US20150262949A1 - Method for Fabricating Equal Height Metal Pillars of Different Diameters - Google Patents

Method for Fabricating Equal Height Metal Pillars of Different Diameters Download PDF

Info

Publication number
US20150262949A1
US20150262949A1 US14/259,432 US201414259432A US2015262949A1 US 20150262949 A1 US20150262949 A1 US 20150262949A1 US 201414259432 A US201414259432 A US 201414259432A US 2015262949 A1 US2015262949 A1 US 2015262949A1
Authority
US
United States
Prior art keywords
openings
layer
pillars
metal
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/259,432
Inventor
John W. Osenbach
Steven D. Cate
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avago Technologies International Sales Pte Ltd
Original Assignee
LSI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LSI Corp filed Critical LSI Corp
Priority to US14/259,432 priority Critical patent/US20150262949A1/en
Assigned to LSI CORPORATION reassignment LSI CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OSENBACH, JOHN W., CATE, STEVEN D.
Assigned to AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD. reassignment AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LSI CORPORATION
Publication of US20150262949A1 publication Critical patent/US20150262949A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/034Manufacturing methods by blanket deposition of the material of the bonding area
    • H01L2224/03444Manufacturing methods by blanket deposition of the material of the bonding area in gaseous form
    • H01L2224/0345Physical vapour deposition [PVD], e.g. evaporation, or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/039Methods of manufacturing bonding areas involving a specific sequence of method steps
    • H01L2224/03912Methods of manufacturing bonding areas involving a specific sequence of method steps the bump being used as a mask for patterning the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0502Disposition
    • H01L2224/05023Disposition the whole internal layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • H01L2224/05082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05575Plural external layers
    • H01L2224/0558Plural external layers being stacked
    • H01L2224/05583Three-layer coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/11001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/11005Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for aligning the bump connector, e.g. marks, spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/114Manufacturing methods by blanket deposition of the material of the bump connector
    • H01L2224/1146Plating
    • H01L2224/11462Electroplating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/1147Manufacturing methods using a lift-off mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/116Manufacturing methods by patterning a pre-deposited material
    • H01L2224/1162Manufacturing methods by patterning a pre-deposited material using masks
    • H01L2224/11622Photolithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/119Methods of manufacturing bump connectors involving a specific sequence of method steps
    • H01L2224/11901Methods of manufacturing bump connectors involving a specific sequence of method steps with repetition of the same manufacturing step
    • H01L2224/11902Multiple masking steps
    • H01L2224/11903Multiple masking steps using different masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/119Methods of manufacturing bump connectors involving a specific sequence of method steps
    • H01L2224/11901Methods of manufacturing bump connectors involving a specific sequence of method steps with repetition of the same manufacturing step
    • H01L2224/11902Multiple masking steps
    • H01L2224/11906Multiple masking steps with modification of the same mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13005Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13005Structure
    • H01L2224/13007Bump connector smaller than the underlying bonding area, e.g. than the under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13023Disposition the whole bump connector protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/1401Structure
    • H01L2224/1403Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16113Disposition the whole bump connector protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16237Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8138Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/81399Material
    • H01L2224/814Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8138Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/81399Material
    • H01L2224/814Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/81438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/81447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10335Indium phosphide [InP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/1579Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20753Diameter ranges larger or equal to 30 microns less than 40 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20754Diameter ranges larger or equal to 40 microns less than 50 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20755Diameter ranges larger or equal to 50 microns less than 60 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20756Diameter ranges larger or equal to 60 microns less than 70 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20757Diameter ranges larger or equal to 70 microns less than 80 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20758Diameter ranges larger or equal to 80 microns less than 90 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20759Diameter ranges larger or equal to 90 microns less than 100 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/2076Diameter ranges equal to or larger than 100 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/37Effects of the manufacturing process

Definitions

  • the present invention relates to semiconductor packaging technology generally and, more specifically, to a process for forming copper pillars, and a solder layer thereon, on semiconductor devices for flip-chip bonding to it substrate.
  • Copper pillars are a widely used technique for electrically interconnecting a flip-chip semiconductor device or “chip” to conductors on an organic-based substrate, such as a thin (less than one millimeter thick) glass-epoxy board, because copper pillar interconnects have superior geometric control, higher density, and electrical performance relative to solder bump interconnects.
  • the copper pillars on the device's die pads formed by selectively plating copper onto the die pads, connect to the substrate's substrate pads by using a solder layer between each pillar and the respective substrate pad to join the copper pillars to the substrate pads.
  • Plating is usually used to form the solder layer onto the ends of the copper pillars.
  • the device and substrate are brought together and heated until the solder on the ends of the copper pillars melts and wets the substrate pads on the substrate, each pillar and solder combination forming a “joint”. Then the device-substrate combination is cooled down and the solder solidifies to bond the device to the substrate, forming a bonded device-substrate structure or “package”.
  • all of the copper pillars and solder layers on the die before heating are to have the same nominal height.
  • having joints with the same diameter might not be desirable in all instances.
  • the mass or volume per unit of time of the plated material is essentially a constant except for any local variations in the bath current density or concentration of all of the plating species in a particular plating bath.
  • Described embodiments include method comprising the steps of providing a wafer having a plurality of flip-chip devices, each flip-chip device having a plurality of die pads thereon; depositing a first layer of photoresist on the wafer; patterning the first layer of photoresist to form a first plurality of openings therein, each of the first openings having a first diameter and exposing a first set of die pads; plating metal into the first openings to form a first metal pillar in each of the first openings for a first time period; patterning the first layer of photoresist to form a second plurality of openings therein, each of the second openings having a second diameter and exposing a second set of die pads; and plating, metal into the first and second openings for a second time period to add to each of the metal pillars in the first openings and form a metal pillar in each of the second openings.
  • the first diameter is greater than the second diameter, and the first set of die pads is different from the second set of die pads.
  • the first and second time periods and plating conditions are chosen such that, after plating metal into the first and second openings for a second time period, each of the pillars in the second openings has substantially the same height as a pillars in each of the first openings.
  • FIG. 1 is a cross-section of a flip-chip device bonded to a substrate using copper pillars and solder of different diameters in one embodiment of the invention
  • FIG. 2 is a cross-section of one pillar and solder layer of FIG. 1 prior to bonding
  • FIG. 3 a flowchart illustrating an exemplary process for forming metal pillars of different diameters and uniform height on a flip-chip device and then bonding the device to a substrate according to one embodiment of the invention
  • FIGS. 4-9 are diagrams illustrating the various steps in the process described in connection with FIG. 3 .
  • exemplary is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Rather, use of the word exemplary is intended to present concepts in a concrete fashion.
  • Couple refers to any manner known in the art or later developed in which energy or a signal is allowed to be transferred between two or more elements, and the interposition of one or more additional elements is contemplated, although not required.
  • the terms “directly coupled”, “directly connected”, etc. imply the absence of such additional elements.
  • the present invention will be described herein in the context of illustrative embodiments of a process to form metal pillars on a flip-chip device that will be bonded to a substrate by joining die pads on the flip-chip device to substrate pads on the substrate using joints of metallic pillars, such as copper pillars, and solder.
  • the pillars and the solder on them are formed by electroplating a metal onto the die pads.
  • the total amount of metal deposited on a workpiece by electroplating is proportional to the current passed through the workpiece in an electroplating bath the device is immersed in, and the amount of time the current is applied, i.e., the amount of charge (in coulombs) applied to the workpiece.
  • the rate at which each pillar is formed is inversely proportional to the surface area of the pillar.
  • the wider pillars grow more slowly than narrow pillars.
  • the wide pillars are first partially formed before forming the narrow pillars by using a photoresist layer with two different diameter openings. First, a photoresist layer is deposited on a device and the photoresist is patterned to form a first plurality of openings therein, each of the first openings having a first diameter and exposing a first set of die pads on the device.
  • pillar metal e.g., copper
  • the photoresist is patterned to form a second plurality of openings therein, each of the second openings having a diameter smaller than the first diameter and exposing a second set of die pads.
  • pillar metal is plated into the first and second openings for a second time period to add metal to each of the metal pillars in the first openings and form a metal pillar in each of the second openings.
  • the first and second time periods and plating conditions are chosen such that, after plating metal into the first and second openings for the second time period, each of the pillars in the second openings has substantially the same height as the pillars in each of the first openings.
  • the solder layers might also be formed by plating solder into the openings and in conjunction with the formation of the pillars.
  • FIG. 1 is a cross-section of a flip-chip device 102 bonded to a substrate 104 to form a flip-chip package 100 in accordance with an embodiment of the invention.
  • Die pads (not shown) on the device 102 are bonded to substrate pads 114 on the substrate 104 using multiple conductors or joints 106 .
  • the device 102 might be formed from silicon, gallium arsenide, indium phosphide, or another semiconductor material suitable for the desired function of the device 102 .
  • the substrate 104 might be formed from a glass-epoxy (commonly known as FR-4), polytetrafluoroethylene (PTFE), polyimide, ceramics, silicon, glass, another insulating material suitable as a substrate, or a combination of these materials.
  • the thickness of the substrate 104 is less than two millimeters and might be as thin as 50 microns ( ⁇ m).
  • the lateral dimensions of the substrate 104 are typically larger than that of the device 102 .
  • the joints 106 are arranged with narrow joints 106 N on the right side of the package 100 and wide joints 106 W on the left side of the package 100 .
  • power and ground are supplied to the device 100 using the wide joints 106 W on the left side of the device 102 and high-speed signals are carded by the narrow joints 106 N on the right side of the device 102 .
  • the wide joints carry the high-speed signals and the narrow joints supply power and ground to the device 102 .
  • the positions of the wide and narrow joints are greatly simplified for illustrative purposes; typically hundreds of joints are present and power/ground interconnections are generally made in the center of the device 102 while high-speed signals are generally carried by joints near the periphery of the device 102 .
  • Each joint is formed from a metallic pillar 108 , such as copper, and a layer of solder 110 .
  • the height of all of the pillars 108 and solder layers 110 prior to bonding should be of uniform height, otherwise when the device 102 is bonded to substrate 104 , a gap between some of the solder layers 110 and the respective substrate pad 114 might be so large that during reflow when the device and substrate are heated sufficiently for the solder to melt, balling-up by the solder on the end of the pillar (caused by surface tension of the molten solder) is insufficient to bridge the gap so that the solder does not wet the substrate pad and no electrical/mechanical joint is made.
  • a joint 106 is formed from a copper pillar 108 and a layer of solder 110 .
  • the copper pillar is formed on a die pad 212 that has, in this embodiment, three layers.
  • a contact layer 214 is typically in or on the surface of the device 102 , is made of copper or aluminum, and connects to circuitry (not shown) within the device 102 .
  • Over the contact layer 214 is a layer 216 of titanium or titanium-tungsten that operates as a barrier/glue layer.
  • a strike layer 218 typically of the same metal as used to form the pillar 108 (e.g., copper).
  • the layers 216 and 218 are sputtered onto the device 102 and are typically less than 100 nm thick.
  • one or more conventional passivation layers e.g., silicon nitride or alternating layers of silicon nitride and silicon dioxide
  • passivation layers e.g., silicon nitride or alternating layers of silicon nitride and silicon dioxide
  • substrate 104 On substrate 104 is a respective one of the substrate pads 114 , also typically made of copper, shown aligned with the die pad 212 .
  • the substrate copper pad might be coated with another metal such as tin, silver, a nickel-gold eutectic, or solder.
  • the copper pillar 108 has a height of H P and the solder layer 110 has a height of H S (before melting), and both have an approximate diameter D.
  • the height of the joint is H P +H S so that the total height of the pillar and solder is H.
  • the height of the joint prior to melting ranges from 5 ⁇ m to 130 ⁇ m.
  • the copper pillars have a diameter ranging from approximately 20 ⁇ m to approximately 80 ⁇ m, a height H P of 20-70 ⁇ m, and the solder layers, prior to melting, have a height H S of 10-60 ⁇ m so that the total height is approximately 80 ⁇ m and might range from 5 ⁇ m to 130 ⁇ m.
  • the ratio of the height of the copper pillar to the height of the solder layer before melting can range from 1:10 to 100:1 and the pillar diameter can range from 5-150 ⁇ m.
  • FIG. 3 is a flowchart illustrating an exemplary process 300 for forming the pillars 108 and the solder layers 110 onto device 102 according to one embodiment of the invention.
  • a wafer containing multiple devices 102 is provided, each device having contact layers 214 thereon.
  • the process 300 is described below in the context of a single flip-chip device 102 but in practice the process steps are done at a wafer level because a wafer (not shown) comprises multiple flips-chip devices and all of the devices in the wafer are processed at the same time. It is not until an individual device is attached to a substrate (step 324 ) that the described steps are applied to a device individually.
  • next step 304 the barrier/glue layer 216 and the strike layer 218 are deposited over the device 102 .
  • FIG. 4 a partial cross-sectional view of the device 102 of FIG. 1 is shown but with just four contact layers 214 , the two on the left being wider than the two on the right.
  • Over the contact layer 214 are two layers 216 and 218 , shown here for simplicity as one layer. As discussed above, these layers are each about 100 nm thick and are sputtered, onto the device 102 although other techniques might be used to deposit the layers 216 , 218 , such as by evaporation.
  • the combined layers 216 , 218 also serve as an electrode when the pillars and solder layer are later deposited by electroplating. While the die pad 212 in FIG. 2 is shown having three separate and laterally defined layers, for purposes of describing the embodiment in FIGS. 4-9 , a contact layer 214 , along with the metal layers immediately above the contact layer, are referred to herein as either a wide die pad 212 W or a narrow die pad 212 N as illustrated in FIG. 4 .
  • the widths of the contact layers 214 and die pads 212 are illustrative (e.g., wider pillars on wider die pads 212 W and narrow pillars on narrow die pads 212 N ) and all of the die pads might be the same size or have different sizes. However, the size of a die pad 212 should be at least as wide as the pillar formed thereon.
  • a first photoresist layer is deposited across the device 102 and is photolithigraphically patterned using conventional techniques to form openings having a wide diameter in the photoresist over the wider die pads. This is shown in FIG. 5 where wide openings 502 are shown in photoresist 504 over the wide die pads 212 W and the narrow die pads 212 N remain covered by the photoresist 504 . The width of the later-formed pillars will be approximately equal to the width of the wide openings 502 . Part of the photoresist 504 is also removed to expose the conductive layers 216 , 218 and an electrode 506 is shown contacting the conductive layers 216 , 218 to provide to current path needed for electroplating. This electrode is not needed if the pillars and solder layer are formed using electroless plating.
  • the pillars 108 W are formed by plating metal onto the exposed portions of layer 216 , 218 of the die pads 212 W .
  • this is accomplished by submersing the device 102 in a plating path (not shown) containing an aqueous solution of the metal being plated, e.g., copper sulfate, copper cyanide, nickel sulfate, etc. and electroplating the metal into the openings and onto the exposed die pads by applying current to the electrode 506 for a first time period that will result in the deposition of a first layer 506 of pillar metal to a first height, here H 1 , in wide openings 502 as shown in FIG. 5 . Then the device 102 is removed from the plating bath and cleaned.
  • step 310 the first photoresist is again patterned but this time forming narrow openings in the first photoresist to expose the narrow die pads while leaving the wide openings intact and the metal layers in the wide openings exposed.
  • step 312 the wafer is returned to the plating bath and the deposition of the pillar metal into the wide and narrow openings occurs for a second time period until the wide pillars formed in the wide openings and narrow pillars formed in the narrow openings have approximately the same height.
  • the narrow pillars are formed solely during the second plating step (step 312 ) while the wide pillars are formed during both the first plating step (step 308 ) and the second plating step.
  • the first time period and the second time period are chosen so that the narrow pillars will reach a second or desired height at approximately the same time the wide pillars reach the desired height during the second plating step. This is illustrated in FIG. 6 , where narrow openings 602 are formed, exposing narrow die pads 212 N .
  • pillar metal is deposited in opening 502 on top of metal layer 506 to form metal layer 606 , layer 606 having a height of H 2 , and into openings 602 to form the metal pillars 108 N .
  • the combined height of metal layers 506 and 606 will be approximately equal to the height of the narrow pillar 108 N , or H 1 ⁇ H 2 ⁇ H P .
  • the combined layers 506 and 606 form the pillars 108 W .
  • the rate at which a pillar is formed (e.g., in microns per minute) is inversely proportional to the surface area of the pillar.
  • the second time period (t2) is chosen so that the narrow pillars have a second or desired height after the second plating step 312 .
  • the plating conditions e.g., plating current
  • the first time period, t1 might be calculated as a function of the pillar areas and the second time period:
  • a W is the area of each of the wide pillars or that of the wide openings
  • a N is the area of the narrow pillars or that of the narrow openings.
  • the first time period might be adjusted accordingly.
  • more than two different diameter metal pillars might be made by the above process where the number of plating steps is the same as the number of different diameter metal pillars to be formed and the plating times for the different plating steps are determined substantially in accordance with the above equation.
  • step 314 the wafer is placed in a solder plating bath for a third time period and solder is plated into the narrow and the wide openings in the first photoresist until the solder layer in the narrow openings reaches a desired height above the narrow pillars and then the wafer is removed from the plating bath. As illustrated in FIG.
  • the wafer having device 102 thereon is placed in another plating bath (not shown) containing the solder to be plated, e.g., stannous tin and lead sulfate, stannous tin and silver nitrate, etc., to deposit the solder layers 706 in the wide openings 502 and the solder layers 110 N in the narrow openings 602 .
  • the height of the pillars 108 N and 108 W are shown as H P
  • the height of the solder layer 110 N on pillars 108 N is shown as H S
  • the total height of the pillar and solder layer is height H, the same as that shown in FIG. 2 .
  • the top of the photoresist 504 is shown coincident with the total height H of the pillar and solder layer but the height H might be below the top of the photoresist 504 .
  • the solder layer 706 will be significantly shorter than the solder layer 110 N after plating step 314 .
  • a second photoresist layer is deposited over the first photoresist layer, the second photoresist layer covering at least the solder layers in the narrow openings.
  • the second photoresist layer covers the entire first photoresist and openings are formed in the second photoresist layer to expose the solder layers in the wide openings of the first photoresist layer.
  • the diameter of the openings in the second photoresist layer is substantially the same as the diameter of the wide openings in the first photoresist layer but it is understood that the diameters might be different.
  • the wafer is placed back in the solder plating bath for a fourth time period to complete the plating of the solder layers in the wide openings to the desired height.
  • FIG. 8 A second photoresist layer 804 overlays the first photoresist layer 504 , covering the narrow solder layers 110 N .
  • Openings 802 are formed in the photoresist layer 804 to expose the solder layers 606 using, for example, a conventional plasma etch or a conventional liquid chemical etch that selectively removes the patterned photoresist 804 .
  • the diameter of openings 802 is approximately the same diameter as the openings 502 ( FIG. 7 ) so that the diameter of openings 502 are not significantly changed when the openings 802 are formed since the photoresist layer 804 will extend into the opening 502 when deposited.
  • the wafer with device 102 thereon is placed back in the solder plating bath (not shown) for the fourth time period to form the solder layer 806 .
  • the result is the combined heights of the solder layers 606 and 806 are approximately equal to the height H S of the solder layer 110 N .
  • layers 606 and 806 together are referred to as solder layer 110 W .
  • the third time period (t3) is chosen so that the narrow solder layers 110 N have a desired height H S after the first solder plating step 314 . Then, assuming the plating conditions (e.g., plating current) are substantially the same during the first and second solder plating steps, the fourth time period, t4, is determined
  • a W is the area of each of the wide pillars or that of the wide openings
  • a N is the area of the narrow pillars or that of the narrow openings.
  • t4 can be calculated based on the amount of time T needed to plate the solder layers in the wide openings to the same height as the solder layers in the narrow openings plated in time period t3.
  • T the amount of time needed to plate the solder layers in the wide openings to the same height as the solder layers in the narrow openings plated in time period t3.
  • t4 is approximately T ⁇ t3.
  • the fourth time period might be adjusted accordingly.
  • the height of the pillars and the solder layer is proportional to the plating current and time used to form them. Knowing the diameter of the opening 502 allows the relatively precise control of the height of the pillars and solder layer during formation with an accuracy of approximately 10% or better.
  • step 322 the photoresist layers 504 , 704 are removed by ashing using an oxygen plasma or by dipping the device 102 into a chemical stripping bath. Then the conductive layer 216 , 218 exposed by the removed photoresist is removed in step 324 by plasma etching or by wet etching. The result is shown in FIG. 9 where two sets of joints are shown, a two wide joints 106 W and two narrow joints 106 N , each having substantially the same height above the device 102 .
  • step 326 the wafer (not shown) is singulated into multiple devices 102 .
  • step 328 each flip-chip device is bonded to a substrate using a conventional flip-chip bonding technique to form the package 100 shown in FIG. 1 .
  • the package 100 is formed by bringing the flip-chip device 102 into proximity to the substrate such that the substrate pads 114 are aligned with respective metal pillars 108 on the flip-chip device.
  • the metal pillars are then bonded to their respective substrate pads by melting the solder layers 110 so that the solder wets both the pillars and the substrate pads and then the device and substrate are cooled to solidify the solder.
  • step 330 the final steps to complete the packaging of the bonded device and substrate are done, such as forming an underfill layer between the device and the substrate, adding a heat spreader lid, forming an overmold of epoxy to the device and substrate for environmental protection, testing, package marking, etc.
  • a layer of solder is deposited on each of the substrate pads 114 by using a patterned solder mask (not shown) on the substrate 104 with the substrate pads exposed and the solder plated onto the exposed pads, using either conventional electroplating, or electroless plating.
  • the solder layers 110 are not formed and steps 314 through 320 are not performed.

Abstract

A process to form metal pillars on a flip-chip device. The pillars, along with a layer of solder, will be used to bond die pads on the device to respective substrate pads on a substrate. A photoresist is deposited over the device and first openings in the photoresist are formed. Metal layers are formed by electroplating metal into the first openings for a first time period. Then the photoresist is patterned to form second openings having a smaller diameter than the first openings. Narrow pillars are formed by electroplating metal into the second openings for a second time period during which the metal is also added to the metal layers in the first openings to form wide pillars having substantially the same height as the narrow pillars. The photoresist is then removed along with conductive layers on the device used as part of the plating process.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of the filing date of U.S. provisional patent application No. 61/952,963 filed 14 Mar. 2014 as attorney docket no. L14-0124US1, the teachings of which are incorporated herein by reference, and the subject matter of this application is related to U.S. patent application Ser. No. ______, filed concurrently herewith as attorney docket no. L14-0124US1, titled “Method for Fabricating Equal Height Metal Pillars of Different Diameters”, the teachings of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the invention
  • The present invention relates to semiconductor packaging technology generally and, more specifically, to a process for forming copper pillars, and a solder layer thereon, on semiconductor devices for flip-chip bonding to it substrate.
  • 2. Description of the Related Art
  • Copper pillars are a widely used technique for electrically interconnecting a flip-chip semiconductor device or “chip” to conductors on an organic-based substrate, such as a thin (less than one millimeter thick) glass-epoxy board, because copper pillar interconnects have superior geometric control, higher density, and electrical performance relative to solder bump interconnects. The copper pillars on the device's die pads, formed by selectively plating copper onto the die pads, connect to the substrate's substrate pads by using a solder layer between each pillar and the respective substrate pad to join the copper pillars to the substrate pads. Plating is usually used to form the solder layer onto the ends of the copper pillars.
  • To bond a flip-chip device to a substrate, the device and substrate are brought together and heated until the solder on the ends of the copper pillars melts and wets the substrate pads on the substrate, each pillar and solder combination forming a “joint”. Then the device-substrate combination is cooled down and the solder solidifies to bond the device to the substrate, forming a bonded device-substrate structure or “package”.
  • In order to insure all substrate-to-die joints are formed during bonding, all of the copper pillars and solder layers on the die before heating are to have the same nominal height. In addition it is generally desirable for all of the joints to have substantially the same diameter. However, having joints with the same diameter might not be desirable in all instances. For example, for carrying a large number of high-speed signals between the chip and the substrate, it might be desirable to use thinner than “normal” diameter joints spaced to provide a high density of signal paths while at the same time providing a desired transmission line characteristic impedance between the joints, e.g., 50 or 100Ω. In other instances where a large current is to be carried by a joint, e.g., a power supply connection, electromigration might with time cause failure of a joint with a normal diameter. To address the high current problem, multiple joints with a normal diameter are placed in parallel or one or more of the joints are formed with a larger or wider diameter than a “normal” joint so that the current density in each joint is less than a maximum amount that would otherwise cause the joint to fail from electromigration. However, using a conventional plating process to make joints with different diameters with substantially uniform height has been problematic. For a given electrochemical plating process and plating bath solution, the mass or volume per unit of time of the plated material is essentially a constant except for any local variations in the bath current density or concentration of all of the plating species in a particular plating bath. As a result, using a conventional electroplating process to form different diameter joints will result in a device with smaller diameter joints that are taller than adjacent larger diameter joints. The uneven joint height might not allow the shorter joints on the device to be completely attached, if at all, to their respective substrate pads, while all of the taller joints will be completely attached, thus causing the completed package to be inoperable or prone to high rates of failure in the field. Further, any warpage of the substrate might exacerbate this situation, possibly increasing the number of partial or incomplete joints.
  • SUMMARY OF THE INVENTION
  • This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
  • Described embodiments include method comprising the steps of providing a wafer having a plurality of flip-chip devices, each flip-chip device having a plurality of die pads thereon; depositing a first layer of photoresist on the wafer; patterning the first layer of photoresist to form a first plurality of openings therein, each of the first openings having a first diameter and exposing a first set of die pads; plating metal into the first openings to form a first metal pillar in each of the first openings for a first time period; patterning the first layer of photoresist to form a second plurality of openings therein, each of the second openings having a second diameter and exposing a second set of die pads; and plating, metal into the first and second openings for a second time period to add to each of the metal pillars in the first openings and form a metal pillar in each of the second openings. The first diameter is greater than the second diameter, and the first set of die pads is different from the second set of die pads. The first and second time periods and plating conditions are chosen such that, after plating metal into the first and second openings for a second time period, each of the pillars in the second openings has substantially the same height as a pillars in each of the first openings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other embodiments of the present invention will become more fully apparent from the following detailed description, the appended claims, and the accompanying drawings in which like reference numerals identify similar or identical elements. The drawings are not to scale.
  • FIG. 1 is a cross-section of a flip-chip device bonded to a substrate using copper pillars and solder of different diameters in one embodiment of the invention;
  • FIG. 2 is a cross-section of one pillar and solder layer of FIG. 1 prior to bonding;
  • FIG. 3 a flowchart illustrating an exemplary process for forming metal pillars of different diameters and uniform height on a flip-chip device and then bonding the device to a substrate according to one embodiment of the invention; and
  • FIGS. 4-9 are diagrams illustrating the various steps in the process described in connection with FIG. 3.
  • DETAILED DESCRIPTION
  • Reference herein to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments necessarily mutually exclusive of other embodiments. The same applies to the term “implementation”.
  • As used in this application, the word “exemplary” is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Rather, use of the word exemplary is intended to present concepts in a concrete fashion.
  • The term “or” should be interpreted as inclusive unless stated otherwise. Further, elements in a figure having subscripted reference numbers, e.g., 100 1, 100 2, . . . 100 K, or 100 A, 100 B, etc. might be collectively referred to herein using a single reference number, e,g 100.
  • It should be understood that the steps of the exemplary methods set forth herein are not necessarily required to be performed in the order described, and the order of the steps of such methods should be understood to be merely exemplary. Likewise, additional steps might be included in such methods, and certain steps might be omitted or combined, in methods consistent with various embodiments of the present invention.
  • Also for purposes of this description, the terms “couple”, “coupling”, “coupled”, “connect”, “connecting”, or “connected” refer to any manner known in the art or later developed in which energy or a signal is allowed to be transferred between two or more elements, and the interposition of one or more additional elements is contemplated, although not required. Conversely, the terms “directly coupled”, “directly connected”, etc., imply the absence of such additional elements.
  • The present invention will be described herein in the context of illustrative embodiments of a process to form metal pillars on a flip-chip device that will be bonded to a substrate by joining die pads on the flip-chip device to substrate pads on the substrate using joints of metallic pillars, such as copper pillars, and solder. The pillars and the solder on them are formed by electroplating a metal onto the die pads. According to Faraday's Law, the total amount of metal deposited on a workpiece by electroplating is proportional to the current passed through the workpiece in an electroplating bath the device is immersed in, and the amount of time the current is applied, i.e., the amount of charge (in coulombs) applied to the workpiece. However, the rate at which each pillar is formed is inversely proportional to the surface area of the pillar. Thus, the wider pillars grow more slowly than narrow pillars. To form narrow and wide pillars having approximately the same height, the wide pillars are first partially formed before forming the narrow pillars by using a photoresist layer with two different diameter openings. First, a photoresist layer is deposited on a device and the photoresist is patterned to form a first plurality of openings therein, each of the first openings having a first diameter and exposing a first set of die pads on the device. Next, pillar metal (e.g., copper) is plated into the first openings to form a first metal pillar in each of the first openings for a first time period. Then the photoresist is patterned to form a second plurality of openings therein, each of the second openings having a diameter smaller than the first diameter and exposing a second set of die pads. Then pillar metal is plated into the first and second openings for a second time period to add metal to each of the metal pillars in the first openings and form a metal pillar in each of the second openings. The first and second time periods and plating conditions are chosen such that, after plating metal into the first and second openings for the second time period, each of the pillars in the second openings has substantially the same height as the pillars in each of the first openings. As described below, the solder layers might also be formed by plating solder into the openings and in conjunction with the formation of the pillars.
  • FIG. 1 is a cross-section of a flip-chip device 102 bonded to a substrate 104 to form a flip-chip package 100 in accordance with an embodiment of the invention. Die pads (not shown) on the device 102 are bonded to substrate pads 114 on the substrate 104 using multiple conductors or joints 106. The device 102 might be formed from silicon, gallium arsenide, indium phosphide, or another semiconductor material suitable for the desired function of the device 102. The substrate 104 might be formed from a glass-epoxy (commonly known as FR-4), polytetrafluoroethylene (PTFE), polyimide, ceramics, silicon, glass, another insulating material suitable as a substrate, or a combination of these materials. Typically, the thickness of the substrate 104 is less than two millimeters and might be as thin as 50 microns (μm). The lateral dimensions of the substrate 104 are typically larger than that of the device 102.
  • In this example, the joints 106 are arranged with narrow joints 106 N on the right side of the package 100 and wide joints 106 W on the left side of the package 100. Generally, power and ground are supplied to the device 100 using the wide joints 106 W on the left side of the device 102 and high-speed signals are carded by the narrow joints 106 N on the right side of the device 102. It is understood that in various instances, the wide joints carry the high-speed signals and the narrow joints supply power and ground to the device 102. Further, the positions of the wide and narrow joints are greatly simplified for illustrative purposes; typically hundreds of joints are present and power/ground interconnections are generally made in the center of the device 102 while high-speed signals are generally carried by joints near the periphery of the device 102.
  • Each joint is formed from a metallic pillar 108, such as copper, and a layer of solder 110. For the proper bonding of all the joints between the device 102 and substrate 104, the height of all of the pillars 108 and solder layers 110 prior to bonding should be of uniform height, otherwise when the device 102 is bonded to substrate 104, a gap between some of the solder layers 110 and the respective substrate pad 114 might be so large that during reflow when the device and substrate are heated sufficiently for the solder to melt, balling-up by the solder on the end of the pillar (caused by surface tension of the molten solder) is insufficient to bridge the gap so that the solder does not wet the substrate pad and no electrical/mechanical joint is made.
  • Referring to FIG. 2, one of the joints 106 in FIG. 1 is shown as the joint appears prior to bonding the device 102 to the substrate 104. As discussed above, a joint 106 is formed from a copper pillar 108 and a layer of solder 110. The copper pillar is formed on a die pad 212 that has, in this embodiment, three layers. A contact layer 214 is typically in or on the surface of the device 102, is made of copper or aluminum, and connects to circuitry (not shown) within the device 102. Over the contact layer 214 is a layer 216 of titanium or titanium-tungsten that operates as a barrier/glue layer. Next, a strike layer 218, typically of the same metal as used to form the pillar 108 (e.g., copper). As will be explained in more detail below, the layers 216 and 218 are sputtered onto the device 102 and are typically less than 100 nm thick. Not shown are one or more conventional passivation layers (e.g., silicon nitride or alternating layers of silicon nitride and silicon dioxide) on the surface of the device 102 that has openings therein to expose the layer 214 and serves to protect the device from contaminants and physical damage.
  • On substrate 104 is a respective one of the substrate pads 114, also typically made of copper, shown aligned with the die pad 212. The substrate copper pad might be coated with another metal such as tin, silver, a nickel-gold eutectic, or solder.
  • The copper pillar 108 has a height of HP and the solder layer 110 has a height of HS (before melting), and both have an approximate diameter D. The height of the joint is HP+HS so that the total height of the pillar and solder is H. In various embodiments, the height of the joint prior to melting ranges from 5 μm to 130 μm. In one embodiment, the copper pillars have a diameter ranging from approximately 20 μm to approximately 80 μm, a height HP of 20-70 μm, and the solder layers, prior to melting, have a height HS of 10-60 μm so that the total height is approximately 80 μm and might range from 5 μm to 130 μm. However, it is understood that the ratio of the height of the copper pillar to the height of the solder layer before melting can range from 1:10 to 100:1 and the pillar diameter can range from 5-150 μm.
  • Assuming a possible pillar diameter accuracy of +/−1 μm for openings less than 10 μm, +/−2 μm for openings less than 30 μm, +/−5 for openings less than 50 μm, and +/−7 μm for openings less than 100 μm, and +/−8 μm for openings less than 150 μm, then for the following exemplary ranges in opening diameters, it might be desirable to perform two separate pillar plating steps in accordance with the disclosed embodiments when the exemplary percentage difference between the narrow and wide openings is at least that in the following table:
  • Minimum % diameter
    Figure US20150262949A1-20150917-P00899
    Both opening diameters two separate plating steps
    <60 10
    60 < dia. < 100 7
    100 < dia. < 150  5
    Figure US20150262949A1-20150917-P00899
    indicates data missing or illegible when filed
  • However, it is understood that while the above percentage differences and ranges in opening diameters are merely exemplary, two separate plating steps might still be used were the percentage difference between the narrow and wide openings is less than the above-described amounts.
  • FIG. 3 is a flowchart illustrating an exemplary process 300 for forming the pillars 108 and the solder layers 110 onto device 102 according to one embodiment of the invention. Beginning with step 302, a wafer containing multiple devices 102 is provided, each device having contact layers 214 thereon. For simplicity and because of the scale of a joint compared to that of a wafer, the process 300 is described below in the context of a single flip-chip device 102 but in practice the process steps are done at a wafer level because a wafer (not shown) comprises multiple flips-chip devices and all of the devices in the wafer are processed at the same time. It is not until an individual device is attached to a substrate (step 324) that the described steps are applied to a device individually.
  • Next step 304, the barrier/glue layer 216 and the strike layer 218 are deposited over the device 102. These two steps are illustrated in FIG. 4. Here, a partial cross-sectional view of the device 102 of FIG. 1 is shown but with just four contact layers 214, the two on the left being wider than the two on the right. Over the contact layer 214 are two layers 216 and 218, shown here for simplicity as one layer. As discussed above, these layers are each about 100 nm thick and are sputtered, onto the device 102 although other techniques might be used to deposit the layers 216, 218, such as by evaporation. Because the barrier layer and the strike layers are conductive, the combined layers 216, 218 also serve as an electrode when the pillars and solder layer are later deposited by electroplating. While the die pad 212 in FIG. 2 is shown having three separate and laterally defined layers, for purposes of describing the embodiment in FIGS. 4-9, a contact layer 214, along with the metal layers immediately above the contact layer, are referred to herein as either a wide die pad 212 W or a narrow die pad 212 N as illustrated in FIG. 4. The widths of the contact layers 214 and die pads 212 are illustrative (e.g., wider pillars on wider die pads 212 W and narrow pillars on narrow die pads 212 N) and all of the die pads might be the same size or have different sizes. However, the size of a die pad 212 should be at least as wide as the pillar formed thereon.
  • Returning to FIG. 3, in step 306 a first photoresist layer is deposited across the device 102 and is photolithigraphically patterned using conventional techniques to form openings having a wide diameter in the photoresist over the wider die pads. This is shown in FIG. 5 where wide openings 502 are shown in photoresist 504 over the wide die pads 212 W and the narrow die pads 212 N remain covered by the photoresist 504. The width of the later-formed pillars will be approximately equal to the width of the wide openings 502. Part of the photoresist 504 is also removed to expose the conductive layers 216, 218 and an electrode 506 is shown contacting the conductive layers 216, 218 to provide to current path needed for electroplating. This electrode is not needed if the pillars and solder layer are formed using electroless plating.
  • In step 308 of FIG. 3, the pillars 108 W are formed by plating metal onto the exposed portions of layer 216, 218 of the die pads 212 W. Generally, this is accomplished by submersing the device 102 in a plating path (not shown) containing an aqueous solution of the metal being plated, e.g., copper sulfate, copper cyanide, nickel sulfate, etc. and electroplating the metal into the openings and onto the exposed die pads by applying current to the electrode 506 for a first time period that will result in the deposition of a first layer 506 of pillar metal to a first height, here H1, in wide openings 502 as shown in FIG. 5. Then the device 102 is removed from the plating bath and cleaned.
  • Next, in step 310, the first photoresist is again patterned but this time forming narrow openings in the first photoresist to expose the narrow die pads while leaving the wide openings intact and the metal layers in the wide openings exposed. Then, in step 312, the wafer is returned to the plating bath and the deposition of the pillar metal into the wide and narrow openings occurs for a second time period until the wide pillars formed in the wide openings and narrow pillars formed in the narrow openings have approximately the same height. Thus, the narrow pillars are formed solely during the second plating step (step 312) while the wide pillars are formed during both the first plating step (step 308) and the second plating step. Because the metal being plated will be deposited more quickly in the narrow openings than in the wide openings, the first time period and the second time period are chosen so that the narrow pillars will reach a second or desired height at approximately the same time the wide pillars reach the desired height during the second plating step. This is illustrated in FIG. 6, where narrow openings 602 are formed, exposing narrow die pads 212 N. During the second plating step described above (step 312), pillar metal is deposited in opening 502 on top of metal layer 506 to form metal layer 606, layer 606 having a height of H2, and into openings 602 to form the metal pillars 108 N. After the second plating step 312, the combined height of metal layers 506 and 606 will be approximately equal to the height of the narrow pillar 108 N, or H1−H2≅HP. Thus, the combined layers 506 and 606 form the pillars 108 W.
  • As mentioned above, the rate at which a pillar is formed (e.g., in microns per minute) is inversely proportional to the surface area of the pillar. To determine the first and second time periods for steps 308 and 312, respectively, the second time period (t2) is chosen so that the narrow pillars have a second or desired height after the second plating step 312. Assuming that the plating conditions (e.g., plating current) are substantially the same during the first and second plating steps, the first time period, t1, might be calculated as a function of the pillar areas and the second time period:

  • t1≅t2(AW/AS−1);
  • where t1 and t2 are the first and second time periods, respectively, AW is the area of each of the wide pillars or that of the wide openings, and AN is the area of the narrow pillars or that of the narrow openings.
  • It is understood that if the plating conditions are different during the first plating step 308 from that in the second plating step 312, the first time period might be adjusted accordingly. Further, more than two different diameter metal pillars might be made by the above process where the number of plating steps is the same as the number of different diameter metal pillars to be formed and the plating times for the different plating steps are determined substantially in accordance with the above equation.
  • After the narrow and wide pillars 108 W, 108 N are formed, then optional solder layers might be formed on the ends of the pillars. Similar the above-described process to form the pillars, in step 314 the wafer is placed in a solder plating bath for a third time period and solder is plated into the narrow and the wide openings in the first photoresist until the solder layer in the narrow openings reaches a desired height above the narrow pillars and then the wafer is removed from the plating bath. As illustrated in FIG. 7, the wafer having device 102 thereon is placed in another plating bath (not shown) containing the solder to be plated, e.g., stannous tin and lead sulfate, stannous tin and silver nitrate, etc., to deposit the solder layers 706 in the wide openings 502 and the solder layers 110 N in the narrow openings 602. The height of the pillars 108 N and 108 W are shown as HP, the height of the solder layer 110 N on pillars 108 N is shown as HS, and the total height of the pillar and solder layer is height H, the same as that shown in FIG. 2. For convenience, the top of the photoresist 504 is shown coincident with the total height H of the pillar and solder layer but the height H might be below the top of the photoresist 504.
  • As shown in FIG. 7, the solder layer 706 will be significantly shorter than the solder layer 110 N after plating step 314. To make the solder layer in the wider openings 502 thicker without impacting the solder layers in the narrow openings 602, in step 316 a second photoresist layer is deposited over the first photoresist layer, the second photoresist layer covering at least the solder layers in the narrow openings. Alternatively, the second photoresist layer covers the entire first photoresist and openings are formed in the second photoresist layer to expose the solder layers in the wide openings of the first photoresist layer. Preferably, the diameter of the openings in the second photoresist layer is substantially the same as the diameter of the wide openings in the first photoresist layer but it is understood that the diameters might be different. Then in step 320 the wafer is placed back in the solder plating bath for a fourth time period to complete the plating of the solder layers in the wide openings to the desired height. The preceding two steps are illustrated in FIG. 8. A second photoresist layer 804 overlays the first photoresist layer 504, covering the narrow solder layers 110 N. Openings 802 are formed in the photoresist layer 804 to expose the solder layers 606 using, for example, a conventional plasma etch or a conventional liquid chemical etch that selectively removes the patterned photoresist 804. The diameter of openings 802 is approximately the same diameter as the openings 502 (FIG. 7) so that the diameter of openings 502 are not significantly changed when the openings 802 are formed since the photoresist layer 804 will extend into the opening 502 when deposited. Then, the wafer with device 102 thereon is placed back in the solder plating bath (not shown) for the fourth time period to form the solder layer 806. The result is the combined heights of the solder layers 606 and 806 are approximately equal to the height HS of the solder layer 110 N. Thus, layers 606 and 806 together are referred to as solder layer 110 W.
  • Like the above calculation to determine the first time period, the third time period (t3) is chosen so that the narrow solder layers 110 N have a desired height HS after the first solder plating step 314. Then, assuming the plating conditions (e.g., plating current) are substantially the same during the first and second solder plating steps, the fourth time period, t4, is determined

  • t4≅t3(AW/AS−1);
  • where t3 and t4 are the third and fourth time periods, respectively, AW is the area of each of the wide pillars or that of the wide openings, and AN is the area of the narrow pillars or that of the narrow openings.
  • Alternatively and assuming the plating conditions (e.g., plating current) are substantially the same during the first and second solder plating steps, t4 can be calculated based on the amount of time T needed to plate the solder layers in the wide openings to the same height as the solder layers in the narrow openings plated in time period t3. Thus t4 is approximately T−t3. However, it is understood that if the plating conditions are different during the first solder plating step 314 from that in the second solder plating step 320, the fourth time period might be adjusted accordingly.
  • As stated above, the height of the pillars and the solder layer is proportional to the plating current and time used to form them. Knowing the diameter of the opening 502 allows the relatively precise control of the height of the pillars and solder layer during formation with an accuracy of approximately 10% or better.
  • Next, in step 322 the photoresist layers 504, 704 are removed by ashing using an oxygen plasma or by dipping the device 102 into a chemical stripping bath. Then the conductive layer 216, 218 exposed by the removed photoresist is removed in step 324 by plasma etching or by wet etching. The result is shown in FIG. 9 where two sets of joints are shown, a two wide joints 106 W and two narrow joints 106 N, each having substantially the same height above the device 102.
  • In step 326, the wafer (not shown) is singulated into multiple devices 102. Then in step 328, each flip-chip device is bonded to a substrate using a conventional flip-chip bonding technique to form the package 100 shown in FIG. 1. Briefly, the package 100 is formed by bringing the flip-chip device 102 into proximity to the substrate such that the substrate pads 114 are aligned with respective metal pillars 108 on the flip-chip device. Then the metal pillars are then bonded to their respective substrate pads by melting the solder layers 110 so that the solder wets both the pillars and the substrate pads and then the device and substrate are cooled to solidify the solder.
  • Next, in step 330, the final steps to complete the packaging of the bonded device and substrate are done, such as forming an underfill layer between the device and the substrate, adding a heat spreader lid, forming an overmold of epoxy to the device and substrate for environmental protection, testing, package marking, etc.
  • In an alternative embodiment, instead of applying the solder to the ends of the copper pillars, a layer of solder is deposited on each of the substrate pads 114 by using a patterned solder mask (not shown) on the substrate 104 with the substrate pads exposed and the solder plated onto the exposed pads, using either conventional electroplating, or electroless plating. In this example, the solder layers 110 are not formed and steps 314 through 320 are not performed.
  • While the embodiments described above entail the formation of wide pillars before narrow pillars, three or more different pillar widths might be formed on a device using the concepts described above.
  • Although the elements in the following method claims are recited in a particular sequence with corresponding labeling, unless the claim recitations otherwise imply a particular sequence for implementing some or all of those elements, those elements are not necessarily intended to be limited to being implemented in that particular sequence.
  • It is understood that various changes in the details, materials, and arrangements of the parts which have been described and illustrated in order to explain the nature of this invention might be made by those skilled in the art without departing from the scope of the invention as expressed in the following claims.

Claims (20)

1. A method comprising the steps of:
A) providing, a wafer having a plurality of flip-chip devices, each flip-chip device having a plurality of die pads thereon;
B) depositing a first layer of photoresist on the wafer;
C) patterning the first layer of photoresist to form a first plurality of openings therein, each of the first openings having a first diameter and exposing a first set of die pads;
D) plating metal into the first openings to form a first metal pillar in each of the first openings for a first time period;
E) patterning the first layer of photoresist to form a second plurality of openings therein, each of the second openings having a second diameter and exposing a second set of die pads; and
F) plating metal into the first and second openings for a second time period to add to each of the metal pillars in the first openings and form a metal pillar in each of the second openings;
wherein the first diameter is greater than the second diameter, the first set of die pads is different from the second set of die pads, and the first and second time periods and plating conditions are chosen such that, after step F) each of the pillars in the second openings has substantially the same height as a pillars in each of the first openings.
2. The method of claim 1 wherein the plated metal is copper.
3. The method of claim 1 further comprising the steps of:
G) plating, after step F), solder into the first and second openings to form a solder layer in each of the openings and on exposed ends of the metal pillars;
H) depositing a second layer of photoresist to at least cover the second openings in the first photoresist layer; and
I) plating solder into the first openings to form a second solder layer in each of the first openings and on the first solder layer therein.
4. The method of claim 3 wherein each of the metal pillars of the first and second plurality of metal pillars has a height above a die pad and each of the solder layers has a height above its respective metal pillar, and a ratio of the height of a metal pillar to the height of its respective solder layer is 1:10 to 100:1.
5. The method of claim 4 wherein the height of each of the metal pillars is 20 to 70 microns, the height of each solder layers is 10 to 60 microns, and the first and second diameters range from 20 to 80 microns.
6. The method of claim 4 wherein a sum of the height of each of the metal pillars and its respective solder layer is between 5 microns and 130 microns and the first and second diameters range from substantially 5 to 150 microns.
7. The method of claim 4 wherein the first diameter is less than 80 microns and the second diameter is greater than 80 microns, and a sum of the height of each metal pillar and its respective solder layer is 80 microns or less.
8. The method of claim 3 wherein in step H) comprises the steps of:
depositing a second layer of photoresist covering the first photoresist layer;
patterning the second photoresist layer form a plurality of openings therein, the openings having a diameter substantially equal to the first diameter and exposing the solder layers in the first openings of the first photoresist layer.
9. The method of claim 1 further comprising the step of:
depositing, before step B), a conductive layer over the plurality of die pads;
wherein in steps D) and G) the plating is by electroplating using the conductive layer as a electroplating electrode.
10. The method of claim 9 wherein the conductive layer comprises a barrier layer and a strike layer deposited over the barrier layer.
11. The method of claim 10 wherein the barrier comprises titanium and the strike layer comprises copper.
12. The method of claim 1 further comprising the step of removing, after step F), the first photoresist layer.
13. A method of claim 12 further comprising the steps of:
singulating the wafer to separate the plurality of a flip-chip devices into individual devices;
selecting one of the singulated devices;
providing a substrate having a plurality of substrate pads, each of the plurality of substrate pads positioned on the substrate to align with a respective one of the metal pillars of the first and second plurality of metal pillars on the selected flip-chip device;
bringing the selected flip-chip device in proximity to the substrate such that all the plurality of substrate pads positioned on the substrate are aligned with a respective one of the metal pillars on the selected flip-chip device; and
bonding the metal pillars to their respective substrate pads using solder to form a package.
14. The method of claim 13 wherein the flip-chip device comprises a material selected from the group consisting of silicon, gallium arsenide, indium phosphide, and a combination thereof and wherein the substrate is selected from the group consisting of glass-epoxy, polytetrafluoroethylene, ceramic, silicon, glass, and a combination thereof.
15. The method of claim 13 further comprising the steps of:
forming, after the bonding step, an underfill layer between the flip-chip device and the substrate; and
forming, after forming the underfill layer, an overmold on the flip-chip device and the substrate.
16. A method comprising the steps of:
A) providing a wafer having a plurality of flip-chip devices, each flip-chip device having a plurality of die pads thereon;
B) depositing a first layer of photoresist on the wafer;
C) patterning the first layer of photoresist to form a first plurality of openings therein, each of the first openings having a first diameter and exposing a first set of die pads;
D) plating metal into the first plurality of openings to form a first metal pillar in each of the first plurality of openings, each of the first metal pillars having substantially the first diameter and a first height above its respective die pad;
E) patterning the first layer of photoresist to form a second plurality of openings therein, each of the second openings having a second diameter and exposing a second set of die pads; and
F) plating metal into the first and second openings and onto the first metal pillars and exposed second set of die pads, respectively, to form a second metal pillar in each of the first openings and a metal pillar in each of the second openings, each of the metal pillars in the second openings having substantially the second diameter and a height above its respective die pad, and each of the second pillars in the first plurality of openings having substantially the first diameter and a height above its respective first metal pillar;
wherein the first diameter is greater than the second diameter, a sum of the first and second pillar heights in each of the first openings is substantially equal to the height of the metal pillar in each of the second openings, and the first set of die pads is different from the second set of die pads.
17. The method of claim 16 wherein each of the copper pillars of the first and second plurality of copper pillars has a height above a die pad and each of the solder layers has a height above its respective copper pillar, and the height of each of the copper pillars is 20 to 70 microns, the height of each solder layers is 10 to 60 microns, a sum of the height of each copper pillar and its respective solder layer is 80 microns or less, and the first diameter is less than 80 microns and the second diameter is greater than 80 microns.
18. The method of claim 16 wherein each of the copper pillars of the first and second plurality of copper pillars has a height above a die pad and each of the solder layers has a height above its respective copper pillar, and a sum of the height of each of the copper pillars and its respective solder layer is between 5 microns and 130 microns and the first and second diameters range from substantially 5 to 150 microns.
19. The method of claim 16 wherein the barrier comprises titanium and the strike layer comprises copper.
20. The method of claim 15 further comprising the steps of:
forming, after the bonding step, an underfill layer between the flip-chip device and the substrate; and
forming, after forming the underfill layer, an overmold on the flip-chip device and the substrate.
US14/259,432 2014-03-14 2014-04-23 Method for Fabricating Equal Height Metal Pillars of Different Diameters Abandoned US20150262949A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/259,432 US20150262949A1 (en) 2014-03-14 2014-04-23 Method for Fabricating Equal Height Metal Pillars of Different Diameters

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461952963P 2014-03-14 2014-03-14
US14/259,432 US20150262949A1 (en) 2014-03-14 2014-04-23 Method for Fabricating Equal Height Metal Pillars of Different Diameters

Publications (1)

Publication Number Publication Date
US20150262949A1 true US20150262949A1 (en) 2015-09-17

Family

ID=54069710

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/259,432 Abandoned US20150262949A1 (en) 2014-03-14 2014-04-23 Method for Fabricating Equal Height Metal Pillars of Different Diameters
US14/259,530 Expired - Fee Related US9324557B2 (en) 2014-03-14 2014-04-23 Method for fabricating equal height metal pillars of different diameters

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/259,530 Expired - Fee Related US9324557B2 (en) 2014-03-14 2014-04-23 Method for fabricating equal height metal pillars of different diameters

Country Status (1)

Country Link
US (2) US20150262949A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017160344A1 (en) * 2016-03-15 2017-09-21 Raytheon Company In-situ monitoring structures and methods of use in semiconductor processing
CN108565215A (en) * 2018-06-01 2018-09-21 上海华力集成电路制造有限公司 The manufacturing method of integrated circuit
CN110729198A (en) * 2018-07-16 2020-01-24 台湾积体电路制造股份有限公司 Semiconductor device manufacturing method and related semiconductor die
US11127704B2 (en) * 2017-11-28 2021-09-21 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device with bump structure and method of making semiconductor device
US11373989B1 (en) * 2020-08-28 2022-06-28 Xilinx, Inc. Package integration for laterally mounted IC dies with dissimilar solder interconnects
WO2024036081A1 (en) * 2022-08-11 2024-02-15 Qualcomm Incorporated Improved bump coplanarity for die-to-die and other applications

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160093583A1 (en) * 2014-09-25 2016-03-31 Micron Technology, Inc. Bond pad with micro-protrusions for direct metallic bonding
CN107230644B (en) * 2016-03-25 2020-06-12 胡迪群 Metal column with metal sponge
US9905527B1 (en) 2016-12-15 2018-02-27 Micron Technology, Inc. Uniform electrochemical plating of metal onto arrays of pillars having different lateral densities and related technology
US10510721B2 (en) * 2017-08-11 2019-12-17 Advanced Micro Devices, Inc. Molded chip combination
US11417569B2 (en) * 2017-09-18 2022-08-16 Taiwan Semiconductor Manufacturing Company, Ltd. Package structure having integrated circuit component with conductive terminals of different dimensions
US11004819B2 (en) * 2019-09-27 2021-05-11 International Business Machines Corporation Prevention of bridging between solder joints
KR20220047066A (en) * 2020-10-08 2022-04-15 삼성전자주식회사 Semiconductor pacakge device
CN112420534B (en) * 2020-11-27 2021-11-23 上海易卜半导体有限公司 Method for forming semiconductor package and semiconductor package
US11824037B2 (en) * 2020-12-31 2023-11-21 International Business Machines Corporation Assembly of a chip to a substrate
US11735529B2 (en) 2021-05-21 2023-08-22 International Business Machines Corporation Side pad anchored by next adjacent via
US11955447B2 (en) 2021-11-17 2024-04-09 Advanced Micro Devices, Inc. Semiconductor chip having stepped conductive pillars

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541135A (en) * 1995-05-30 1996-07-30 Motorola, Inc. Method of fabricating a flip chip semiconductor device having an inductor
US6144100A (en) * 1997-06-05 2000-11-07 Texas Instruments Incorporated Integrated circuit with bonding layer over active circuitry
US20020033412A1 (en) * 2000-04-27 2002-03-21 Francisca Tung Pillar connections for semiconductor chips and method of manufacture
US6627988B2 (en) * 2000-04-06 2003-09-30 Oki Electric Industry Co, Ltd. Semiconductor device and method for manufacturing the same
US6720243B2 (en) * 2002-01-07 2004-04-13 Advanced Semiconductor Engineering, Inc. Bump fabrication method
US6780738B2 (en) * 2002-04-25 2004-08-24 Tdk Corporation Pattern forming method, method of making microdevice, method of making thin-film magnetic head, method of making magnetic head slider, method of making magnetic head apparatus, and method of making magnetic recording and reproducing apparatus
US6818480B2 (en) * 2002-08-02 2004-11-16 Samsung Electronics Co., Ltd. Method of forming a pattern of a semiconductor device and photomask therefor
US20060088992A1 (en) * 2004-10-22 2006-04-27 Advanced Semiconductor Engineering, Inc. Bumping process and structure thereof
US20060087034A1 (en) * 2004-10-22 2006-04-27 Advanced Semiconductor Engineering, Inc. Bumping process and structure thereof
US20060094226A1 (en) * 2004-10-28 2006-05-04 Advanced Semiconductor Engineering, Inc. Bumping process
US20120074578A1 (en) * 2010-09-24 2012-03-29 Shinko Electric Industries Co., Ltd. Semiconductor element, semiconductor element mounted board, and method of manufacturing semiconductor element
US20140363927A1 (en) * 2013-06-07 2014-12-11 Zhuhai Advanced Chip Carriers & Electronic Substrate Solutions Technologies Co., Ltd. Novel Terminations and Couplings Between Chips and Substrates

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087458B2 (en) 2002-10-30 2006-08-08 Advanpack Solutions Pte. Ltd. Method for fabricating a flip chip package with pillar bump and no flow underfill
JP4119866B2 (en) * 2004-05-12 2008-07-16 富士通株式会社 Semiconductor device
US7952206B2 (en) 2005-09-27 2011-05-31 Agere Systems Inc. Solder bump structure for flip chip semiconductor devices and method of manufacture therefore
TW200731430A (en) 2006-02-08 2007-08-16 Jung-Tang Huang Controllable method for manufacturing uniform planarity of plating-based solder bumps on multi-layer flip chip used in the three-dimensional packaging
US20120267779A1 (en) * 2011-04-25 2012-10-25 Mediatek Inc. Semiconductor package
US8508054B2 (en) 2011-06-16 2013-08-13 Broadcom Corporation Enhanced bump pitch scaling
US8581399B2 (en) 2011-07-28 2013-11-12 Taiwan Semiconductor Manufacturing Company, Ltd. Metal bump structure

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541135A (en) * 1995-05-30 1996-07-30 Motorola, Inc. Method of fabricating a flip chip semiconductor device having an inductor
US6144100A (en) * 1997-06-05 2000-11-07 Texas Instruments Incorporated Integrated circuit with bonding layer over active circuitry
US6627988B2 (en) * 2000-04-06 2003-09-30 Oki Electric Industry Co, Ltd. Semiconductor device and method for manufacturing the same
US20020033412A1 (en) * 2000-04-27 2002-03-21 Francisca Tung Pillar connections for semiconductor chips and method of manufacture
US6592019B2 (en) * 2000-04-27 2003-07-15 Advanpack Solutions Pte. Ltd Pillar connections for semiconductor chips and method of manufacture
US6720243B2 (en) * 2002-01-07 2004-04-13 Advanced Semiconductor Engineering, Inc. Bump fabrication method
US6780738B2 (en) * 2002-04-25 2004-08-24 Tdk Corporation Pattern forming method, method of making microdevice, method of making thin-film magnetic head, method of making magnetic head slider, method of making magnetic head apparatus, and method of making magnetic recording and reproducing apparatus
US6818480B2 (en) * 2002-08-02 2004-11-16 Samsung Electronics Co., Ltd. Method of forming a pattern of a semiconductor device and photomask therefor
US20060088992A1 (en) * 2004-10-22 2006-04-27 Advanced Semiconductor Engineering, Inc. Bumping process and structure thereof
US20060087034A1 (en) * 2004-10-22 2006-04-27 Advanced Semiconductor Engineering, Inc. Bumping process and structure thereof
US20060094226A1 (en) * 2004-10-28 2006-05-04 Advanced Semiconductor Engineering, Inc. Bumping process
US20120074578A1 (en) * 2010-09-24 2012-03-29 Shinko Electric Industries Co., Ltd. Semiconductor element, semiconductor element mounted board, and method of manufacturing semiconductor element
US20140363927A1 (en) * 2013-06-07 2014-12-11 Zhuhai Advanced Chip Carriers & Electronic Substrate Solutions Technologies Co., Ltd. Novel Terminations and Couplings Between Chips and Substrates

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017160344A1 (en) * 2016-03-15 2017-09-21 Raytheon Company In-situ monitoring structures and methods of use in semiconductor processing
US10236226B2 (en) 2016-03-15 2019-03-19 Raytheon Company In-situ calibration structures and methods of use in semiconductor processing
EP3430642B1 (en) * 2016-03-15 2022-01-12 Raytheon Company In-situ monitoring method of use in semiconductor processing
US11127704B2 (en) * 2017-11-28 2021-09-21 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device with bump structure and method of making semiconductor device
CN108565215A (en) * 2018-06-01 2018-09-21 上海华力集成电路制造有限公司 The manufacturing method of integrated circuit
CN110729198A (en) * 2018-07-16 2020-01-24 台湾积体电路制造股份有限公司 Semiconductor device manufacturing method and related semiconductor die
US11469198B2 (en) 2018-07-16 2022-10-11 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device manufacturing method and associated semiconductor die
CN110729198B (en) * 2018-07-16 2023-07-18 台湾积体电路制造股份有限公司 Semiconductor device manufacturing method and related semiconductor bare chip
US11373989B1 (en) * 2020-08-28 2022-06-28 Xilinx, Inc. Package integration for laterally mounted IC dies with dissimilar solder interconnects
WO2024036081A1 (en) * 2022-08-11 2024-02-15 Qualcomm Incorporated Improved bump coplanarity for die-to-die and other applications

Also Published As

Publication number Publication date
US20150262950A1 (en) 2015-09-17
US9324557B2 (en) 2016-04-26

Similar Documents

Publication Publication Date Title
US9324557B2 (en) Method for fabricating equal height metal pillars of different diameters
TWI260079B (en) Micro-electronic package structure and method for fabricating the same
US9013037B2 (en) Semiconductor package with improved pillar bump process and structure
JP4660643B2 (en) Semiconductor package substrate for forming pre-solder structure, semiconductor package substrate on which pre-solder structure is formed, and manufacturing method thereof
US9066457B2 (en) Semiconductor device, method of manufacturing the same, and method of manufacturing wiring board
US10109605B2 (en) Polymer layers embedded with metal pads for heat dissipation
US9437565B2 (en) Semiconductor substrate and semiconductor package structure having the same
TW201705615A (en) Structures and methods for low temperature bonding
TW201143002A (en) Semiconductor structure and method of forming semiconductor device
US5646068A (en) Solder bump transfer for microelectronics packaging and assembly
TWI255158B (en) Method for fabricating electrical connecting member of circuit board
TWI244129B (en) Bonding column process
US9425174B1 (en) Integrated circuit package with solderless interconnection structure
JP2009004454A (en) Electrode structure, forming method thereof, electronic component, and mounting substrate
KR20200035197A (en) Semiconductor device and method for manufacturing the same
US7851911B2 (en) Semiconductor chip used in flip chip process
US7174631B2 (en) Method of fabricating electrical connection terminal of embedded chip
TWI520278B (en) Manufacturing method of wafer-embedding package structure
US9373576B2 (en) Flip chip pad geometry for an IC package substrate
TW201225209A (en) Semiconductor device and method of confining conductive bump material with solder mask patch
US20120126397A1 (en) Semiconductor substrate and method thereof
TW545098B (en) Fine pad pitch organic circuit board with plating solder and method for fabricating the same
TWI230427B (en) Semiconductor device with electrical connection structure and method for fabricating the same
KR20170021712A (en) Semiconductor device and manufacturing method thereof
TWI251919B (en) Semiconductor package substrate for forming presolder material thereon and method for fabricating the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: LSI CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OSENBACH, JOHN W.;CATE, STEVEN D.;SIGNING DATES FROM 20140421 TO 20140505;REEL/FRAME:032838/0995

AS Assignment

Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LSI CORPORATION;REEL/FRAME:035390/0388

Effective date: 20140814

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE