US20150280824A1 - Lighting apparatuses and led modules for both illumination and optical communication - Google Patents

Lighting apparatuses and led modules for both illumination and optical communication Download PDF

Info

Publication number
US20150280824A1
US20150280824A1 US14/735,572 US201514735572A US2015280824A1 US 20150280824 A1 US20150280824 A1 US 20150280824A1 US 201514735572 A US201514735572 A US 201514735572A US 2015280824 A1 US2015280824 A1 US 2015280824A1
Authority
US
United States
Prior art keywords
led
light
chain
led module
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/735,572
Inventor
Steve M. Hong
Min-Hsun Hsieh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epistar Corp
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to US14/735,572 priority Critical patent/US20150280824A1/en
Publication of US20150280824A1 publication Critical patent/US20150280824A1/en
Priority to US15/493,430 priority patent/US9900095B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V33/00Structural combinations of lighting devices with other articles, not otherwise provided for
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • F21Y2105/12Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the geometrical disposition of the light-generating elements, e.g. arranging light-generating elements in differing patterns or densities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present disclosure relates generally to optical communication and array-type light-emitting devices.
  • LEDs Light emitting diodes
  • They generally comprise an active layer of semiconductor material sandwiched between two oppositely-doped cladding layers. When a bias is applied across the cladding layers, electrons and holes are injected into the active layer where electrons and holes recombine to generate photons, or light. Recent advances in LEDs have resulted in highly efficient light sources that surpass the efficiency of filament-based light sources, providing light with equal or greater brightness in relation to input power.
  • white light can be produced by combining the light from red, green and blue LEDs or combining the light from blue and yellow LEDs.
  • white light can be produced by combining the light from red, green and blue LEDs or combining the light from blue and yellow LEDs.
  • the other way to produce white light is using yellow phosphor, polymer or dye to downconvert portion of the light from a blue LED into yellow light.
  • a white LED is seemly produced because it simultaneously emits both blue and yellow light, which combine to provide white light.
  • LEDs Since white LEDs are developed, LEDs have widely used because of their high durability, longevity, portability, low power consumption, absence of harmful substances such as mercury, and so forth. Often-seen applications of LEDs include white light illumination, indicator lights, vehicle signal and illuminating light, LCD backlight modules, projector light sources, outdoor displays, and so forth. Nevertheless, other applications might use LEDs to replace their light sources.
  • Embodiments of the present invention disclose a lighting apparatus capable of simultaneously providing illumination and data transmission to a receiver.
  • the lighting apparatus comprises an LED module and a modulator.
  • the LED module comprises a plurality of LED cells connected as an LED chain having two conductive pads. The light emitted from the LED module is visible.
  • the modulator provides driving current to the LED module to transmit data.
  • Embodiments of the present invention disclose an LED module, comprising LEDs and conductive pads.
  • a first group of the LED cells is connected as a first LED chain, driven for illumination.
  • a second group of the LED cells is connected as a second LED chain for data transmission.
  • the conductive pads include a first pair of conductive pads connected to the first LED chain and a second pair of conductive pads connected to the second LED chain.
  • FIG. 1 illustrates a broadcast system
  • FIG. 2 exemplifies light apparatus 12 a
  • FIG. 3 shows the waveform of driving current I IN that a modem provides to the LED module of FIG. 2 ;
  • FIG. 4 demonstrates a cross section view of LED cells 8 a ( 1 , 1 ) and 8 a ( 1 , 2 ), cutting along the dotted line AA′ in FIG. 2 ;
  • FIG. 5 exemplifies another light apparatus
  • FIG. 6 shows the waveform of driving current I IN and I LIN that the modulator and the illumination driver of FIG. 5 provide respectively;
  • FIG. 7 exemplifies another light apparatus
  • FIG. 8 demonstrates a cross section view of LED cells 8 c ( 3 , 1 ) and 8 c ( 3 , 2 ) in FIG. 7 , cutting along the dotted line BB′;
  • FIGS. 9-12 exemplify four light apparatuses.
  • One embodiment of the invention employs LED cells as a light source to transmit digital information over a free space optical data pathway at the same time when LED cells functions for illumination. Transmission is accomplished by modulating or varying the current flowing through LED cells.
  • FIG. 1 illustrates broadcast system 10 with light apparatuses 12 a and 12 b according to one embodiment of the invention.
  • Light apparatuses 12 a and 12 b are powered by AC grid power lines and optionally receive digital data over AC grid power lines by way of power line communication.
  • Each of light apparatuses 12 a and 12 b has an LED module with at least one LED chip.
  • each of light apparatuses 12 a and 12 b transmits the digital data over the air to receiver 14 a or 14 b .
  • the modulation should be over a signal carrier with an adequately-high frequency and be imperceptible by a human eye.
  • the data transmission rate from the AC power lines to receiver 14 a or 14 b is limited by the signal bandwidth that the LED chips in light apparatuses 12 a and 12 b can support.
  • Input capacitance of each LED chip in light apparatuses 12 a and 12 b could strongly affect the bandwidth supported.
  • input capacitance of an LED chain refers to the capacitance measured from two conductive pads respectively connected to n-type and p-type contact layers of the LED chain, by means of small-signal response. The less input capacitance of an LED chip, the broader bandwidth the LED chip can support.
  • FIG. 2 exemplifies light apparatus 12 a .
  • light apparatus 12 a has modem 16 and LED module 19 a including LED chips 8 a .
  • Modem 16 powered by AC grid power lines, is the combination of a demodulator which retrieves data carried from AC grid power lines, and a modulator 17 which provides and modulates driving current I IN to LED module 19 a to transmit data over the emitted light.
  • Modulator 17 might include a converter converting an AC source current to driving current I IN .
  • the light emitted from the LED chips 8 a is a visible light, for example a blue light having a wavelength spectrum around 440 ⁇ 480 nm, a green light having a wavelength spectrum around 500 ⁇ 560 nm, a green light having a wavelength spectrum around 500 ⁇ 560 nm, a red light having a wavelength spectrum around 600 ⁇ 650 nm, or white light.
  • LED module 19 a has two LED chips 8 a connected in series.
  • an LED module might have only one LED chip.
  • LED chip 8 a has LED cells 8 a ( 1 , 1 ) ⁇ 8 a ( 3 , 3 ), arranged as an LED array with 3 columns and 3 rows.
  • Label WW(N, M) refers to the LED cell located at N th column and M th row of LED chip WW.
  • LED cells 8 a ( 1 , 1 ) ⁇ 8 a ( 3 , 3 ) are connected in series as an LED chain having two conductive pads IN+ and IN ⁇ , which are located at two diagonal corners of LED cells 8 a ( 1 , 1 ) and 8 a ( 3 , 3 ), respectively.
  • the physical orientation for each LED cell in 1 st and 3 rd column is opposite to that of each LED cell in 2 nd column.
  • LED cells 8 a ( 1 , 1 ) ⁇ 8 a ( 3 , 3 ) are epitaxial grown on a monolithic substrate through MOCVD process and other semiconductor process, such as sputtering, lithography, and etching process, such that the active layers therein are formed at the same time and made of substantially the same material.
  • MOCVD process a monolithic substrate
  • other semiconductor process such as sputtering, lithography, and etching process
  • the active layers therein are formed at the same time and made of substantially the same material.
  • LED chip 8 a is sometimes referred as a high-voltage (HV) LED chip.
  • the number of the LED cells of the LED chip is around 3 ⁇ 80, or preferred 8 - 40 , depending on the operation voltage to be applied.
  • an LED chip In order to provide the function of illumination, an LED chip should have enough number of LED cells emitting at the same time. LED cells connected in parallel could emit light at the same time, but the input capacitance for the LED cells as a whole increases as the number of the LED cells increases.
  • the capacitance of the LED cells as a whole will be K1*F farad.
  • increased input capacitance might reduce the bandwidth and the data transmission rate, such that LED cells connected in parallel are not suitable for data communication.
  • LED cells connected in series as an LED chain emit at the same time, and the input capacitance for the LED cells as a whole decreases as the number of the LED cells connected in series increases.
  • a driven LED chain has a plurality of LED cells connected in series, the number of the LED cells is around 3 ⁇ 80, or preferred 8 - 40 .
  • FIG. 3 shows the waveform of driving current I IN that modem 16 could provide to LED module 19 a of FIG. 2 .
  • Driving current I IN substantially switches between a high current level and a low current level back and forth.
  • the low current level (of logic 0) is no less than 0 A and could be as low as 0 A, forcing LED module 19 a to stop emitting.
  • the high current level (of logic 1) drives LED module 19 a to emit visible light.
  • a rising edge means data “1” while a falling edge means data “0”.
  • This kind of encoding scheme is called Manchester coding, a special case of binary phase shift keying.
  • the data transmission rate should exceed the frequency range perceivable by a human eye, such that LED module 19 a is seen by human eyes to illuminate without flickering and provide constant intensity of light as being driven by average current I BRT , which is the average of the high and low current levels.
  • FIG. 4 demonstrates a cross section view of LED cells 8 a ( 1 , 1 ) and 8 a ( 1 , 2 ), cutting along the dotted line AA′ in FIG. 2 .
  • a similar drawing has been published in FIG. 2 of US Patent Application Publication 2010/0213474, whose entirety is incorporated by reference.
  • LED cells 8 a ( 1 , 1 ) and 8 a ( 1 , 2 ) are grown on a monolithic substrate 60 , each having, from bottom to top, n-type contact layer 62 , n-type cladding layer 64 , active layer 66 , p-type cladding layer 68 , and p-type contact layer 70 .
  • a wavelength conversion layer 72 is optionally formed on contact layer 70 to convert the light emitting from the active layer.
  • Two electrodes 76 and 74 are optionally formed (may be omitted) on n-type contact layer 62 and p-type contact layer 70 , respectively.
  • LED cells 8 a ( 1 , 1 ) and 8 a ( 1 , 2 ) are physically separated on monolithic substrate by a trench between LED cells 8 a ( 1 , 1 ) and 8 a ( 1 , 2 ).
  • An electric circuit layer 78 provides electric connection between the n-type contact layer 62 of 8 a ( 1 , 1 ) and the p-type contact layer 70 of the adjacent LED cell, such as 8 a ( 1 , 2 ) to forma series connection.
  • each of LED cells 8 a ( 1 , 1 ) to 8 a ( 3 , 3 ) occupies a cell area on the monolithic substrate 60 no more than 121 mil 2 .
  • the monolithic substrate 60 has a surface area, for example between 1.21*10 2 to 1*10 5 mil 2 .
  • Two conductive pads IN ⁇ , IN+ are provided for electric connection between the LED chip 8 a and an electric circuit outside the chip through external wires.
  • the two conductive pads IN ⁇ , IN+ are respectively formed on the monolithic substrate 60 outside the array area for LED cells 8 a ( 1 , 1 ) ⁇ 8 a ( 1 , 3 ), and preferably at different corners or borders of the LED chip 8 a .
  • the conductive pads IN ⁇ , IN+ are electrically coupled to the LED cells 8 a ( 1 , 1 ) ⁇ 8 a ( 1 , 3 ) via the electric circuit layer 78 as in FIG. 4 .
  • LED cells 8 a ( 1 , 1 ) ⁇ 8 a ( 3 , 3 ) are epitaxial grown on monolithic substrate 60 using MOCVD process and other semiconductor process, such as sputtering, lithography, and etching process, the compositions of the active layers 66 therein are substantially the same to emit lights with the same or similar wavelength spectrum. Nevertheless, wavelength conversion layers 72 may be different or absent for some LED cells.
  • all LED cells 8 a ( 1 , 1 ) ⁇ 8 a ( 3 , 3 ) are white LED cells each having an active layer emitting blue light and a wavelength conversion layer downconverting the blue light into yellow light.
  • some of LED cells 8 a ( 1 , 1 ) ⁇ 8 a ( 3 , 3 ) are white LED cells each having a wavelength conversion layer downconverting the blue light into yellow light, and others are blue LED cells having a wavelength conversion layer downconverting the blue light into red light.
  • some of LED cells 8 a ( 1 , 1 ) ⁇ 8 a ( 3 , 3 ) are white LED cells each having a wavelength conversion layer and others are blue LED cells having no wavelength conversion layer.
  • the wavelength conversion layer is formed a layered structure bonded to the contact layer through a glue bonding layer under chip process for the foregoing embodiments.
  • the wavelength conversion layer is formed by encapsulating the LED chip by an encapsulating material containing a wavelength conversion material under packaging process.
  • FIG. 5 exemplifies light apparatus 12 b .
  • LED module 19 b is controlled by controller 11 to provide both illumination and data transmission. Similar with LED chip 8 a of FIG. 2 , LED chip 8 b in LED module 19 b has LED cells 8 b ( 1 , 1 ) ⁇ 8 b ( 3 , 3 ), arranged as an LED array on a monolithic substrate. LED chip 8 b is slightly different with LED chip 8 a . While LED chip 8 a of FIG. 2 has only one LED chain with one pair of conductive pads IN+ and IN ⁇ as inputs, LED chip 8 b of FIG. 5 has two LED chains 22 and 24 .
  • LED chain 22 has a pair of conductive pads LIN+ and IN+/LIN ⁇ while LED chain 24 has a pair of conductive pads IN+/LIN ⁇ and IN ⁇ . It can be found conductive pad IN+/LIN ⁇ is a common conductive pad connected to both the anode (or the n-type contact layer) of LED chains 24 and the cathode (or the p-type contact layer) of LED chain 22 . Conductive pads LIN+, IN ⁇ , and IN+/LIN ⁇ are provided for electric connection between the LED chip 8 a and an electric circuit outside the chip through external wires.
  • the conductive pads LIN+, IN ⁇ , and IN+/LIN ⁇ are respectively formed on the monolithic substrate 60 outside the area of the LED cells of LED chip 8 b , and preferred at different corners or borders of the LED chip 8 b as shown in FIG. 5 .
  • the conductive pads LIN+, IN ⁇ , and IN+/LIN ⁇ are electrically coupled to the LED cells via the electric circuit layer 78 as in FIG. 4 .
  • pad IN+/LIN ⁇ is connected via electric circuit layer 78 to both a p-type contact layer of LED chain 24 and a n-type contact layer of LED chain 22 .
  • FIG. 6 shows the waveform of driving current I IN and I LIN respectively provided by modulator 17 and illumination driver 13 of FIG. 5 .
  • the operation of modulator 17 is not detailed here for brevity since it has been done in the paragraphs regarding with FIGS. 2 and 3 . It is comprehensive that LED chain 24 driven by modulator 17 transmits data via the light it emits.
  • Illumination driver 13 of FIG. 5 provides driving current I LIN to LED chain 22 .
  • Driving current I LIN is almost a constant and conveys no data as shown in FIG.
  • LED chip 8 b has two LED chains 22 and 24 where LED chain 22 is only for illumination and LED chain 24 is for data transmission.
  • LED chip 8 b is formed on a monolithic substrate, each of LED cells 8 b ( 1 , 1 ) to 8 b ( 3 , 3 ) occupies a cell area on a monolithic substrate no more than 121 mil 2 , and the number of LED cells in LED chain 24 is smaller than that in LED chain 22 .
  • the area of one of the LED cell(s) in LED chain 24 for data transmission is smaller than that in LED chain 22 for illumination.
  • the area of one of the LED cell (s) for data transmission is preferred no more than 121 mil 2
  • the area of one of the LED cells for illumination is preferred no more than 400 mil 2 .
  • LED chains 22 and 24 emit light of different colors.
  • LED cells in chain 22 comprises white LED cells and LED cell 8 b ( 3 , 3 ) in chain 24 is a blue LED cell.
  • FIG. 7 exemplifies light apparatus 12 c .
  • LED chip 8 c of FIG. 7 has two LED chains 26 and 28 .
  • LED chain 26 is only for illumination, driven via a pair of conductive pads LIN+ and LIN ⁇ /IN ⁇ by illumination driver 13 .
  • LED chain 28 is for data transmission, driven via a pair of conductive pads IN+ and LIN ⁇ /IN ⁇ by modulator 17 .
  • the conductive pad LIN ⁇ /IN ⁇ is electrically connected to both two n-type contact layers of LED chains 26 and 28 .
  • LED chip 8 c is formed on a monolithic substrate.
  • LED cell 8 c ( 3 , 1 ) and 8 c ( 3 , 2 ) in FIG. 7 cutting along the dotted line BB′.
  • LED cell 8 c ( 3 , 1 ) which belongs to LED chain 26
  • LED cell 8 c ( 3 , 2 ) has a cell orientation opposite to LED cell 8 c ( 3 , 2 ), which belongs to LED chain 28 .
  • FIGS. 9 and 10 exemplify light apparatuses 12 d and 12 e .
  • LED chip 8 d has LED chain 30 only for illumination and LED chain 32 for data transmission.
  • Conductive pads LIN+ and LIN ⁇ for LED chain 30 are independent to conductive pads IN+ and IN ⁇ for LED chain 32
  • LED cell 8 d ( 3 , 1 ) has the same cell orientation with LED cell 8 d ( 3 , 2 ).
  • LED chains 30 and 32 are electrically insulated on the monolithic substrate.
  • LED chip 8 e has LED chain 34 only for illumination and LED chain 36 for data transmission, while LED cell 8 e ( 3 , 1 ) has a cell orientation opposite to LED cell 8 e ( 3 , 2 ).
  • FIG. 11 exemplifies light apparatus 12 f . It is unnecessary that LED cells in an LED module are all monolithically formed as an array on a monolithic substrate.
  • LED module 19 f has individual LED chips 8 f 1 to 8 fn , where n is an integer. LED chips 8 f 1 to 8 fn could be formed on different substrates individually and together packaged on a submount, where the data transmitting speed would be lower compared with the LED module as disclosed in the foregoing embodiments using a monolithically-formed LED cell array on a single chip.
  • LED chips 8 f 1 to 8 fn are all white LED chips.
  • LED chips 8 f 1 to 8 fn consist of red, green and blue LED chips.
  • LED module 19 f has two conductive terminals TIN+ and TIN ⁇ , through which modulator 17 provides driving current I IN to LED cells 8 f 1 to 8 fn to transmit data.
  • FIG. 12 exemplifies light apparatus 12 g .
  • LED module 19 g of FIG. 12 has LED chips 8 g 1 to 8 gn , where n is an integer.
  • LED chips 8 g 1 to 8 g 5 are grouped and connected as LED chain 38 , driven by illumination driver 13 and functioning only for illumination.
  • LED chips 8 g 6 to 8 gn are grouped and connected as LED chain 40 , driven by modulator 17 for data transmission.
  • the light from LED chain 38 might be the same with or different to that from LED chain 40 .
  • LED chips 8 g 1 to 8 g 5 of LED chain 38 or LED chips 8 g 6 to 8 gn of LED chain 40 comprise at least one selected from blue LED, green LED, red LED, and white LED chips.
  • LED chips 8 g 1 to 8 g 5 of LED chain 38 consist of green and red LED chips and LED chips 8 g 6 to 8 gn consist of only blue LED chips.
  • LED chain 38 provides visible light
  • LED chain 40 provides invisible light.
  • the wavelength spectrum of the light from LED chain 40 has a peak that is not affected by the intensity of the light from LED chain 38 .

Abstract

Lighting apparatuses and LED modules capable of both illumination and data transmission are disclosed. An exemplifying lighting apparatus has a LED module and a modulator. The LED module comprises a plurality of LED cells connected as a LED chain having two conductive pads. The light emitted from the LED module is visible. The modulator provides driving current to the LED module to transmit data.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a Continuation of co-pending Application Ser. No. 13/089,946, filed on Apr. 19, 2011, for which priority is claimed under 35 U.S.C. §120, the entire contents of all of which are hereby incorporated by reference.
  • BACKGROUND
  • The present disclosure relates generally to optical communication and array-type light-emitting devices.
  • Light emitting diodes (LEDs) are an important class of solid-state devices that convert electric energy to light. They generally comprise an active layer of semiconductor material sandwiched between two oppositely-doped cladding layers. When a bias is applied across the cladding layers, electrons and holes are injected into the active layer where electrons and holes recombine to generate photons, or light. Recent advances in LEDs have resulted in highly efficient light sources that surpass the efficiency of filament-based light sources, providing light with equal or greater brightness in relation to input power.
  • Disadvantage of conventional LEDs used for lighting applications is that they cannot generate white light directly from their active layers. Recently, two different ways have been introduced to produce white light from conventional LEDs. One way to produce white light from conventional LEDs is to combine different wavelength of light from different LEDs. For example, white light can be produced by combining the light from red, green and blue LEDs or combining the light from blue and yellow LEDs. The other way to produce white light is using yellow phosphor, polymer or dye to downconvert portion of the light from a blue LED into yellow light. A white LED is seemly produced because it simultaneously emits both blue and yellow light, which combine to provide white light.
  • Since white LEDs are developed, LEDs have widely used because of their high durability, longevity, portability, low power consumption, absence of harmful substances such as mercury, and so forth. Often-seen applications of LEDs include white light illumination, indicator lights, vehicle signal and illuminating light, LCD backlight modules, projector light sources, outdoor displays, and so forth. Nevertheless, other applications might use LEDs to replace their light sources.
  • SUMMARY
  • Embodiments of the present invention disclose a lighting apparatus capable of simultaneously providing illumination and data transmission to a receiver. The lighting apparatus comprises an LED module and a modulator. The LED module comprises a plurality of LED cells connected as an LED chain having two conductive pads. The light emitted from the LED module is visible. The modulator provides driving current to the LED module to transmit data.
  • Embodiments of the present invention disclose an LED module, comprising LEDs and conductive pads. A first group of the LED cells is connected as a first LED chain, driven for illumination. A second group of the LED cells is connected as a second LED chain for data transmission. The conductive pads include a first pair of conductive pads connected to the first LED chain and a second pair of conductive pads connected to the second LED chain.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention can be more fully understood by the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
  • FIG. 1 illustrates a broadcast system;
  • FIG. 2 exemplifies light apparatus 12 a;
  • FIG. 3 shows the waveform of driving current IIN that a modem provides to the LED module of FIG. 2;
  • FIG. 4 demonstrates a cross section view of LED cells 8 a(1, 1) and 8 a(1, 2), cutting along the dotted line AA′ in FIG. 2;
  • FIG. 5 exemplifies another light apparatus;
  • FIG. 6 shows the waveform of driving current IIN and ILIN that the modulator and the illumination driver of FIG. 5 provide respectively;
  • FIG. 7 exemplifies another light apparatus;
  • FIG. 8 demonstrates a cross section view of LED cells 8 c(3, 1) and 8 c(3, 2) in FIG. 7, cutting along the dotted line BB′; and
  • FIGS. 9-12 exemplify four light apparatuses.
  • DETAILED DESCRIPTION
  • The following embodiments are described in sufficient detail to enable those skilled in the art to make and use the invention. It is to be understood that other embodiments would be evident based on the present disclosure, and that proves or mechanical changes may be made without departing from the scope of the present invention.
  • In the following description, numerous specific details are given to provide a thorough understanding of the invention. However, it will be apparent that the invention may be practiced without these specific details. In order to avoid obscuring the present invention, some well-known configurations and process steps are not disclosed in detail.
  • One embodiment of the invention employs LED cells as a light source to transmit digital information over a free space optical data pathway at the same time when LED cells functions for illumination. Transmission is accomplished by modulating or varying the current flowing through LED cells.
  • FIG. 1 illustrates broadcast system 10 with light apparatuses 12 a and 12 b according to one embodiment of the invention. Light apparatuses 12 a and 12 b are powered by AC grid power lines and optionally receive digital data over AC grid power lines by way of power line communication. Each of light apparatuses 12 a and 12 b has an LED module with at least one LED chip. By modulating the light emitted from the LED chips, each of light apparatuses 12 a and 12 b transmits the digital data over the air to receiver 14 a or 14 b. The modulation should be over a signal carrier with an adequately-high frequency and be imperceptible by a human eye.
  • Subject to other factors, the data transmission rate from the AC power lines to receiver 14 a or 14 b is limited by the signal bandwidth that the LED chips in light apparatuses 12 a and 12 b can support. Input capacitance of each LED chip in light apparatuses 12 a and 12 b could strongly affect the bandwidth supported. Hereinafter, input capacitance of an LED chain refers to the capacitance measured from two conductive pads respectively connected to n-type and p-type contact layers of the LED chain, by means of small-signal response. The less input capacitance of an LED chip, the broader bandwidth the LED chip can support.
  • FIG. 2 exemplifies light apparatus 12 a. As shown in FIG. 2, light apparatus 12 a has modem 16 and LED module 19 a including LED chips 8 a. Modem 16, powered by AC grid power lines, is the combination of a demodulator which retrieves data carried from AC grid power lines, and a modulator 17 which provides and modulates driving current IIN to LED module 19 a to transmit data over the emitted light. Modulator 17 might include a converter converting an AC source current to driving current IIN. The light emitted from the LED chips 8 a is a visible light, for example a blue light having a wavelength spectrum around 440˜480 nm, a green light having a wavelength spectrum around 500˜560 nm, a green light having a wavelength spectrum around 500˜560 nm, a red light having a wavelength spectrum around 600˜650 nm, or white light. In the embodiment of FIG. 2, LED module 19 a has two LED chips 8 a connected in series. For another embodiment, an LED module might have only one LED chip.
  • As an example, LED chip 8 a has LED cells 8 a(1, 18 a(3, 3), arranged as an LED array with 3 columns and 3 rows. Label WW(N, M) refers to the LED cell located at Nth column and Mth row of LED chip WW. LED cells 8 a(1, 18 a(3, 3) are connected in series as an LED chain having two conductive pads IN+ and IN−, which are located at two diagonal corners of LED cells 8 a(1, 1) and 8 a(3, 3), respectively. The physical orientation for each LED cell in 1st and 3rd column is opposite to that of each LED cell in 2nd column. If one LED cell in an LED chain is forward biased, all LED cells in the LED chain are forward biased, and vice versa. In one embodiment, LED cells 8 a(1, 18 a(3, 3) are epitaxial grown on a monolithic substrate through MOCVD process and other semiconductor process, such as sputtering, lithography, and etching process, such that the active layers therein are formed at the same time and made of substantially the same material. As the operation voltage of LED chip 8 a is the summation of the operation voltages of individual LED cells, LED chip 8 a is sometimes referred as a high-voltage (HV) LED chip. The number of the LED cells of the LED chip is around 3˜80, or preferred 8-40, depending on the operation voltage to be applied.
  • In order to provide the function of illumination, an LED chip should have enough number of LED cells emitting at the same time. LED cells connected in parallel could emit light at the same time, but the input capacitance for the LED cells as a whole increases as the number of the LED cells increases. Supposed that there are K1 identical LED cells connected in parallel and each individual LED cell has input capacitance of F farad, the capacitance of the LED cells as a whole will be K1*F farad. As mentioned before, increased input capacitance might reduce the bandwidth and the data transmission rate, such that LED cells connected in parallel are not suitable for data communication. Nevertheless, LED cells connected in series as an LED chain emit at the same time, and the input capacitance for the LED cells as a whole decreases as the number of the LED cells connected in series increases. The input capacitance for K1 identical LED cells as a whole will be F/K1 farad if they are connected in series wherein each individual one has input capacitance of F farad. Thus, an LED chain is suitable for both illumination and data transmission. In the embodiment of FIG. 2, a driven LED chain has a plurality of LED cells connected in series, the number of the LED cells is around 3˜80, or preferred 8-40.
  • There is another advantage that series connection surpasses parallel connection. Each and every LED in an LED chain of an LED chip will be driven with the same driving current even if there are slight differences between the characteristics of the LED cells in the LED chain. In other words, the LED cells in an LED chain of an LED chip emit power evenly. LED cells connected in parallel acts differently, however. Most of the driving current for the LED cells connected in parallel crowds to the LED cell with the least resistance, such that the LED cell with the least resistance emits higher power in comparison with others, therefore downgrading the reliability of the LED chip.
  • FIG. 3 shows the waveform of driving current IIN that modem 16 could provide to LED module 19 a of FIG. 2. Driving current IIN substantially switches between a high current level and a low current level back and forth. The low current level (of logic 0) is no less than 0 A and could be as low as 0 A, forcing LED module 19 a to stop emitting. The high current level (of logic 1) drives LED module 19 a to emit visible light. Within a clock cycle time, a rising edge means data “1” while a falling edge means data “0”. This kind of encoding scheme is called Manchester coding, a special case of binary phase shift keying. The data transmission rate should exceed the frequency range perceivable by a human eye, such that LED module 19 a is seen by human eyes to illuminate without flickering and provide constant intensity of light as being driven by average current IBRT, which is the average of the high and low current levels.
  • As an example, FIG. 4 demonstrates a cross section view of LED cells 8 a(1, 1) and 8 a(1, 2), cutting along the dotted line AA′ in FIG. 2. A similar drawing has been published in FIG. 2 of US Patent Application Publication 2010/0213474, whose entirety is incorporated by reference. As shown in FIG. 4, LED cells 8 a(1, 1) and 8 a(1, 2) are grown on a monolithic substrate 60, each having, from bottom to top, n-type contact layer 62, n-type cladding layer 64, active layer 66, p-type cladding layer 68, and p-type contact layer 70. A wavelength conversion layer 72 is optionally formed on contact layer 70 to convert the light emitting from the active layer. Two electrodes 76 and 74 are optionally formed (may be omitted) on n-type contact layer 62 and p-type contact layer 70, respectively. LED cells 8 a(1, 1) and 8 a(1, 2) are physically separated on monolithic substrate by a trench between LED cells 8 a(1, 1) and 8 a(1, 2). An electric circuit layer 78 provides electric connection between the n-type contact layer 62 of 8 a(1,1) and the p-type contact layer 70 of the adjacent LED cell, such as 8 a(1, 2) to forma series connection. An insulator layer 80 is formed under portion of electric circuit layer 78 to prevent unwanted short circuits. In one embodiment, each of LED cells 8 a(1, 1) to 8 a(3, 3) occupies a cell area on the monolithic substrate 60 no more than 121 mil2. The monolithic substrate 60 has a surface area, for example between 1.21*102 to 1*105 mil2.
  • Two conductive pads IN−, IN+ are provided for electric connection between the LED chip 8 a and an electric circuit outside the chip through external wires. The two conductive pads IN−, IN+ are respectively formed on the monolithic substrate 60 outside the array area for LED cells 8 a(1, 18 a(1, 3), and preferably at different corners or borders of the LED chip 8 a. The conductive pads IN−, IN+ are electrically coupled to the LED cells 8 a(1,18 a(1,3) via the electric circuit layer 78 as in FIG. 4.
  • As LED cells 8 a(1,18 a(3,3) are epitaxial grown on monolithic substrate 60 using MOCVD process and other semiconductor process, such as sputtering, lithography, and etching process, the compositions of the active layers 66 therein are substantially the same to emit lights with the same or similar wavelength spectrum. Nevertheless, wavelength conversion layers 72 may be different or absent for some LED cells. For example, in one embodiment, all LED cells 8 a(1, 18 a(3, 3) are white LED cells each having an active layer emitting blue light and a wavelength conversion layer downconverting the blue light into yellow light. In another embodiment, some of LED cells 8 a(1,18 a(3,3) are white LED cells each having a wavelength conversion layer downconverting the blue light into yellow light, and others are blue LED cells having a wavelength conversion layer downconverting the blue light into red light. In another embodiment, some of LED cells 8 a(1,18 a(3,3) are white LED cells each having a wavelength conversion layer and others are blue LED cells having no wavelength conversion layer. In one embodiment, the wavelength conversion layer is formed a layered structure bonded to the contact layer through a glue bonding layer under chip process for the foregoing embodiments. In another embodiment, the wavelength conversion layer is formed by encapsulating the LED chip by an encapsulating material containing a wavelength conversion material under packaging process.
  • FIG. 5 exemplifies light apparatus 12 b. LED module 19 b is controlled by controller 11 to provide both illumination and data transmission. Similar with LED chip 8 a of FIG. 2, LED chip 8 b in LED module 19 b has LED cells 8 b(1,18 b(3,3), arranged as an LED array on a monolithic substrate. LED chip 8 b is slightly different with LED chip 8 a. While LED chip 8 a of FIG. 2 has only one LED chain with one pair of conductive pads IN+ and IN− as inputs, LED chip 8 b of FIG. 5 has two LED chains 22 and 24. The number of LED cells in one LED chain is not restricted and one LED chain might include only one LED cell as exemplified by LED chain 24, or more than one LED cell. LED chain 22 has a pair of conductive pads LIN+ and IN+/LIN− while LED chain 24 has a pair of conductive pads IN+/LIN− and IN−. It can be found conductive pad IN+/LIN− is a common conductive pad connected to both the anode (or the n-type contact layer) of LED chains 24 and the cathode (or the p-type contact layer) of LED chain 22. Conductive pads LIN+, IN−, and IN+/LIN− are provided for electric connection between the LED chip 8 a and an electric circuit outside the chip through external wires. The conductive pads LIN+, IN−, and IN+/LIN− are respectively formed on the monolithic substrate 60 outside the area of the LED cells of LED chip 8 b, and preferred at different corners or borders of the LED chip 8 b as shown in FIG. 5. The conductive pads LIN+, IN−, and IN+/LIN− are electrically coupled to the LED cells via the electric circuit layer 78 as in FIG. 4. For example, pad IN+/LIN− is connected via electric circuit layer 78 to both a p-type contact layer of LED chain 24 and a n-type contact layer of LED chain 22. The pair of conductive pads LIN+ and IN+/LIN− is connected to illumination driver 13 of controller 11 and the pair of conductive pads IN+/LIN− and IN− is connected to modulator 17 of controller 11. FIG. 6 shows the waveform of driving current IIN and ILIN respectively provided by modulator 17 and illumination driver 13 of FIG. 5. The operation of modulator 17 is not detailed here for brevity since it has been done in the paragraphs regarding with FIGS. 2 and 3. It is comprehensive that LED chain 24 driven by modulator 17 transmits data via the light it emits. Illumination driver 13 of FIG. 5 provides driving current ILIN to LED chain 22. Driving current ILIN is almost a constant and conveys no data as shown in FIG. 6, such that LED chain 22 only acts as a lighting source for illumination. Accordingly, LED chip 8 b has two LED chains 22 and 24 where LED chain 22 is only for illumination and LED chain 24 is for data transmission. In one embodiment, LED chip 8 b is formed on a monolithic substrate, each of LED cells 8 b(1, 1) to 8 b(3, 3) occupies a cell area on a monolithic substrate no more than 121 mil2, and the number of LED cells in LED chain 24 is smaller than that in LED chain 22. In another embodiment, the area of one of the LED cell(s) in LED chain 24 for data transmission is smaller than that in LED chain 22 for illumination. In one embodiment, the area of one of the LED cell (s) for data transmission is preferred no more than 121 mil2, and the area of one of the LED cells for illumination is preferred no more than 400 mil2.
  • In one embodiment, LED chains 22 and 24 emit light of different colors. For example, LED cells in chain 22 comprises white LED cells and LED cell 8 b(3,3) in chain 24 is a blue LED cell.
  • FIG. 7 exemplifies light apparatus 12 c. Similar with LED chip 8 b of FIG. 5, LED chip 8 c of FIG. 7 has two LED chains 26 and 28. LED chain 26 is only for illumination, driven via a pair of conductive pads LIN+ and LIN−/IN− by illumination driver 13. LED chain 28 is for data transmission, driven via a pair of conductive pads IN+ and LIN−/IN− by modulator 17. The conductive pad LIN−/IN− is electrically connected to both two n-type contact layers of LED chains 26 and 28. In one embodiment, LED chip 8 c is formed on a monolithic substrate. FIG. 8 demonstrates a cross section view of LED cells 8 c(3, 1) and 8 c(3, 2) in FIG. 7, cutting along the dotted line BB′. As shown in FIG. 8, even though they are located in the same column, LED cell 8 c(3, 1), which belongs to LED chain 26, has a cell orientation opposite to LED cell 8 c(3, 2), which belongs to LED chain 28.
  • It is unnecessary that the LED chain only for illumination must shares a common conductive pad with the LED chain for data transmission. FIGS. 9 and 10 exemplify light apparatuses 12 d and 12 e. In FIG. 9, LED chip 8 d has LED chain 30 only for illumination and LED chain 32 for data transmission. Conductive pads LIN+ and LIN− for LED chain 30 are independent to conductive pads IN+ and IN− for LED chain 32, while LED cell 8 d(3, 1) has the same cell orientation with LED cell 8 d(3, 2). LED chains 30 and 32 are electrically insulated on the monolithic substrate. In FIG. 10, LED chip 8 e has LED chain 34 only for illumination and LED chain 36 for data transmission, while LED cell 8 e(3, 1) has a cell orientation opposite to LED cell 8 e(3, 2).
  • FIG. 11 exemplifies light apparatus 12 f. It is unnecessary that LED cells in an LED module are all monolithically formed as an array on a monolithic substrate. In FIG. 11, LED module 19 f has individual LED chips 8 f 1 to 8 fn, where n is an integer. LED chips 8 f 1 to 8 fn could be formed on different substrates individually and together packaged on a submount, where the data transmitting speed would be lower compared with the LED module as disclosed in the foregoing embodiments using a monolithically-formed LED cell array on a single chip. In one embodiment, LED chips 8 f 1 to 8 fn are all white LED chips. In another embodiment, LED chips 8 f 1 to 8 fn consist of red, green and blue LED chips. LED module 19 f has two conductive terminals TIN+ and TIN−, through which modulator 17 provides driving current IIN to LED cells 8 f 1 to 8 fn to transmit data.
  • FIG. 12 exemplifies light apparatus 12 g. Similar with FIG. 11, LED module 19 g of FIG. 12 has LED chips 8 g 1 to 8 gn, where n is an integer. LED chips 8 g 1 to 8 g 5 are grouped and connected as LED chain 38, driven by illumination driver 13 and functioning only for illumination. LED chips 8 g 6 to 8 gn are grouped and connected as LED chain 40, driven by modulator 17 for data transmission. The light from LED chain 38 might be the same with or different to that from LED chain 40. LED chips 8 g 1 to 8 g 5 of LED chain 38 or LED chips 8 g 6 to 8 gn of LED chain 40 comprise at least one selected from blue LED, green LED, red LED, and white LED chips. For example, LED chips 8 g 1 to 8 g 5 of LED chain 38 consist of green and red LED chips and LED chips 8 g 6 to 8 gn consist of only blue LED chips. In one embodiment, LED chain 38 provides visible light, and LED chain 40 provides invisible light. In view of noise immunity, it is preferable that the wavelength spectrum of the light from LED chain 40 has a peak that is not affected by the intensity of the light from LED chain 38.
  • All the previously-mentioned LED chains that function, partially or fully, for illumination provide visible light. Nevertheless, the previously-mentioned LED chains that function only for data transmission could provide visible or invisible light.
  • While the invention has been described by way of example and in terms of preferred embodiment, it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.

Claims (14)

1. An LED module, comprising:
a modulator;
a first LED chain, connected to the modulator, comprising a first group of LED cells and configured to emit a first light, wherein the first light comprises a digital data over a signal carrier;
a driver independent from the modulator in controlling an emission of light;
a second LED chain, connected to the driver, comprising a second group of LED cells, and configured to emit a second light which is independent from an emission of the first light; and
a wavelength conversion layer associated with the first LED chain and disassociated with the second LED chain.
2. The LED module of claim 1, further comprising first conductive pads connected to the first LED chain and second conductive pads connected to the second LED chain, wherein the first conductive pads and the second conductive pads share a common conductive pad.
3. The LED module of claim 2, wherein the first LED chain comprises a first-type contact layer, the second LED chain comprises a second-type contact layer, the first-type and the second-type contact layers are electrically coupled to the common conductive pad.
4. The LED module of claim 2, wherein the first LED chain comprises a p-type contact layer, the second LED chain comprises an n-type contact layer, the p-type contact layer and the n-type contact layer are electrically coupled to the common conductive pad under which an insulating layer is formed.
5. The LED module of claim 1, wherein the second LED chain comprises an LED cell having an area of not greater than 121 mil2.
6. The LED module of claim 1, wherein the first LED chain is capable of emitting a color light which is different from that emitted from the second LED chain.
7. The LED module of claim 1, wherein the first LED chain comprises at least one LED cell capable of emitting a color light different from that emitted from another LED cell in the second LED chain.
8. The LED module of claim 1, wherein the second LED chain has less LED cells than the first LED chain.
9. The LED module of claim 1, further comprising a substrate having an area between 1.21*102 and 1*105 mil2.
10. The LED module of claim 1, wherein the signal carrier has a frequency imperceptible to human eyes.
11. The LED module of claim 1, wherein the LED module is capable of receiving data in a way of power line communication.
12. The LED module of claim 1, wherein the first LED chain comprises a first LED, the second LED chain comprises a second LED, wherein the second LED has an area greater than that of the first LED.
13. The LED module of claim 1, wherein the first light has a wavelength spectrum having a peak which is not affected by the second light.
14. An LED module, comprising:
a modulator;
an LED module configured to emit a light comprising a digital data over a signal carrier by the modulator; and
a wavelength conversion layer bonded to the LED module.
US14/735,572 2011-04-19 2015-06-10 Lighting apparatuses and led modules for both illumination and optical communication Abandoned US20150280824A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/735,572 US20150280824A1 (en) 2011-04-19 2015-06-10 Lighting apparatuses and led modules for both illumination and optical communication
US15/493,430 US9900095B2 (en) 2011-04-19 2017-04-21 Lighting apparatuses and LED modules for both illumination and optical communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/089,946 US20120269520A1 (en) 2011-04-19 2011-04-19 Lighting apparatuses and led modules for both illumation and optical communication
US14/735,572 US20150280824A1 (en) 2011-04-19 2015-06-10 Lighting apparatuses and led modules for both illumination and optical communication

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/089,946 Continuation US20120269520A1 (en) 2011-04-19 2011-04-19 Lighting apparatuses and led modules for both illumation and optical communication

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/493,430 Continuation US9900095B2 (en) 2011-04-19 2017-04-21 Lighting apparatuses and LED modules for both illumination and optical communication

Publications (1)

Publication Number Publication Date
US20150280824A1 true US20150280824A1 (en) 2015-10-01

Family

ID=47021430

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/089,946 Abandoned US20120269520A1 (en) 2011-04-19 2011-04-19 Lighting apparatuses and led modules for both illumation and optical communication
US14/735,572 Abandoned US20150280824A1 (en) 2011-04-19 2015-06-10 Lighting apparatuses and led modules for both illumination and optical communication
US15/493,430 Active US9900095B2 (en) 2011-04-19 2017-04-21 Lighting apparatuses and LED modules for both illumination and optical communication

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/089,946 Abandoned US20120269520A1 (en) 2011-04-19 2011-04-19 Lighting apparatuses and led modules for both illumation and optical communication

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/493,430 Active US9900095B2 (en) 2011-04-19 2017-04-21 Lighting apparatuses and LED modules for both illumination and optical communication

Country Status (3)

Country Link
US (3) US20120269520A1 (en)
CN (1) CN102748604B (en)
TW (1) TWI637652B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160302288A1 (en) * 2015-04-10 2016-10-13 Panasonic Intellectual Property Management Co., Ltd. Lighting fixture, lighting system, and method performed by the lighting fixture
CN106357333A (en) * 2016-10-21 2017-01-25 天津大学 Special integrated circuit for transmitting terminal based on visible light communication
US20210385388A1 (en) * 2019-10-18 2021-12-09 The Aerospace Corporation Tracking system

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2893588C (en) 2011-12-12 2018-01-30 Lumen Cache, Inc. Lighting control system
JP2014107655A (en) * 2012-11-27 2014-06-09 Katsuragawa Electric Co Ltd Visible light communication device
RU2648265C2 (en) * 2013-03-12 2018-03-23 Филипс Лайтинг Холдинг Б.В. Communication system, lighting system and method of transmitting information
CN103560831B (en) * 2013-10-31 2016-03-02 华北水利水电大学 There is lighting apparatus and the lighting apparatus information transferring method of information transfer capability
US10291329B2 (en) * 2013-12-20 2019-05-14 Infineon Technologies Ag Exchanging information between time-of-flight ranging devices
TWI648869B (en) * 2014-03-05 2019-01-21 晶元光電股份有限公司 Illuminating device
WO2016079683A1 (en) * 2014-11-17 2016-05-26 Intervention Technology Pty Ltd Free space optical communications system
CN104507218B (en) * 2014-12-15 2017-03-15 罗小华 Based on the color lamp device that power line edge signal is controlled
EP3370266B1 (en) * 2015-10-29 2020-06-17 Kyocera Corporation Light-emitting element, light receiving and emitting element module, and optical sensor
CN105633068B (en) * 2015-12-31 2018-11-02 深圳市瑞丰光电子股份有限公司 It is logical to shine dual-purpose LED component
CN105895653B (en) * 2016-05-16 2019-03-15 华南师范大学 High pressure visible light communication LED component and preparation method thereof
CN105895654B (en) * 2016-05-16 2019-01-18 华南师范大学 Built-in type illumination communicates difunctional LED component and preparation method thereof
CN106024824A (en) * 2016-05-16 2016-10-12 华南师范大学 Visible light communication multi-chip light-emitting device and preparation method thereof
DE102016219200A1 (en) * 2016-10-04 2018-04-05 Tridonic Gmbh & Co Kg Integrated arrangement of modulated light points for communication by means of visible light
CN107135570B (en) * 2017-04-18 2019-08-13 中国科学院半导体研究所 The adjustable visible light communication LED light source of modulation bandwidth
JP7203830B2 (en) * 2017-08-24 2023-01-13 ビーエーエスエフ ソシエタス・ヨーロピア Transmitters and data transmission systems for transmitting data and for emitting electromagnetic radiation within the visible spectrum
DE102017124321A1 (en) * 2017-10-18 2019-04-18 Osram Opto Semiconductors Gmbh Semiconductor device
CN108597228B (en) * 2018-05-30 2023-08-29 中国科学技术大学 Intelligent traffic flow sensing system and method based on visible light sensing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020142504A1 (en) * 2001-01-30 2002-10-03 Eastman Kodak Company System for integrating digital control with common substrate display devices
US6547249B2 (en) * 2001-03-29 2003-04-15 Lumileds Lighting U.S., Llc Monolithic series/parallel led arrays formed on highly resistive substrates
US20080074872A1 (en) * 2006-09-25 2008-03-27 George Panotopoulos LED lighting unit
US20080138085A1 (en) * 2006-06-29 2008-06-12 Formolight Technologies Inc. Illumination with optical communication method
US20080211421A1 (en) * 2005-06-28 2008-09-04 Seoul Opto Device Co., Ltd. Light Emitting Device For Ac Power Operation
US20120155889A1 (en) * 2010-12-15 2012-06-21 Electronics And Telecommunications Research Institute Method and apparatus for transmitting and receiving data using visible light communication
US8258714B2 (en) * 2009-05-26 2012-09-04 Richtek Technology Corporation, R.O.C. LED controller with phase-shift dimming function and LED phase-shift dimming circuit and method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0952617B1 (en) * 1993-04-28 2004-07-28 Nichia Corporation Gallium nitride-based III-V group compound semiconductor device
DE10051159C2 (en) * 2000-10-16 2002-09-19 Osram Opto Semiconductors Gmbh LED module, e.g. White light source
US7880182B2 (en) * 2002-07-15 2011-02-01 Epistar Corporation Light-emitting element array
TWI249148B (en) * 2004-04-13 2006-02-11 Epistar Corp Light-emitting device array having binding layer
US8405107B2 (en) * 2002-07-15 2013-03-26 Epistar Corporation Light-emitting element
EP1553641B1 (en) * 2002-08-29 2011-03-02 Seoul Semiconductor Co., Ltd. Light-emitting device having light-emitting diodes
TWI223460B (en) * 2003-09-23 2004-11-01 United Epitaxy Co Ltd Light emitting diodes in series connection and method of making the same
TWI229463B (en) * 2004-02-02 2005-03-11 South Epitaxy Corp Light-emitting diode structure with electro-static discharge protection
JP4641767B2 (en) 2004-09-01 2011-03-02 アバゴ・テクノロジーズ・イーシービーユー・アイピー(シンガポール)プライベート・リミテッド Optical communication system and lighting device used therefor
CN101800219B (en) * 2009-02-09 2019-09-17 晶元光电股份有限公司 Light-emitting component
CN101867412A (en) * 2009-04-15 2010-10-20 中国科学院半导体研究所 System and method for realizing communication by using semiconductor illumination
TWM381965U (en) * 2009-05-19 2010-06-01 Univ Shu Te Lighting communication device
US20110080108A1 (en) * 2009-10-06 2011-04-07 Walsin Lihwa Corporation Color tunable light emitting diode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020142504A1 (en) * 2001-01-30 2002-10-03 Eastman Kodak Company System for integrating digital control with common substrate display devices
US6547249B2 (en) * 2001-03-29 2003-04-15 Lumileds Lighting U.S., Llc Monolithic series/parallel led arrays formed on highly resistive substrates
US20080211421A1 (en) * 2005-06-28 2008-09-04 Seoul Opto Device Co., Ltd. Light Emitting Device For Ac Power Operation
US20080138085A1 (en) * 2006-06-29 2008-06-12 Formolight Technologies Inc. Illumination with optical communication method
US20080074872A1 (en) * 2006-09-25 2008-03-27 George Panotopoulos LED lighting unit
US8258714B2 (en) * 2009-05-26 2012-09-04 Richtek Technology Corporation, R.O.C. LED controller with phase-shift dimming function and LED phase-shift dimming circuit and method thereof
US20120155889A1 (en) * 2010-12-15 2012-06-21 Electronics And Telecommunications Research Institute Method and apparatus for transmitting and receiving data using visible light communication

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160302288A1 (en) * 2015-04-10 2016-10-13 Panasonic Intellectual Property Management Co., Ltd. Lighting fixture, lighting system, and method performed by the lighting fixture
US9713234B2 (en) * 2015-04-10 2017-07-18 Panasonic Intellectual Property Management Co., Ltd. Lighting fixture, lighting system, and method performed by the lighting fixture
CN106357333A (en) * 2016-10-21 2017-01-25 天津大学 Special integrated circuit for transmitting terminal based on visible light communication
US20210385388A1 (en) * 2019-10-18 2021-12-09 The Aerospace Corporation Tracking system

Also Published As

Publication number Publication date
US9900095B2 (en) 2018-02-20
TWI637652B (en) 2018-10-01
TW201244537A (en) 2012-11-01
CN102748604B (en) 2017-03-01
US20120269520A1 (en) 2012-10-25
CN102748604A (en) 2012-10-24
US20170287888A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
US9900095B2 (en) Lighting apparatuses and LED modules for both illumination and optical communication
KR101473277B1 (en) Light-emitting device
US10038029B2 (en) Light-emitting device
US8450748B2 (en) Solid state light emitting device
EP2587541B1 (en) Light emitting device
US20140168965A1 (en) Led device having adjustable color temperature
KR102007405B1 (en) Light emitting module
JP2010041057A (en) Semiconductor device and method of manufacturing the same
US8927958B2 (en) Light-emitting element with multiple light-emitting stacked layers
KR20130095054A (en) Semiconductor light emitting device, light emitting module and illumination apparatus
JP2011159495A (en) Lighting system
KR20180064348A (en) Light-emitting device with multiple light-emitting stacked layers
KR101435925B1 (en) A display apparatus having an array-type light-emitting device
US8669568B2 (en) Light emitting device usable for variable driving voltages
US20230335538A1 (en) Chip-on-board design with color mixing
JP2005203326A (en) White light emitting diode combination device
KR20100038252A (en) White light emitting diode package
CN111799291A (en) Light emitting element display
US8878450B2 (en) Light emission systems having non-monochromatic emitters and associated systems and methods
US11929355B2 (en) Mixed light light-emitting diode device
CN115117266A (en) Light emitting diode, backlight module and display device
TW201407808A (en) Light-emitting apparatus
KR20080059785A (en) A light emitting device having a plurality of light emitting cells
KR20110036806A (en) Light emitting diode

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION