US20150199055A1 - Single layer touch sensor - Google Patents

Single layer touch sensor Download PDF

Info

Publication number
US20150199055A1
US20150199055A1 US14/666,764 US201514666764A US2015199055A1 US 20150199055 A1 US20150199055 A1 US 20150199055A1 US 201514666764 A US201514666764 A US 201514666764A US 2015199055 A1 US2015199055 A1 US 2015199055A1
Authority
US
United States
Prior art keywords
substrate
electrodes
conductors
traces
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/666,764
Inventor
Patrick Prendergast
Massoud Badaye
Peter Vavaroutsos
John Carey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Parade Technologies Ltd USA
Original Assignee
Cypress Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cypress Semiconductor Corp filed Critical Cypress Semiconductor Corp
Priority to US14/666,764 priority Critical patent/US20150199055A1/en
Assigned to CYPRESS SEMICONDUCTOR CORPORATION reassignment CYPRESS SEMICONDUCTOR CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PRENDERGAST, PATRICK, CAREY, JOHN, VAVAROUTSOS, PETER, BADAYE, MASSOUD
Publication of US20150199055A1 publication Critical patent/US20150199055A1/en
Assigned to CYPRESS SEMICONDUCTOR CORPORATION reassignment CYPRESS SEMICONDUCTOR CORPORATION PARTIAL RELEASE OF SECURITY INTEREST IN PATENTS AND TRADEMARKS Assignors: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT FOR THE SECURED PARTIES
Assigned to PARADE TECHNOLOGIES, LTD. reassignment PARADE TECHNOLOGIES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CYPRESS SEMICONDUCTOR CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • H03K17/9622Capacitive touch switches using a plurality of detectors, e.g. keyboard
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K2017/9602Touch switches characterised by the type or shape of the sensing electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49105Switch making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base

Definitions

  • This disclosure relates to the field of touch sensors and, in particular, to capacitive sensors.
  • touch pads or capacitive sensor devices
  • these sensors have the ability to detect multiple objects (e.g., fingers) simultaneously.
  • Touch sensors are an expensive part of the user interface system.
  • One reason for the high cost of touch sensors is that conventional sensors use either multiple layers of materials formed on multiple substrates or a single substrate with a series of “jumpers” to form electrical connection between the individual electrode segments and insulate them from the other electrodes that intersect them.
  • FIG. 1 is a simplified plan view of a touch sensor device according to one embodiment
  • FIG. 2 is a simplified cross-sectional view of the touch sensor device of FIG. 1 taken along line 2 - 2 ;
  • FIG. 3 is a plan view of an embodiment of a touch sensor array
  • FIG. 4 is a plan view illustrating a portion of the touch sensor array of FIG. 3 in greater detail
  • FIG. 5 is a plan view illustrating another embodiment of a touch sensor array
  • FIG. 6 is a plan view of a bezel portion of the touch sensor array of FIG. 1 ;
  • FIGS. 7 and 8 are cross-sectional views of the bezel portion of FIG. 6 taken along lines 7 - 7 and 8 - 8 , respectively;
  • FIGS. 9 , 10 , and 11 are plan views illustrating an embodiment of a bezel portion of a touch sensor array during the formation thereof;
  • FIG. 12 is plan view illustrating a further embodiment of a touch sensor array
  • FIG. 13 is a plan view illustrating another embodiment of a touch sensor array
  • FIG. 14 is a schematic plan view illustrating the bezel portion of a touch sensor array and a flexible printed circuit (FPC);
  • FIG. 15 is a plan view illustrating another embodiment of a touch sensor array
  • FIG. 16 is a plan view illustrating a portion of the touch sensor array, taken on Detail A, of FIG. 15 ;
  • FIG. 17 is a cross-sectional view of the touch sensor array of FIG. 16 taken along line 17 - 17 ;
  • FIG. 18 is a plan view illustrating another embodiment of a touch sensor array
  • FIG. 19 is a plan view illustrating a portion of the touch sensor array, taken on Detail A, in FIG. 18 ;
  • FIG. 20 is a plan view illustrating a portion of the touch sensor array, taken on Detail B, in FIG. 18 ;
  • FIG. 21 is a plan view illustrating another embodiment of a touch sensor array
  • FIG. 22 is a plan view of a portion of another embodiment of a touch sensor array
  • FIGS. 23-25 are side views of the touch sensor array of FIG. 22 ;
  • FIGS. 26-30 are plan views illustrating sensor electrodes according to various alternative embodiments.
  • FIG. 31 is a block diagram illustrating an embodiment of an electronic system.
  • Another possibility for a single layer multiple-touch sensor uses an array of pads filling the sensor area, and sensing each of the pads (or electrodes) individually in a self capacitance sensing mode.
  • an array of pads filling the sensor area, and sensing each of the pads (or electrodes) individually in a self capacitance sensing mode.
  • such requires independent traces for each of the sensing pads and a very large number of measuring channels and pins on the controller chip to get an acceptable accuracy for even a small size sensor.
  • Embodiments of the present invention allow for addressing the sensing pads without requiring an impractically large number of measuring ports or pins on the controller. Additionally, a method of achieving multi-touch sensors with no bezel is disclosed herein, and the performance of such sensors is demonstrated.
  • Embodiments described herein provide a touch sensor device and a method for forming a touch sensor device that has a single layer active area. Additionally, the touch sensor device is provided with a wiring scheme that minimizes the number of wires, as well as the layers, (or traces) required to simultaneously detect multiple contact points (i.e., “touches”). As a result, overall manufacturing costs may be reduced.
  • FIGS. 1 and 2 are simplified views of a touch sensor device, or capacitance sensing device, 1 according to one embodiment.
  • the touch sensor device 1 is a “touchscreen” device that has a visible area (or portion) 2 and a non-visible area 3 .
  • the touch sensor device 1 includes a liquid crystal display (LCD) panel 4 arranged below a touch sensor array (or assembly) 5 .
  • the visible area 2 may correspond to the size and shape of a transparent region of the touch sensor array 5
  • the non-visible area may correspond to a non-transparent region of the touch sensor array 5 which may be covered by a casing (not shown).
  • the touch sensor array 5 includes an overlay (or protective layer) 6 attached to a side thereof opposite the LCD panel by an adhesive 7 .
  • the touch sensor device 1 also includes a flexible printed circuit (FPC) tail 8 extending therefrom, which as described below may be used to route electrical signals to and from the touch sensor array 10 .
  • FPC flexible printed circuit
  • FIG. 3 is a plan view illustrating a capacitive (or touch) sensor array 10 according to one embodiment.
  • the touch sensor array 10 includes a substrate 12 having a central (or active) portion 14 and outer (or bezel) portions 16 on opposing sides of the central portion 14 , near the edges of the substrate 12 .
  • the central portion 14 of the substrate 12 may correspond to the visible area of the touch sensor device 2 ( FIG. 1 ), and the outer portions 16 of the substrate 12 may correspond to the non-visible area 6 of the touch sensor device 2 .
  • the substrate 12 is made of an electrically insulating material with high optical transmissivity, such as glass, polyethylene terephthalate (PET), or a combination thereof.
  • An array of electrodes is formed on the central portion 14 of the substrate 12 , which includes a first set (or plurality) of electrodes (also, “first electrodes”) 18 and a second set of electrodes (also, “second electrodes”) 20 .
  • the first electrodes 18 are substantially “comb” shaped having comb members facing down as shown in FIG. 3 .
  • five first electrodes 18 are included, which are arranged horizontally (as shown in FIG. 3 ) and substantially extend the entire width of the central portion 14 of the substrate 14 . It should be understood thought that other embodiments may use different numbers of electrodes.
  • the second electrodes 20 are substantially “E” shaped and arranged such that the members thereof extend upwards (as shown in FIG. 3 ).
  • thirty second electrodes 20 are included which are arranged in rows (i.e., horizontal rows) 22 , each of which is associated with one of the first electrodes 18 , and columns (i.e., vertical rows) 24 .
  • each of the rows 22 includes six of the second electrodes 20
  • each of the columns 24 includes five of the second electrodes 20 .
  • the second electrodes 20 are mated with the respective first electrode 18 such that the members extending from the first electrodes 18 and the second electrodes 20 are inter-digitated.
  • specific patterns shown in FIG. 3 are exemplary, and other electrode shapes which may not be inter-digitated are possible.
  • the size and shape of the second electrodes 20 vary across the central portion 14 of the substrate 12 .
  • the thickness of the horizontal (as shown in FIG. 1 ) portions (or base portions) 25 of the second electrodes 20 is greater nearer the center of the substrate 12 .
  • first electrodes 18 may be used as “transmitter” (TX) electrodes, and second electrodes 20 may be used as “receiver” (RX) electrodes.
  • TX transmitter
  • RX receiver
  • the touch sensor array 10 also includes a (first) plurality of conductors, or primary traces, 26 formed on the substrate 12 .
  • the primary traces 26 extend substantially horizontally (as shown in FIG. 4 ) across the substrate 12 .
  • each of the primary traces 26 is connected to, and thus in electrical contact with, a respect one of the first electrodes 18 or one of the second electrodes 20 at a first end portion thereof, and has a second end portion extending into one of the outer portions 16 of the substrate.
  • the primary traces 26 may be considered to include a first set associated with (i.e., in contact with) the first electrodes 18 and a second set associated with the second electrodes 20 .
  • the first electrodes 18 , the second electrodes 20 , and the primary traces 26 may be made of indium tin oxide (ITO) and may be formed in a substantially planar manner. That is, although not specifically shown in FIGS. 3 and 4 , the first electrodes 18 , the second electrodes 20 , and the primary traces 26 may have substantially the same thickness (e.g., 300 Angstroms (A)) and lay in substantially the same plane.
  • ITO indium tin oxide
  • an insulating material (or body or layer) 28 is coupled or attached to the outer portions 16 of the substrate 12 .
  • the insulating material 28 covers the end portions of the primary traces 26 that extend onto the outer portions 16 of the substrate 12 .
  • the insulating material 28 may be made of, for example, an epoxy or resin material and have a thickness of, for example, between 5 and 25 micrometers ( ⁇ m) that is deposited on the substrate 12 . It should be noted that the insulating material (or insulating bodies) 28 do not extend over the central portion 14 of the substrate.
  • a (second) plurality of conductors, or secondary traces, 30 are formed on the insulating material 28 over both outer portions 16 of the substrate 12 .
  • the secondary traces 30 are made of silver.
  • each of the secondary traces 30 is electrically connected to either one (and only one) primary trace 26 associated with one of the first electrodes 18 or all of primary traces 26 associated with the second electrodes 20 in one (and only one) of the columns 24 of second electrodes.
  • the “first” secondary trace 30 a (i.e., counting from left to right in FIG. 4 ) is electrically connected to the top-most first electrode 18 a (though the appropriate primary trace 26 ), and the “sixth” secondary trace 30 b is electrically connected to all of the second electrodes 20 in the left-most column 24 of second electrodes 20 .
  • the remaining electrical connections between the secondary traces 30 and the primary traces 26 , and thus the remaining electrodes 18 and 20 are shown in FIGS. 3 and 4 , and are similar in both outer portions 16 of the substrate 12 .
  • the insulating material 28 electrically separates each secondary trace 30 from the other primary traces 26 (i.e., those to which that particular secondary trace 30 is not electrically connected).
  • the insulating material 28 insulates the “sixth” secondary trace 30 b from the primary traces 26 connected to the second electrodes 20 that are not in the left-most column 24 of second electrodes 20 . That is, the primary traces 26 connected to the second electrodes 20 that are not in the left-most column 24 extend below the “sixth” secondary trace 30 b without making an electrical connection to the “sixth” secondary trace 30 b .
  • the construction of the insulating material 28 along with that of the secondary traces 26 , will be described in greater detail below.
  • the secondary traces 30 provide unique electrical connections for each “pair” of the first electrodes 18 and the second electrodes 20 (i.e., one of the first electrodes 18 and one of the second electrodes 20 associated and inter-digitated with that particular first electrode 18 ).
  • one such pair of electrodes may include the top-most first electrode 18 and the left-most second electrode 20 in the top row 22 .
  • this pair of electrodes is provided with electrical connections specifically through the “first” secondary trace 30 a and the “sixth” secondary trace 30 b .
  • the pair of electrodes that includes the top-most first electrode 18 and the next second electrode 20 to the right in the top row 22 is provided with electrical connections through the left-most secondary trace 30 and the “fifth” secondary trace 30 as shown in FIG. 4 .
  • the touch sensor array 12 may include an additional set of traces not shown in the figures.
  • This additional set of traces may be used to provide a ground to electrically isolate the first electrodes 18 and the immediately neighboring primary traces 26 connected to the second electrodes 20 .
  • each of the ground traces may be electrically connected to one of the secondary traces 30 in a manner similar to the respective primary traces 26 .
  • the ground traces may be all connected to the same secondary trace that is used to connect them to the system ground.
  • FIGS. 3 and 4 thirty pairs of electrodes are included, and unique electrical connections are provided to each of the pairs using twelve secondary traces 30 , while the central (or active) portion 14 of the substrate 12 includes only a single layer of structures formed thereon.
  • the insulating material 28 may be a flexible substrate, such as an FPC, attached to the substrate 12 .
  • the electrical connections between the primary traces 26 and the secondary traces 30 may be similar to those described above and shown in FIGS. 3 and 4 , as well as those described below with respect FIGS. 5-11 .
  • FIGS. 3 , 4 , and 5 - 11 may be understood to illustrate the electrical connections betweens the primary traces 26 and the secondary traces 30 in embodiments utilizing the insulating material formed on the substrate 12 as well as those utilizing an FPC.
  • the secondary traces 30 are coupled to (i.e., are in operable communication with) an electronic system (an example of which is described below).
  • the capacitive sensor array 10 is operated by providing a signal to one of the first electrodes 18 (i.e., TX electrodes) while grounding the other first electrodes 18 .
  • Signals are generated in the second electrodes 20 associated with the driven first electrode 18 by electrical coupling of the driven first electrode 18 to the second electrodes 20 associated with the driven first electrode 18 .
  • the signal induced in the second electrodes 20 may change due to the presence of an object (e.g., a finger) on, or near, that portion of the sensor array 10 .
  • the signal change in the second electrodes 20 is indicative of change in the capacitance between the second electrode 20 and the respective first electrode (i.e., “mutual capacitance”). This process is continuously repeated for each of the first electrodes 18 and each of the associated rows of second electrodes 20 .
  • the primary traces 26 for the second electrodes 20 are routed to the long(er) sides of the substrate 12 . As shown, the primary traces 26 connected to the second electrodes 20 that occupy the left side of the central portion 14 (i.e., are closer to the outer portion 16 on the left) extend into the outer portion 16 on the left. Likewise, the primary traces 26 connected to the second electrodes 20 that occupy the right side of the central portion 14 (i.e., are closer to the outer portion 16 on the right) extend into the outer portion 16 on the right.
  • the primary traces 26 for the first electrodes 18 are arranged such that some (e.g., for the first electrodes 18 in the upper region of the central portion 14 ) extend into the outer portion 16 on the left, while the remaining primary traces 26 (e.g., for the first electrodes in the lower region of the central portion 14 ) extend into the outer portion 16 on the right.
  • This method of routing may minimize the size of the side bezels, and also minimizes the width of the gap between the sensor rows 22 .
  • the “side” bezel topology shown in FIG. 3 may be implemented using ITO formed on glass, it may be most suitable for ITO on PET, as in this topology the length of the primary traces 26 is relatively short compared to the “bottom” bezel topology described below. Furthermore, due to geometrical configuration of the electrodes, there are far less traces in the gap between consecutive rows. Thus, the traces in a side bezel configuration may be wider, and the material used for the traces may have higher sheet resistance. Typically, ITO/PET has a higher sheet resistance than that of ITO/glass.
  • FIG. 5 illustrates the touch sensor array 10 according to another embodiment of the present invention. Similar to the embodiment shown in FIG. 3 , the touch sensor array 10 shown in FIG. 5 includes a substrate 12 with an active portion 14 and a bezel portion 16 . However, only one bezel portion 16 is included along the bottom (as shown in FIG. 5 ) edge of the substrate 12 . The touch sensor array 10 also includes an array of first electrodes 18 and second electrodes 20 . The substrate 12 as shown in FIG. 5 has been rotated compared to that of FIG. 3 such that the columns 24 correspond to the first electrodes 18 , and the rows 22 correspond to the second electrodes 20 .
  • the primary traces 26 extend from the first electrodes 18 and second electrodes 20 towards the bottom of the substrate 12 , across the entire active portion 14 .
  • the primary traces 26 are electrically connected to the secondary traces 30 in a manner similar to that described above (i.e., such that each electrode pair is provided electrical connections through a unique pair of the secondary traces 30 ).
  • the embodiment shown in FIG. 5 may be more suitable for smaller devices (e.g., with diagonal lengths across the active area 14 of, for example, 10 centimeters or less).
  • FIGS. 6 , 7 , and 8 illustrate, in greater detail, the insulating material 28 , the primary traces 26 , and the secondary traces 30 on an outer portion 16 of substrate 12 according to one embodiment of the present invention.
  • the example shown includes nine primary traces 26 , with seven of the primary traces 26 being electrically connected to a first secondary trace 30 ( FIG. 7 ) and two of the primary traces 26 (extending farther into the insulating material 28 ) being electrically connected to a second secondary trace 30 ( FIG. 8 ).
  • the electrical connections are made through via-holes 32 that are filled with a conductive material 34 .
  • two of the primary traces 26 are insulated from the first of the secondary traces 30 by the insulating material 28 due, at least in part, to the lack of a via-hole 32 and conductive material 34 formed at those locations.
  • FIGS. 9 , 10 , and 11 illustrate an outer (or bezel) portion 16 of the substrate 12 and a process for forming the connections between the primary traces 26 and the secondary traces 30 according to one embodiment.
  • a layer of transparent conductive material such as ITO or a silver nano-particle film, may be deposited on (or over) the substrate 12 .
  • the deposition method used may depend on the material chosen. For example, if the material is ITO, the material may be deposited by vacuum sputtering. If the material is silver nano-particles, the material may be deposited by variety of techniques such as dipping method, spin coating, etc. In a preferred embodiment of the invention, the sheet resistance of the conductive material is less than or equal 50 ohm/square.
  • the conductive layer may then be patterned. Patterning may be achieved by various methods. For example, a resist layer may be deposited on the conductive layer, and the conductive material may be chemically removed in selected areas. Alternatively, patterning the conductive layer may be achieved by removing the material from selected areas using methods such as laser ablation and plasma etching. As another alternative, by using a mask, the conductive layer may be deposited only on the desired areas of the substrate 12 . In other words, the conductive material may be deposited in the final desired pattern (i.e., in the appropriate shape to form the electrodes 18 and 20 and the primary traces 26 ). In such a case, no removal of material is necessary.
  • the pattern may be generated by the lift off process.
  • a mask material is laid down on the bare substrate 12 on the deletion areas where the conductive material is not desired.
  • the conductive material is then deposited on the whole substrate indiscriminately.
  • the mask material may then be chemically removed from the substrate 12 to leave the conductive material in selected areas.
  • the finished pattern has a minimum line width of 30 ⁇ m, and minimum spacing of 10 ⁇ m.
  • the insulating material (or dielectric layer) 28 is deposited (e.g., using screen printing) on the outer portion 16 of the substrate 12 such that the end portions of the primary traces 26 are covered.
  • the insulating material 28 includes a series of via-holes 32 , with each of the via-holes 32 being positioned over a respective one of the primary traces 26 .
  • the dielectric material 28 may be any insulating heat curing or UV curing ink available, such as LPI resist and acrylic resin.
  • the via-holes 32 are then filled with a conductive material to form a conductive via 34 in each of the via-holes 32 , which is in contact with the respective primary trace 26 .
  • the conductive material used to form the conductive via 34 is silver ink or copper ink.
  • the conductive vias 34 are formed using the same material, and during the same process step, as that is used to form the secondary traces 30 .
  • the insulating material 28 is thin enough to allow the material of the secondary traces 30 to flow into the via-holes 32 and make reliable contact to the primary traces 26 .
  • the insulating material 28 may be thick enough such that it does not have any pores or pinholes.
  • the insulating material 28 is between 5-10 ⁇ m thick.
  • the insulating material 28 is black and acts as a decorative band around the touch sensor array 10 .
  • the via-holes are initially filled with black carbon ink.
  • the secondary traces 30 are formed on the insulating material 28 , with each secondary trace 30 extending over, and contacting, one (or more) of the conductive vias 34 .
  • each of the secondary traces 30 is electrically connected to one (or more) of the primary traces 26 through a conductive via 34 .
  • the conductive vias 34 may represent contact points, or nodes, for the electrical connection of the secondary traces 30 to the respective primary traces 26 . It should be noted that these contact points are external to (i.e., not positioned over) the central portion 14 of the substrate 12 .
  • a black ink may be used as the insulating material 28 to hide the traces and interconnects in the outer portion 16 .
  • the touch sensor device is a sensor on lens (SOL) design, it may be desirable to hide the metal traces.
  • a sensor on lens is a touch sensor device that includes a lens and the electrodes deposited on its bottom surface.
  • the black ink may serve to hide the secondary traces and provide insulation between the primary traces 26 and secondary traces 30 .
  • the via-holes 32 in the black ink may still show the secondary traces 30 .
  • the via-holes 32 may be filled with conductive carbon ink (which is also black). The use of a conductive ink also facilitates the formation of a good electrical connection between the primary traces 26 and the secondary traces 30 .
  • the insulating material 28 may be used for the insulating material 28 .
  • a white insulating layer may be used.
  • the via-holes 32 are filled with white ITO ink, which is a mixture of ITO and a white pigment, prior to the formation of the secondary traces 30 .
  • the white ITO is also a conductive ink and is thus suitable to form the conductive vias 34 .
  • the insulating material (or bodies) 28 are only applied over the primary traces 26 wherever necessary to avoid undesired contacts. Such an embodiment facilitates reducing the area of the bezel used for interconnections, reduces the amount of insulating material used in the process, and eliminates any potential difficulties in making good contact between the primary traces 26 and the secondary traces 30 , as via-holes and conductive vias are not needed.
  • FIG. 12 illustrates such an embodiment, including a row of second electrodes 20 , primary traces 26 , and outer portion 16 of a substrate 12 according to another embodiment.
  • the primary traces 26 “fan out.” That is, as the primary traces 26 extend into the outer portion 16 of the substrate 12 , the distance between adjacent primary traces 26 increases.
  • the size and shapes e.g., a “polygonal” shape
  • the insulating material 28 allows the insulating material 28 to appropriately insulate and connect the primary traces 26 and the secondary traces 30 without via-holes and/or conductive vias being formed therein. More specifically, the insulating material 28 allows the secondary traces 30 to pass over, and remain insulated from, the appropriate primary traces 26 .
  • a first insulating body 28 is used to selectively insulate the primary traces 26 connected to the second electrodes 20 from the secondary traces 30
  • a second insulating body 28 is used to selectively insulate the primary traces 26 connected to the first electrode 18 from the secondary traces 30 .
  • the first insulating body 28 is shaped to have multiple tiers or portions such that the width of the insulating material decreases as the insulating material extends from the central portion 14 of the substrate 12 . Further, it should be noted that the two outer most secondary traces 30 do not extend over the first insulating body 28 . Thus, the size and shape of the first insulating body 28 allows for each of the primary traces 26 shown to be electrically connected to only one of the secondary traces 30 while minimizing the amount of insulating material used. Likewise, the second insulating body 28 insulates the primary trace 26 connected to the first electrode 18 from all but the outer most secondary electrode, also while minimizing the amount of insulating material used.
  • the trace width and spacing of the traces in the bezel area are minimized.
  • a metal trace line width of 10-50 ⁇ m and a spacing of 10-50 ⁇ m is used in the bezel area.
  • the end portions of the primary traces 26 are “bent” into an L-shaped pattern to increase the contact area between the primary traces 26 and the secondary traces 30 . More specifically, the end portions of the primary traces 26 are bent in a direction substantially parallel to the direction in which the secondary traces 30 extend.
  • width of the base portion 25 of the second electrodes 20 varies to fill the void spaces created otherwise.
  • the second electrode 20 nearest to the bezel i.e., the first second electrode
  • the next primary trace 26 is positioned at least the width of the first primary trace 26 (e.g., 10-50 ⁇ m) plus a minimum spacing from the base portion of the first second electrode 20 and may also have a minimum width of 30-50 ⁇ m.
  • the base portion of the next second electrode 20 may have a width which is wider than the first second electrode 20 base width by an amount equal to, for example, the width of the primary traces 26 combined with the distance between adjacent primacy traces 26 .
  • the base of each subsequent second electrode 20 may increase by a fixed amount which is equal to the trace width combined with the trace spacing.
  • the secondary traces 30 may be formed on the outer portion 16 of the substrate 12 before the insulating body 28 and the primary traces 26 are formed.
  • the secondary traces 30 may be formed on the outer portion 16 in a flat, planar manner (i.e., not over the insulating body 28 ).
  • the insulating body 28 may then be formed over the secondary traces 30 .
  • the primary traces 26 (along with the electrodes 18 and 20 ) may then be formed such that they extend over the insulating body 28 and connect with the secondary traces 30 in a manner similar to that described above.
  • the lateral spatial relationships between the primary traces 26 , the secondary traces 30 , and the insulating body 28 may be similar to that shown in FIG. 12 .
  • FIG. 13 illustrates the touch sensor array 10 according to another embodiment of the present invention, which may be particularly well suited for large screen applications (e.g., having a diagonal length greater than 25 cm).
  • the embodiment shown in FIG. 13 is a combination of the of the side bezel topology and the bottom bezel topology. That is, although the bezel (or outer) portions 16 are positioned on the sides, both of the bezel portions 16 includes primary traces 26 (and secondary traces 30 ) connected to the first electrodes 18 and the second electrodes 20 .
  • the embodiment shown in FIG. 5 the embodiment shown in FIG.
  • each row 22 of electrodes includes only one first electrode 18 that extends across the entire center portion 14 , which is connected to each bezel portion 16 by a separate primary trace 26 (i.e., the first electrodes 18 are connected to both bezels portions).
  • the multi-layer routing of the traces may be accomplished by using a flexible printed circuit (FPC) (and/or a FPC tail), which includes a flexible insulating substrate (i.e., made of an insulating material) with a series of traces (i.e., secondary traces) formed thereon.
  • FPC flexible printed circuit
  • the FPC tail may be coupled to the substrate (e.g., substrate 12 ) at the edge (or edges) of the active portion 14 and may be wrapped around the substrate 12 , effectively eliminating the bezel portion 16 of the array.
  • FIG. 14 schematically illustrates an embodiment utilizing an FPC (and/or FPC tail) 36 .
  • the substrate 12 includes primary traces 26 that extend onto the outer portion 16 of the substrate 12 .
  • a substrate bond pad 38 e.g., made of ITO or silver is formed at the end portion of each of the primary traces 26 .
  • the FPC 36 includes one or more flexible insulating layers (e.g., polyamide, polyimide, or PET) interlaced with one or more conductive layers (e.g., copper), which may be formed (or etched) into a series of traces (i.e., the secondary traces 30 ) that have FPC bond pads 40 at the end portions thereof.
  • flexible insulating layers e.g., polyamide, polyimide, or PET
  • conductive layers e.g., copper
  • Each substrate bond pad 38 is electrically connected to a unique FPC bond pad 40 .
  • the desired interconnections between the primary traces 26 and the secondary traces 30 are made within the FPC 36 .
  • FIG. 14 it is shown that the second primary trace 26 from the left is connected to the eighth primary trace 26 from the left through the secondary traces 30 on the FPC 36 .
  • the other secondary traces 30 that are connected to a chip 42 on the FPC 36 and encounter the trace 30 connected to the second pad 40 from the left will have to “jump over” (or remain insulated from) that trace to avoid unwanted electrical connection.
  • These jumps are schematically shown in FIG. 14 by reference numeral 44 .
  • these interconnections are realized by using two conductive layers on the FPC tail and via-holes that interconnect the two layers.
  • FIGS. 15-17 illustrate an embodiment of the touch sensor array 10 that may use the bottom bezel topology shown in FIG. 5 .
  • the substrate 12 has been rotated 90 degrees such that the bezel portion 16 is position on the right side of the substrate 12 .
  • an FPC tail 36 is used to both route the signals from the primary traces 26 (e.g., via bond pads 38 and 40 ) shown in FIG. 14 as well as connecting to an external system.
  • the primary traces 26 e.g., via bond pads 38 and 40
  • the electrical connections between the primary traces 26 and the secondary traces 30 are made via the substrate bond pads 40 at the end portion of the primary traces 26 , a bonding material 48 , the FPC bond pads 40 formed on the FPC 36 , and a conductive material (or via) 34 formed through the FPC 36 (which interconnects the FPC bond pads 40 and the secondary traces 30 ).
  • the FPC 36 may be manufactured and configured before being attached to the substrate 12 (i.e., the FPC bond pads 40 , the conductive vias 34 , and the secondary traces 30 may be selectively formed on the FPC 36 before the FPC 36 is attached to the substrate 12 ).
  • the bonding material 48 is an anisotropic conductive film (ACF), which includes microscopic conductive spheres distributed in a matrix of a soft insulating material. When pressure is applied, the spheres come to contact with each other and form a conduction path for the electric signals.
  • ACF anisotropic conductive film
  • the ACF is deposited between the sensor bond pads 38 and the FPC bond pads 40 , the pressure is only applied in the regions trapped vertically between the pads 38 and 40 . Therefore, conduction paths are formed only in the pads regions (i.e., between each sensor bond pad 38 and the associated FPC bond pad 40 , even if the ACF is deposited between adjacent sensor bond pads 38 on the substrate 12 and/or between adjacent FPC bond pads 40 on the FPC.
  • FIGS. 18-20 illustrate an embodiment of the touch sensor array 10 that may be similar to that shown in FIG. 13 . That is, the touch sensor array 10 in FIGS. 15 and 16 includes two bezel portions 16 . The touch sensor array 10 is arranged such that the bezel portions 16 occupy the top portion and the bottom portion of the device. As shown in FIG. 19 , the top bezel portion 16 utilizes the insulating material 28 formed on the substrate, such as that shown in FIGS. 6-11 . However, as shown in FIG. 20 , the bottom bezel portion 16 utilizes an FPC tail 36 for routing, as well as for connecting to an external system. Additionally, as shown in both FIGS.
  • a series of routing traces 46 (which may be similar to the secondary traces 30 formed on the insulating material 28 ) are formed along an edge of the central portion 14 of the substrate 12 .
  • the routing traces 46 are electrically connected to the secondary traces 30 on the insulating material 28 at the top bezel portion 16 and electrically connected to the traces within the FPC tail 36 .
  • an FPC may also be used in the top bezel portion 16 for routing the signals from the primary traces 26 to the routing traces 46 (and not for connecting to an external system).
  • the embodiment shown is depicted as having all of the second electrodes facing or oriented in the same direction, in other embodiments, particularly those used in large screen applications, the electrodes may be arranged such that some (e.g., those on one half of the substrate 12 ) face or are oriented in one direction, while the remaining are oriented in the opposite direction.
  • an FPC with a tail may also be used in both the top and bottom bezel portions 16 for both routing the signals from the primary traces 26 and connecting to an external system (i.e., the top bezel portion and the bottom bezel portion utilize separate FPCs/FPC tails).
  • An example of such an embodiment is shown in FIG. 21 .
  • FIGS. 22-25 illustrate a further embodiment of the present invention.
  • the insulating material 28 is formed on a second substrate 50 that is separate from the (first electrode) substrate 12 .
  • the second substrate 50 is connected to the first substrate 12 by a FPC (or a Flat Flex Connector FFC) 36 .
  • FPC Flat Flex Connector
  • the secondary traces 30 shown in FIG. 22 may be electrically connected to the primary traces 26 on the first substrate 12 in a manner similar to that described above.
  • other components may be mounted on (or attached to) the second substrate 12 , such as integrated circuits, as well as other active and passive components.
  • the second substrate 50 may be mounted in various orientations and/or positions relative to the first substrate 12 . Examples of such orientations and/or positions are illustrated in FIGS. 23-25 .
  • FIGS. 26-30 illustrate alternative shapes and arrangements of the first electrodes 18 and the second electrodes 20 , according to various embodiments of the present invention.
  • the embodiment shown in FIG. 26 includes a first electrode 18 and second electrodes 20 that include intertwined “spiral” structures, as opposed to the “comb” and “E” shaped structures previously discussed.
  • FIGS. 27-30 illustrate alternative shapes and arrangements of the first electrodes 18 and the second electrodes 20 , according to various embodiments of the present invention.
  • the embodiment shown in FIG. 26 includes a first electrode 18 and second electrodes 20 that include intertwined “spiral” structures, as opposed to the “comb” and “E” shaped structures previously discussed.
  • FIGS. 27-30 illustrate alternative shapes and arrangements of the first electrodes 18 and the second electrodes 20 , according to various embodiments of the present invention.
  • the embodiment shown in FIG. 26 includes a first electrode 18 and second electrodes 20 that include intertwined “spiral” structures, as opposed to the “comb” and “E”
  • the electrodes may be different materials, such as copper, aluminum, silver, or any suitable conductive material that may be appropriately patterned.
  • an FPC may be used to form the electrodes.
  • the various conductive layers in the FPC may be appropriately configured to form the array of electrodes as described above, as well as to form the primary traces.
  • the electrodes, the traces, and the insulating material (or body) may all be formed by a single, appropriately configured FPC.
  • the substrate may be made of other materials, such as any suitable plastic, including vinyl and polyamide, which may not be transparent, depending on the particular device.
  • the senor may be formed by laying out the sensor electrodes using alternative conductive materials such as metal mesh.
  • the electrodes are formed by disposing metal mesh electrodes on PET substrate.
  • the metal mesh electrodes may be disposed on glass substrate.
  • the electrodes may be formed with silver nano-wires on PET or silver nano-wire on glass substrate.
  • the senor may be formed by bonding a glass (or other transparent insulating) lens onto another glass with the sensor pattern disposed on. In yet another embodiment, the sensor may be formed by bonding glass (or other transparent insulating material) onto a sheet of PET containing the sensor pattern.
  • embodiments described herein provide a capacitive sensor device with a single layer structure in the active portion of the device, while a multi-layer structure is used in the bezel (or other non-sensing) portions for routing the traces.
  • the multi-layer routing allows the repeated use of the traces so that the device uses the absolute minimum number of traces, and the minimum number of pins on the electronic system which drives the device.
  • the gap between the rows 22 is determined by the maximum number of primary traces 26 extending into the bezel portion(s) 16 .
  • the gap size it is preferable to minimize the gap size by minimizing the trace widths and the space between the traces.
  • the minimum trace width may be determined by the resistance of the traces and the limits of the process used to form the traces.
  • the width of traces made of ITO may be minimized by lowering the sheet resistance of the ITO.
  • a ground trace may be formed, which would increase the minimum gap size.
  • the substrate is glass, rather than PET, lower sheet resistance of ITO and better trace width and spacing may be achieved, which leads to reducing the gap size between the neighboring electrodes.
  • the pitch size i.e., the distance between the centers of the two neighboring sensor cells or electrodes
  • the pad size i.e. the width of one of the second electrodes 20 .
  • FIG. 31 illustrates a block diagram of one embodiment of an electronic system having a processing device for detecting a presence of a conductive object according to an embodiment of the present invention.
  • the electronic system 100 includes a processing device 110 , a touch-sensor pad 120 , a touch-sensor slider 130 , touch-sensor buttons 140 , a host processor 150 , an embedded controller 160 , and non-capacitance sensor elements 170 .
  • the processing device 110 may include analog and/or digital general purpose input/output (“GPIO”) ports 107 .
  • the GPIO ports 107 may be programmable and may be coupled to a Programmable Interconnect and Logic (“PIL”), which acts as an interconnect between the GPIO ports 107 and a digital block array of the processing device 110 .
  • PIL Programmable Interconnect and Logic
  • the processing device 110 may also include memory, such as random access memory (“RAM”) 105 and program flash 104 .
  • RAM 105 may be static RAM (“SRAM”)
  • program flash 104 may be a non-volatile storage, which may be used to store firmware (e.g., control algorithms executable by processing core 102 to implement operations described herein).
  • the processing device 110 may also include a memory controller unit (“MCU”) 103 coupled to memory and the processing core 102 .
  • MCU memory controller unit
  • the processing device 110 may also include one or more analog blocks array coupled to the system bus.
  • the analog blocks array also may be configured to implement a variety of analog circuits (e.g., ADCs, DACs, analog filters, etc.).
  • the analog block array may also be coupled to the GPIO 107 .
  • the capacitance sensing circuit 101 may be integrated into the processing device 110 .
  • the capacitance sensing circuit 101 may include analog I/O for coupling to an external component, such as the touch-sensor pad 120 , the touch-sensor slider 130 , the touch-sensor buttons 140 , and/or other devices.
  • the capacitance sensing circuit 101 and the processing device 110 are described in more detail below.
  • the embodiments described herein are not limited to touch-sensor pads for notebook implementations, but can be used in other capacitive sensing implementations, for example, the sensing device may be a touch screen, a touch-sensor slider 130 , or touch-sensor buttons 140 (e.g., capacitance sensing buttons). In one embodiment, these sensing devices may include one or more capacitive sensors.
  • the operations described herein are not limited to tablet computers, smartphones, touchscreen phone handsets, mobile internet devices (MIDs), GPS navigation devices, electronic books, notebook pointer operations, but can include other operations, such as lighting control (dimmer), volume control, graphic equalizer control, speed control, or other control operations requiring gradual or discrete adjustments.
  • capacitive sensing implementations may be used in conjunction with non-capacitive sensing elements, including but not limited to pick buttons, sliders (ex. display brightness and contrast), scroll-wheels, multi-media control (ex. volume, track advance, etc) handwriting recognition and numeric keypad operation.
  • non-capacitive sensing elements including but not limited to pick buttons, sliders (ex. display brightness and contrast), scroll-wheels, multi-media control (ex. volume, track advance, etc) handwriting recognition and numeric keypad operation.
  • the electronic system 100 includes a touch-sensor pad 120 coupled to the processing device 110 via bus 121 .
  • the touch-sensor pad 120 may include a multi-dimension sensor array.
  • the multi-dimension sensor array includes multiple sensor elements, organized as rows and columns, such as the sensor arrays described above and shown in, for example, FIGS. 3 , 5 , and 13 .
  • the electronic system 100 includes a touch-sensor slider 130 coupled to the processing device 110 via bus 131 .
  • the touch-sensor slider 130 may include a single-dimension sensor array.
  • the single-dimension sensor array includes multiple sensor elements, organized as rows, or alternatively, as columns.
  • the electronic system 100 includes touch-sensor buttons 140 coupled to the processing device 110 via bus 141 .
  • the touch-sensor buttons 140 may include a single-dimension or multi-dimension sensor array.
  • the single- or multi-dimension sensor array may include multiple sensor elements.
  • the sensor elements may be coupled together to detect a presence of a conductive object over the entire surface of the sensing device.
  • the touch-sensor buttons 140 may have a single sensor element to detect the presence of the conductive object.
  • the touch-sensor buttons 140 may include a capacitive sensor element.
  • the capacitive sensor elements may be used as non-contact sensor elements. These sensor elements, when protected by an insulating layer, offer resistance to severe environments.
  • the electronic system 100 may include any combination of one or more of the touch-sensor pad 120 , the touch-sensor slider 130 , and/or the touch-sensor button 140 .
  • the electronic system 100 may also include non-capacitance sensor elements 170 coupled to the processing device 110 via bus 171 .
  • the non-capacitance sensor elements 170 may include buttons, light emitting diodes (“LEDs”), and other user interface devices, such as a mouse, a keyboard, or other functional keys that do not require capacitance sensing.
  • buses 171 , 141 , 131 , and 121 may be a single bus. Alternatively, these buses may be configured into any combination of one or more separate buses.
  • the processing device 110 may include internal oscillator/clocks 106 and a communication block (“COM”) 108 .
  • the oscillator/clocks 106 provides clock signals to one or more of the components of the processing device 110 .
  • the communication block 108 may be used to communicate with an external component, such as a host processor 150 , via host interface (“I/F”) line 151 , using signaling protocols such as, but not limited to I2C, SPI or USB.
  • the processing block 110 may also be coupled to embedded controller 160 to communicate with the external components, such as host 150 .
  • the processing device 110 is configured to communicate with the embedded controller 160 or the host 150 to send and/or receive data.
  • the processing device 110 may reside on a common carrier substrate such as, for example, an integrated circuit (“IC”) die substrate, a multi-chip module substrate, or the like. Alternatively, the components of the processing device 110 may be one or more separate integrated circuits and/or discrete components. In one exemplary embodiment, the processing device 110 may be a Programmable System on a Chip (“PSoCTM”) processing device, manufactured by Cypress Semiconductor Corporation, San Jose, Calif.
  • PSoCTM Programmable System on a Chip
  • the processing device 110 may be one or more other processing devices known by those of ordinary skill in the art, such as a microcontroller, a microprocessor or central processing unit, a controller, a special-purpose processor, a digital signal processor (“DSP”), an application specific integrated circuit (“ASIC”), a field programmable gate array (“FPGA”), or the like.
  • a microcontroller a microprocessor or central processing unit
  • a controller a special-purpose processor
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • processing device 110 may also be done in the host.
  • the capacitance sensing circuit 101 may be integrated into the IC of the processing device 110 , or alternatively, in a separate IC. Alternatively, descriptions of the capacitance sensing circuit 101 may be generated and compiled for incorporation into other integrated circuits. For example, behavioral level code describing the capacitance sensing circuit 101 , or portions thereof, may be generated using a hardware descriptive language, such as VHDL or Verilog, and stored to a machine-accessible medium (e.g., CD-ROM, hard disk, floppy disk, etc.). Furthermore, the behavioral level code can be compiled into register transfer level (“RTL”) code, a netlist, or even a circuit layout and stored to a machine-accessible medium. The behavioral level code, the RTL code, the netlist, and the circuit layout all represent various levels of abstraction to describe the capacitance sensing circuit 101 .
  • a hardware descriptive language such as VHDL or Verilog
  • the components of the electronic system 100 may include all the components described above. Alternatively, the electronic system 100 may include only some of the components described above.
  • the electronic system 100 may be used in a notebook computer.
  • the electronic system 100 may be used in other applications, such as a mobile handset, a personal data assistant (“PDA”), a keyboard, a television, a remote control, a monitor, a handheld multi-media device, a handheld video player, a handheld gaming device, or a control panel.
  • PDA personal data assistant
  • the conductive object in this case is a finger
  • this technique may be applied to any conductive object, for example, a conductive door switch, position sensor, or conductive pen in a stylus tracking system.
  • a capacitance sensing device includes a substrate having a central portion and an outer portion.
  • a plurality of substantially co-planar electrodes are on the central portion substrate.
  • a first plurality of conductors are on the substrate.
  • Each of the first plurality of conductors has a first end portion electrically connected to one of the plurality of electrodes and a second end portion on the outer portion of the substrate.
  • An insulating material is coupled to the second end portions of the first plurality of conductors.
  • a second plurality of conductors is coupled to the insulating material.
  • the second plurality of conductors and the insulating material are configured such that each of the second plurality of conductors is electrically connected to the second end portion of at least some of the first plurality of conductors and is insulated from the second end portion of the others of the first plurality of conductors.
  • a capacitance sensing device in another embodiment, includes a substrate having a central portion and an outer portion.
  • a first set of electrodes is formed on the central portion substrate.
  • a second set of electrodes is formed on the central portion of the substrate.
  • the second set of electrodes is arranged in a series of rows and is substantially co-planar with the first set of electrodes.
  • a first plurality of conductors are formed on the substrate.
  • Each of the first plurality of conductors has a first end portion electrically connected to one of the first set of electrodes and a second end portion on the outer portion of the substrate.
  • a second plurality of conductors are formed on the substrate.
  • Each of the second plurality of conductors has a first end portion electrically connected to one of the second set of electrodes and a second end portion on the outer portion of the substrate.
  • An insulating body is coupled to the second end portion of each of the first plurality of conductors and the second end portion of each of the second plurality of conductors.
  • a third plurality of conductors is coupled to the insulating body such that each is electrically connected to one of the second end portion of one of the first plurality of conductors and the second end portion of the second plurality of conductors associated with only one row of the second set of electrodes and is electrically insulated from the second end portion of the others of the first set of conductors and the second end portion of the second plurality of conductors associated with the other rows of the second set of electrodes.
  • a capacitance sensing device in a further embodiment, includes a substrate having a central portion and an outer portion.
  • a first set of electrodes is formed on the central portion substrate.
  • a second set of electrodes is formed on the central portion of the substrate.
  • the second set of electrodes is arranged in a series of rows and substantially co-planar with the first set of electrodes.
  • a first plurality of conductors are on the substrate. Each of the first plurality of conductors has a first end portion electrically connected to one electrode of the first set of electrodes or the second set of electrodes and a second end portion on the outer portion of the substrate.
  • a second plurality of conductors is coupled to the substrate.
  • Each of the second plurality of conductors is electrically connected to at least one of the first plurality of conductors at a node that is external to the central portion of the substrate such that each of the second plurality of conductors is electrically connected to one electrode of the first set of electrodes or a plurality of electrodes in one of the rows of the second set of electrodes.
  • a method for constructing a capacitance sensing device is provided.
  • a plurality of electrodes are formed on a central portion of a substrate.
  • the substrate has a central portion and an outer portion.
  • a first plurality of conductors are formed on the substrate. Each of the first plurality of conductors is connected to and extends from at least one of the plurality of electrodes.
  • An insulating material is formed on the outer portion of the substrate and at least partially over some of the first plurality of conductors.
  • a second plurality of conductors are formed on the insulating material, wherein the second plurality of conductors and the insulating material are configured such that each of the second plurality of conductors is electrically connected to at least some of the first plurality of conductors and is insulated from the others of the first plurality of conductors.
  • a method for constructing a capacitance sensing device is provided.
  • a plurality of substantially co-planar electrodes are formed on the central portion of the substrate.
  • a first plurality of conductors are formed on the substrate.
  • Each of the first plurality of conductors has a first end electrically connected to one of the plurality of electrodes and a second end portion on the outer portion of the substrate.
  • An insulating body is attached to the outer portion of the substrate adjacent to the second end portions of the first plurality of conductors.
  • Each of a second plurality of conductors on the insulating body is electrically connected to the second end portion of at least some of the first plurality of conductors.
  • Each of the second plurality of conductors is insulated from the second end portion of the others of the first plurality of conductors by the insulating body.
  • a method for constructing a capacitance sensing device is provided.
  • a substrate having a central portion and an outer portion is provided.
  • a plurality of substantially co-planar electrodes is formed over the central portion substrate.
  • a first plurality of traces are formed over the substrate.
  • Each of the first plurality of traces have a first end portion electrically connected to one of the plurality of electrodes and a second end portion over the outer portion of the substrate.
  • An insulating body is formed over the outer potion of the substrate.
  • the insulating body has a first width at a first portion thereof and a second width at a second portion thereof. The first width is greater than the second width.
  • a second plurality of traces are formed over the outer portion of the substrate.
  • the first plurality of traces, the second plurality of traces, and the insulating material are arranged such that each of the second plurality of traces is electrically connected to at least some of the first plurality of traces and is insulated from the others of the first plurality of traces.
  • a capacitance sensing device in a further embodiment, includes a substrate having a central portion, a first outer portion, and a second outer portion. The first outer portion and the second outer portion are on opposing sides of the central portion.
  • a plurality of substantially co-planar electrodes are on the central portion substrate.
  • a first plurality of conductors are on the substrate. Each of the first plurality of conductors having a first end portion electrically connected to one of the plurality of electrodes and a second end portion on the first outer portion or the second outer portion of the substrate.
  • a first insulating body is coupled to the first outer portion of the substrate.
  • a second insulating body is coupled to the second outer portion of the substrate.
  • a second plurality of conductors are included.
  • Each of the second plurality of conductors is coupled to the first insulating body or the second insulating body.
  • the second plurality of conductors, the first insulating body, and the second insulating body are configured such that each of the second plurality of conductors is electrically connected to the second end portion of at least some of the first plurality of conductors on the respective outer portion of the substrate and is insulated from the others of the first plurality of conductors by the respective insulating body.
  • a capacitance sensing device in a further embodiment, includes a first substrate having a central portion and an outer portion. A plurality of substantially co-planar electrodes are on the central portion of the first substrate. A first plurality of conductors are on the substrate. Each of the first plurality of conductors has a first end portion electrically connected to one of the plurality of electrodes and a second end portion on the outer portion of the first substrate. A second substrate is also included. A second plurality of conductors are connected to the second substrate.
  • At least one insulating body is coupled to the first substrate and the second substrate, wherein the second plurality of conductors and the at least one insulating body are configured such that each of the second plurality of conductors is electrically connected to at least some of the first plurality of conductors and is insulated from the others of the first plurality of conductors.
  • a method for constructing a capacitance sensing device is provided.
  • a substrate having a central portion, a first outer portion, and a second outer portion is provided. The first outer portion and the second outer portion are on opposing sides of the central portion.
  • a plurality of substantially co-planar electrodes are formed on the central portion substrate.
  • a first plurality of conductors are formed on the substrate. Each of the first plurality of conductors has a first end portion electrically connected to one of the plurality of electrodes and a second end portion on the one of first outer portion and the second outer portion of the substrate that is closer to the respective one of the plurality of electrodes.
  • a first insulating body is attached to the first outer portion of the substrate.
  • a second insulating body is attached to the second outer portion of the substrate.
  • Each of a second plurality of conductors on the first insulating body and the second insulating body are electrically connected to the second end portion of at least some of the first plurality of conductors on the respective outer portion of the substrate.
  • Each of the second plurality of conductors is insulated from the others of the first plurality of conductors by the respective insulating body.

Abstract

Embodiments for constructing capacitance sensing devices include, but are not limited to, forming a plurality of electrodes on a central portion of a substrate, the substrate comprising a central portion and an outer portion, forming a first plurality of conductors on the substrate, each of the first plurality of conductors being connected to and extending from at least one of the plurality of electrodes, and forming an insulating material on the outer portion of the substrate and at least partially over some of the first plurality of conductors. The constructing also includes forming a second plurality of conductors on the insulating material, wherein the second plurality of conductors and the insulating material are configured such that each of the second plurality of conductors is electrically connected to at least some of the first plurality of conductors and is insulated from the others of the first plurality of conductors.

Description

    RELATED APPLICATION
  • This application is a continuation U.S. patent application Ser. No. 13/528,739, filed Jun. 20, 2012, which is a continuation of U.S. patent application Ser. No. 13/528,644, filed on Jun. 20, 2012, now U.S. Pat. No. 8,484,838, issued Jul. 16, 2013, which is a continuation of U.S. patent application Ser. No. 13/405,071, filed Feb. 24, 2012, which claims priority to U.S. Provisional Patent Application No. 61/446,178, filed Feb. 24, 2011, and U.S. Provisional Application No. 61/559,590, filed Nov. 14, 2011, all of which are incorporated by reference herein in their entirety.
  • TECHNICAL FIELD
  • This disclosure relates to the field of touch sensors and, in particular, to capacitive sensors.
  • BACKGROUND
  • In recent years, touch pads, or capacitive sensor devices, have become increasing integrated in various industries and product lines. Often, these sensors have the ability to detect multiple objects (e.g., fingers) simultaneously.
  • Touch sensors are an expensive part of the user interface system. One reason for the high cost of touch sensors is that conventional sensors use either multiple layers of materials formed on multiple substrates or a single substrate with a series of “jumpers” to form electrical connection between the individual electrode segments and insulate them from the other electrodes that intersect them.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present disclosure is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings.
  • FIG. 1 is a simplified plan view of a touch sensor device according to one embodiment;
  • FIG. 2 is a simplified cross-sectional view of the touch sensor device of FIG. 1 taken along line 2-2;
  • FIG. 3 is a plan view of an embodiment of a touch sensor array;
  • FIG. 4 is a plan view illustrating a portion of the touch sensor array of FIG. 3 in greater detail;
  • FIG. 5 is a plan view illustrating another embodiment of a touch sensor array;
  • FIG. 6 is a plan view of a bezel portion of the touch sensor array of FIG. 1;
  • FIGS. 7 and 8 are cross-sectional views of the bezel portion of FIG. 6 taken along lines 7-7 and 8-8, respectively;
  • FIGS. 9, 10, and 11 are plan views illustrating an embodiment of a bezel portion of a touch sensor array during the formation thereof;
  • FIG. 12 is plan view illustrating a further embodiment of a touch sensor array;
  • FIG. 13 is a plan view illustrating another embodiment of a touch sensor array;
  • FIG. 14 is a schematic plan view illustrating the bezel portion of a touch sensor array and a flexible printed circuit (FPC);
  • FIG. 15 is a plan view illustrating another embodiment of a touch sensor array;
  • FIG. 16 is a plan view illustrating a portion of the touch sensor array, taken on Detail A, of FIG. 15;
  • FIG. 17 is a cross-sectional view of the touch sensor array of FIG. 16 taken along line 17-17;
  • FIG. 18 is a plan view illustrating another embodiment of a touch sensor array;
  • FIG. 19 is a plan view illustrating a portion of the touch sensor array, taken on Detail A, in FIG. 18;
  • FIG. 20 is a plan view illustrating a portion of the touch sensor array, taken on Detail B, in FIG. 18;
  • FIG. 21 is a plan view illustrating another embodiment of a touch sensor array;
  • FIG. 22 is a plan view of a portion of another embodiment of a touch sensor array;
  • FIGS. 23-25 are side views of the touch sensor array of FIG. 22;
  • FIGS. 26-30 are plan views illustrating sensor electrodes according to various alternative embodiments; and
  • FIG. 31 is a block diagram illustrating an embodiment of an electronic system.
  • DETAILED DESCRIPTION
  • Reference in the description to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The phrase “in one embodiment” located in various places in this description does not necessarily refer to the same embodiment.
  • In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the subject matter of the present application. It will be evident, however, to one skilled in the art that the disclosed embodiments, the claimed subject matter, and their equivalents may be practiced without these specific details.
  • The detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show illustrations in accordance with exemplary embodiments. These embodiments, which may also be referred to herein as “examples,” are described in enough detail to enable those skilled in the art to practice the embodiments of the claimed subject matter described herein. The embodiments may be combined, other embodiments may be utilized, or structural, logical, and electrical changes may be made without departing from the scope and spirit of the claimed subject matter. It should be understood that the embodiments described herein are not intended to limit the scope of the subject matter but rather to enable one skilled in the art to practice, make, and/or use the subject matter.
  • Attempts have been made in the past to reduce the number of layers, and thus the manufacturing costs, of touch sensors. There are several single layer sensors available that are suited only for single touch reception. These sensors typically use a series of electrodes the width of which linearly change from one end to the other end of the electrode. Using the signal variation along the electrode's length, the coordinate along the electrode's axis is determined. The coordinate in the perpendicular direction to the electrodes axis is determined by the conventional digitization method.
  • Another possibility for a single layer multiple-touch sensor uses an array of pads filling the sensor area, and sensing each of the pads (or electrodes) individually in a self capacitance sensing mode. However, such requires independent traces for each of the sensing pads and a very large number of measuring channels and pins on the controller chip to get an acceptable accuracy for even a small size sensor.
  • Embodiments of the present invention allow for addressing the sensing pads without requiring an impractically large number of measuring ports or pins on the controller. Additionally, a method of achieving multi-touch sensors with no bezel is disclosed herein, and the performance of such sensors is demonstrated.
  • Embodiments described herein provide a touch sensor device and a method for forming a touch sensor device that has a single layer active area. Additionally, the touch sensor device is provided with a wiring scheme that minimizes the number of wires, as well as the layers, (or traces) required to simultaneously detect multiple contact points (i.e., “touches”). As a result, overall manufacturing costs may be reduced.
  • FIGS. 1 and 2 are simplified views of a touch sensor device, or capacitance sensing device, 1 according to one embodiment. In one embodiment, the touch sensor device 1 is a “touchscreen” device that has a visible area (or portion) 2 and a non-visible area 3. The touch sensor device 1 includes a liquid crystal display (LCD) panel 4 arranged below a touch sensor array (or assembly) 5. As is commonly understood, the visible area 2 may correspond to the size and shape of a transparent region of the touch sensor array 5, while the non-visible area may correspond to a non-transparent region of the touch sensor array 5 which may be covered by a casing (not shown). The touch sensor array 5 includes an overlay (or protective layer) 6 attached to a side thereof opposite the LCD panel by an adhesive 7. The touch sensor device 1 also includes a flexible printed circuit (FPC) tail 8 extending therefrom, which as described below may be used to route electrical signals to and from the touch sensor array 10.
  • FIG. 3 is a plan view illustrating a capacitive (or touch) sensor array 10 according to one embodiment. The touch sensor array 10 includes a substrate 12 having a central (or active) portion 14 and outer (or bezel) portions 16 on opposing sides of the central portion 14, near the edges of the substrate 12. The central portion 14 of the substrate 12 may correspond to the visible area of the touch sensor device 2 (FIG. 1), and the outer portions 16 of the substrate 12 may correspond to the non-visible area 6 of the touch sensor device 2. In one embodiment, the substrate 12 is made of an electrically insulating material with high optical transmissivity, such as glass, polyethylene terephthalate (PET), or a combination thereof.
  • An array of electrodes is formed on the central portion 14 of the substrate 12, which includes a first set (or plurality) of electrodes (also, “first electrodes”) 18 and a second set of electrodes (also, “second electrodes”) 20. In the embodiment shown in FIG. 3, the first electrodes 18 are substantially “comb” shaped having comb members facing down as shown in FIG. 3. In the depicted embodiment, five first electrodes 18 are included, which are arranged horizontally (as shown in FIG. 3) and substantially extend the entire width of the central portion 14 of the substrate 14. It should be understood thought that other embodiments may use different numbers of electrodes.
  • Still referring to FIG. 3, the second electrodes 20 are substantially “E” shaped and arranged such that the members thereof extend upwards (as shown in FIG. 3). In the embodiment shown, thirty second electrodes 20 are included which are arranged in rows (i.e., horizontal rows) 22, each of which is associated with one of the first electrodes 18, and columns (i.e., vertical rows) 24. In the exemplary embodiment shown, each of the rows 22 includes six of the second electrodes 20, and each of the columns 24 includes five of the second electrodes 20. Within each row 22, the second electrodes 20 are mated with the respective first electrode 18 such that the members extending from the first electrodes 18 and the second electrodes 20 are inter-digitated. However, specific patterns shown in FIG. 3 are exemplary, and other electrode shapes which may not be inter-digitated are possible.
  • As shown in FIG. 2, the size and shape of the second electrodes 20 vary across the central portion 14 of the substrate 12. In particular, the thickness of the horizontal (as shown in FIG. 1) portions (or base portions) 25 of the second electrodes 20 is greater nearer the center of the substrate 12.
  • As will be described in more detail below, the first electrodes 18 may be used as “transmitter” (TX) electrodes, and second electrodes 20 may be used as “receiver” (RX) electrodes. However, it should be understood that these roles may be reversed in other embodiments.
  • Referring now to FIG. 4 in combination with FIG. 3, the touch sensor array 10 also includes a (first) plurality of conductors, or primary traces, 26 formed on the substrate 12. In the example shown, the primary traces 26 extend substantially horizontally (as shown in FIG. 4) across the substrate 12. As shown, each of the primary traces 26 is connected to, and thus in electrical contact with, a respect one of the first electrodes 18 or one of the second electrodes 20 at a first end portion thereof, and has a second end portion extending into one of the outer portions 16 of the substrate. The primary traces 26 may be considered to include a first set associated with (i.e., in contact with) the first electrodes 18 and a second set associated with the second electrodes 20.
  • The first electrodes 18, the second electrodes 20, and the primary traces 26 may be made of indium tin oxide (ITO) and may be formed in a substantially planar manner. That is, although not specifically shown in FIGS. 3 and 4, the first electrodes 18, the second electrodes 20, and the primary traces 26 may have substantially the same thickness (e.g., 300 Angstroms (A)) and lay in substantially the same plane.
  • Still referring to FIGS. 3 and 4, an insulating material (or body or layer) 28 is coupled or attached to the outer portions 16 of the substrate 12. The insulating material 28 covers the end portions of the primary traces 26 that extend onto the outer portions 16 of the substrate 12. The insulating material 28 may be made of, for example, an epoxy or resin material and have a thickness of, for example, between 5 and 25 micrometers (μm) that is deposited on the substrate 12. It should be noted that the insulating material (or insulating bodies) 28 do not extend over the central portion 14 of the substrate.
  • A (second) plurality of conductors, or secondary traces, 30 are formed on the insulating material 28 over both outer portions 16 of the substrate 12. In one embodiment, the secondary traces 30 are made of silver. Of particular interest in the depicted embodiment is that each of the secondary traces 30 is electrically connected to either one (and only one) primary trace 26 associated with one of the first electrodes 18 or all of primary traces 26 associated with the second electrodes 20 in one (and only one) of the columns 24 of second electrodes.
  • For example, referring specifically to FIG. 4, the “first” secondary trace 30 a (i.e., counting from left to right in FIG. 4) is electrically connected to the top-most first electrode 18 a (though the appropriate primary trace 26), and the “sixth” secondary trace 30 b is electrically connected to all of the second electrodes 20 in the left-most column 24 of second electrodes 20. The remaining electrical connections between the secondary traces 30 and the primary traces 26, and thus the remaining electrodes 18 and 20, are shown in FIGS. 3 and 4, and are similar in both outer portions 16 of the substrate 12.
  • The insulating material 28 electrically separates each secondary trace 30 from the other primary traces 26 (i.e., those to which that particular secondary trace 30 is not electrically connected). For example, in FIG. 4, the insulating material 28 insulates the “sixth” secondary trace 30 b from the primary traces 26 connected to the second electrodes 20 that are not in the left-most column 24 of second electrodes 20. That is, the primary traces 26 connected to the second electrodes 20 that are not in the left-most column 24 extend below the “sixth” secondary trace 30 b without making an electrical connection to the “sixth” secondary trace 30 b. The construction of the insulating material 28, along with that of the secondary traces 26, will be described in greater detail below.
  • As such, the secondary traces 30 provide unique electrical connections for each “pair” of the first electrodes 18 and the second electrodes 20 (i.e., one of the first electrodes 18 and one of the second electrodes 20 associated and inter-digitated with that particular first electrode 18). For example, referring again to FIG. 4, one such pair of electrodes may include the top-most first electrode 18 and the left-most second electrode 20 in the top row 22. Through the secondary traces 30, this pair of electrodes is provided with electrical connections specifically through the “first” secondary trace 30 a and the “sixth” secondary trace 30 b. However, the pair of electrodes that includes the top-most first electrode 18 and the next second electrode 20 to the right in the top row 22 is provided with electrical connections through the left-most secondary trace 30 and the “fifth” secondary trace 30 as shown in FIG. 4.
  • It should also be understood that the touch sensor array 12 may include an additional set of traces not shown in the figures. This additional set of traces may be used to provide a ground to electrically isolate the first electrodes 18 and the immediately neighboring primary traces 26 connected to the second electrodes 20. As such, each of the ground traces may be electrically connected to one of the secondary traces 30 in a manner similar to the respective primary traces 26. The ground traces may be all connected to the same secondary trace that is used to connect them to the system ground.
  • In the particular example shown in FIGS. 3 and 4, thirty pairs of electrodes are included, and unique electrical connections are provided to each of the pairs using twelve secondary traces 30, while the central (or active) portion 14 of the substrate 12 includes only a single layer of structures formed thereon.
  • It should be noted, in other embodiments, the insulating material 28 may be a flexible substrate, such as an FPC, attached to the substrate 12. However, in an embodiment utilizing an FPC, the electrical connections between the primary traces 26 and the secondary traces 30 may be similar to those described above and shown in FIGS. 3 and 4, as well as those described below with respect FIGS. 5-11. In other words, when considered schematically, FIGS. 3, 4, and 5-11 may be understood to illustrate the electrical connections betweens the primary traces 26 and the secondary traces 30 in embodiments utilizing the insulating material formed on the substrate 12 as well as those utilizing an FPC.
  • In operation, the secondary traces 30 are coupled to (i.e., are in operable communication with) an electronic system (an example of which is described below). In general, the capacitive sensor array 10 is operated by providing a signal to one of the first electrodes 18 (i.e., TX electrodes) while grounding the other first electrodes 18. Signals are generated in the second electrodes 20 associated with the driven first electrode 18 by electrical coupling of the driven first electrode 18 to the second electrodes 20 associated with the driven first electrode 18. The signal induced in the second electrodes 20 may change due to the presence of an object (e.g., a finger) on, or near, that portion of the sensor array 10. The signal change in the second electrodes 20 is indicative of change in the capacitance between the second electrode 20 and the respective first electrode (i.e., “mutual capacitance”). This process is continuously repeated for each of the first electrodes 18 and each of the associated rows of second electrodes 20.
  • In the embodiment shown in FIG. 3, the primary traces 26 for the second electrodes 20 are routed to the long(er) sides of the substrate 12. As shown, the primary traces 26 connected to the second electrodes 20 that occupy the left side of the central portion 14 (i.e., are closer to the outer portion 16 on the left) extend into the outer portion 16 on the left. Likewise, the primary traces 26 connected to the second electrodes 20 that occupy the right side of the central portion 14 (i.e., are closer to the outer portion 16 on the right) extend into the outer portion 16 on the right. The primary traces 26 for the first electrodes 18 are arranged such that some (e.g., for the first electrodes 18 in the upper region of the central portion 14) extend into the outer portion 16 on the left, while the remaining primary traces 26 (e.g., for the first electrodes in the lower region of the central portion 14) extend into the outer portion 16 on the right. This method of routing may minimize the size of the side bezels, and also minimizes the width of the gap between the sensor rows 22.
  • Although the “side” bezel topology shown in FIG. 3 may be implemented using ITO formed on glass, it may be most suitable for ITO on PET, as in this topology the length of the primary traces 26 is relatively short compared to the “bottom” bezel topology described below. Furthermore, due to geometrical configuration of the electrodes, there are far less traces in the gap between consecutive rows. Thus, the traces in a side bezel configuration may be wider, and the material used for the traces may have higher sheet resistance. Typically, ITO/PET has a higher sheet resistance than that of ITO/glass.
  • Furthermore, to keep manufacturing costs lower than ITO/Glass technology, usually photolithography is not used for patterning ITO/PET. Therefore, the minimum line width and space in ITO/PET is much higher than those in ITO/Glass. Nevertheless, in side bezel sensors, higher sheet resistance and greater trace widths may be tolerated. Therefore, ITO/PET with greater ITO sheet resistance and wider traces may be preferred for side bezel topology.
  • FIG. 5 illustrates the touch sensor array 10 according to another embodiment of the present invention. Similar to the embodiment shown in FIG. 3, the touch sensor array 10 shown in FIG. 5 includes a substrate 12 with an active portion 14 and a bezel portion 16. However, only one bezel portion 16 is included along the bottom (as shown in FIG. 5) edge of the substrate 12. The touch sensor array 10 also includes an array of first electrodes 18 and second electrodes 20. The substrate 12 as shown in FIG. 5 has been rotated compared to that of FIG. 3 such that the columns 24 correspond to the first electrodes 18, and the rows 22 correspond to the second electrodes 20.
  • Because there is only one bezel portion 16, all of the primary traces 26 extend from the first electrodes 18 and second electrodes 20 towards the bottom of the substrate 12, across the entire active portion 14. Within the bezel portion 16, the primary traces 26 are electrically connected to the secondary traces 30 in a manner similar to that described above (i.e., such that each electrode pair is provided electrical connections through a unique pair of the secondary traces 30).
  • One skilled in the art may appreciate that due to the electrical resistance of the traces, the embodiment shown in FIG. 5 may be more suitable for smaller devices (e.g., with diagonal lengths across the active area 14 of, for example, 10 centimeters or less).
  • FIGS. 6, 7, and 8 illustrate, in greater detail, the insulating material 28, the primary traces 26, and the secondary traces 30 on an outer portion 16 of substrate 12 according to one embodiment of the present invention. The example shown includes nine primary traces 26, with seven of the primary traces 26 being electrically connected to a first secondary trace 30 (FIG. 7) and two of the primary traces 26 (extending farther into the insulating material 28) being electrically connected to a second secondary trace 30 (FIG. 8). The electrical connections are made through via-holes 32 that are filled with a conductive material 34. As shown specifically in FIG. 7, two of the primary traces 26 are insulated from the first of the secondary traces 30 by the insulating material 28 due, at least in part, to the lack of a via-hole 32 and conductive material 34 formed at those locations.
  • FIGS. 9, 10, and 11 illustrate an outer (or bezel) portion 16 of the substrate 12 and a process for forming the connections between the primary traces 26 and the secondary traces 30 according to one embodiment. Although not specifically shown, in order to form the electrodes (e.g., electrodes 18 and 20 in FIG. 3), a layer of transparent conductive material, such as ITO or a silver nano-particle film, may be deposited on (or over) the substrate 12. The deposition method used may depend on the material chosen. For example, if the material is ITO, the material may be deposited by vacuum sputtering. If the material is silver nano-particles, the material may be deposited by variety of techniques such as dipping method, spin coating, etc. In a preferred embodiment of the invention, the sheet resistance of the conductive material is less than or equal 50 ohm/square.
  • The conductive layer may then be patterned. Patterning may be achieved by various methods. For example, a resist layer may be deposited on the conductive layer, and the conductive material may be chemically removed in selected areas. Alternatively, patterning the conductive layer may be achieved by removing the material from selected areas using methods such as laser ablation and plasma etching. As another alternative, by using a mask, the conductive layer may be deposited only on the desired areas of the substrate 12. In other words, the conductive material may be deposited in the final desired pattern (i.e., in the appropriate shape to form the electrodes 18 and 20 and the primary traces 26). In such a case, no removal of material is necessary.
  • As another alternative, the pattern may be generated by the lift off process. In such a process, a mask material is laid down on the bare substrate 12 on the deletion areas where the conductive material is not desired. The conductive material is then deposited on the whole substrate indiscriminately. The mask material may then be chemically removed from the substrate 12 to leave the conductive material in selected areas. In a preferred embodiment of the invention, the finished pattern has a minimum line width of 30 μm, and minimum spacing of 10 μm.
  • Referring now to FIG. 9, the patterning is performed such that the primary traces 26 extend into the outer portion 16 of the substrate 12. The insulating material (or dielectric layer) 28 is deposited (e.g., using screen printing) on the outer portion 16 of the substrate 12 such that the end portions of the primary traces 26 are covered. The insulating material 28 includes a series of via-holes 32, with each of the via-holes 32 being positioned over a respective one of the primary traces 26. The dielectric material 28 may be any insulating heat curing or UV curing ink available, such as LPI resist and acrylic resin.
  • Referring now to FIG. 10, the via-holes 32 are then filled with a conductive material to form a conductive via 34 in each of the via-holes 32, which is in contact with the respective primary trace 26. In one embodiment, the conductive material used to form the conductive via 34 is silver ink or copper ink.
  • In one embodiment, the conductive vias 34 are formed using the same material, and during the same process step, as that is used to form the secondary traces 30. In such an embodiment, the insulating material 28 is thin enough to allow the material of the secondary traces 30 to flow into the via-holes 32 and make reliable contact to the primary traces 26. However, the insulating material 28 may be thick enough such that it does not have any pores or pinholes. In a preferred embodiment, the insulating material 28 is between 5-10 μm thick. In another preferred embodiment, the insulating material 28 is black and acts as a decorative band around the touch sensor array 10. In yet another embodiment of the invention, the via-holes are initially filled with black carbon ink.
  • Then, as shown in FIG. 11, the secondary traces 30 are formed on the insulating material 28, with each secondary trace 30 extending over, and contacting, one (or more) of the conductive vias 34. Thus, each of the secondary traces 30 is electrically connected to one (or more) of the primary traces 26 through a conductive via 34. As such, the conductive vias 34 may represent contact points, or nodes, for the electrical connection of the secondary traces 30 to the respective primary traces 26. It should be noted that these contact points are external to (i.e., not positioned over) the central portion 14 of the substrate 12.
  • A black ink may be used as the insulating material 28 to hide the traces and interconnects in the outer portion 16. If the touch sensor device is a sensor on lens (SOL) design, it may be desirable to hide the metal traces. A sensor on lens is a touch sensor device that includes a lens and the electrodes deposited on its bottom surface. In such an embodiment, the black ink may serve to hide the secondary traces and provide insulation between the primary traces 26 and secondary traces 30. The via-holes 32 in the black ink may still show the secondary traces 30. To prevent this, the via-holes 32 may be filled with conductive carbon ink (which is also black). The use of a conductive ink also facilitates the formation of a good electrical connection between the primary traces 26 and the secondary traces 30.
  • Other colors may be used for the insulating material 28. For example, a white insulating layer may be used. In such an embodiment, the via-holes 32 are filled with white ITO ink, which is a mixture of ITO and a white pigment, prior to the formation of the secondary traces 30. The white ITO is also a conductive ink and is thus suitable to form the conductive vias 34.
  • In one embodiment, the insulating material (or bodies) 28 are only applied over the primary traces 26 wherever necessary to avoid undesired contacts. Such an embodiment facilitates reducing the area of the bezel used for interconnections, reduces the amount of insulating material used in the process, and eliminates any potential difficulties in making good contact between the primary traces 26 and the secondary traces 30, as via-holes and conductive vias are not needed. FIG. 12 illustrates such an embodiment, including a row of second electrodes 20, primary traces 26, and outer portion 16 of a substrate 12 according to another embodiment.
  • As shown, as the primary traces 26 extend into the outer portion 16, the primary traces 26 “fan out.” That is, as the primary traces 26 extend into the outer portion 16 of the substrate 12, the distance between adjacent primary traces 26 increases. Also of particular interest in the embodiment shown in FIG. 12 is the size and shapes (e.g., a “polygonal” shape) of the insulating material (or bodies) 28, which allows the insulating material 28 to appropriately insulate and connect the primary traces 26 and the secondary traces 30 without via-holes and/or conductive vias being formed therein. More specifically, the insulating material 28 allows the secondary traces 30 to pass over, and remain insulated from, the appropriate primary traces 26. In the example shown, a first insulating body 28 is used to selectively insulate the primary traces 26 connected to the second electrodes 20 from the secondary traces 30, while a second insulating body 28 is used to selectively insulate the primary traces 26 connected to the first electrode 18 from the secondary traces 30.
  • As shown, the first insulating body 28 is shaped to have multiple tiers or portions such that the width of the insulating material decreases as the insulating material extends from the central portion 14 of the substrate 12. Further, it should be noted that the two outer most secondary traces 30 do not extend over the first insulating body 28. Thus, the size and shape of the first insulating body 28 allows for each of the primary traces 26 shown to be electrically connected to only one of the secondary traces 30 while minimizing the amount of insulating material used. Likewise, the second insulating body 28 insulates the primary trace 26 connected to the first electrode 18 from all but the outer most secondary electrode, also while minimizing the amount of insulating material used.
  • To reduce the routing area in the bezel (or outer portion 16), the trace width and spacing of the traces in the bezel area are minimized. In a preferred embodiment, a metal trace line width of 10-50 μm and a spacing of 10-50 μm is used in the bezel area.
  • When the traces are very narrow (e.g., 10-50 μm) it may be difficult to establish a low contact resistant between the primary traces 26 and the secondary traces 30 unless the contact area is large enough. Still referring to FIG. 12, in one embodiment, the end portions of the primary traces 26 are “bent” into an L-shaped pattern to increase the contact area between the primary traces 26 and the secondary traces 30. More specifically, the end portions of the primary traces 26 are bent in a direction substantially parallel to the direction in which the secondary traces 30 extend.
  • As mentioned with reference to FIG. 3, in some embodiments, width of the base portion 25 of the second electrodes 20 varies to fill the void spaces created otherwise. Referring again to FIG. 12, the second electrode 20 nearest to the bezel (i.e., the first second electrode) uses a short primary trace 26 and uses the minimum base portion width. The next primary trace 26 is positioned at least the width of the first primary trace 26 (e.g., 10-50 μm) plus a minimum spacing from the base portion of the first second electrode 20 and may also have a minimum width of 30-50 μm. Therefore, the base portion of the next second electrode 20 may have a width which is wider than the first second electrode 20 base width by an amount equal to, for example, the width of the primary traces 26 combined with the distance between adjacent primacy traces 26. Using such a layout method, the base of each subsequent second electrode 20 may increase by a fixed amount which is equal to the trace width combined with the trace spacing.
  • It should be noted that the order in which the components are formed on the substrate 12 may be changed. For example, referring once again to FIG. 12, the secondary traces 30 may be formed on the outer portion 16 of the substrate 12 before the insulating body 28 and the primary traces 26 are formed. For example, the secondary traces 30 may be formed on the outer portion 16 in a flat, planar manner (i.e., not over the insulating body 28). The insulating body 28 may then be formed over the secondary traces 30. Then, the primary traces 26 (along with the electrodes 18 and 20) may then be formed such that they extend over the insulating body 28 and connect with the secondary traces 30 in a manner similar to that described above. In such an embodiment, the lateral spatial relationships between the primary traces 26, the secondary traces 30, and the insulating body 28 may be similar to that shown in FIG. 12.
  • FIG. 13 illustrates the touch sensor array 10 according to another embodiment of the present invention, which may be particularly well suited for large screen applications (e.g., having a diagonal length greater than 25 cm). As may be apparent when comparing the embodiments shown in FIGS. 3 and 5 with that shown in FIG. 13, the embodiment shown in FIG. 13 is a combination of the of the side bezel topology and the bottom bezel topology. That is, although the bezel (or outer) portions 16 are positioned on the sides, both of the bezel portions 16 includes primary traces 26 (and secondary traces 30) connected to the first electrodes 18 and the second electrodes 20. When compared to the bottom bezel topology shown in FIG. 5, the embodiment shown in FIG. 13 may be considered to be a bottom bezel configuration rotated 90 degrees and “mirrored” about a center line 37 extending through the center portion 14. However, as shown, each row 22 of electrodes includes only one first electrode 18 that extends across the entire center portion 14, which is connected to each bezel portion 16 by a separate primary trace 26 (i.e., the first electrodes 18 are connected to both bezels portions).
  • As discussed above, in other embodiments, the multi-layer routing of the traces may be accomplished by using a flexible printed circuit (FPC) (and/or a FPC tail), which includes a flexible insulating substrate (i.e., made of an insulating material) with a series of traces (i.e., secondary traces) formed thereon. In such an embodiment, the FPC tail may be coupled to the substrate (e.g., substrate 12) at the edge (or edges) of the active portion 14 and may be wrapped around the substrate 12, effectively eliminating the bezel portion 16 of the array.
  • FIG. 14 schematically illustrates an embodiment utilizing an FPC (and/or FPC tail) 36. As shown, similar to the embodiments described above, the substrate 12 includes primary traces 26 that extend onto the outer portion 16 of the substrate 12. However, a substrate bond pad 38 (e.g., made of ITO or silver) is formed at the end portion of each of the primary traces 26. Although not specifically shown in FIG. 14, the FPC 36 includes one or more flexible insulating layers (e.g., polyamide, polyimide, or PET) interlaced with one or more conductive layers (e.g., copper), which may be formed (or etched) into a series of traces (i.e., the secondary traces 30) that have FPC bond pads 40 at the end portions thereof.
  • Each substrate bond pad 38 is electrically connected to a unique FPC bond pad 40. In a manner similar to the insulating material 28 formed on the substrate material 28 described above, the desired interconnections between the primary traces 26 and the secondary traces 30 are made within the FPC 36. For example, in FIG. 14 it is shown that the second primary trace 26 from the left is connected to the eighth primary trace 26 from the left through the secondary traces 30 on the FPC 36. The other secondary traces 30 that are connected to a chip 42 on the FPC 36 and encounter the trace 30 connected to the second pad 40 from the left will have to “jump over” (or remain insulated from) that trace to avoid unwanted electrical connection. These jumps are schematically shown in FIG. 14 by reference numeral 44. In an FPC, these interconnections are realized by using two conductive layers on the FPC tail and via-holes that interconnect the two layers.
  • FIGS. 15-17 illustrate an embodiment of the touch sensor array 10 that may use the bottom bezel topology shown in FIG. 5. However, as shown, the substrate 12 has been rotated 90 degrees such that the bezel portion 16 is position on the right side of the substrate 12. In this embodiment, an FPC tail 36 is used to both route the signals from the primary traces 26 (e.g., via bond pads 38 and 40) shown in FIG. 14 as well as connecting to an external system. As shown specifically in FIG. 17, the electrical connections between the primary traces 26 and the secondary traces 30 (formed on the FPC 36) are made via the substrate bond pads 40 at the end portion of the primary traces 26, a bonding material 48, the FPC bond pads 40 formed on the FPC 36, and a conductive material (or via) 34 formed through the FPC 36 (which interconnects the FPC bond pads 40 and the secondary traces 30). As will be appreciated by one skilled in the art, the FPC 36 may be manufactured and configured before being attached to the substrate 12 (i.e., the FPC bond pads 40, the conductive vias 34, and the secondary traces 30 may be selectively formed on the FPC 36 before the FPC 36 is attached to the substrate 12).
  • In one embodiment, the bonding material 48 is an anisotropic conductive film (ACF), which includes microscopic conductive spheres distributed in a matrix of a soft insulating material. When pressure is applied, the spheres come to contact with each other and form a conduction path for the electric signals. When the ACF is deposited between the sensor bond pads 38 and the FPC bond pads 40, the pressure is only applied in the regions trapped vertically between the pads 38 and 40. Therefore, conduction paths are formed only in the pads regions (i.e., between each sensor bond pad 38 and the associated FPC bond pad 40, even if the ACF is deposited between adjacent sensor bond pads 38 on the substrate 12 and/or between adjacent FPC bond pads 40 on the FPC.
  • FIGS. 18-20 illustrate an embodiment of the touch sensor array 10 that may be similar to that shown in FIG. 13. That is, the touch sensor array 10 in FIGS. 15 and 16 includes two bezel portions 16. The touch sensor array 10 is arranged such that the bezel portions 16 occupy the top portion and the bottom portion of the device. As shown in FIG. 19, the top bezel portion 16 utilizes the insulating material 28 formed on the substrate, such as that shown in FIGS. 6-11. However, as shown in FIG. 20, the bottom bezel portion 16 utilizes an FPC tail 36 for routing, as well as for connecting to an external system. Additionally, as shown in both FIGS. 19 and 20, a series of routing traces 46 (which may be similar to the secondary traces 30 formed on the insulating material 28) are formed along an edge of the central portion 14 of the substrate 12. The routing traces 46 are electrically connected to the secondary traces 30 on the insulating material 28 at the top bezel portion 16 and electrically connected to the traces within the FPC tail 36. It should be understood that in other embodiment, an FPC may also be used in the top bezel portion 16 for routing the signals from the primary traces 26 to the routing traces 46 (and not for connecting to an external system). Additionally, although the embodiment shown is depicted as having all of the second electrodes facing or oriented in the same direction, in other embodiments, particularly those used in large screen applications, the electrodes may be arranged such that some (e.g., those on one half of the substrate 12) face or are oriented in one direction, while the remaining are oriented in the opposite direction.
  • Furthermore, in some embodiments, an FPC with a tail may also be used in both the top and bottom bezel portions 16 for both routing the signals from the primary traces 26 and connecting to an external system (i.e., the top bezel portion and the bottom bezel portion utilize separate FPCs/FPC tails). An example of such an embodiment is shown in FIG. 21.
  • FIGS. 22-25 illustrate a further embodiment of the present invention. Of particular interest in FIGS. 22-25 is that the insulating material 28 is formed on a second substrate 50 that is separate from the (first electrode) substrate 12. As shown, the second substrate 50 is connected to the first substrate 12 by a FPC (or a Flat Flex Connector FFC) 36. As will be appreciated by one skilled in the art, particularly in light of the use of the FPC described above, the FPC 36 in FIGS. 22-25 is used to electrically connect the primary traces 26 on the first substrate 12 to the secondary traces 30 on the insulating material 28 via bond pads formed on the first substrate 12 (e.g., near the edge or outer portion thereof), traces on the FPC 36, and bond pads and additional traces on the second substrate 50. As such, the secondary traces 30 shown in FIG. 22 may be electrically connected to the primary traces 26 on the first substrate 12 in a manner similar to that described above. Additionally, although not specifically shown, it should be understood that other components may be mounted on (or attached to) the second substrate 12, such as integrated circuits, as well as other active and passive components.
  • Furthermore, because of the flexible nature of the FPC 36 (i.e., in contrast to the rigid material of the first and second substrates, such as glass and a printed circuit board, respectively), the second substrate 50 may be mounted in various orientations and/or positions relative to the first substrate 12. Examples of such orientations and/or positions are illustrated in FIGS. 23-25.
  • FIGS. 26-30 illustrate alternative shapes and arrangements of the first electrodes 18 and the second electrodes 20, according to various embodiments of the present invention. For example, the embodiment shown in FIG. 26 includes a first electrode 18 and second electrodes 20 that include intertwined “spiral” structures, as opposed to the “comb” and “E” shaped structures previously discussed. However, it should be understood that other shapes and arrangements may be used, as shown by the various embodiments illustrated in FIGS. 27-30.
  • In other embodiments, different materials may be used to form the electrodes, such as copper, aluminum, silver, or any suitable conductive material that may be appropriately patterned. Furthermore, an FPC may be used to form the electrodes. In such an embodiment, the various conductive layers in the FPC may be appropriately configured to form the array of electrodes as described above, as well as to form the primary traces. As such, it should be understood that the electrodes, the traces, and the insulating material (or body) may all be formed by a single, appropriately configured FPC. As will be appreciated by one skilled in the art, such embodiments may be particularly applicable to non-transparent devices, such as mouse pads, track pads, touch pads, etc. Additionally, in other embodiments, the substrate may be made of other materials, such as any suitable plastic, including vinyl and polyamide, which may not be transparent, depending on the particular device.
  • In other embodiments, the sensor may be formed by laying out the sensor electrodes using alternative conductive materials such as metal mesh. In this embodiment, the electrodes are formed by disposing metal mesh electrodes on PET substrate. In an alternative embodiment, the metal mesh electrodes may be disposed on glass substrate. In another embodiment, the electrodes may be formed with silver nano-wires on PET or silver nano-wire on glass substrate.
  • In another embodiment, the sensor may be formed by bonding a glass (or other transparent insulating) lens onto another glass with the sensor pattern disposed on. In yet another embodiment, the sensor may be formed by bonding glass (or other transparent insulating material) onto a sheet of PET containing the sensor pattern.
  • As such, embodiments described herein provide a capacitive sensor device with a single layer structure in the active portion of the device, while a multi-layer structure is used in the bezel (or other non-sensing) portions for routing the traces. The multi-layer routing allows the repeated use of the traces so that the device uses the absolute minimum number of traces, and the minimum number of pins on the electronic system which drives the device.
  • With respect to the embodiments described above, the gap between the rows 22 (e.g., FIG. 3) is determined by the maximum number of primary traces 26 extending into the bezel portion(s) 16.
  • As will be appreciated by one skilled in the art, it is preferable to minimize the gap size by minimizing the trace widths and the space between the traces. The minimum trace width may be determined by the resistance of the traces and the limits of the process used to form the traces. The width of traces made of ITO may be minimized by lowering the sheet resistance of the ITO. In some embodiments, in order to avoid cross coupling between the first and second electrodes of the neighboring rows (or columns), a ground trace may be formed, which would increase the minimum gap size.
  • However, when the substrate is glass, rather than PET, lower sheet resistance of ITO and better trace width and spacing may be achieved, which leads to reducing the gap size between the neighboring electrodes.
  • Further, the pitch size (i.e., the distance between the centers of the two neighboring sensor cells or electrodes) may be adjusted by varying the pad size (i.e. the width of one of the second electrodes 20). However, it may be preferable to use a pitch of 6 mm or less.
  • FIG. 31 illustrates a block diagram of one embodiment of an electronic system having a processing device for detecting a presence of a conductive object according to an embodiment of the present invention. The electronic system 100 includes a processing device 110, a touch-sensor pad 120, a touch-sensor slider 130, touch-sensor buttons 140, a host processor 150, an embedded controller 160, and non-capacitance sensor elements 170. The processing device 110 may include analog and/or digital general purpose input/output (“GPIO”) ports 107. The GPIO ports 107 may be programmable and may be coupled to a Programmable Interconnect and Logic (“PIL”), which acts as an interconnect between the GPIO ports 107 and a digital block array of the processing device 110. The processing device 110 may also include memory, such as random access memory (“RAM”) 105 and program flash 104. The RAM 105 may be static RAM (“SRAM”), and the program flash 104 may be a non-volatile storage, which may be used to store firmware (e.g., control algorithms executable by processing core 102 to implement operations described herein). The processing device 110 may also include a memory controller unit (“MCU”) 103 coupled to memory and the processing core 102.
  • The processing device 110 may also include one or more analog blocks array coupled to the system bus. The analog blocks array also may be configured to implement a variety of analog circuits (e.g., ADCs, DACs, analog filters, etc.). The analog block array may also be coupled to the GPIO 107.
  • As illustrated, the capacitance sensing circuit 101 may be integrated into the processing device 110. The capacitance sensing circuit 101 may include analog I/O for coupling to an external component, such as the touch-sensor pad 120, the touch-sensor slider 130, the touch-sensor buttons 140, and/or other devices. The capacitance sensing circuit 101 and the processing device 110 are described in more detail below.
  • The embodiments described herein are not limited to touch-sensor pads for notebook implementations, but can be used in other capacitive sensing implementations, for example, the sensing device may be a touch screen, a touch-sensor slider 130, or touch-sensor buttons 140 (e.g., capacitance sensing buttons). In one embodiment, these sensing devices may include one or more capacitive sensors. The operations described herein are not limited to tablet computers, smartphones, touchscreen phone handsets, mobile internet devices (MIDs), GPS navigation devices, electronic books, notebook pointer operations, but can include other operations, such as lighting control (dimmer), volume control, graphic equalizer control, speed control, or other control operations requiring gradual or discrete adjustments. It should also be noted that these embodiments of capacitive sensing implementations may be used in conjunction with non-capacitive sensing elements, including but not limited to pick buttons, sliders (ex. display brightness and contrast), scroll-wheels, multi-media control (ex. volume, track advance, etc) handwriting recognition and numeric keypad operation.
  • In one embodiment, the electronic system 100 includes a touch-sensor pad 120 coupled to the processing device 110 via bus 121. The touch-sensor pad 120 may include a multi-dimension sensor array. The multi-dimension sensor array includes multiple sensor elements, organized as rows and columns, such as the sensor arrays described above and shown in, for example, FIGS. 3, 5, and 13. In another embodiment, the electronic system 100 includes a touch-sensor slider 130 coupled to the processing device 110 via bus 131. The touch-sensor slider 130 may include a single-dimension sensor array. The single-dimension sensor array includes multiple sensor elements, organized as rows, or alternatively, as columns. In another embodiment, the electronic system 100 includes touch-sensor buttons 140 coupled to the processing device 110 via bus 141. The touch-sensor buttons 140 may include a single-dimension or multi-dimension sensor array. The single- or multi-dimension sensor array may include multiple sensor elements. For a touch-sensor button, the sensor elements may be coupled together to detect a presence of a conductive object over the entire surface of the sensing device. Alternatively, the touch-sensor buttons 140 may have a single sensor element to detect the presence of the conductive object. In one embodiment, the touch-sensor buttons 140 may include a capacitive sensor element. The capacitive sensor elements may be used as non-contact sensor elements. These sensor elements, when protected by an insulating layer, offer resistance to severe environments.
  • The electronic system 100 may include any combination of one or more of the touch-sensor pad 120, the touch-sensor slider 130, and/or the touch-sensor button 140. In another embodiment, the electronic system 100 may also include non-capacitance sensor elements 170 coupled to the processing device 110 via bus 171. The non-capacitance sensor elements 170 may include buttons, light emitting diodes (“LEDs”), and other user interface devices, such as a mouse, a keyboard, or other functional keys that do not require capacitance sensing. In one embodiment, buses 171, 141, 131, and 121 may be a single bus. Alternatively, these buses may be configured into any combination of one or more separate buses.
  • The processing device 110 may include internal oscillator/clocks 106 and a communication block (“COM”) 108. The oscillator/clocks 106 provides clock signals to one or more of the components of the processing device 110. The communication block 108 may be used to communicate with an external component, such as a host processor 150, via host interface (“I/F”) line 151, using signaling protocols such as, but not limited to I2C, SPI or USB. Alternatively, the processing block 110 may also be coupled to embedded controller 160 to communicate with the external components, such as host 150. In one embodiment, the processing device 110 is configured to communicate with the embedded controller 160 or the host 150 to send and/or receive data.
  • The processing device 110 may reside on a common carrier substrate such as, for example, an integrated circuit (“IC”) die substrate, a multi-chip module substrate, or the like. Alternatively, the components of the processing device 110 may be one or more separate integrated circuits and/or discrete components. In one exemplary embodiment, the processing device 110 may be a Programmable System on a Chip (“PSoC™”) processing device, manufactured by Cypress Semiconductor Corporation, San Jose, Calif. Alternatively, the processing device 110 may be one or more other processing devices known by those of ordinary skill in the art, such as a microcontroller, a microprocessor or central processing unit, a controller, a special-purpose processor, a digital signal processor (“DSP”), an application specific integrated circuit (“ASIC”), a field programmable gate array (“FPGA”), or the like.
  • It should also be noted that the embodiments described herein are not limited to having a configuration of a processing device coupled to a host, but may include a system that measures the capacitance on the sensing device and sends the raw data to a host computer where it is analyzed by an application. In effect the processing that is done by processing device 110 may also be done in the host.
  • The capacitance sensing circuit 101 may be integrated into the IC of the processing device 110, or alternatively, in a separate IC. Alternatively, descriptions of the capacitance sensing circuit 101 may be generated and compiled for incorporation into other integrated circuits. For example, behavioral level code describing the capacitance sensing circuit 101, or portions thereof, may be generated using a hardware descriptive language, such as VHDL or Verilog, and stored to a machine-accessible medium (e.g., CD-ROM, hard disk, floppy disk, etc.). Furthermore, the behavioral level code can be compiled into register transfer level (“RTL”) code, a netlist, or even a circuit layout and stored to a machine-accessible medium. The behavioral level code, the RTL code, the netlist, and the circuit layout all represent various levels of abstraction to describe the capacitance sensing circuit 101.
  • It should be noted that the components of the electronic system 100 may include all the components described above. Alternatively, the electronic system 100 may include only some of the components described above.
  • In one embodiment, the electronic system 100 may be used in a notebook computer. Alternatively, the electronic system 100 may be used in other applications, such as a mobile handset, a personal data assistant (“PDA”), a keyboard, a television, a remote control, a monitor, a handheld multi-media device, a handheld video player, a handheld gaming device, or a control panel.
  • The conductive object in this case is a finger, alternatively, this technique may be applied to any conductive object, for example, a conductive door switch, position sensor, or conductive pen in a stylus tracking system.
  • Although the foregoing examples have been described in some detail for purposes of clarity of understanding, the invention is not limited to the details provided. There are many alternative ways of implementing the invention. The disclosed examples are illustrative and not restrictive.
  • Thus, in one embodiment, a capacitance sensing device is provided. The capacitance sensing device includes a substrate having a central portion and an outer portion. A plurality of substantially co-planar electrodes are on the central portion substrate. A first plurality of conductors are on the substrate. Each of the first plurality of conductors has a first end portion electrically connected to one of the plurality of electrodes and a second end portion on the outer portion of the substrate. An insulating material is coupled to the second end portions of the first plurality of conductors. A second plurality of conductors is coupled to the insulating material. The second plurality of conductors and the insulating material are configured such that each of the second plurality of conductors is electrically connected to the second end portion of at least some of the first plurality of conductors and is insulated from the second end portion of the others of the first plurality of conductors.
  • In another embodiment, a capacitance sensing device is provided. The capacitance sensing device includes a substrate having a central portion and an outer portion. A first set of electrodes is formed on the central portion substrate. A second set of electrodes is formed on the central portion of the substrate. The second set of electrodes is arranged in a series of rows and is substantially co-planar with the first set of electrodes. A first plurality of conductors are formed on the substrate. Each of the first plurality of conductors has a first end portion electrically connected to one of the first set of electrodes and a second end portion on the outer portion of the substrate. A second plurality of conductors are formed on the substrate. Each of the second plurality of conductors has a first end portion electrically connected to one of the second set of electrodes and a second end portion on the outer portion of the substrate. An insulating body is coupled to the second end portion of each of the first plurality of conductors and the second end portion of each of the second plurality of conductors. A third plurality of conductors is coupled to the insulating body such that each is electrically connected to one of the second end portion of one of the first plurality of conductors and the second end portion of the second plurality of conductors associated with only one row of the second set of electrodes and is electrically insulated from the second end portion of the others of the first set of conductors and the second end portion of the second plurality of conductors associated with the other rows of the second set of electrodes.
  • In a further embodiment, a capacitance sensing device is provided. The capacitance sensing device includes a substrate having a central portion and an outer portion. A first set of electrodes is formed on the central portion substrate. A second set of electrodes is formed on the central portion of the substrate. The second set of electrodes is arranged in a series of rows and substantially co-planar with the first set of electrodes. A first plurality of conductors are on the substrate. Each of the first plurality of conductors has a first end portion electrically connected to one electrode of the first set of electrodes or the second set of electrodes and a second end portion on the outer portion of the substrate. A second plurality of conductors is coupled to the substrate. Each of the second plurality of conductors is electrically connected to at least one of the first plurality of conductors at a node that is external to the central portion of the substrate such that each of the second plurality of conductors is electrically connected to one electrode of the first set of electrodes or a plurality of electrodes in one of the rows of the second set of electrodes.
  • In a further embodiment, a method for constructing a capacitance sensing device is provided. A plurality of electrodes are formed on a central portion of a substrate. The substrate has a central portion and an outer portion. A first plurality of conductors are formed on the substrate. Each of the first plurality of conductors is connected to and extends from at least one of the plurality of electrodes. An insulating material is formed on the outer portion of the substrate and at least partially over some of the first plurality of conductors. A second plurality of conductors are formed on the insulating material, wherein the second plurality of conductors and the insulating material are configured such that each of the second plurality of conductors is electrically connected to at least some of the first plurality of conductors and is insulated from the others of the first plurality of conductors.
  • In a further embodiment, a method for constructing a capacitance sensing device is provided. A plurality of substantially co-planar electrodes are formed on the central portion of the substrate. A first plurality of conductors are formed on the substrate. Each of the first plurality of conductors has a first end electrically connected to one of the plurality of electrodes and a second end portion on the outer portion of the substrate. An insulating body is attached to the outer portion of the substrate adjacent to the second end portions of the first plurality of conductors. Each of a second plurality of conductors on the insulating body is electrically connected to the second end portion of at least some of the first plurality of conductors. Each of the second plurality of conductors is insulated from the second end portion of the others of the first plurality of conductors by the insulating body.
  • In a further embodiment, a method for constructing a capacitance sensing device is provided. A substrate having a central portion and an outer portion is provided. A plurality of substantially co-planar electrodes is formed over the central portion substrate. A first plurality of traces are formed over the substrate. Each of the first plurality of traces have a first end portion electrically connected to one of the plurality of electrodes and a second end portion over the outer portion of the substrate. An insulating body is formed over the outer potion of the substrate. The insulating body has a first width at a first portion thereof and a second width at a second portion thereof. The first width is greater than the second width. A second plurality of traces are formed over the outer portion of the substrate. The first plurality of traces, the second plurality of traces, and the insulating material are arranged such that each of the second plurality of traces is electrically connected to at least some of the first plurality of traces and is insulated from the others of the first plurality of traces.
  • In a further embodiment, a capacitance sensing device is provided. The capacitance sensing device includes a substrate having a central portion, a first outer portion, and a second outer portion. The first outer portion and the second outer portion are on opposing sides of the central portion. A plurality of substantially co-planar electrodes are on the central portion substrate. A first plurality of conductors are on the substrate. Each of the first plurality of conductors having a first end portion electrically connected to one of the plurality of electrodes and a second end portion on the first outer portion or the second outer portion of the substrate. A first insulating body is coupled to the first outer portion of the substrate. A second insulating body is coupled to the second outer portion of the substrate. A second plurality of conductors are included. Each of the second plurality of conductors is coupled to the first insulating body or the second insulating body. The second plurality of conductors, the first insulating body, and the second insulating body are configured such that each of the second plurality of conductors is electrically connected to the second end portion of at least some of the first plurality of conductors on the respective outer portion of the substrate and is insulated from the others of the first plurality of conductors by the respective insulating body.
  • In a further embodiment, a capacitance sensing device is provided. The capacitance sensing device includes a first substrate having a central portion and an outer portion. A plurality of substantially co-planar electrodes are on the central portion of the first substrate. A first plurality of conductors are on the substrate. Each of the first plurality of conductors has a first end portion electrically connected to one of the plurality of electrodes and a second end portion on the outer portion of the first substrate. A second substrate is also included. A second plurality of conductors are connected to the second substrate. At least one insulating body is coupled to the first substrate and the second substrate, wherein the second plurality of conductors and the at least one insulating body are configured such that each of the second plurality of conductors is electrically connected to at least some of the first plurality of conductors and is insulated from the others of the first plurality of conductors.
  • In a further embodiment, a method for constructing a capacitance sensing device is provided. A substrate having a central portion, a first outer portion, and a second outer portion is provided. The first outer portion and the second outer portion are on opposing sides of the central portion. A plurality of substantially co-planar electrodes are formed on the central portion substrate. A first plurality of conductors are formed on the substrate. Each of the first plurality of conductors has a first end portion electrically connected to one of the plurality of electrodes and a second end portion on the one of first outer portion and the second outer portion of the substrate that is closer to the respective one of the plurality of electrodes. A first insulating body is attached to the first outer portion of the substrate. A second insulating body is attached to the second outer portion of the substrate. Each of a second plurality of conductors on the first insulating body and the second insulating body are electrically connected to the second end portion of at least some of the first plurality of conductors on the respective outer portion of the substrate. Each of the second plurality of conductors is insulated from the others of the first plurality of conductors by the respective insulating body.
  • Although the foregoing examples have been described in some detail for purposes of clarity of understanding, the invention is not limited to the details provided. There are many alternative ways of implementing the invention. The disclosed examples are illustrative and not restrictive.

Claims (20)

What is claimed is:
1. A single-layer touchscreen sensor comprising:
a plurality of electrodes disposed on a central portion of a substrate;
a first plurality of conductors disposed on central portion of the substrate and extending from the central portion of the substrate to an outer portion of the substrate, each of the first plurality of conductors coupled to at least one of the plurality of electrodes;
an insulating material disposed on the outer portion of the substrate and not extending into the central portion of the substrate, wherein the insulating material comprises a plurality of openings over a portion of the first plurality of conductors; and
a second plurality of conductors disposed on the outer portion of the substrate, each of the second plurality of conductors coupled to at least one of the first plurality of conductors through one of the plurality of openings.
2. The single-layer touchscreen sensor of claim 1, wherein:
the plurality of electrodes and the first plurality of conductors are formed from indium tin oxide (ITO); and
the plurality of electrodes comprises a plurality of transmit (TX) electrodes and a plurality of receive (RX) electrodes.
3. The single-layer touchscreen sensor of claim 2, wherein the plurality of TX electrodes and the plurality of receive electrodes are inter-digitated along one axis such that capacitance coupling between the TX electrodes and the RX electrodes is maximized.
4. The single-layer touchscreen sensor of claim 1, wherein the first plurality of conductors is formed from carbon ink, silver ink, copper ink, ITO, or a combination thereof.
5. The single-layer touchscreen sensor of claim 1, wherein the insulating material comprises a resist ink, an acrylic resin, or a combination thereof.
6. The single-layer touchscreen sensor of claim 1, wherein the second plurality of conductors comprises silver, ITO, or a combination thereof.
7. The single-layer touchscreen of claim 1, wherein plurality of electrodes and the first plurality of conductors each comprise ITO, a silver nano-particle film, or a combination thereof.
8. The single-layer touchscreen of claim 1, wherein the substrate comprises glass, polyethylene terephthalate (PET), or a combination thereof.
9. A substantially transparent capacitance sensing device comprising
a plurality of transmit (TX) electrodes disposed on an active area of a substrate;
a plurality of receive (RX) electrodes disposed on the active area of the substrate;
a plurality of traces disposed on visible area of the substrate and extending from the visible are of the substrate to a bezel area of the substrate, each of the plurality of traces coupled to at least one of the pluralities of TX or RX electrodes;
an insulating material disposed on the bezel area of the substrate and not extending into the active of the substrate, wherein the insulating material comprises a plurality of openings over a portion of the plurality of traces; and
a plurality of conductors disposed on the bezel area of the substrate, each of the plurality of conductors coupled to at least one of the plurality of traces through one of the plurality of openings.
10. The substantially transparent capacitance sensing device of claim 9, wherein the first plurality of conductors is formed from carbon ink, silver ink, copper ink, ITO, or a combination thereof.
11. The substantially transparent capacitance sensing device of claim 9, wherein the insulating material comprises a resist ink, an acrylic resin, or a combination thereof.
12. The substantially transparent capacitance sensing device of claim 9, wherein the second plurality of conductors comprises silver, ITO, or a combination thereof.
13. The substantially transparent capacitance sensing device of claim 9, wherein plurality of electrodes and the first plurality of conductors each comprise ITO, a silver nano-particle film, or a combination thereof.
14. The substantially transparent capacitance sensing device of claim 9, wherein the substrate comprises glass, polyethylene terephthalate (PET), or a combination thereof.
15. A method for determining a position of a conductive object on a touchscreen, the method comprising:
driving a signal on a plurality of substantially transparent transmit (TX) electrodes disposed on a central portion of a substrate;
receiving a signal on a plurality of substantially transparent receive (RX) electrodes disposed on a central portion of a substrate; and
calculating a position of a conductive object proximate to the substantially transparent touchscreen based on the received signal,
wherein the pluralities of substantially transparent TX and RX electrodes are each coupled to a plurality of conductors disposed on an outer portion of the substrate by a plurality of traces, the plurality of traces extending from the central portion of the substrate to the outer portion of the substrate,
wherein the conductors and the traces are each coupled through at least one of a plurality of openings in an insulating layer disposed over the plurality of conductors, the insulating layer not extending into the central portion of the substrate.
16. The method of claim 15, wherein the first plurality of conductors is formed from carbon ink, silver ink, copper ink, ITO, or a combination thereof.
17. The method of claim 15, wherein the insulating material comprises a resist ink, an acrylic resin, or a combination thereof.
18. The method of claim 15, wherein the second plurality of conductors comprises silver, ITO, or a combination thereof.
19. The method of claim 15, wherein plurality of electrodes and the first plurality of conductors each comprise ITO, a silver nano-particle film, or a combination thereof.
20. The method of claim 15, wherein the substrate comprises glass, polyethylene terephthalate (PET), or a combination thereof.
US14/666,764 2011-02-24 2015-03-24 Single layer touch sensor Abandoned US20150199055A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/666,764 US20150199055A1 (en) 2011-02-24 2015-03-24 Single layer touch sensor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201161446178P 2011-02-24 2011-02-24
US201161559590P 2011-11-14 2011-11-14
US13/405,071 US9952737B2 (en) 2011-02-24 2012-02-24 Single layer touch sensor
US13/528,644 US8484838B2 (en) 2011-02-24 2012-06-20 Method for constructing a capacitance sensing device
US13/528,739 US20120256642A1 (en) 2011-02-24 2012-06-20 Single layer touch sensor
US14/666,764 US20150199055A1 (en) 2011-02-24 2015-03-24 Single layer touch sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/528,739 Continuation US20120256642A1 (en) 2011-02-24 2012-06-20 Single layer touch sensor

Publications (1)

Publication Number Publication Date
US20150199055A1 true US20150199055A1 (en) 2015-07-16

Family

ID=46794203

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/405,071 Active 2032-04-06 US9952737B2 (en) 2011-02-24 2012-02-24 Single layer touch sensor
US13/528,644 Active US8484838B2 (en) 2011-02-24 2012-06-20 Method for constructing a capacitance sensing device
US13/528,739 Abandoned US20120256642A1 (en) 2011-02-24 2012-06-20 Single layer touch sensor
US14/666,764 Abandoned US20150199055A1 (en) 2011-02-24 2015-03-24 Single layer touch sensor

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US13/405,071 Active 2032-04-06 US9952737B2 (en) 2011-02-24 2012-02-24 Single layer touch sensor
US13/528,644 Active US8484838B2 (en) 2011-02-24 2012-06-20 Method for constructing a capacitance sensing device
US13/528,739 Abandoned US20120256642A1 (en) 2011-02-24 2012-06-20 Single layer touch sensor

Country Status (3)

Country Link
US (4) US9952737B2 (en)
CN (1) CN102985900B (en)
WO (1) WO2012128893A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140353012A1 (en) * 2013-05-30 2014-12-04 Nanchang O-Film Tech Co., Ltd. Transparent conductive film
US20150199050A1 (en) * 2014-01-15 2015-07-16 Tpk Touch Systems (Xiamen) Inc. Touch panel
US20160041638A1 (en) * 2014-08-08 2016-02-11 Tpk Touch Solutions (Xiamen) Inc Touch electrode structure and touch panel using the same
US20170123574A1 (en) * 2015-10-30 2017-05-04 Japan Display Inc. Sensor and sensor-equipped display device
US10007367B2 (en) 2014-12-26 2018-06-26 Boe Technology Group Co., Ltd. Bezel structure of touch screen and method for manufacturing the same, touch screen and display device

Families Citing this family (174)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8633915B2 (en) 2007-10-04 2014-01-21 Apple Inc. Single-layer touch-sensitive display
US20090174676A1 (en) 2008-01-04 2009-07-09 Apple Inc. Motion component dominance factors for motion locking of touch sensor data
US8922521B2 (en) 2009-02-02 2014-12-30 Apple Inc. Switching circuitry for touch sensitive display
US8593410B2 (en) * 2009-04-10 2013-11-26 Apple Inc. Touch sensor panel design
US9632628B2 (en) * 2009-10-23 2017-04-25 Atmel Corporation Interdigitated touchscreen electrodes
US9916045B2 (en) 2009-10-26 2018-03-13 Amtel Corporation Sense electrode design
TWI471790B (en) * 2010-02-03 2015-02-01 Wintek Corp Capacitive touch sensor and its fabrication method and capacitive touch panel
US9952737B2 (en) 2011-02-24 2018-04-24 Parade Technologies, Ltd. Single layer touch sensor
US8866491B2 (en) 2011-02-24 2014-10-21 Cypress Semiconductor Corporation Tail effect correction for SLIM pattern touch panels
TWI537778B (en) * 2011-04-06 2016-06-11 Sitronix Technology Corp Touch panel sensing structure
US8982062B2 (en) * 2011-05-09 2015-03-17 Blackberry Limited Multi-modal user input device
US10044353B2 (en) * 2011-08-10 2018-08-07 Atmel Corporation Substantially edgeless touch sensor
US9612265B1 (en) 2011-09-23 2017-04-04 Cypress Semiconductor Corporation Methods and apparatus to detect a conductive object
JP5871307B2 (en) * 2011-09-30 2016-03-01 株式会社ワコム Position detection sensor unit and position detection device
US20130100038A1 (en) * 2011-10-20 2013-04-25 Atmel Technologies U.K. Limited Single-Layer Touch Sensor
US20130127744A1 (en) * 2011-11-22 2013-05-23 Qualcomm Mems Technologies, Inc. Wireframe touch sensor design and spatially linearized touch sensor design
US8947105B2 (en) * 2011-12-01 2015-02-03 Atmel Corporation Capacitive coupling of bond pads
DE102011122110B4 (en) 2011-12-22 2023-05-25 Polyic Gmbh & Co. Kg Operating device with display device and touch panel device, and multi-layer body for providing a touch panel functionality
CN104169850B (en) * 2012-01-12 2017-06-06 辛纳普蒂克斯公司 Individual layer capacitive character imaging sensor
US8773393B2 (en) * 2012-02-28 2014-07-08 Eastman Kodak Company Touch screen with dummy micro-wires
USRE48963E1 (en) 2012-03-02 2022-03-08 Microsoft Technology Licensing, Llc Connection device for computing devices
US9460029B2 (en) 2012-03-02 2016-10-04 Microsoft Technology Licensing, Llc Pressure sensitive keys
US9870066B2 (en) 2012-03-02 2018-01-16 Microsoft Technology Licensing, Llc Method of manufacturing an input device
US9426905B2 (en) 2012-03-02 2016-08-23 Microsoft Technology Licensing, Llc Connection device for computing devices
US9064654B2 (en) * 2012-03-02 2015-06-23 Microsoft Technology Licensing, Llc Method of manufacturing an input device
US9075566B2 (en) 2012-03-02 2015-07-07 Microsoft Technoogy Licensing, LLC Flexible hinge spine
KR101862876B1 (en) * 2012-03-27 2018-05-31 엘지이노텍 주식회사 Touch panel
US9329723B2 (en) 2012-04-16 2016-05-03 Apple Inc. Reconstruction of original touch image from differential touch image
US9244572B2 (en) * 2012-05-04 2016-01-26 Blackberry Limited Electronic device including touch-sensitive display and method of detecting touches
US20130300590A1 (en) 2012-05-14 2013-11-14 Paul Henry Dietz Audio Feedback
KR101446722B1 (en) * 2012-05-16 2014-10-07 주식회사 동부하이텍 A touch screen panel
TW201351245A (en) * 2012-06-04 2013-12-16 Wintek Corp Touch-sensing electrode structure and touch-sensitive device
TWI463374B (en) 2012-06-07 2014-12-01 Mstar Semiconductor Inc Touch panel
US9073123B2 (en) 2012-06-13 2015-07-07 Microsoft Technology Licensing, Llc Housing vents
US9609736B2 (en) * 2012-06-29 2017-03-28 Lg Innotek Co., Ltd. Touch panel and method of manufacturing the same
US8872764B2 (en) 2012-06-29 2014-10-28 Qualcomm Mems Technologies, Inc. Illumination systems incorporating a light guide and a reflective structure and related methods
CN103576950B (en) * 2012-07-24 2016-08-24 宸鸿科技(厦门)有限公司 Contact panel and preparation method thereof
TW201409297A (en) * 2012-08-21 2014-03-01 Wintek Corp Touch-sensing electrode structure and touch-sensitive device
US9483168B2 (en) 2012-08-22 2016-11-01 Google Inc. Correcting scrolling gesture
US8502796B1 (en) * 2012-08-27 2013-08-06 Atmel Corporation Interpolated single-layer touch sensor
US9007191B2 (en) * 2012-10-04 2015-04-14 Google Inc. Sensor pattern for a tactile input device
US8654030B1 (en) 2012-10-16 2014-02-18 Microsoft Corporation Antenna placement
CN104903026B (en) 2012-10-17 2017-10-24 微软技术许可有限责任公司 Metal alloy injection is molded overfall
WO2014059618A1 (en) 2012-10-17 2014-04-24 Microsoft Corporation Graphic formation via material ablation
US10444926B2 (en) 2012-11-27 2019-10-15 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel with additional functional film(s)
US10248274B2 (en) * 2012-11-27 2019-04-02 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel and method of making same
US10222921B2 (en) 2012-11-27 2019-03-05 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel with silver having increased resistivity
US9733779B2 (en) 2012-11-27 2017-08-15 Guardian Industries Corp. Projected capacitive touch panel with silver-inclusive transparent conducting layer(s), and/or method of making the same
US9921704B2 (en) * 2012-11-27 2018-03-20 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel
US9354755B2 (en) * 2012-11-27 2016-05-31 Guardian Industries Corp. Projected capacitive touch panel with a silver-inclusive transparent conducting layer(s)
US9921703B2 (en) 2012-11-27 2018-03-20 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel with additional functional film(s)
US10216347B2 (en) * 2012-11-27 2019-02-26 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel with silver having adjusted resistance
US9488513B2 (en) * 2012-12-05 2016-11-08 Molex, Llc Flexible fluid level sensor with improved measurement capability
US10240965B2 (en) 2012-12-05 2019-03-26 Molex, Llc Flexible fluid level sensor with improved measurement capability
CN103268176B (en) * 2012-12-11 2016-03-02 上海天马微电子有限公司 A kind of mutual inductance type capacitive touch screen
KR101984245B1 (en) * 2012-12-13 2019-05-31 삼성디스플레이 주식회사 Organic light emitting diode display
KR101533971B1 (en) * 2012-12-13 2015-07-06 주식회사 지니틱스 Touch electrode pattern, touch panel, and touch input device having the same
US9829523B1 (en) * 2012-12-27 2017-11-28 Cypress Semiconductor Corporation Offset sensor pattern
US9360972B1 (en) * 2013-01-14 2016-06-07 Cypress Semiconductor Corporation Touch sensor conductor routing
US20140210768A1 (en) * 2013-01-31 2014-07-31 International Rectifier Corporation Single Layer Touch Sensor
US9268446B2 (en) 2013-02-06 2016-02-23 Nanchang O-Film Tech. Co., Ltd. Monitor, touchscreen sensing module thereof, and method for manufacturing the touchscreen sensing module
CN103105970B (en) * 2013-02-06 2014-09-17 南昌欧菲光科技有限公司 Touch screen induction module and display comprising same
US9292138B2 (en) 2013-02-08 2016-03-22 Parade Technologies, Ltd. Single layer sensor pattern
CN104007860B (en) * 2013-02-22 2017-02-08 宸美(厦门)光电有限公司 Touchpad structure and manufacturing method thereof
TWI470526B (en) * 2013-03-06 2015-01-21 Young Lighting Technology Inc Touch device
US8754662B1 (en) 2013-03-11 2014-06-17 Cypress Semiconductor Corporation Flipped cell sensor pattern
CN104066275A (en) * 2013-03-21 2014-09-24 毅嘉科技股份有限公司 Opening method for insulation protective layer of circuit board
US9179547B2 (en) * 2013-03-30 2015-11-03 Shenzhen O-Film Tech Co., Ltd. Gold finger and touch screen
US20140306920A1 (en) * 2013-04-10 2014-10-16 Himax Technologies Limited Touch screen structure for receiving and processing touch signal
CN104123048A (en) * 2013-04-25 2014-10-29 北京京东方光电科技有限公司 Capacitance type touch panel, display device and touch panel manufacturing method
KR102044476B1 (en) 2013-05-02 2019-11-13 삼성전자주식회사 Touch screen panel, touch senssing controller and touch sensing system comprising the same
DE102013104644B4 (en) * 2013-05-06 2020-06-04 Polylc Gmbh & Co. Kg Layer electrode for touch screens
TWI474248B (en) 2013-05-08 2015-02-21 Touchplus Information Corp Method and device for sensing control point on capacitive-type panel
US10310683B2 (en) 2013-05-08 2019-06-04 Touchplus Information Corp. Method and device for sensing control point on capacitive-type panel
TWI601049B (en) * 2013-05-15 2017-10-01 晨星半導體股份有限公司 Mutual-capacitance touch control device
CN103294313B (en) * 2013-05-16 2016-04-13 城步新鼎盛电子科技有限公司 OGS capacitive touch screen and preparation method thereof
CN104182102B (en) * 2013-05-28 2017-10-10 晨星半导体股份有限公司 mutual capacitance type touch control induction device
US9557361B2 (en) 2013-05-29 2017-01-31 Atmel Corporation Edgeless single-layer touch sensor
KR20140143645A (en) * 2013-06-07 2014-12-17 삼성디스플레이 주식회사 Touch sensor panel and method for manufacturing the same
TW201501002A (en) * 2013-06-18 2015-01-01 Novatek Microelectronics Corp Single-layer capacitive touch screen
TWI502412B (en) * 2013-07-05 2015-10-01 Himax Tech Ltd Active pen ic with a reduced amount of pads and amethod thereof
CN103365521B (en) * 2013-07-26 2016-09-07 京东方科技集团股份有限公司 Capacitive touch screen
KR20150012941A (en) * 2013-07-26 2015-02-04 삼성전기주식회사 Touch Sensor
US9886141B2 (en) 2013-08-16 2018-02-06 Apple Inc. Mutual and self capacitance touch measurements in touch panel
TWI512563B (en) * 2013-08-20 2015-12-11 Mstar Semiconductor Inc Single layered electrode structure
CN103488338A (en) * 2013-08-30 2014-01-01 江西合力泰科技股份有限公司 Method for improving bonding of touch screen
US9495050B1 (en) * 2013-09-10 2016-11-15 Monterey Research, Llc Sensor pattern with signal-spreading electrodes
US8872526B1 (en) 2013-09-10 2014-10-28 Cypress Semiconductor Corporation Interleaving sense elements of a capacitive-sense array
WO2015038282A1 (en) * 2013-09-10 2015-03-19 Cypress Semiconductor Corporation Touch sensor device
CN205563500U (en) * 2013-10-01 2016-09-07 Lg伊诺特有限公司 Touch window and contain display of this touch window
US20150097801A1 (en) * 2013-10-08 2015-04-09 Matthew Trend Touch-sensor electrode details
KR101800813B1 (en) * 2013-10-15 2017-12-20 엘지디스플레이 주식회사 Touch panel and display device
GB2520050A (en) * 2013-11-08 2015-05-13 Nokia Technologies Oy An apparatus
US20150160762A1 (en) * 2013-12-11 2015-06-11 Touchplus Information Corp. Control-point sensing panel
CN104714708B (en) * 2013-12-11 2018-12-14 新益先创科技股份有限公司 control point sensing panel and design method thereof
JP6497752B2 (en) * 2013-12-13 2019-04-10 エルジー・ケム・リミテッド TOUCH SENSOR AND METHOD FOR MANUFACTURING THE SAME {TOUCH SENSOR AND METHOD THE FOR MANUFACTURING SAME}
CN103744563A (en) * 2013-12-30 2014-04-23 深圳莱宝高科技股份有限公司 Capacitive touch panel and manufacturing method thereof
CN103777832A (en) * 2014-01-10 2014-05-07 深圳莱宝高科技股份有限公司 Capacitance-type touch control panel and manufacturing method thereof
US9759854B2 (en) 2014-02-17 2017-09-12 Microsoft Technology Licensing, Llc Input device outer layer and backlighting
CN103809810A (en) * 2014-02-19 2014-05-21 深圳市华星光电技术有限公司 Touch panel and display device
TWM481451U (en) * 2014-02-20 2014-07-01 Hannstouch Solution Inc Single layer solution touch panel
WO2015137642A2 (en) * 2014-03-13 2015-09-17 Lg Innotek Co., Ltd. Touch window and display with the same
KR102187705B1 (en) * 2014-03-13 2020-12-07 엘지이노텍 주식회사 Touch window and display with the same
CN103941912B (en) * 2014-03-25 2017-12-08 京东方科技集团股份有限公司 A kind of touch-screen and preparation method thereof, 3D display device
CN104951156A (en) * 2014-03-31 2015-09-30 宸盛光电有限公司 Capacitive touch control device
CN110045862B (en) * 2014-03-31 2023-05-23 宸盛光电有限公司 Capacitive touch device and manufacturing method thereof
US10133421B2 (en) * 2014-04-02 2018-11-20 Synaptics Incorporated Display stackups for matrix sensor
WO2015178920A1 (en) 2014-05-22 2015-11-26 Onamp Research Llc Panel bootstrapping architectures for in-cell self-capacitance
CN104020887A (en) * 2014-05-30 2014-09-03 南昌欧菲光科技有限公司 Touch screen
WO2015180315A1 (en) * 2014-05-30 2015-12-03 京东方科技集团股份有限公司 Capacitive touch structure, embedded touchscreen, display device and scanning method therefor
KR102294702B1 (en) * 2014-06-03 2021-08-26 동우 화인켐 주식회사 Touch screen panel
DE102014211239A1 (en) * 2014-06-12 2015-12-17 Benecke-Kaliko Ag Foil with integrated sensors
US9817528B2 (en) * 2014-06-25 2017-11-14 Himax Technologies Limited Touch sensitive device having different surrounding patterns and related touchscreen
US10289251B2 (en) 2014-06-27 2019-05-14 Apple Inc. Reducing floating ground effects in pixelated self-capacitance touch screens
US9703430B2 (en) * 2014-06-30 2017-07-11 Synaptics Incorporated Driving sensor electrodes for proximity sensing
CN104063108B (en) * 2014-07-03 2017-04-05 深圳市华星光电技术有限公司 Mutual capacitance multi-point touch electrode structure based on single-layer metal grid
TWI543054B (en) * 2014-07-09 2016-07-21 晨星半導體股份有限公司 Sensing electrode and sensing capacitance estimation method and apparatus
US9658726B2 (en) 2014-07-10 2017-05-23 Cypress Semiconductor Corporation Single layer sensor pattern
US9280251B2 (en) 2014-07-11 2016-03-08 Apple Inc. Funneled touch sensor routing
US9612679B2 (en) * 2014-07-14 2017-04-04 Shenzhen China Star Optoelectronics Technology Co., Ltd. Color filter substrate and display apparatus
JP6300025B2 (en) * 2014-08-21 2018-03-28 株式会社デンソー Film fixing structure and film fixing method
US9880655B2 (en) 2014-09-02 2018-01-30 Apple Inc. Method of disambiguating water from a finger touch on a touch sensor panel
CN104238816A (en) * 2014-09-04 2014-12-24 京东方科技集团股份有限公司 Touch screen panel and manufacturing method thereof
WO2016039732A1 (en) * 2014-09-09 2016-03-17 Uni-Pixel Displays, Inc. Bezel circuit
US10705658B2 (en) 2014-09-22 2020-07-07 Apple Inc. Ungrounded user signal compensation for pixelated self-capacitance touch sensor panel
KR102240937B1 (en) * 2014-10-10 2021-04-15 삼성디스플레이 주식회사 Display device
KR102344330B1 (en) * 2014-10-10 2021-12-28 삼성디스플레이 주식회사 Display device
US10712867B2 (en) 2014-10-27 2020-07-14 Apple Inc. Pixelated self-capacitance water rejection
JP6406575B2 (en) * 2014-11-26 2018-10-17 大日本印刷株式会社 Touch panel sensor, touch panel device, and display device
KR102241773B1 (en) 2014-12-18 2021-04-19 삼성디스플레이 주식회사 Touch sensor device
CN104461207A (en) * 2014-12-31 2015-03-25 深圳市华星光电技术有限公司 Single-layer capacitance touch screen and touch display device
US10126885B2 (en) * 2015-01-05 2018-11-13 Hycon Technology Corp. Capacitive touch panel and touch position calculation method thereof
WO2016126525A1 (en) 2015-02-02 2016-08-11 Apple Inc. Flexible self-capacitance and mutual capacitance touch sensing system architecture
US10488992B2 (en) 2015-03-10 2019-11-26 Apple Inc. Multi-chip touch architecture for scalability
US10133108B2 (en) 2015-04-08 2018-11-20 Guardian Glass, LLC Vending machines with large area transparent touch electrode technology, and/or associated methods
US10409426B2 (en) * 2015-04-14 2019-09-10 Ford Global Technologies, Llc Motion based capacitive sensor system
CN104866150B (en) * 2015-04-29 2018-12-11 业成光电(深圳)有限公司 touch module
US10133428B2 (en) * 2015-05-29 2018-11-20 Samsung Display Co., Ltd. Flexible display device including a flexible substrate having a bending part and a conductive pattern at least partially disposed on the bending part
KR102002884B1 (en) * 2015-06-14 2019-07-24 주식회사 엘지화학 Touch sensor and method for preparing the same
KR102002882B1 (en) * 2015-06-14 2019-07-24 주식회사 엘지화학 Touch sensor and method for preparing the same
DE102016113162A1 (en) * 2015-07-28 2017-02-02 Schott Ag Control panel for a household appliance with at least one user interface, home appliance and method for producing the control panel with user interface
DE102015112444A1 (en) * 2015-07-30 2017-02-02 Valeo Schalter Und Sensoren Gmbh Operating device for a motor vehicle and method for operating such a control device
CN105159510B (en) * 2015-08-26 2018-10-02 京东方科技集团股份有限公司 Touch base plate and preparation method thereof, display device
TWI611329B (en) * 2015-08-31 2018-01-11 敦泰電子有限公司 Electronic device and monolayer mutual-capacitance touch screen thereof
CN105426005B (en) * 2015-09-30 2018-09-28 宸鸿科技(厦门)有限公司 three-dimensional touch panel
US10365773B2 (en) 2015-09-30 2019-07-30 Apple Inc. Flexible scan plan using coarse mutual capacitance and fully-guarded measurements
US10534481B2 (en) 2015-09-30 2020-01-14 Apple Inc. High aspect ratio capacitive sensor panel
CN106896951B (en) * 2015-10-07 2019-11-29 财团法人工业技术研究院 Touch display panel
DE102015120168A1 (en) * 2015-11-09 2017-05-11 Schott Ag Two-dimensional sensor arrangement
CN105843448B (en) * 2016-03-21 2019-10-25 京东方科技集团股份有限公司 A kind of touch display substrate and touch control display apparatus
US10496215B2 (en) * 2016-04-29 2019-12-03 Synaptics Incorporated Sensing for touch and force
CN106249979B (en) * 2016-08-31 2019-05-31 京东方科技集团股份有限公司 Touch electrode structure and touch control display apparatus
AU2017208277B2 (en) 2016-09-06 2018-12-20 Apple Inc. Back of cover touch sensors
TWI610213B (en) * 2016-09-07 2018-01-01 晨星半導體股份有限公司 Mutual capacitive touch panel
KR102567934B1 (en) * 2016-09-30 2023-08-18 엘지디스플레이 주식회사 Organic light emitting display and touch senising method for the same
KR20180080739A (en) * 2017-01-04 2018-07-13 삼성디스플레이 주식회사 Touch sensor and touch sensing system including the same
US10386965B2 (en) 2017-04-20 2019-08-20 Apple Inc. Finger tracking in wet environment
US10310671B2 (en) 2017-04-28 2019-06-04 Himax Technologies Limited Touch sensor device
US10067603B1 (en) * 2017-05-03 2018-09-04 Himax Technologies Limited Touch panel and sensing method of touch panel capable of simultaneously activating columns of sensors within one drive cycle
EP4344389A2 (en) * 2017-06-30 2024-03-27 LG Display Co., Ltd. Display device and method for fabricating the same
TWI622917B (en) * 2017-09-29 2018-05-01 友達光電股份有限公司 Touch device
KR102467371B1 (en) * 2017-11-09 2022-11-14 엘지디스플레이 주식회사 Electroluminescence display device and method of fabricating thereof
CN108196737A (en) * 2018-01-03 2018-06-22 京东方科技集团股份有限公司 Trackpad and touch screen
CN111492335A (en) * 2018-01-11 2020-08-04 佳殿玻璃有限公司 Transparent conductive coating for capacitive touch panel and method of manufacturing the same
US10539864B2 (en) 2018-02-08 2020-01-21 Guardian Glass, LLC Capacitive touch panel having diffuser and patterned electrode
US20190364665A1 (en) * 2018-05-22 2019-11-28 C3Nano Inc. Silver-based transparent conductive layers interfaced with copper traces and methods for forming the structures
KR102427303B1 (en) * 2018-09-10 2022-08-01 삼성디스플레이 주식회사 Display device
CN109240543A (en) * 2018-10-08 2019-01-18 深圳市德名利电子有限公司 A kind of touch panel and display device
CN111376684A (en) * 2018-12-29 2020-07-07 苏州欧菲光科技有限公司 Touch control glass module and vehicle-mounted dimming system
CN117766453A (en) * 2019-04-08 2024-03-26 群创光电股份有限公司 Transfer connector and method for manufacturing electronic device
CN111799205B (en) * 2019-04-08 2024-02-09 群创光电股份有限公司 Method for manufacturing electronic device
US11662867B1 (en) 2020-05-30 2023-05-30 Apple Inc. Hover detection on a touch sensor panel
US11494039B1 (en) * 2021-05-10 2022-11-08 Tpk Advanced Solutions Inc. Touch sensor
CN117813575A (en) * 2022-07-29 2024-04-02 京东方科技集团股份有限公司 Display panel and display device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7129935B2 (en) * 2003-06-02 2006-10-31 Synaptics Incorporated Sensor patterns for a capacitive sensing apparatus
US20070008299A1 (en) * 2005-07-08 2007-01-11 Harald Philipp Two-Dimensional Position Sensor
US20080246496A1 (en) * 2007-04-05 2008-10-09 Luben Hristov Two-Dimensional Position Sensor
WO2010016174A1 (en) * 2008-08-07 2010-02-11 シャープ株式会社 Touch panel, display, and electronic device
US20100059294A1 (en) * 2008-09-08 2010-03-11 Apple Inc. Bandwidth enhancement for a touch sensor panel
US20100090979A1 (en) * 2007-03-05 2010-04-15 Melfas, Inc. Touch location detecting panel having a simple layer structure
US20100144391A1 (en) * 2008-12-05 2010-06-10 Shih Chang Chang Integrated touch panel for a TFT display
US20100289774A1 (en) * 2009-05-15 2010-11-18 Mstar Semiconductor, Inc. Capacitive Touch Sensing Structure and Sensing Method Thereof
US20100321326A1 (en) * 2009-06-19 2010-12-23 Grunthaner Martin Paul Direct Connect Single Layer Touch Panel
US20110048813A1 (en) * 2009-09-03 2011-03-03 Esat Yilmaz Two-dimensional position sensor
US20110102361A1 (en) * 2009-10-29 2011-05-05 Atmel Corporation Touchscreen electrode configuration
WO2011122782A2 (en) * 2010-03-30 2011-10-06 (주)멜파스 Touch-sensing panel and touch-sensing apparatus

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4233522A (en) 1978-10-30 1980-11-11 General Electric Company Capacitive touch switch array
US4686332A (en) * 1986-06-26 1987-08-11 International Business Machines Corporation Combined finger touch and stylus detection system for use on the viewing surface of a visual display device
US4707845A (en) 1986-08-26 1987-11-17 Tektronix, Inc. Touch panel with automatic nulling
US5834845A (en) * 1995-09-21 1998-11-10 Advanced Micro Devices, Inc. Interconnect scheme for integrated circuits
US7663607B2 (en) 2004-05-06 2010-02-16 Apple Inc. Multipoint touchscreen
DE10139158C1 (en) * 2001-08-09 2003-04-17 Siemens Dematic Ag Component detection device, component supply device and method for supplying components by means of a component supply device
JP2003099185A (en) 2001-09-20 2003-04-04 Alps Electric Co Ltd Input device
US7532202B2 (en) 2002-05-08 2009-05-12 3M Innovative Properties Company Baselining techniques in force-based touch panel systems
US7821425B2 (en) 2002-07-12 2010-10-26 Atmel Corporation Capacitive keyboard with non-locking reduced keying ambiguity
CA2494353A1 (en) * 2002-08-02 2004-02-12 Cirque Corporation Single-layer touchpad having touch zones
US7202859B1 (en) * 2002-08-09 2007-04-10 Synaptics, Inc. Capacitive sensing pattern
JP3800186B2 (en) 2003-02-21 2006-07-26 セイコーエプソン株式会社 Liquid crystal display device, reflector, and electronic device
US7580030B2 (en) * 2003-06-13 2009-08-25 Semtech Corporation Sensor for capacitive touch pad pointing device
US7265809B2 (en) 2003-10-07 2007-09-04 Universal Avionics Systems Corporation Flat panel display having integral metal heater optically hidden behind an EMI shield
US7382139B2 (en) * 2004-06-03 2008-06-03 Synaptics Incorporated One layer capacitive sensing apparatus having varying width sensing elements
JP5178192B2 (en) * 2004-07-06 2013-04-10 マリミルズ オサケ ユキチュア Electric field detection sensor products
US7499039B2 (en) 2005-01-10 2009-03-03 3M Innovative Properties Company Iterative method for determining touch location
US20060227115A1 (en) 2005-03-31 2006-10-12 Tyco Electronic Corporation Method and apparatus for touch sensor with interference rejection
US7439962B2 (en) * 2005-06-01 2008-10-21 Synaptics Incorporated Touch pad with flexible substrate
EP1746488A2 (en) * 2005-07-21 2007-01-24 TPO Displays Corp. Electromagnetic digitizer sensor array structure
US20070074913A1 (en) 2005-10-05 2007-04-05 Geaghan Bernard O Capacitive touch sensor with independently adjustable sense channels
US7864160B2 (en) * 2005-10-05 2011-01-04 3M Innovative Properties Company Interleaved electrodes for touch sensing
US20070132386A1 (en) 2005-12-12 2007-06-14 Lg Electronics Inc. Plasma display device
US7218124B1 (en) 2006-01-30 2007-05-15 Synaptics Incorporated Capacitive sensing apparatus designs
GB2437827B (en) * 2006-05-05 2008-03-26 Harald Philipp Touch screen element
US8619054B2 (en) 2006-05-31 2013-12-31 Atmel Corporation Two dimensional position sensor
US8259078B2 (en) * 2006-06-09 2012-09-04 Apple Inc. Touch screen liquid crystal display
CN101093333A (en) 2006-06-21 2007-12-26 三菱电机株式会社 Display device
US7948477B2 (en) * 2006-12-15 2011-05-24 Apple Inc. PET-based touchpad
US7973771B2 (en) * 2007-04-12 2011-07-05 3M Innovative Properties Company Touch sensor with electrode array
US8026903B2 (en) * 2007-01-03 2011-09-27 Apple Inc. Double-sided touch sensitive panel and flex circuit bonding
TW200842681A (en) * 2007-04-27 2008-11-01 Tpk Touch Solutions Inc Touch pattern structure of a capacitive touch panel
TW200901014A (en) 2007-06-28 2009-01-01 Sense Pad Tech Co Ltd Touch panel device
US8153016B2 (en) * 2007-10-03 2012-04-10 Apple Inc. Shaping a cover glass
US8358276B2 (en) * 2007-12-21 2013-01-22 Apple Inc. Touch pad electrode design
EP2075678A3 (en) * 2007-12-27 2013-03-13 TPO Displays Corp. Position sensing display
CN104090673B (en) 2008-02-28 2018-02-23 3M创新有限公司 Touch screen sensor with low visibility conductor
US8576193B2 (en) 2008-04-25 2013-11-05 Apple Inc. Brick layout and stackup for a touch screen
US20090273577A1 (en) 2008-04-30 2009-11-05 Apple Inc. Moire-Free Touch Screen with Tilted or Curved ITO Pattern
US8300019B2 (en) 2008-07-15 2012-10-30 Apple Inc. Capacitive sensor coupling correction
US8711105B2 (en) 2008-08-21 2014-04-29 Wacom Co., Ltd. Touchscreen with extended conductive pattern
US9927924B2 (en) 2008-09-26 2018-03-27 Apple Inc. Differential sensing for a touch panel
US20100108409A1 (en) * 2008-11-06 2010-05-06 Jun Tanaka Capacitive coupling type touch panel
TW201025108A (en) 2008-12-31 2010-07-01 Acrosense Technology Co Ltd Capacitive touch panel
JP2010182277A (en) * 2009-01-09 2010-08-19 Rohm Co Ltd Input device
JP5337061B2 (en) 2009-02-20 2013-11-06 セイコーインスツル株式会社 Touch panel and display device including the same
JP5140018B2 (en) * 2009-02-24 2013-02-06 株式会社ジャパンディスプレイイースト LCD with input function
JP2010205177A (en) 2009-03-05 2010-09-16 Sharp Corp Screen board and method for manufacturing touch panel using same
US8497786B2 (en) * 2009-03-26 2013-07-30 Freescale Semiconductor, Inc. Capacitive keyboard with enhanced electrode areas
WO2010117882A2 (en) 2009-04-10 2010-10-14 Apple Inc. Improved touch sensor panel design
US9495042B2 (en) * 2009-04-14 2016-11-15 Atmel Corporation Two-dimensional position sensor
JP2011100438A (en) * 2009-06-05 2011-05-19 Rohm Co Ltd Capacitive input device
JP5396167B2 (en) 2009-06-18 2014-01-22 株式会社ワコム Indicator detection apparatus and indicator detection method
US20110012845A1 (en) * 2009-07-20 2011-01-20 Rothkopf Fletcher R Touch sensor structures for displays
CN102597936B (en) 2009-09-02 2015-01-07 平蛙实验室股份公司 Touch surface with a compensated signal profile
US8552315B2 (en) 2009-09-03 2013-10-08 Atmel Corporation Two-dimensional position sensor
KR101190276B1 (en) 2009-10-28 2012-10-12 주식회사 애트랩 Input device and touch position detecting method thereof
TWM380535U (en) * 2009-12-03 2010-05-11 Transtouch Technology Inc Capacitive touch panel
JP5295090B2 (en) 2009-12-18 2013-09-18 株式会社ワコム Indicator detection device
TWI429887B (en) 2010-01-11 2014-03-11 Oto Photonics Inc Spectrometer capable of eliminating side-tail effects
KR101101088B1 (en) * 2010-05-03 2011-12-30 삼성모바일디스플레이주식회사 Touch Screen Panel and fabrication method thereof
WO2011143594A2 (en) 2010-05-14 2011-11-17 Tyco Electronic Corporation System and method for detecting locations of touches on a touch sensor
US9268431B2 (en) 2010-08-27 2016-02-23 Apple Inc. Touch and hover switching
US9459736B2 (en) 2010-10-12 2016-10-04 Parade Technologies, Ltd. Flexible capacitive sensor array
US8593450B2 (en) 2010-12-22 2013-11-26 Apple Inc. Relay driving of conductive segments in displays
CN102541334B (en) 2010-12-30 2016-09-28 上海天马微电子有限公司 Touch display unit and manufacture method thereof
US9310916B2 (en) 2011-01-14 2016-04-12 Apple Inc. Display to touch crosstalk compensation
US8866491B2 (en) 2011-02-24 2014-10-21 Cypress Semiconductor Corporation Tail effect correction for SLIM pattern touch panels
US8866490B1 (en) 2013-01-18 2014-10-21 Cypress Semiconductor Corporation Method and apparatus for eliminating tail effect in touch applications
US20140210784A1 (en) 2011-02-24 2014-07-31 Cypress Semiconductor Corporation Touch sensor device
US9952737B2 (en) 2011-02-24 2018-04-24 Parade Technologies, Ltd. Single layer touch sensor
TW201241684A (en) 2011-04-08 2012-10-16 Wintek Corp Touch panel and touch display panel
US8797285B2 (en) 2011-04-18 2014-08-05 Atmel Corporation Panel
US9465492B2 (en) 2011-06-22 2016-10-11 Sharp Kabushiki Kaisha Touch panel system and electronic device
KR20130021648A (en) 2011-08-23 2013-03-06 삼성전기주식회사 Touch panel
US9746967B2 (en) 2011-09-15 2017-08-29 Apple Inc. Concurrent touch and negative pixel scan
US20130127775A1 (en) 2011-11-22 2013-05-23 Esat Yilmaz Single-Layer Touch Sensor with Crossovers
US9262019B2 (en) 2011-11-22 2016-02-16 Atmel Corporation Touch sensor with conductive lines having different widths
CN104169850B (en) 2012-01-12 2017-06-06 辛纳普蒂克斯公司 Individual layer capacitive character imaging sensor
US9100021B2 (en) 2012-01-19 2015-08-04 Texas Instruments Incorporated Linear capacitively coupled touch sensor and method
WO2013119308A1 (en) 2012-02-10 2013-08-15 3M Innovative Properties Company Mesh patterns for touch sensor electrodes
US8294687B1 (en) 2012-02-23 2012-10-23 Cypress Semiconductor Corporation False touch filtering for capacitance sensing systems
US9154127B2 (en) 2012-03-06 2015-10-06 Atmel Corporation Touch sensor with conductive lines having portions with different widths
GB2502594B (en) 2012-05-31 2016-10-26 Zytronic Displays Ltd Multi-touch sensing panel
TWI463374B (en) 2012-06-07 2014-12-01 Mstar Semiconductor Inc Touch panel
TWI474235B (en) 2012-10-03 2015-02-21 Giantplus Technology Co Ltd A?touch panel with a single electrode layer.

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7129935B2 (en) * 2003-06-02 2006-10-31 Synaptics Incorporated Sensor patterns for a capacitive sensing apparatus
US20070008299A1 (en) * 2005-07-08 2007-01-11 Harald Philipp Two-Dimensional Position Sensor
US20100090979A1 (en) * 2007-03-05 2010-04-15 Melfas, Inc. Touch location detecting panel having a simple layer structure
US20080246496A1 (en) * 2007-04-05 2008-10-09 Luben Hristov Two-Dimensional Position Sensor
US20110134075A1 (en) * 2008-08-07 2011-06-09 Sharp Kabushiki Kaisha Touch panel, display, and electronic device
WO2010016174A1 (en) * 2008-08-07 2010-02-11 シャープ株式会社 Touch panel, display, and electronic device
US20100059294A1 (en) * 2008-09-08 2010-03-11 Apple Inc. Bandwidth enhancement for a touch sensor panel
US20100144391A1 (en) * 2008-12-05 2010-06-10 Shih Chang Chang Integrated touch panel for a TFT display
US20100289774A1 (en) * 2009-05-15 2010-11-18 Mstar Semiconductor, Inc. Capacitive Touch Sensing Structure and Sensing Method Thereof
US20100321326A1 (en) * 2009-06-19 2010-12-23 Grunthaner Martin Paul Direct Connect Single Layer Touch Panel
US20110048813A1 (en) * 2009-09-03 2011-03-03 Esat Yilmaz Two-dimensional position sensor
US20110102361A1 (en) * 2009-10-29 2011-05-05 Atmel Corporation Touchscreen electrode configuration
WO2011122782A2 (en) * 2010-03-30 2011-10-06 (주)멜파스 Touch-sensing panel and touch-sensing apparatus
US20130021296A1 (en) * 2010-03-30 2013-01-24 Dong Jin Min Touch-sensing panel and touch-sensing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140353012A1 (en) * 2013-05-30 2014-12-04 Nanchang O-Film Tech Co., Ltd. Transparent conductive film
US20150199050A1 (en) * 2014-01-15 2015-07-16 Tpk Touch Systems (Xiamen) Inc. Touch panel
US9733771B2 (en) * 2014-01-15 2017-08-15 Tpk Touch Systems (Xiamen) Inc Touch panel
US20160041638A1 (en) * 2014-08-08 2016-02-11 Tpk Touch Solutions (Xiamen) Inc Touch electrode structure and touch panel using the same
US9798431B2 (en) * 2014-08-08 2017-10-24 Tpk Touch Solutions (Xiamen) Inc. Touch electrode structure and touch panel using the same
US10007367B2 (en) 2014-12-26 2018-06-26 Boe Technology Group Co., Ltd. Bezel structure of touch screen and method for manufacturing the same, touch screen and display device
US20170123574A1 (en) * 2015-10-30 2017-05-04 Japan Display Inc. Sensor and sensor-equipped display device

Also Published As

Publication number Publication date
US9952737B2 (en) 2018-04-24
CN102985900A (en) 2013-03-20
US8484838B2 (en) 2013-07-16
US20120227259A1 (en) 2012-09-13
WO2012128893A1 (en) 2012-09-27
US20120256642A1 (en) 2012-10-11
CN102985900B (en) 2016-05-25
US20120255167A1 (en) 2012-10-11

Similar Documents

Publication Publication Date Title
US8484838B2 (en) Method for constructing a capacitance sensing device
US20140210784A1 (en) Touch sensor device
KR101156866B1 (en) Touch panel
KR101356336B1 (en) Touch actuated sensor configuration integrated with an oled structure
US8723818B2 (en) Touch screen poly layer electrode distribution
KR101363361B1 (en) Panel for sensing touch input
KR101140878B1 (en) Method For Manufacturing One-layer type Touch screen
US8421332B2 (en) Capacitive touch screen and method for manufacturing the same
WO2015038282A1 (en) Touch sensor device
TWI472986B (en) Touch device and electrostatic shielding method thereof
US20140111707A1 (en) Touch Screen Panel
US20130201348A1 (en) Capacitive touch panel
CN101763199A (en) New pattern design for a capacitive touch screen
CN102799332B (en) A kind of embedded single layer capacitance touch-screen
TW201407436A (en) Touch-sensing structure and touch-sensitive device
WO2012115685A1 (en) Single layer touch sensor
KR101418159B1 (en) Touch panel
US9612692B2 (en) Position measuring apparatus and driving method thereof
US9785294B2 (en) Accuracy in a capacitive sense array
US20120062507A1 (en) Capacitive touch screen and manufacturing method thereof
TWM342558U (en) Capacitive type touch panel
KR20130051316A (en) Touch pannel and manufacturing method thereof
US20120001863A1 (en) Touch panel
TWM354119U (en) Improved capacitance touch sensor structure
CN102819358A (en) Layout structure and manufacturing method of capacitive touch panel

Legal Events

Date Code Title Description
AS Assignment

Owner name: CYPRESS SEMICONDUCTOR CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BADAYE, MASSOUD;VAVAROUTSOS, PETER;CAREY, JOHN;AND OTHERS;SIGNING DATES FROM 20120225 TO 20120530;REEL/FRAME:035244/0923

AS Assignment

Owner name: CYPRESS SEMICONDUCTOR CORPORATION, CALIFORNIA

Free format text: PARTIAL RELEASE OF SECURITY INTEREST IN PATENTS AND TRADEMARKS;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT FOR THE SECURED PARTIES;REEL/FRAME:036264/0114

Effective date: 20150803

AS Assignment

Owner name: PARADE TECHNOLOGIES, LTD., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CYPRESS SEMICONDUCTOR CORPORATION;REEL/FRAME:036508/0284

Effective date: 20150724

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION