US20150303167A1 - Semiconductor apparatus, method of manufacturing semiconductor apparatus, and electronic apparatus - Google Patents

Semiconductor apparatus, method of manufacturing semiconductor apparatus, and electronic apparatus Download PDF

Info

Publication number
US20150303167A1
US20150303167A1 US14/790,146 US201514790146A US2015303167A1 US 20150303167 A1 US20150303167 A1 US 20150303167A1 US 201514790146 A US201514790146 A US 201514790146A US 2015303167 A1 US2015303167 A1 US 2015303167A1
Authority
US
United States
Prior art keywords
bump
semiconductor
stud bump
flip
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/790,146
Inventor
Satoru Wakiyama
Hiroshi Ozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to US14/790,146 priority Critical patent/US20150303167A1/en
Publication of US20150303167A1 publication Critical patent/US20150303167A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05567Disposition the external layer being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/1134Stud bumping, i.e. using a wire-bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/114Manufacturing methods by blanket deposition of the material of the bump connector
    • H01L2224/1141Manufacturing methods by blanket deposition of the material of the bump connector in liquid form
    • H01L2224/11416Spin coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/114Manufacturing methods by blanket deposition of the material of the bump connector
    • H01L2224/1143Manufacturing methods by blanket deposition of the material of the bump connector in solid form
    • H01L2224/11436Lamination of a preform, e.g. foil, sheet or layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/1182Applying permanent coating, e.g. in-situ coating
    • H01L2224/11825Plating, e.g. electroplating, electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/11848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13016Shape in side view
    • H01L2224/13018Shape in side view comprising protrusions or indentations
    • H01L2224/13019Shape in side view comprising protrusions or indentations at the bonding interface of the bump connector, i.e. on the surface of the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/13076Plural core members being mutually engaged together, e.g. through inserts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/1319Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/1356Disposition
    • H01L2224/13562On the entire exposed surface of the core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/1357Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16238Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/165Material
    • H01L2224/16501Material at the bonding interface
    • H01L2224/16503Material at the bonding interface comprising an intermetallic compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81009Pre-treatment of the bump connector or the bonding area
    • H01L2224/8102Applying permanent coating to the bump connector in the bonding apparatus, e.g. in-situ coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8134Bonding interfaces of the bump connector
    • H01L2224/81355Bonding interfaces of the bump connector having an external coating, e.g. protective bond-through coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8138Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/81399Material
    • H01L2224/814Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/81401Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/81411Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8138Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/81399Material
    • H01L2224/814Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/81401Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/81413Bismuth [Bi] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81805Soldering or alloying involving forming a eutectic alloy at the bonding interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/8181Soldering or alloying involving forming an intermetallic compound at the bonding interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81909Post-treatment of the bump connector or bonding area
    • H01L2224/81951Forming additional members, e.g. for reinforcing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83104Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus by applying pressure, e.g. by injection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83862Heat curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/15321Connection portion the connection portion being formed on the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides

Definitions

  • a method of manufacturing the semiconductor apparatus of the first embodiment will be described. It is noted that in the following description, only the configuration in the vicinity of the stud bump formed to the semiconductor apparatus will be described. Other configurations can be manufactured by a well-known method of related art.
  • a component to which the semiconductor component 31 including the Cu stud bump 41 is flip-chip connected is not particularly limited so long as an electronic component including an electrode corresponding to the flip-chip connection and the solder bump formed on the electrode is employed.
  • the electronic component to which the semiconductor component is flip-chip connected may be the semiconductor element and the like besides the glass substrate and the wiring substrate which are described above, for example.
  • the opposite surface (rear surface) of the surface for forming various kinds of elements on the semiconductor base is cut (back-grinded: BG). Then, the semiconductor base is subjected to dicing (DC) and the first semiconductor component 61 is separated into individual chips.

Abstract

A semiconductor apparatus, including: a semiconductor component; a Cu stud bump that is formed on the semiconductor component; and a solder bump configured to electrically connect to the Cu stud bump.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application is a continuation of U.S. patent application Ser. No. 13/568,574 filed on Aug. 7, 2012 which claims priority from Japanese Patent Application No. JP 2011-178390 filed in the Japanese Patent Office on Aug. 17, 2011, the entire content of which is incorporated herein by reference.
  • BACKGROUND
  • The present disclosure relates to a semiconductor apparatus, a method of manufacturing the semiconductor apparatus, and an electronic apparatus that are configured to be connected using a stud bump.
  • As a flip-chip connection technique of a semiconductor apparatus, there is a method of connecting an Au stud bump to an SnAg solder bump or a method of connecting an Au stud bump to an Sn solder bump which is coated with Pd (Japanese Patent Application Laid-Open Nos. 2009-218442 and 2009-239278).
  • There is a flip-chip connection technique for connecting an Au stud bump to a Cu electrode of a semiconductor chip (Japanese Patent Application Laid-Open No. 2001-60602) or a flip-chip connection technique for connecting an Au stud bump to an Sn-plated Cu electrode (Japanese Patent Application Laid-Open No. 2005-179099).
  • Moreover, a Cu stud bump substituted for an Au stud bump has been suggested (Japanese Patent Application Laid-Open No. 2011-23568).
  • SUMMARY
  • In the flip-chip connection technique using the above described stud bump, it has been demanded to improve connection reliability of a semiconductor apparatus.
  • The present disclosure provides a semiconductor apparatus, a method of manufacturing the semiconductor apparatus, and an electronic apparatus which have high connection reliability.
  • The semiconductor apparatus in the present disclosure includes a semiconductor component, a Cu stud bump formed on the semiconductor component, and a solder bump electrically connected to the Cu stud bump.
  • Moreover, the method of manufacturing the semiconductor apparatus in the present disclosure includes forming the Cu stud bump on the semiconductor component and flip-chip connecting the Cu stud bump to the solder bump.
  • Moreover, the electronic apparatus in the present disclosure includes the semiconductor apparatus and a signal processing circuit configured to process an output signal of the semiconductor apparatus.
  • According to the semiconductor apparatus and the method of manufacturing the semiconductor apparatus, the flip-chip connection is performed using the Cu stud bump, so that an alloy having a low strength is not generated at a connection portion between Cu and a solder even in low temperature connection. Therefore, connection defects are prevented at the connection portion between the Cu stud bump and the solder bump, and the connection reliability can be improved.
  • According to the present disclosure, it is possible to provide the semiconductor apparatus and the electronic apparatus which have high connection reliability.
  • These and other objects, features and advantages of the present disclosure will become more apparent in light of the following detailed description of best mode embodiments thereof, as illustrated in the accompanying drawings.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1A is a drawing showing a configuration of a stud bump and a solder bump prior to flip-chip connection, and FIG. 1B is a drawing showing a configuration of the stud bump and the solder bump after the flip-chip connection;
  • FIG. 2A is another drawing showing a configuration of the stud bump and the solder bump prior to the flip-chip connection, and FIG. 2B is another drawing showing a configuration of the stud bump and the solder bump after the flip-chip connection;
  • FIG. 3 is a cross-sectional view showing a configuration of a semiconductor apparatus according to a first embodiment;
  • FIG. 4 is a drawing showing a configuration of a Cu stud bump prior to the flip-chip connection;
  • FIG. 5 is a drawing showing a configuration of the Cu stud bump and the solder bump after the flip-chip connection;
  • FIG. 6 is a drawing showing a process flow of the semiconductor apparatus according to the first embodiment;
  • FIGS. 7A to 7C are manufacturing process diagrams of the Cu stud bump;
  • FIGS. 8A to 8D are manufacturing process diagrams of the solder bump;
  • FIGS. 9A to 9C are process diagrams of the flip-chip connection by the Cu stud bump and the solder bump;
  • FIG. 10 is a drawing showing a modified example of the process flow of the semiconductor apparatus according to the first embodiment;
  • FIGS. 11A to 11C are process diagrams of the flip-chip connection by the Cu stud bump and the solder bump;
  • FIG. 12 is a drawing showing a configuration of a modified example of the semiconductor apparatus according to the first embodiment;
  • FIG. 13 is a cross-sectional view showing a configuration of a semiconductor apparatus according to a second embodiment;
  • FIG. 14 is a drawing showing a process flow of the semiconductor apparatus according to a second embodiment;
  • FIG. 15 is a drawing showing a modified example of the process flow of the semiconductor apparatus according to the second embodiment; and
  • FIG. 16 is a drawing showing a configuration of an electronic apparatus.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • Hereinafter, examples of embodiments for carrying out the present disclosure will be described. However, the present disclosure will not be limited to the following examples.
  • It is noted that the descriptions will be given below in accordance with the following order.
  • 1. Overview of semiconductor apparatus
    2. First embodiment of semiconductor apparatus
    3. Method of manufacturing semiconductor apparatus of First Embodiment
    4. Second embodiment of semiconductor apparatus
    5. Method of manufacturing semiconductor apparatus of Second Embodiment
    6. Electronic apparatus
  • 1. Overview of Semiconductor Apparatus
  • An overview of flip-chip connection of a semiconductor apparatus will be described.
  • FIG. 1 show configurations of flip-chip connection using a general Au stud bump of related art. FIG. 1A is a drawing showing a configuration of an Au stud bump 11 and an Sn bump 12 prior to connection. FIG. 1B is a drawing showing a configuration of the Au stud bump 11 and the Sn bump 12 after the connection.
  • The Au stud bump 11 shown in FIG. 1A is the Au bump formed of Au wires. The Au stud bump 11 is formed on an electrode 14 which is formed on a semiconductor component 13. The semiconductor component 13 is coated by a protective layer 15 except on the electrode 14 on which the Au stud bump 11 is formed.
  • Moreover, the Sn bump 12 shown in FIG. 1A includes an Sn group solder such as an SnAg solder bump. The Sn bump 12 includes an electrode 17 formed on a wiring substrate 16 and an under bump metal (UBM) 18 formed on the electrode 17. The wiring substrate 16 is coated by a protective layer 19 except on the electrode 17 on which the UBM 18 is formed.
  • As shown in FIG. 1B, the semiconductor component 13 is flip-chip connected on the wiring substrate 16 by the Au stud bump 11 and the Sn bump 12.
  • At this time, it may be necessary to connect the Au stud bump 11 and the Sn bump 12 at 300° C. or higher to improve the connection reliability.
  • As shown in FIG. 1B, in the connection at 300° C. or lower, an intermetallic compound (IMC) 20 having a low strength such as SnAu4 alloy is generated at a connection portion due to diffusion of Au to Sn. Therefore, generation of a crack 24 and the like may decrease in connectivity and reliability. Moreover, since the Au stud bump 11 is stuck into the Sn bump 12, it is difficult to prevent the diffusion of Au to Sn. Therefore, it is difficult to prevent the generation of the IMC 20 at the connection portion.
  • As described above, in the flip-chip connection performed by the Au stud bump 11 and the Sn bump 12, it may be necessary to perform high-temperature connection at 300° C. or higher, so that it is difficult to perform low-temperature connection in view of the connection reliability.
  • Moreover, instead of using the Sn bump, as shown in FIG. 2, it is considered that a low melting point solder bump of In group is used to flip-chip connect the Au stud bump 11. FIG. 2A is a drawing showing a configuration of an Au stud bump 21 and an In bump 22 prior to connection. FIG. 2B is a drawing showing a configuration of the Au stud bump 21 and the In bump 22 after the connection.
  • The Au stud bump 21 shown in FIG. 2A has the same configuration as FIG. 1A described above. Moreover, the In bump is constituted of an In group solder. In this method, an alloy having a low strength such as SnAu4 alloy is not generated, so that it is possible to perform low-temperature flip-chip connection at 200° C. or lower.
  • However, in the connection performed by using the Au stud bump 21 and the In bump 22, a diffusion coefficient between Au and In is large, so that it is difficult to control a growth of an AuIn alloy. As a result, as shown in FIG. 2B, the In bump is sucked due to a growth of an AuIn alloy 23. Therefore, in the flip-chip connection performed by the Au stud bump 21 and the In bump 22, it is difficult to secure the connectivity.
  • As described above, in the flip-chip connection using the stud bump, it is difficult to perform low temperature processing in view of the connection reliability. Therefore, in a case where a material having a low heat resistance is mounted on the semiconductor component and the like, it is difficult to apply the flip-chip connection having high connection reliability. Therefore, it has been demanded that a method of the flip-chip connection can stably connect, at a low temperature, the semiconductor apparatus and the like formed by using a material having a low heat resistance and have high connection reliability.
  • 2. First Embodiment of Semiconductor Apparatus [Image Sensor: Configuration]
  • Hereinafter, a first embodiment of the semiconductor apparatus will be described. FIG. 3 is a cross-sectional view showing a configuration of the semiconductor apparatus according to the first embodiment. In the first embodiment, the description will be made taking an example of an image sensor as the semiconductor apparatus. FIG. 3 is a cross-sectional view of a semiconductor apparatus 30 formed of the image sensor mounted on a glass substrate.
  • The semiconductor apparatus 30 is constituted of a semiconductor component 31 including the image sensor, and a glass substrate 32. The semiconductor component 31 includes an electrode 45 formed on the semiconductor component 31 and a Cu stud bump 41 formed on the electrode 45.
  • Moreover, the glass substrate 32 includes an electrode 47 for flip-chip connection formed on the glass substrate 32, the under bump metal (UBM) 48 formed on the electrode 47, and a low melting point solder bump 44 formed on the UBM 48. Further, a wiring layer 34 formed on the glass substrate 32, a protective layer 49 coating the wiring layer 34, an electrode 35 for external connection connected to the wiring layer 34, and a solder ball 36 formed on the electrode 35 for external connection.
  • Moreover, an under-fill resin 33 which seals a connection portion between the Cu stud bump 41 and the solder bump 44 is provided between the semiconductor component 31 and the glass substrate 32.
  • The semiconductor component 31 is an element generally used as an image sensor and is a semiconductor element such as a CCD (charge coupled device) image sensor and a CMOS (complementary metal oxide semiconductor) image sensor. The semiconductor component 31 is disposed so as to face a light receiving surface to the glass substrate 32 side.
  • Moreover, the electrode 45 connected to the glass substrate 32 on the same surface as the light receiving surface is formed on the semiconductor component 31. Then, the Cu stud bump 41 for flip-chip connection is formed on the electrode 45. An alloy layer 43 is formed on a contact surface between the Cu stud bump 41 and the solder bump 44. Moreover, the Cu stud bump 41 includes a plating layer 42 on a surface which is not brought into contact with the solder bump 44.
  • The glass substrate 32 is constituted of a cover glass used for the image sensor, for example. Then, the electrode 47 for flip-chip connection and the electrode 35 for external connection are connected on the glass substrate 32 by the wiring layer 34. The solder ball 36 for connection to external devices is formed on the electrode 35. The solder ball 36 is used for a binary or ternary solder of Sn group and the like. For example, SnBi, SnIn, SnAgCu, SnZn, and SnAg and the like are used.
  • It is noted that the glass substrate 32 may be connected by wire bonding using Au wires instead of the solder ball 36.
  • [Cu Stud Bump: Configuration]
  • Next, in the above described semiconductor apparatus 30, FIG. 4 shows a configuration of the Cu stud bump 41 formed on the semiconductor component 31. The Cu stud bump 41 shown in FIG. 4 is a state prior to connection. Moreover, FIG. 5 shows a configuration of the Cu stud bump 41 and the solder bump 44 after connecting the semiconductor component 31 and the glass substrate 32.
  • As shown in FIG. 4, the Cu stud bump 41 is formed on the electrode 45 on the semiconductor component 31. The semiconductor component 31 is coated by a protective layer 46 except on the electrode 45 on which the Cu stud bump 41 is formed.
  • Moreover, a surface of the Cu stud bump 41 is coated by the plating layer 42.
  • The plating layer 42 is a protective layer for preventing oxidation of the Cu stud bump 41. Moreover, when the Cu stud bump 41 is flip-chip connected, the plating layer 42 is formed of a material which quickly diffuses the plating layer of the surface in the solder bump 44.
  • As the plating layer 42, for example, a plating layer constituted of a flash Ni plating layer and a flash Au plating layer by an electroless method, or an electroless Co plating layer is used.
  • Thicknesses of the plating layer 42 are formed at 0.01 to 0.1 μm, for example.
  • Moreover, the solder bump 44 provided on the glass substrate 32 is formed of a low melting point solder. As the low melting point solder, for example, a unary solder material of In, a low melting point binary solder material such as Sn—Bi, Sn—In, Bi—In, and a solder material formed by adding other metals to the binary solder material are used. As the low melting point solder, for example, a solder material whose melting point is 200° C. or lower is used.
  • Then, the Cu stud bump 41 formed on the semiconductor component 31 is brought into pressing contact with the solder bump 44 of the glass substrate 32, thereby entering a top end of the Cu stud bump 41 into the solder bump 44. Subsequently, heating is performed in a state where the Cu stud bump 41 is stuck into the solder bump 44, so that the flip-chip connection is performed as shown in FIG. 5.
  • As shown in FIG. 5, when the flip-chip connection is performed, the plating layer 42 of the contact surface between the Cu stud bump 41 and the solder bump 44 is diffused into the solder bump 44. Moreover, the alloy layer 43 of Cu and the solder is formed on the contact surface between the Cu stud bump 41 and the solder bump 44. At this time, it is suitable that the solder bump 44 is not entirely alloyed and the solder bump 44 which is not alloyed is left on the UBM 48.
  • In the above-described configuration, it is possible to prevent generation of alloy having a weak mechanical strength on an interface of the low melting point solder bump 44 by using Cu as the stud bump material of the flip-chip connection. Moreover, it is possible to perform the flip-chip connection at a low temperature by using the low melting point solder as the solder bump 44.
  • For example, in a case where the solder bump 44 is constituted of In, an intermetallic compound of In3Cu7 and the like are formed on an interface between the Cu stud bump 41 and the solder bump 44. The intermetallic compound of In3Cu7 has enough mechanical strength. Therefore, even in the low-temperature flip-chip connection, an alloy having a low strength which causes reduction in connection reliability is not generated. Moreover, even in a combination of the Cu stud bump and the low melting point binary solder material and the like, an alloy layer having a weak mechanical strength is not generated on the interface. Therefore, even in the semiconductor component 31 having heat sensitive configuration, it is possible to apply the flip-chip connection.
  • Therefore, in the flip-chip connection, it is possible to perform low-temperature connection and further improve the connection reliability of the semiconductor apparatus.
  • 3. Method of Manufacturing Semiconductor Apparatus of First Embodiment
  • A method of manufacturing the semiconductor apparatus of the first embodiment will be described. It is noted that in the following description, only the configuration in the vicinity of the stud bump formed to the semiconductor apparatus will be described. Other configurations can be manufactured by a well-known method of related art.
  • [Manufacturing Method: Subsequent UF Resin Process Flow]
  • FIG. 6 shows a process flow of the semiconductor apparatus 30 shown in FIG. 3.
  • As shown in FIG. 6, elements such as photodiodes and various kinds of transistors, and wirings and the like constituting the semiconductor component 31 on a semiconductor base are formed by the well-known method. At this time, the electrode 45 for external connection is formed for performing flip-chip connection.
  • The Cu stud bump 41 is formed on the electrode 45 for connecting to external devices of the semiconductor component 31.
  • The plating layer 42 is formed on the formed Cu stud bump 41 by an electroless plating method.
  • An opposite surface (rear surface) of a surface for forming various kinds of elements on the semiconductor base is cut (back-grinded: BG) and the semiconductor component 31 constituting a rear-surface irradiation type solid-state imaging device is formed.
  • The semiconductor base is subjected to dicing (DC) and the semiconductor component 31 is separated into individual chips.
  • Moreover, the wiring layer 34, the electrode 47 and the like are formed on the glass substrate 32 by the well-known method. Then, the UBM 48 is formed on the electrode 47.
  • The solder bump 44 is formed on the UBM 48 using the low melting point solder.
  • Next, the Cu stud bump 41 is brought into pressing contact with (bonded to) the solder bump 44, thereby flip-chip connecting the semiconductor component 31 which is separated into individual chips to the glass substrate 32. After connection, the under-fill (UF) resin 33 is injected around the connection portion between the Cu stud bump 41 and the solder bump 44. Then, the injected UF resin 33 is heated and the UF resin is hardened (cured).
  • With the above process, the semiconductor apparatus 30 can be manufactured.
  • [Manufacturing Method: Cu Stud Bump]
  • A Cu stud bump forming process in a process flow of the above described semiconductor apparatus 30 will be described with reference to a manufacturing process diagram shown in FIG. 7.
  • As shown in FIG. 7A, a Cu wire 51 is subjected to bonding on the electrode 45 of the semiconductor component 31 using a capillary 52. Then, as shown in FIG. 7B, the Cu stud bump 41 is formed by cutting the Cu wire 51. In a formation process of the Cu stud bump 41, for example, the Cu wire 51 having a diameter of 15 to 35 μmΦ is used to form the Cu stud bump 41 having a diameter of 30 to 70 μmΦ.
  • Next, as shown in FIG. 7C, the plating layer 42 is formed on a surface of the formed Cu stud bump 41. The plating layer 42 is formed by the electroless plating method. For example, a flash Ni plating is performed on the surface of the Cu stud bump 41 by the electroless plating method. Then, a flash Au plating is performed on the flash Ni plating layer. Thus, the plating layer 42 constituting the Ni plating layer and the Au plating layer is formed.
  • For example, in the plating layer 42, the Ni plating layer and the Au plating layer are formed to have a thickness of 0.01 to 0.1 μm, respectively.
  • Moreover, for example, Co plating is performed on the surface of the Cu stud bump 41 as the plating layer 42 by the electroless plating method. In this case, the plating layer 42 constituting the Co plating layer is formed to have a thickness of 0.01 to 0.1 μm.
  • With the above process, the Cu stud bump 41 is formed on the semiconductor component 31.
  • [Manufacturing Method: Solder Bump]
  • Next, a solder bump forming process in the process flow of the semiconductor apparatus 30 will be described with reference to a manufacturing process diagram shown in FIG. 8.
  • As shown in FIG. 8A, a barrier metal layer 53 is formed on a surface of the electrode 47 and the protective layer 49.
  • Prior to forming the barrier metal layer 53, an oxide film on the surface of the electrode 47 is removed through reverse-sputtering. Subsequently, a Ti layer is formed on the electrode 47 by a sputtering method. Then, a Cu layer is formed so as to coat the Ti layer by the sputtering method. Thus, the barrier metal layer 53 constituted of the Ti layer and the Cu layer is formed.
  • Next, as shown in FIG. 8B, a resist layer 54 is formed on the barrier metal layer 53. Then, the resist layer 54 is subjected to exposure processing by a photo mask 55. In the photo mask 55, a pattern for irradiating exposure light on a portion for forming the electrode 47 is used.
  • Next, as shown in FIG. 8C, the under bump metal (UBM) 48 and the solder bump 44 are formed in an opening formed by removing an exposure portion of the resist layer 54 by an electro plating method. The UBM 48 is formed by the electro plating method using Ni, Ti, TiW, W, Cu, and the like. Moreover, the solder bump 44 is formed by the electro plating method by use of a unary solder material of In, a low melting point binary solder material such as Sn—Bi, Sn—In, Bi—In, and the like.
  • Next, as shown in FIG. 8D, after the resist layer 54 is removed, the barrier metal layer 53 exposed to the surface is removed. Further, the solder bump 44 is melted into a spherical form through a reflow.
  • With the above process, the solder bump 44 is formed on the glass substrate 32.
  • [Manufacturing Method: Flip-Chip Connection]
  • Next, a flip-chip connecting process and a UF resin sealing process in the process flow of the above described semiconductor apparatus 30 will be described with reference to a manufacturing process diagram shown in FIG. 9.
  • First, as shown in FIG. 9A, the semiconductor component 31 and the glass substrate 32 are aligned by facing a surface for forming the Cu stud bump 41 and a surface for forming the solder bump 44.
  • Next, as shown in FIG. 9B, while the Cu stud bump 41 and the solder bump 44 are aligned, the semiconductor component 31 and the glass substrate 32 are brought into pressing contact and are flip-chip connected. At this time, pressing contact and heating are simultaneously performed according to the flip-chip connection. The plating layer 42 on the surface of the Cu stud bump 41 is diffused into the solder bump 44 by thermal processing. Moreover, the alloy layer 43 is generated and grown on a connection surface between the Cu stud bump 41 and the solder bump 44 by thermal processing.
  • In the above described flip-chip connection, pressure (bonding force) applied to each unit of bump during pressing contact is 0.01 gf/bump to 10 gf/bump, for example. Moreover, a heating temperature is set at 200° C. or lower during the flip-chip connection. Moreover, the heating temperature is set at a temperature at or above a melting point of the solder bump 44 to be used. For example, in a case where a solder of solid In is used for the solder bump 44, the solder is heated at 156° C. or higher which is a melting point of In.
  • Next, as shown in FIG. 9C, the under-fill (UF) resin 33 is applied to the connection portion between the Cu stud bump 41 and the solder bump 44. Then, the UF resin 33 is heated and hardened. In the UF resin 33, the semiconductor component 31 and the glass substrate 32 are bonded, thereby improving mechanical connection reliability of an adhesive surface of the semiconductor apparatus.
  • With the above process, the semiconductor component 31 can be flip-chip connected to the glass substrate 32.
  • In the above described flip-chip connection, it is possible to perform a connection at 200° C. or lower by using the low melting point solder for the solder bump 44. Moreover, an alloy having a low strength is not generated by using the Cu stud bump 41 even in the low-temperature flip-chip connection.
  • It is noted that in the above mentioned manufacturing process, thermal processing for causing a growth of the alloy layer does not need to be performed at the same time as the flip-chip connection. For example, after the process for bringing into pressing contact with and flip-chip connecting the semiconductor component 31 and the glass substrate 32, annealing may be performed in a different process. At this time, the annealing is performed at 200° C. or lower.
  • Modified Example Preliminary UF Resin Process Flow
  • Next, a modified example of a manufacturing method of the above described semiconductor apparatus 30 will be described. In the modified example, sealing flip-chip connection portion by the UF resin is different from the above described manufacturing method.
  • FIG. 10 shows a process flow which is changed in the UF resin sealing process.
  • As shown in FIG. 10, elements such as photodiodes and various kinds of transistors, and wirings and the like constituting the semiconductor component 31 on the semiconductor base are formed by the well-known method. At this time, the electrode 45 for external connection is formed for performing flip-chip connection.
  • The Cu stud bump 41 is formed on the electrode 45 for connecting to external devices of the semiconductor component.
  • The plating layer 42 is formed on the formed Cu stud bump 41 by the electroless plating method.
  • The under-fill (UF) resin 33 is laminated on the formed Cu stud bump 41.
  • An opposite surface (rear surface) of the surface for forming various kinds of elements on the semiconductor base is cut (back-grinded: BG) and the semiconductor component 31 constituting a rear-surface irradiation type solid-state imaging device is formed.
  • The semiconductor base is subjected to dicing (DC) and the semiconductor component 31 is separated into individual chips.
  • Moreover, the wiring layer 34, the electrode 47 and the like are formed on the glass substrate 32 by the well known method. Then, the UBM 48 is formed on the electrode 47.
  • The solder bump 44 is formed on the UBM 48 using the low melting point solder.
  • Next, the Cu stud bump 41 is brought into pressing contact with (bonded to) the solder bump 44, thereby flip-chip connecting the semiconductor component 31 which is separated into individual chips to the glass substrate 32. After connection, the OF resin 33 is heated and is hardened (cured).
  • With the above process, the semiconductor apparatus 30 can be manufactured.
  • Next, the UF resin forming process and the UF resin sealing process in the process flow of the above described semiconductor apparatus 30 will be described with reference to a manufacturing process diagram shown in FIG. 11. It is noted that in the following description, only the process which is different from the manufacturing method of the above described semiconductor apparatus will be described.
  • First, the plating layer 42 is formed on the Cu stud bump 41 by the above processes (FIG. 7C) and then the under-fill (UF) resin 33 covering the Cu stud bump 41 is formed as shown in FIG. 11A. The under-fill (UF) resin 33 is formed by a spin coating method using a coating liquid including the under-fill resin or a laminate of a dry film of the under-fill resin, for example.
  • Next, as shown in FIG. 11B, the semiconductor component 31 and the glass substrate 32 are aligned by facing the surface for forming the Cu stud bump 41 and the surface for forming the solder bump 44. Then, as shown in FIG. 11C, the semiconductor component 31 and the glass substrate 32 are brought into pressing contact and are flip-chip connected. Further, the alloy layer 43 is grown on the connection surface between the Cu stud bump 41 and the solder bump 44, and the UF resin 33 is hardened by thermal processing.
  • With the above process, the UF resin 33 covering the Cu stud bump 41 is formed prior to the flip-chip connection and the semiconductor apparatus 30 can be manufactured by a method of hardening the UF resin 33 after the flip-chip connection.
  • [Modified Example of Semiconductor Apparatus]
  • In the semiconductor apparatus of the first embodiment, the wiring substrate can be used instead of the glass substrate. FIG. 12 shows a configuration of the semiconductor apparatus which uses the wiring substrate.
  • The semiconductor apparatus shown in FIG. 12 is constituted of the semiconductor component 31 constituting the image sensor, and a wiring substrate 37.
  • The semiconductor component 31 includes the electrode 45 formed on the semiconductor component 31 and the Cu stud bump 41 formed on the electrode 45.
  • Moreover, the wiring substrate 37 includes the electrode 47 for flip-chip connection formed on the wiring substrate 37, the under bump metal (UBM) 48 formed on the electrode 47, and the low melting point solder bump 44 formed on the UBM 48. Further, the wiring substrate 37 includes the wiring layer 34 formed on the glass substrate 32, the protective layer 49 coating the wiring layer 34, the electrode 35 for external connection connected to the wiring layer 34, and the solder ball 36 formed on the electrode 35 for external connection.
  • For example, the wiring substrate 37 includes a translucent optical component 38 such as glass on the light receiving surface of the semiconductor component 31. Then, the electrode 47, the UBM 48, and the solder bump 44 are formed on the wiring substrate 37 along a circumference of the optical component 38.
  • It is noted that the configurations of the semiconductor component 31, the Cu stud bump 41 of the semiconductor component 31, and the like shown in FIG. 12 are the same as the first embodiment. Moreover, the configurations of the solder bump 44, the electrode 47, the wiring layer 34 and the like formed on the wiring substrate 37 are the same as the first embodiment.
  • As the modified example described above, a component to which the semiconductor component 31 including the Cu stud bump 41 is flip-chip connected is not particularly limited so long as an electronic component including an electrode corresponding to the flip-chip connection and the solder bump formed on the electrode is employed. The electronic component to which the semiconductor component is flip-chip connected may be the semiconductor element and the like besides the glass substrate and the wiring substrate which are described above, for example.
  • 4. Second Embodiment of Semiconductor Apparatus
  • Next, a second embodiment of the semiconductor apparatus will be described. FIG. 13 shows the semiconductor apparatus of the second embodiment.
  • A semiconductor apparatus 60 shown in FIG. 13 includes a first semiconductor component 61 and a second semiconductor component 62. Then, the first semiconductor component 61 is mounted on the second semiconductor component 62 by the flip-chip connection.
  • The first semiconductor component 61 includes the electrode 45 formed on the first semiconductor component 61 and the Cu stud bump 41 formed on the electrode 45. It is noted that the first semiconductor component 61 is the same configuration as the semiconductor component 31 of the first embodiment shown in FIG. 3 described above, so that the detailed description is omitted.
  • The second semiconductor component 62 includes the electrode 47 for flip-chip connection, the under bump metal (UBM) 48 formed on the electrode 47, and the low melting point solder bump 44 formed on the UBM 48. Further, an end portion of the second semiconductor component 62 includes a pad electrode 63 for wire bonding for external connection. The semiconductor apparatus 60 is electrically connected by wire bonding to an external electronic apparatus by the pad electrode 63 for wire bonding of the second semiconductor component 62. Moreover, the protective layer 49 is provided on a surface of the second semiconductor component 62 except on the electrode 47 for flip-chip connection and the pad electrode 63 for wire bonding.
  • The surface of the Cu stud bump 41 is coated by the plating layer 42. As the plating layer 42, for example, the plating layer constituted of the flash Ni plating layer and the flash Au plating layer by the electroless method, or the electroless Co plating layer is used.
  • The solder bump 44 is formed of a low melting point solder. As the low melting point solder, the unary solder material of In, the low melting point binary solder material such as Sn—Bi, Sn—In, Bi—In, and the solder material formed by adding other metals to the binary solder material are used.
  • The alloy layer 43 of Cu and the solder is formed on the contact surface between the Cu stud bump 41 and the solder bump 44.
  • Moreover, in the semiconductor apparatus 60 shown in FIG. 13, the under-fill (UF) resin 33 which seals the entire connection surface between the semiconductor components is provided between the first semiconductor component 61 and the second semiconductor component 62. The first semiconductor component 61 and the second semiconductor component 62 are mechanically connected by the under-fill (UF) resin 33. Then, the connection portion between the Cu stud bump 41 and the solder bump 44 is formed into the under-fill (UF) resin 33. Thus, in the semiconductor apparatus 60, a fillet is formed by the under-fill resin 33 which fills between the first semiconductor component 61 and the second semiconductor component 62.
  • 5. Method of Manufacturing Semiconductor Apparatus of Second Embodiment [First Manufacturing Method: Subsequent UF Resin Process Flow]
  • FIG. 14 shows a process flow of the semiconductor apparatus 60 shown in FIG. 13.
  • As shown in FIG. 14, elements such as various kinds of transistors, and wirings and the like constituting the first semiconductor component 61 on the semiconductor base are formed by the well-known method. At this time, the electrode 45 for external connection is formed for performing flip-chip connection.
  • The Cu stud bump 41 is formed on the electrode for connecting to external devices of the first semiconductor component 61.
  • The plating layer 42 is formed on the formed Cu stud bump 41 by the electroless plating method.
  • The opposite surface (rear surface) of the surface for forming various kinds of elements on the semiconductor base is cut (back-grinded: BG). Then, the semiconductor base is subjected to dicing (DC) and the first semiconductor component 61 is separated into individual chips.
  • Moreover, elements such as various kinds of transistors, and wirings and the like constituting the second semiconductor component 62 on the semiconductor base are formed by the well-known method. At this time, the electrode 47 for mounting the first semiconductor component 61 is formed, and the UBM 48 is formed on the electrode 47.
  • The solder bump 44 is formed on the UBM 48 using the low melting point solder.
  • Then, the opposite surface (rear surface) of the surface for forming various kinds of elements on the semiconductor base is cut (back-grinded: BG). Then, the semiconductor base is subjected to dicing (DC) and the second semiconductor component 62 is separated into individual chips.
  • Next, the Cu stud bump 41 is brought into pressing contact with (bonded to) the solder bump 44, thereby flip-chip connecting the first semiconductor component 61 on the second semiconductor component 62.
  • After flip-chip connection, the connection portion between the Cu stud bump 41 and the solder bump 44 is covered and the under-fill (UF) resin 33 is injected between the first semiconductor component 61 and the second semiconductor component 62. Then, the injected UF resin 33 is heated and is hardened (cured).
  • With the above process, the semiconductor apparatus 60 of the second embodiment can be manufactured.
  • It is noted that formation of the Cu stud bump 41, formation of the solder bump 44, and the flip-chip connection can be performed by the same method as the first embodiment shown in FIGS. 7 to 9 described above.
  • [Second Manufacturing Method: Preliminary UF Resin Process Flow]
  • Next, a modified example of a manufacturing method of the semiconductor apparatus 60 of the second embodiment will be described. In the modified example, sealing both of the semiconductor components by the UF resin is different from the above described manufacturing method.
  • FIG. 15 shows a process flow which is changed in the UF resin sealing process.
  • As shown in FIG. 15, elements such as various kinds of transistors, and wirings and the like constituting the first semiconductor component 61 on the semiconductor base are formed by the well-known method. At this time, the electrode 45 for external connection is formed for performing flip-chip connection.
  • The Cu stud bump 41 is formed on the electrode for connecting to external devices of the first semiconductor component 61.
  • The plating layer 42 is formed on the formed Cu stud bump 41 by the electroless plating method.
  • The formed Cu stud bump 41 is covered and the under-fill (UF) resin 33 is laminated on the entire surface of the first semiconductor component 61.
  • The opposite surface (rear surface) of the surface for forming various kinds of elements on the semiconductor base is cut (back-grinded: BG). Then, the semiconductor base is subjected to dicing (DC) and the first semiconductor component 61 is separated into individual chips.
  • Moreover, elements such as various kinds of transistors, and wirings and the like constituting the second semiconductor component 62 on the semiconductor base are formed by the well-known method. At this time, the electrode 47 for mounting the first semiconductor component 61 is formed, and the UBM 48 is formed on the electrode 47.
  • The solder bump 44 is formed on the UBM 48 using the low melting point solder.
  • Then, the opposite surface (rear surface) of the surface for forming various kinds of elements on the semiconductor base is cut (back-grinded: BG). Then, the semiconductor base is subjected to dicing (DC) and the second semiconductor component 62 is separated into individual chips.
  • Next, the Cu stud bump 41 is brought into pressing contact with (bonded to) the solder bump 44, thereby flip-chip connecting the first semiconductor component 61 on the second semiconductor component 62. After connection, the injected UF resin is heated and is hardened.
  • With the above process, the semiconductor apparatus 60 of the second embodiment can be manufactured.
  • 6. Electronic Apparatus [Camera]
  • The semiconductor apparatus of the embodiments described above may be applied to electronic apparatuses including a semiconductor memory, a camera system such as a digital camera and a video camera, a mobile phone having an imaging function, or other devices having an image function, or the like. Hereinafter, the description will be made taking a camera as a configuration example of the electronic apparatus.
  • FIG. 16 shows a configuration example of the video camera which is capable of taking a still image or a moving image.
  • A camera 70 of this example includes a solid-state imaging device 71, an optical system 72 which guides incident light to a light receiving sensor unit of the solid-state imaging device 71, a shutter device 73 provided between the solid-state imaging device 71 and the optical system 72, and a driving circuit 74 which drivers the solid-state imaging device 71. Further, the camera 70 includes a signal processing circuit 75 which processes an output signal of the solid-state imaging device 71.
  • The solid-state imaging device 71 is fabricated using semiconductor apparatus to which the solid-state imaging device including the above described Cu stud bump is flip-chip connected.
  • The optical system (optical lens) 72 focuses image light (incident light) from a subject on an imaging surface (not shown) of the solid-state imaging device 71. As a result, signal charges are accumulated in the solid-state imaging device 71 for a predetermined time period. It is noted that the optical-system 72 may be constituted of an optical lens group including a plurality of optical lenses. Moreover, the shutter device 73 controls a light irradiation period and a light blocking time period to the solid-state imaging device 71 of the incident light.
  • The driving circuit 74 supplies a driving signal to the solid-state imaging device 71 and the shutter device 73. Then, the driving circuit 74 controls a signal output operation to the signal processing circuit 75 of the solid-state imaging device 71 and a shutter operation of the shutter device 73 by the supplied driving signal. That is, in this example, based on the driving signal (timing signal) supplied from the driving circuit 74, the signal transmission operation is performed from the solid-state imaging device 71 to the signal processing circuit 75.
  • The signal processing circuit 75 performs various kinds of signal processing to the signal transmitted from the solid-state imaging device 71. Then, the signal (image signal) subjected to the various kinds of signal processing is stored in a storage medium (not shown) such as memory or output to a monitor (not shown).
  • It is noted that the present disclosure can be configured as follows.
  • (1) A semiconductor apparatus including: a semiconductor component; a Cu stud bump that is formed on the semiconductor component; and a solder bump configured to electrically connect to the Cu stud bump.
  • (2) The semiconductor apparatus according to Item (1), further including a plating layer that is formed on a surface of the Cu stud bump.
  • (3) The semiconductor apparatus according to Item (1) or (2), in which the solder bump contains at least one selected from In, SnBi, SnIn, and BiIn.
  • (4) The semiconductor apparatus according to Item (2) or (3), in which the plating layer includes one of a plating layer of Ni and Au and a Co plating layer.
  • (5) A method of manufacturing a semiconductor apparatus, including: forming a Cu stud bump on a semiconductor component; and flip-chip connecting the Cu stud bump to a solder bump.
  • (6) The method of manufacturing a semiconductor apparatus according to Item (5), further including forming a plating layer on a surface of the Cu stud bump by an electroless plating method.
  • (7) The method of manufacturing a semiconductor apparatus according to Item (5) or (6), in which heating is performed at 200° C. or lower one of during the flip-chip connecting and after the flip-chip connecting.
  • (8) An electronic apparatus, including: a semiconductor apparatus described in any one of Items (1) to (4), and a signal processing circuit configured to process an output signal of the semiconductor apparatus.
  • The present disclosure contains subject matter related to that disclosed in Japanese Priority Patent Application JP 2011-178390 filed in the Japan Patent Office on Aug. 17, 2011, the entire content of which is hereby incorporated by reference.
  • It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and alterations may occur depending on design requirements and other factors insofar as they are within the scope of the appended claims or the equivalents thereof.

Claims (8)

1. A method of manufacturing a semiconductor apparatus, comprising:
forming a Cu stud bump on a semiconductor component; and
flip-chip connecting the Cu stud bump to a solder bump.
2. The method of manufacturing a semiconductor apparatus according to claim 1, wherein heating is performed at 200° C. or lower in at least one of during the flip-chip connecting and after the flip-chip connecting.
3. The method of manufacturing a semiconductor apparatus according to claim 1 further comprising:
forming a plating layer on a surface of the Cu stud bump by an electroless plating method.
4. The method of manufacturing a semiconductor apparatus according to claim 3, wherein the plating layer is formed directly on an outer surface of the Cu stud bump.
5. The method of manufacturing a semiconductor apparatus according to claim 4, wherein the plating layer is formed directly on an outer surface of the Cu stud bump that is not brought in contact with the solder bump.
6. The method of manufacturing a semiconductor apparatus according to claim 3, wherein the plating layer includes a Co plating layer and includes one of a plating layer of Ni or Au.
7. The method of manufacturing a semiconductor apparatus according to claim 1 further comprising:
forming an alloy layer in between and immediately adjacent to each of the Cu stud bump and the solder bump such that the alloy layer is in contact with each of the Cu stud bump and the solder bump.
8. The method of manufacturing a semiconductor apparatus according to claim 1, wherein the solder bump for flip-chip connecting the Cu stud bump is formed of at least one material selected from among the group of In, SnBi, SnIn, and BiIn.
US14/790,146 2011-08-17 2015-07-02 Semiconductor apparatus, method of manufacturing semiconductor apparatus, and electronic apparatus Abandoned US20150303167A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/790,146 US20150303167A1 (en) 2011-08-17 2015-07-02 Semiconductor apparatus, method of manufacturing semiconductor apparatus, and electronic apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011178390A JP6035714B2 (en) 2011-08-17 2011-08-17 SEMICONDUCTOR DEVICE, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP2011-178390 2011-08-17
US13/568,574 US9105625B2 (en) 2011-08-17 2012-08-07 Semiconductor apparatus, method of manufacturing semiconductor apparatus, and electronic apparatus
US14/790,146 US20150303167A1 (en) 2011-08-17 2015-07-02 Semiconductor apparatus, method of manufacturing semiconductor apparatus, and electronic apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/568,574 Continuation US9105625B2 (en) 2011-08-17 2012-08-07 Semiconductor apparatus, method of manufacturing semiconductor apparatus, and electronic apparatus

Publications (1)

Publication Number Publication Date
US20150303167A1 true US20150303167A1 (en) 2015-10-22

Family

ID=47712067

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/568,574 Expired - Fee Related US9105625B2 (en) 2011-08-17 2012-08-07 Semiconductor apparatus, method of manufacturing semiconductor apparatus, and electronic apparatus
US14/790,146 Abandoned US20150303167A1 (en) 2011-08-17 2015-07-02 Semiconductor apparatus, method of manufacturing semiconductor apparatus, and electronic apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/568,574 Expired - Fee Related US9105625B2 (en) 2011-08-17 2012-08-07 Semiconductor apparatus, method of manufacturing semiconductor apparatus, and electronic apparatus

Country Status (5)

Country Link
US (2) US9105625B2 (en)
JP (1) JP6035714B2 (en)
KR (1) KR101996676B1 (en)
CN (1) CN102956603A (en)
TW (1) TWI523175B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6082282B2 (en) * 2013-03-12 2017-02-15 スタンレー電気株式会社 Semiconductor light emitting device
TWI600129B (en) 2013-05-06 2017-09-21 奇景光電股份有限公司 Chip on glass structure
JP6311407B2 (en) * 2014-03-31 2018-04-18 日本電気株式会社 Module parts and manufacturing method thereof
TWI488244B (en) * 2014-07-25 2015-06-11 Chipbond Technology Corp Substrate with pillar structure and manufacturing method thereof
US10236267B2 (en) * 2014-08-01 2019-03-19 Kyocera International, Inc. Methods of forming flip chip systems
JP6314070B2 (en) * 2014-10-07 2018-04-18 新光電気工業株式会社 Fingerprint recognition semiconductor device, method for manufacturing fingerprint recognition semiconductor device, and semiconductor device
WO2016056656A1 (en) 2014-10-10 2016-04-14 石原ケミカル株式会社 Method for manufacturing alloy bump
US11018099B2 (en) * 2014-11-26 2021-05-25 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure having a conductive bump with a plurality of bump segments
WO2016100662A1 (en) * 2014-12-19 2016-06-23 Glo Ab Light emitting diode array on a backplane and method of making thereof
TWI632653B (en) * 2017-02-15 2018-08-11 財團法人工業技術研究院 Electronic packaging structure
US11114387B2 (en) 2017-02-15 2021-09-07 Industrial Technology Research Institute Electronic packaging structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030151140A1 (en) * 2002-02-07 2003-08-14 Nec Corporation Semiconductor element and a producing method for the same, and a semiconductor device and a producing method for the same
US20040152238A1 (en) * 2001-03-28 2004-08-05 Michihisa Maeda Flip chip interconnection using no-clean flux
US20060252225A1 (en) * 2005-05-05 2006-11-09 Gambee Christopher J Method to create a metal pattern using a damascene-like process and associated structures
US20090085216A1 (en) * 2007-08-27 2009-04-02 Oki Electric Industry Co., Ltd. Semiconductor device
US20100276803A1 (en) * 2009-04-30 2010-11-04 Panasonic Corporation Semiconductor device and method of manufacturing the same
US20110084387A1 (en) * 2003-09-22 2011-04-14 Dubin Valery M Designs and methods for conductive bumps
US20110186989A1 (en) * 2010-02-04 2011-08-04 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor Device and Bump Formation Process

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112041B2 (en) * 1986-12-03 1995-11-29 シャープ株式会社 Method for manufacturing semiconductor device
JP2001060602A (en) * 1999-08-23 2001-03-06 Fuji Electric Co Ltd Flip-chip mounting structure and manufacture thereof
AU2003218085A1 (en) * 2002-03-12 2003-09-29 Fairchild Semiconductor Corporation Wafer-level coated copper stud bumps
JP4136844B2 (en) * 2002-08-30 2008-08-20 富士電機ホールディングス株式会社 Electronic component mounting method
US7271497B2 (en) * 2003-03-10 2007-09-18 Fairchild Semiconductor Corporation Dual metal stud bumping for flip chip applications
JP4497913B2 (en) 2003-12-17 2010-07-07 Sumco Techxiv株式会社 Heater device for single crystal semiconductor manufacturing
KR100719905B1 (en) * 2005-12-29 2007-05-18 삼성전자주식회사 Sn-bi alloy solder and semiconductor using the same
JP5187832B2 (en) 2008-03-11 2013-04-24 田中電子工業株式会社 Semiconductor device
US20090246911A1 (en) 2008-03-27 2009-10-01 Ibiden, Co., Ltd. Substrate for mounting electronic components and its method of manufacture
JP4697258B2 (en) * 2008-05-09 2011-06-08 ソニー株式会社 Solid-state imaging device and electronic equipment
JP4941490B2 (en) * 2009-03-24 2012-05-30 ソニー株式会社 Solid-state imaging device and electronic apparatus
EP2234387B8 (en) * 2009-03-24 2012-05-23 Sony Corporation Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus
JP2011023568A (en) 2009-07-16 2011-02-03 Sanyo Electric Co Ltd Semiconductor device, and method of manufacturing the same
US8659155B2 (en) * 2009-11-05 2014-02-25 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for forming copper pillar bumps

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040152238A1 (en) * 2001-03-28 2004-08-05 Michihisa Maeda Flip chip interconnection using no-clean flux
US20030151140A1 (en) * 2002-02-07 2003-08-14 Nec Corporation Semiconductor element and a producing method for the same, and a semiconductor device and a producing method for the same
US20110084387A1 (en) * 2003-09-22 2011-04-14 Dubin Valery M Designs and methods for conductive bumps
US20060252225A1 (en) * 2005-05-05 2006-11-09 Gambee Christopher J Method to create a metal pattern using a damascene-like process and associated structures
US20090085216A1 (en) * 2007-08-27 2009-04-02 Oki Electric Industry Co., Ltd. Semiconductor device
US20100276803A1 (en) * 2009-04-30 2010-11-04 Panasonic Corporation Semiconductor device and method of manufacturing the same
US20110186989A1 (en) * 2010-02-04 2011-08-04 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor Device and Bump Formation Process

Also Published As

Publication number Publication date
US20130043585A1 (en) 2013-02-21
KR101996676B1 (en) 2019-07-04
CN102956603A (en) 2013-03-06
JP6035714B2 (en) 2016-11-30
TWI523175B (en) 2016-02-21
KR20130020565A (en) 2013-02-27
US9105625B2 (en) 2015-08-11
JP2013042005A (en) 2013-02-28
TW201320270A (en) 2013-05-16

Similar Documents

Publication Publication Date Title
US9105625B2 (en) Semiconductor apparatus, method of manufacturing semiconductor apparatus, and electronic apparatus
JP4195886B2 (en) Method for forming a flip-chip interconnect structure with a reaction barrier layer using lead-free solder
US8922004B2 (en) Copper bump structures having sidewall protection layers
TWI431701B (en) Fusible i/o interconnection systems and methods for flip-chip packaging involving substrate-mounted stud-bumps
JP4611235B2 (en) Image sensor module and manufacturing method thereof
TWI495024B (en) Semiconductor device, method of manufacturing the same, and method of manufacturing wiring board
US20100297842A1 (en) Conductive bump structure for semiconductor device and fabrication method thereof
US20040238955A1 (en) Semiconductor device and method of fabricating the same
US9397137B2 (en) Interconnect structure for CIS flip-chip bonding and methods for forming the same
US20120273935A1 (en) Semiconductor Device and Method of Making a Semiconductor Device
WO2008073807A1 (en) Solder bump/under bump metallurgy structure for high temperature applications
US10446598B2 (en) Semiconductor device, manufacturing method, and electronic apparatus
CN101958259A (en) By adding copper to welding flux interconnected improvement
US10103191B2 (en) Semiconductor die and method of packaging multi-die with image sensor
KR101142347B1 (en) Photo sensor package
US9536818B2 (en) Semiconductor package and method of forming the same
KR102305916B1 (en) Flip-chip assembly process comprising pre-coating interconnect elements
JP7004335B2 (en) Imaging assembly and its packaging method, lens module, electronic device
US7732253B1 (en) Flip-chip assembly with improved interconnect
JP6593119B2 (en) Electrode structure, bonding method, and semiconductor device
US9601374B2 (en) Semiconductor die assembly
JP4940662B2 (en) Solder bump, method of forming solder bump, and semiconductor device
JP2007208056A (en) Method of manufacturing semiconductor device
Juang et al. Development of micro-bump-bonded processes for 3DIC stacking with high throughput
US20230036239A1 (en) Semiconductor Device and Method of Making an Optical Semiconductor Package

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION