connection between the mobile station MS1 and the mobile station MS2.
  • FIG. 4 shows the context for a video call, with the following then applying: Termination:
      • T1: CS domains (CS bearer (BS30) for H.245 control, voice and video),
      • T2: Multiplexing (H.245 control, voice, video),
      • T3: Video with own RTP bearer, and
      • T4: Voice with own RTP bearer.
  • Stream:
      • Stream1: between T1 and T2 with data (H.245 control, voice and video),
      • Stream2: Terminated at T2 with H.245 control information,
      • Stream3: between T2 and T3 with video data, and
      • Stream4, between T2 and T4 with voice data.
  • In other exemplary embodiments services other than video telephony are involved, for example voice telephony and text messages. Protocols other than the stated protocols are also employed in other exemplary embodiments.
  • In further exemplary embodiments the functions of IM-MGW and MGCF are provided by one unit, especially by a data processing unit, so that there is no external transmission link between IM-MGW and MGCF.
  • In another exemplary embodiment a network configuration different from that shown in FIG. 1 is used. For example for an IP station in the IMS, which is connected via another access network, e.g. via DSL or WLAN or WiMAX. In general another network which employs SIP can also instead of the IMS. Likewise another station, for example a fixed network telephone, can also be used in the CS network. Alternatively stations other than those depicted in FIG. 1 are used in both networks.
  • The system also includes permanent or removable storage, such as magnetic and optical discs, RAM, ROM, etc. on which the process and data structures of the present invention can be stored and distributed. The processes can also be distributed via, for example, downloading over a network such as the Internet. The system can output the results to a display device, printer, readily accessible memory or another computer on a network.
  • A description has been provided with particular reference to preferred embodiments thereof and examples, but it will be understood that variations and modifications can be effected within the spirit and scope of the claims which may include the phrase “at least one of A, B and C” as an alternative expression that means one or more of A, B and C may be used, contrary to the holding in Superguide v. DIRECTV, 358 F3d 870, 69 USPQ2d 1865 (Fed. Cir. 2004).

Claims (13)

1. A media gateway, comprising:
a receiver that receives, from a first data transmission network, payload data and H.245 signaling data, the H.245 signaling data and payload data being transmitted within the same bearer connection;
a signaling data transmission that sends the H.245 signaling data received at the receiver to a media gateway control unit, the H.245 signaling data being sent to the media gateway control unit unchanged and according to a control signaling method in accordance with the ITU-T H.248 protocol, the media gateway control unit controlling the media gateway and performing signaling interworking between the first data transmission network and a second data transmission network;
a payload data transmit unit that sends the payload data received at the receiver into the second data transmission network; and
a separation unit that separates the received H.245 signaling data and payload data from each other and forwards the H.245 signaling data to the signaling data transmit unit and forwards the payload data to the payload data transmit unit.
2. The media gateway as claimed in claim 1, wherein the media gateway forwards the H.245 signaling data to the media gateway control unit via an external transmission link.
3. The media gateway as claimed in claim 1, wherein the media gateway forwards a signaling message received from the media gateway control unit within an H.248-Notify message that contains as a parameter specifying that the signaling message is to be forwarded.
4. The media gateway as claimed in claim 1, wherein the media gateway receives, from the media gateway control unit, an instruction to start H.223 negotiation to determine a multiplexing level for the bearer connection.
5. The media gateway as claimed in claim 1, wherein media gateway, after negotiation of a multiplexing level, transfers to a media gateway control function a value of the multiplexing level in an H.248 Notify-Request message.
6. A media gateway control unit for controlling a media gateway and for performing signaling interworking between a first data transmission network and a second data transmission network, comprising:
a receiver that receives signaling data in accordance with a first signaling method for the first data transmission network, the signaling data being H.245 messages, wherein the signaling data is received from the first data transmission network via a bearer connection setup between the media gateway and the first data transmission network and wherein the H.245 messages from the first data transmission network are forwarded by the media gateway in unchanged form to the media gateway control unit via the ITU-T H.248 protocol;
a transmitter that transmits signaling data in accordance with a second signaling method for the second data transmission network; and
a conversion unit which, starting from a signaling message in accordance with the first signaling method, creates a corresponding signaling message in accordance with the second signaling method.
7. The media gateway control unit as claimed in claim 6, wherein the media gateway control unit initiates the forwarding of H.245 signaling data performed by the media gateway.
8. The media gateway control unit as claimed in claim 7, wherein the media gateway control unit initiates the forwarding by transmitting a message that contains a code for an H.248 event that specifies that forwarding is to be undertaken.
9. The media gateway control unit as claimed in claim 6, wherein a media gateway control function transfers to the media gateway a H.245 signaling message as a parameter in a ITU-T H.248 Modify-Request message, the message containing a code that specifies that a message in accordance with the ITU-T H.248 protocol is being forwarded as a parameter.
10. The media gateway control unit as claimed in claim 6, wherein the media gateway control unit causes the media gateway to begin negotiating a multiplexing level for the bearer connection by sending a message that contains an H.248 signal code that specifies that the negotiation of the multiplexing level is to begin.
11. The media gateway control unit as claimed in claim 10, wherein a media gateway control function causes the media gateway to transmit a message to the media gateway control unit in which the value of a negotiated multiplexing level is specified, by sending a message containing an H.248 event code that specifies that the value of the multiplexing level is to be transmitted to the media gateway control function.
12. The media gateway control unit as claimed in claim 6, wherein the media gateway control unit, when creating a TerminalCapabilitySet message in accordance with H.245 to be delivered to the media gateway, takes into account characteristics of the media gateway unit.
13. The media gateway control unit as claimed in claim 6, wherein the media gateway control unit processes signaling data with signaling messages in accordance with a further signaling method for the first data transmission network, the signaling messages being transmitted in accordance with BICC or ISUP.
US14/792,804 2005-10-21 2015-07-07 Media gateway and media gateway control unit Abandoned US20150312280A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/792,804 US20150312280A1 (en) 2005-10-21 2015-07-07 Media gateway and media gateway control unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102005050587A DE102005050587A1 (en) 2005-10-21 2005-10-21 Method for forwarding signaling data in a network gateway unit and in a control unit and associated units
US8387508A 2008-04-21 2008-04-21
US13/064,589 US9356973B2 (en) 2005-10-21 2011-04-01 Method for the transmission of signalling data in a network interface unit and in a control unit and corresponding devices
US14/792,804 US20150312280A1 (en) 2005-10-21 2015-07-07 Media gateway and media gateway control unit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/064,589 Division US9356973B2 (en) 2005-10-21 2011-04-01 Method for the transmission of signalling data in a network interface unit and in a control unit and corresponding devices

Publications (1)

Publication Number Publication Date
US20150312280A1 true US20150312280A1 (en) 2015-10-29

Family

ID=37492226

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/083,875 Expired - Fee Related US8036234B2 (en) 2005-10-21 2006-09-05 Method for forwarding signalling data in an interworking unit and in a control unit and corresponding devices
US13/064,589 Active 2030-05-20 US9356973B2 (en) 2005-10-21 2011-04-01 Method for the transmission of signalling data in a network interface unit and in a control unit and corresponding devices
US14/792,804 Abandoned US20150312280A1 (en) 2005-10-21 2015-07-07 Media gateway and media gateway control unit

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/083,875 Expired - Fee Related US8036234B2 (en) 2005-10-21 2006-09-05 Method for forwarding signalling data in an interworking unit and in a control unit and corresponding devices
US13/064,589 Active 2030-05-20 US9356973B2 (en) 2005-10-21 2011-04-01 Method for the transmission of signalling data in a network interface unit and in a control unit and corresponding devices

Country Status (9)

Country Link
US (3) US8036234B2 (en)
EP (3) EP2239954B1 (en)
JP (2) JP4728401B2 (en)
KR (1) KR101359292B1 (en)
CN (1) CN101292543B (en)
AT (1) ATE493847T1 (en)
DE (2) DE102005050587A1 (en)
SI (1) SI1938625T1 (en)
WO (1) WO2007045522A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170141934A1 (en) * 2014-05-13 2017-05-18 Zte Corporation Method and Gateway for Communication between Browser and Telecommunication Network

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409865A (en) * 2007-10-12 2009-04-15 华为技术有限公司 Method for implementing color bell intercommunication, control equipment and application server for multimedia gateway
FI123095B (en) 2008-01-17 2012-11-15 Teliasonera Ab Routing in a communication system
US8374171B2 (en) * 2008-03-06 2013-02-12 Pantech Co., Ltd. Method for reducing the risk of call connection failure and system to perform the method
CN101534264A (en) * 2008-03-14 2009-09-16 华为技术有限公司 Method and equipment for realizing intercommunication of IMS domain and CS domain
JP5419124B2 (en) * 2008-04-24 2014-02-19 日本電気株式会社 Gateway device, communication method and program
CN101316269B (en) * 2008-06-19 2012-02-08 中兴通讯股份有限公司 Method and system for implementing group multimedia ring service, and video gateway
CN102077558A (en) * 2008-07-16 2011-05-25 日本电气株式会社 Gateway device and method, and program
KR101585871B1 (en) * 2009-04-08 2016-01-15 삼성전자주식회사 Apparatus and method for providing white board service in mobile communication system
CN102045298B (en) * 2009-10-17 2013-12-04 中兴通讯股份有限公司 Consultation method and system of IP multimedia subsystem (IMS) media coding/decoding device
CN102577504B (en) * 2009-10-28 2015-01-28 上海贝尔股份有限公司 Method and device for handing over video call from packet switched domain to circuit switched domain
CN102948219B (en) * 2010-04-09 2016-08-03 瑞典爱立信有限公司 For the method distributing network entity
WO2012006310A1 (en) * 2010-07-06 2012-01-12 Interdigital Patent Holdings, Inc. Ip multimedia subsystem (ims)-based pre-negotiation of video codec for video single radio video call continuity
DE102012013336B4 (en) * 2011-07-08 2015-04-09 Avaya Inc. NEGOTIATING A CONTINUOUS MULTI-STREAM PRESENCE
CN103118238B (en) * 2011-11-17 2016-03-16 中国电信股份有限公司 The control method of video conference and video conferencing system
KR20140116176A (en) * 2011-12-29 2014-10-01 노키아 솔루션스 앤드 네트웍스 오와이 Conveying traffic in a communications network system
CN105335134A (en) * 2014-06-30 2016-02-17 北京金山安全软件有限公司 Method and device for processing CPU occupancy rate abnormity of APP and mobile terminal

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020006780A1 (en) * 2000-07-12 2002-01-17 Frode Bjelland Charging in communication networks having split control planes and user planes
US20040076145A1 (en) * 2000-12-22 2004-04-22 Timo Kauhanen Method and system for establishing a multimedia connection by negotiating capability in an outband control channel
US20040240389A1 (en) * 2003-05-30 2004-12-02 Thierry Bessis Method and apparatus for load sharing and overload control for packet media gateways under control of a single media gateway controller
US20060030357A1 (en) * 2004-07-29 2006-02-09 Sprint Spectrum L.P. Method and system for extending IP PBX services to cellular wireless communication devices
US20060174015A1 (en) * 2003-01-09 2006-08-03 Jesus-Javier Arauz-Rosado Method and apparatus for codec selection
US7136375B1 (en) * 1999-07-09 2006-11-14 Nokia Corporation Method for transmitting coding information over packet data network
US20070165598A1 (en) * 2003-09-27 2007-07-19 Hynonen Olli M Intelligent multimedia calls
US20080049784A1 (en) * 2005-04-22 2008-02-28 Gong Bitao Method and apparatus for gateway control protocol message transmission
US7444133B1 (en) * 2005-11-01 2008-10-28 At&T Mobility Ii Llc Cell broadcast updates to application software
US20100118778A1 (en) * 2007-04-02 2010-05-13 Karl-Peter Ranke Improvements in Mobile Technology

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69632384T2 (en) * 1995-12-19 2005-05-04 Canon K.K. Apparatus and method for controlling a plurality of remote cameras
US6011803A (en) * 1997-01-13 2000-01-04 Lucent Technologies Inc. Distributed-protocol server
US6118777A (en) * 1997-10-27 2000-09-12 Nortel Networks Corporation System and method for providing competing local exchange carriers unbundled access to subscriber access lines
DE10025437A1 (en) * 1999-11-19 2001-05-31 Siemens Ag Subscriber service updating method for telecommunications peripherals
US6754180B1 (en) * 1999-12-15 2004-06-22 Nortel Networks Limited System, method, and computer program product for support of bearer path services in a distributed control network
US6839342B1 (en) 2000-10-09 2005-01-04 General Bandwidth Inc. System and method for interfacing signaling information and voice traffic
US6868265B2 (en) * 2001-01-29 2005-03-15 Accelerated Performance, Inc. Locator for physically locating an electronic device in a communication network
US6996087B2 (en) 2001-07-31 2006-02-07 Lucent Technologies Inc. Communication system including an interworking mobile switching center for call termination
WO2003041344A1 (en) * 2001-11-07 2003-05-15 Telefonaktiebolaget Lm Ericsson (Publ) Inband controlling of a packet-based communications network
JP3922545B2 (en) * 2002-06-14 2007-05-30 日本電気株式会社 Communication control method in cellular phone system
GB2398458B (en) * 2003-02-15 2005-05-25 Ericsson Telefon Ab L M Conversational bearer negotiation
US7586857B2 (en) * 2003-04-01 2009-09-08 Alcatel-Lucent Usa Inc. Fast network SIP/SDP procedures for conference operations upon request from end user with optimization of network resources
ATE546955T1 (en) * 2003-04-09 2012-03-15 Ericsson Telefon Ab L M LEGAL INTERCEPTION OF MULTIMEDIA CONNECTIONS
US20050038992A1 (en) * 2003-05-22 2005-02-17 Pelaez Mariana Benitez Method for sending multiple ephemeral terminations in a single service change message
JP2004363993A (en) * 2003-06-05 2004-12-24 Sharp Corp Communication terminal
US20050030889A1 (en) * 2003-08-04 2005-02-10 Lucent Technologies Inc. Method and system for transmiting in-band call processing-related traffic using bearer facilities
EP1509012A2 (en) * 2003-08-20 2005-02-23 Samsung Electronics Co., Ltd. Method and apparatus for scheduling uplink packet transmission in a mobile communication system
US7853996B1 (en) * 2003-10-03 2010-12-14 Verizon Services Corp. Methodology, measurements and analysis of performance and scalability of stateful border gateways
US7751359B1 (en) * 2003-11-26 2010-07-06 Ericsson Ab Call origination in a CDMA legacy MS domain using SIP
EP1736015B1 (en) * 2004-04-16 2013-09-04 BlackBerry Limited System and method for providing early ringback by a home legacy mobile station domain network
KR100731392B1 (en) 2004-05-20 2007-06-21 가부시끼가이샤 도시바 Highly heat conductive silicon nitride sintered body and silicon nitride structural member
US20060256752A1 (en) * 2005-05-10 2006-11-16 Telefonaktiebolaget Lm Ericsson (Publ) System and method for call handoff from packet data wireless network to circuit switched wireless network
WO2006128495A1 (en) * 2005-05-31 2006-12-07 Telefonaktiebolaget Lm Ericsson (Publ) Lawful interception method and architecture for transparent transmission of interception information
US20060293024A1 (en) * 2005-06-23 2006-12-28 Lucent Technologies Inc. Methods and apparatus for improved 911 support for VoIP service
US8477910B2 (en) * 2006-02-23 2013-07-02 Microsemi Corp.—Analog Mixed Signal Group Ltd. System and method for location identification
US20080186952A1 (en) * 2006-08-11 2008-08-07 Huawei Technologies Co., Ltd. Method and system for setting up a multimedia session in multimedia internetworking systems
JP4470963B2 (en) * 2007-06-01 2010-06-02 株式会社日立製作所 Gateway device, ONT and PON system
US8059631B2 (en) * 2007-07-13 2011-11-15 Phybridge, Inc. Location system and method for assisting emergency services in identifying the physical location of an IP telephony user

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7136375B1 (en) * 1999-07-09 2006-11-14 Nokia Corporation Method for transmitting coding information over packet data network
US20020006780A1 (en) * 2000-07-12 2002-01-17 Frode Bjelland Charging in communication networks having split control planes and user planes
US20040076145A1 (en) * 2000-12-22 2004-04-22 Timo Kauhanen Method and system for establishing a multimedia connection by negotiating capability in an outband control channel
US20060174015A1 (en) * 2003-01-09 2006-08-03 Jesus-Javier Arauz-Rosado Method and apparatus for codec selection
US20040240389A1 (en) * 2003-05-30 2004-12-02 Thierry Bessis Method and apparatus for load sharing and overload control for packet media gateways under control of a single media gateway controller
US20070165598A1 (en) * 2003-09-27 2007-07-19 Hynonen Olli M Intelligent multimedia calls
US20060030357A1 (en) * 2004-07-29 2006-02-09 Sprint Spectrum L.P. Method and system for extending IP PBX services to cellular wireless communication devices
US20080049784A1 (en) * 2005-04-22 2008-02-28 Gong Bitao Method and apparatus for gateway control protocol message transmission
US7444133B1 (en) * 2005-11-01 2008-10-28 At&T Mobility Ii Llc Cell broadcast updates to application software
US20100118778A1 (en) * 2007-04-02 2010-05-13 Karl-Peter Ranke Improvements in Mobile Technology

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170141934A1 (en) * 2014-05-13 2017-05-18 Zte Corporation Method and Gateway for Communication between Browser and Telecommunication Network
US10348520B2 (en) * 2014-05-13 2019-07-09 Zte Corporation Method and gateway for communication between browser and telecommunication network

Also Published As

Publication number Publication date
ATE493847T1 (en) 2011-01-15
JP5238044B2 (en) 2013-07-17
EP1938625B1 (en) 2010-12-29
CN101292543B (en) 2015-04-29
EP2239954B1 (en) 2018-03-07
DE102005050587A1 (en) 2007-05-03
KR101359292B1 (en) 2014-02-10
EP2278825A1 (en) 2011-01-26
US20090232147A1 (en) 2009-09-17
JP4728401B2 (en) 2011-07-20
DE502006008621D1 (en) 2011-02-10
US9356973B2 (en) 2016-05-31
JP2009513045A (en) 2009-03-26
CN101292543A (en) 2008-10-22
KR20080070677A (en) 2008-07-30
JP2011155645A (en) 2011-08-11
US8036234B2 (en) 2011-10-11
SI1938625T1 (en) 2011-05-31
US20110181682A1 (en) 2011-07-28
WO2007045522A1 (en) 2007-04-26
EP1938625A1 (en) 2008-07-02
EP2239954A1 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
US8036234B2 (en) Method for forwarding signalling data in an interworking unit and in a control unit and corresponding devices
US9614714B2 (en) Signaling referring to setup of H.324 video telephone between media gateway and controller
US10075479B2 (en) Method for establishing a video telephone connection and/or a multimedia telephone connection in a data network
JP4217606B2 (en) Circuit switched and packet switched communications
EP1325595B1 (en) Protocol header construction and/or removal for real-time data packets over wireless links
JP4268129B2 (en) Signaling packet delivery control with specific commands from applications to optimize delivery to wireless networks
EP1551135B1 (en) Interworking between domains of a communication network operated based on different switching principles
US8457116B2 (en) Mobile technology
JP5185827B2 (en) Method for assigning at least one payload data connection to at least one multiplex connection
WO2008132199A1 (en) Improved codec negotiation
US7751359B1 (en) Call origination in a CDMA legacy MS domain using SIP
CN102047648A (en) Mobile communications system, node device, and method for controlling migration between networks
CN101431514A (en) Method and apparatus for establishing a voice bearer in a telecommunications system
WO2008003233A1 (en) Method and device for achieving inter-connection of multimedia calling between cs domain and ims domain
AU2002337040B2 (en) Method for the transmission of signal tones in heterogeneous networks, device and computer programme product
CN101243674B (en) Method and apparatus for a fast installation of an IP user connection over a 3GPP Nb interface under application of the BICC 'delayed backward bearer establishment' and avoidance of failure
EP2026524B1 (en) Support of media oriented negotiation acceleration procedures in split architecture
EP2226985A1 (en) A method for negotiating the redundant transmission
WO2004039097A1 (en) A communication method for calling on the circuit switched domain of core networks of gsm/wcdma
EP1650928A2 (en) Method for interworking between internet protocol (IP) telephony protocols

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION