US20150190761A1 - Reverse osmosis membrane - Google Patents

Reverse osmosis membrane Download PDF

Info

Publication number
US20150190761A1
US20150190761A1 US14/662,157 US201514662157A US2015190761A1 US 20150190761 A1 US20150190761 A1 US 20150190761A1 US 201514662157 A US201514662157 A US 201514662157A US 2015190761 A1 US2015190761 A1 US 2015190761A1
Authority
US
United States
Prior art keywords
reverse osmosis
osmosis membrane
pores
polysulfone
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/662,157
Inventor
Hye-Jin KWON
Seung-Yup LEE
Seung-Pyo Jeong
Phill LEE
Chong-Kyu Shin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Priority to US14/662,157 priority Critical patent/US20150190761A1/en
Publication of US20150190761A1 publication Critical patent/US20150190761A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/028321-10 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02833Pore size more than 10 and up to 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration

Definitions

  • the present disclosure relates to a reverse osmosis membrane, and more particularly, to a reverse osmosis membrane including a polysulfone layer having pores formed in a surface thereof, the pores having predetermined ranges of distribution, average diameter, pore area ratio, and the like.
  • Osmosis is a phenomenon in which a solvent moves from a solution having a low solute concentration to another solution having a high solute concentration by passing through a semi-permeable separation membrane isolating the two solutions.
  • pressure acting on the solution having a high solute concentration through the movement of the solvent is known as osmotic pressure.
  • reverse osmosis Various types of salt or organic material may be separated by a semi-permeable membrane using a pressure gradient as driving force, according to the reverse osmosis principle.
  • a reverse osmosis membrane using a reverse osmosis phenomenon has been used to separate molecular-level materials, remove salts from salt water or sea water and supply water available for domestic, commercial and industrial use.
  • the reverse osmosis membrane may representatively include a polyamide-based reverse osmosis membrane, by way of example.
  • the polyamide-based reverse osmosis membrane may be manufactured by forming a polyamide active layer on a microporous support.
  • the polyamide-based reverse osmosis membrane may be manufactured by preparing a microporous support by forming a polysulfone layer on a non-woven fabric, dipping the microporous support into an aqueous m-phenylenediamine (mPD) solution to form an mPD layer, dipping the mPD layer into an organic solvent containing trimesoyl chloride (TMC) to allow the mPD layer to be brought into contact with the TMC so as to be interfacially polymerized to thereby form a polyamide layer.
  • mPD m-phenylenediamine
  • TMC trimesoyl chloride
  • the polyamide-based reverse osmosis membrane manufactured by the above conventional method may suffer from low initial permeation flux efficiency, resulting in deterioration of a water purifying function.
  • a solute or an ionic compound may be adsorbed to the surface of the reverse osmosis membrane to pollute the reverse osmosis membrane, and thus, water permeability characteristics such as permeation flux and salt rejection have been degraded over time.
  • An aspect of the present disclosure provides a reverse osmosis membrane able to achieve superior antifouling properties and durability and to increase permeation flux while improving salt rejection.
  • a reverse osmosis membrane including: a porous support; a polysulfone layer formed on the porous support and having pores formed in a surface thereof, pores having a diameter of 40 nm or greater accounting for less than 0.5% of total pores; and an active layer.
  • FIG. 1 is a scanning electron microscope (SEM) image showing a surface of a polysulfone layer of a reverse osmosis membrane manufactured according to Inventive Example 2;
  • FIG. 2 is a scanning electron microscope (SEM) image showing a surface of a polysulfone layer of a reverse osmosis membrane manufactured according to Comparative Example 1;
  • FIG. 3 is a scanning electron microscope (SEM) image showing a surface of a polysulfone layer of a reverse osmosis membrane manufactured according to Inventive Example 6;
  • FIG. 4 is a scanning electron microscope (SEM) image showing a surface of a polysulfone layer of a reverse osmosis membrane manufactured according to Comparative Example 2;
  • FIG. 5 is a graph showing a ratio of pores having a diameter of 40 nm or greater to the total pores formed in a surface of a polysulfone layer of a reverse osmosis membrane, respectively manufactured according to Inventive Examples 1 to 8 and Comparative Examples 1 and 2.
  • inventive concept may, however, be exemplified in many different forms and should not be construed as being limited to the specific embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the inventive concept to those skilled in the art.
  • a pore diameter refers to a value obtained by measuring the longest distance across a pore formed in a surface of a polysulfone layer in a case in which the pore has a circular or oval shape.
  • solubility parameters refer to ‘Hansen Solubility Parameters’ and solubility parameter values of respective solvents are obtained from Hansen's 1971 parameters listed in the Handbook of Solubility Parameters , Allan F. M. Barton. Ph.D., CRC Press, 1983, page 153-157.
  • the inventors of the invention have conducted repeated experimentation in order to develop a reverse osmosis membrane able to improve permeation flux while having superior salt rejection, and have found that when a reverse osmosis membrane is manufactured using a mixed solvent containing two or more solvents having different solubility parameter values at the time of forming a polysulfone layer, the performance of the reverse osmosis membrane may be improved, as compared with existing reverse osmosis membranes, by adjusting the diameters and density of pores formed in the polysulfone layer using a change in the outflow rates of the solvents at the time of forming the membrane.
  • N,N-dimethylformamide (DMF) has generally been used as a solvent.
  • DMF dimethylformamide
  • pores formed in the surface of the polysulfone layer have excessively large diameters, and thus, an active layer formed on the polysulfone layer has not been stably formed.
  • a reverse osmosis membrane according to an embodiment of the invention may have a uniform active layer by increasing the number of micro pores formed in the polysulfone layer, and thus, the reverse osmosis membrane may be manufactured to have superior antifouling properties and durability and significantly improve the performance thereof such as salt rejection, initial permeation flux and the like.
  • the reverse osmosis membrane according to the embodiment of the invention may include a porous support; a polysulfone layer formed on the porous support and having pores formed in a surface thereof, pores having a diameter of 40 nm or greater accounting for less than 0.50 of total pores; and an active layer.
  • the porous support may be a non-woven fabric.
  • Materials for the non-woven fabric may include polyester, polycarbonate, finely porous polypropylene, polyphenylene ether, poly vinylindene fluoride and the like, but are not limited thereto.
  • the polysulfone layer may be formed on the porous support and have the pores formed in the surface thereof.
  • the polysulfone layer may be formed of a polymer having a sulfonic acid group.
  • the polymer having a sulfonic acid group may be selected from the group consisting of polysulfone, polyethersulfone, polyarylsulfone, poly alkyl sulfone, poly aralkyl sulfone, polyphenyl sulfone, and poly ether ether sulfone, but is not limited thereto.
  • pores having a diameter of 40 nm or greater among the pores formed in the surface of the polysulfone layer may account for less than 0.5% of total pores or less than 0.3% thereof.
  • damage to a polyamide layer formed on the polysulfone layer may be delayed even in the case that fluid pressure is relatively high, and a surface area for forming the polyamide layer may be increased, whereby the active layer may be stably formed.
  • the reverse osmosis membrane according to the embodiment of the invention may improve salt rejection while maintaining high initial permeation flux, by allowing water to pass therethrough with salt ions being blocked, as well as selectively separating suspended materials, polysaccharides, proteins, polymer materials and the like, which are generally separable from a porous support.
  • a ratio of a total area of the pores to a total surface area of the polysulfone layer may be 1% to 20%, 4% to 18%, 6% to 19% or 8% to 16%.
  • the reverse osmosis membrane may achieve superior initial permeation flux while maintaining high salt rejection.
  • an average diameter of the pores formed in the polysulfone layer may be 8.0 nm to 10.0 nm or 8.5 nm to 9.7 nm.
  • the polyamide layer may be densely formed on the polysulfone layer, and thus, adhesive strength between the polysulfone layer and the polyamide layer may be improved.
  • the reverse osmosis membrane according to the embodiment of the invention including the polysulfone layer and the polyamide layer may have improved supporting force and delay damage to the surface of the membrane even after a relatively long period of operations, thereby achieving improved durability.
  • the distribution of the pores having a diameter of 40 nm or greater among the pores formed in the surface of the polysulfone layer and the average diameter of the pores have the following relationship therebetween: when the diameters of the pores are measured based on the same surface area of the polysulfone layer, even though the average diameter of the pores is, for example, identically measured as 8.0 nm, in a case in which the pores having a diameter of 40 nm or greater account for less than 0.50, the number of pores formed in the surface of the polysulfone layer may be greater than that in a counterpart case, resulting in an increase in pore diameter uniformity.
  • the polyamide layer i.e., the active layer may be further uniformly formed. Since the polyamide layer having relevance to the performance of the reverse osmosis membrane is formed to be stable, the performance of the reverse osmosis membrane such as salt rejection, initial permeation flux and the like may be further improved.
  • the active layer may be formed using an amine compound and an acyl halide compound through interfacial polymerization.
  • the amine compound may include, for example, m-phenylenediamine, p-phenylenediamine, 1,3,6-benzenetriamine, 4-chloro-1,3-phenylendiamine, 6-chloro-1,3-phenylendiamine, 3-chloro-1,4-phenylendiamine or mixtures thereof, but is not limited thereto.
  • the acyl halide compound may include, for example, trimesoyl chloride, isophthaloyl chloride, terephthaloyl chloride, or mixtures thereof, but is not limited thereto.
  • a reverse osmosis membrane according to the embodiment of the invention includes (1) forming a polysulfone layer by applying a mixed solvent containing two or more solvents having different solubility parameter values to a surface of a porous support; and (2) forming an active layer on the polysulfone layer.
  • the forming of the polysulfone layer may be performed using a solution including a polymer having a sulfonic acid group and a mixed solvent containing two or more solvents having different solubility parameter values.
  • an amount of the polymer having a sulfonic acid group may be 5 to 45 parts by weight, 7 to 40 parts by weight or 10 to 30 parts by weight, based on 100 parts by weight of the solution.
  • the amount of the polymer having a sulfonic acid group satisfies the above ranges, the polymer may be easily dissolved in the mixed solvent, whereby the forming of the polysulfone layer may be facilitated.
  • an amount of the mixed solvent containing two or more solvents having different solubility parameter values may be 55 to 95 parts by weight, 60 to 93 parts by weight or 66 to 90 parts by weight, based on 100 parts by weight of the solution.
  • the amount of the mixed solvent containing two or more solvents having different solubility parameter values satisfies the above ranges, when they are coated on the surface of the porous support in order to form the polysulfone layer, a thickness of the coating layer may be easily adjusted, and thus, the relevant process may be effectively simplified.
  • a difference in the solubility parameter values of two or more solvents included in the mixed solvent for use in the forming of the polysulfone layer may be 0.1 to 15, 0.1 to 10, 0.2 to 8.5, 0.1 to 5, or 0.1 to 3.
  • the outflow rates of the solvents from the solution including the polymer having a sulfonic acid group and the mixed solvent containing two or more solvents having different solubility parameter values may be easily adjusted to thereby control the diameters of the pores formed in the surface of the polysulfone layer within a desired range.
  • the mixed solvent containing two or more solvents having different solubility parameter values are not particularly limited so long as a difference in the solubility parameter values of respective solvents is within a range of 0.1 to 15.
  • the mixed solvent may include two or more solvents selected from the group consisting of dimethylacetamide, methyl acetate, hydrazine, trichloromethane, diiodomethane, trichloroethylene, styrene, 2-butanone, tetrahydrofuran, cyclohexanone, acetone, benzonitrile, isophorone, 2-ethyl-1-hexanol, dichloromethane, dibutyl phthalate, 1,4-Dioxane, 1,2-dichlorobenzene, 1,2-dichloroethane, 2-butoxyethanol, 1-bromonaphthalene, acetic acid, epichlorohydrin, benzaldehyde, morpholine, acrylonitrile
  • the mixed solvent used in the forming of the polysulfone layer may be, for example, a mixture of ⁇ circle around (1) ⁇ a first solvent having a solubility parameter value of 21(J/cm 3 ) 1/2 to 30 (J/cm 3 ) 1/2 and ⁇ circle around (2) ⁇ a second solvent having a solubility parameter value different from that of the first solvent by 0.1 to 15.
  • the first solvent satisfies the above solubility parameter range, it may allow the polymer having a sulfonic acid group to be easily dissolved therein, thereby being effective in the formation of the polysulfone layer.
  • the outflow rates of the solvents may be appropriately adjusted to thereby control the diameters of the pores formed in the surface of the polysulfone layer within a desired range. That is, the pore diameter distribution, density, pore area ratio, and the like, of the pores may be easily adjusted within desired ranges by appropriately using the difference in the solubility parameter values.
  • the first solvent having a solubility parameter value of 21(J/cm 3 ) 1/2 to 30 (J/CM 3 ) 1/2 may be selected from the group consisting of acetic acid, epichlorohydrin, benzaldehyde, morpholine, acrylonitrile, acetophenone, pyridine, 2-butanol, cyclohexanol, aniline, 2-methylpropyl alcohol, 3-Methylphenol, N-methyl-2-pyrrolidine, 1-butanol, bromine, 2-ethoxyethanol, phenoxyethanol, 2-propanol, benzyl alcohol, dimethylethanolamine, 2-furanmethanol, acetonitrile, 1-propanol, 2-methoxymethanol, methanoic acid, N,N-dimethylformamide, nitromethane, ethanol, dimethyl sulfoxide, propylene carbonate, 1,3-butanediol, diethylene glycol, methanol, ethylene carbonate, diethylene
  • the second solvent having a solubility parameter difference of 0.1 to 15 with respect to the solubility parameter value of the first solvent may be selected from the group consisting of 2-butanol, cyclohexanol, aniline, 2-methylpropyl alcohol, 3-methylphenol, N-methyl-2-pyrrolidine, 1-butanol, bromine, 2-ethoxyethanol, phenoxyethanol, 2-propanol, benzyl alcohol, dimethylethanolamine, 2-furanmethanol, acetonitrile, 1-propanol, 2-methoxymethanol, methanoic acid, N,N-dimethylformamide, nitromethane, ethanol, dimethyl sulfoxide, propylene carbonate, 1,3-butanediol, diethylene glycol, methanol, ethylene carbonate, diethyl sulfate, nitroethane, allyl alcohol and ⁇ -butyrolactone, but is not limited thereto.
  • the mixed solvent may be, for example, a mixture of N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) or a mixture of N,N-dimethylformamide (DMF) and ⁇ -butyrolactone (GBL).
  • DMF N,N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • GBL ⁇ -butyrolactone
  • N,N-dimethylformamide has a slight solubility parameter difference from the solubility parameter value of polysulfone, that is, it has superior affinity with the polysulfone polymer, and thus, it may cause the polysulfone polymer to be more easily dissolved therein, thereby effectively facilitating the forming of the polysulfone layer.
  • dimethyl sulfoxide (DMSO) or ⁇ -butyrolactone (GBL) mixed with N,N-dimethylformamide (DMF) has a relatively large difference from the solubility parameter value of polysulfone, that is, it has low affinity with the polysulfone polymer, and thus, it may be rapidly discharged during the forming the polysulfone layer.
  • DMSO dimethyl sulfoxide
  • GBL ⁇ -butyrolactone
  • DMF N,N-dimethylformamide
  • a ratio of the solvents included in the mixed solvent for use in the forming of the polysulfone layer for example, a ratio of the first solvent having a solubility parameter value of 21 (J/cm 3 ) 1/2 to 30(J/cm 3 ) 1/2 and the second solvent having a solubility parameter value different from that of the first solvent by 0.1 to 15, may be 95:5 to 50:50, 90:10 to 55:45, or 85:15 to 60:40.
  • the number of pores having a diameter of 40 nm or greater may be adjusted to be less than 0.5% of the total number of pores formed in the surface of the polysulfone layer, resulting in allowing for a polyamide layer to be uniformly formed on the polysulfone-based support layer.
  • the performance of the active layer, i.e., the polyamide layer may be improved, whereby the reverse osmosis membrane including such a polyamide layer may be significantly improved in terms of salt rejection and initial permeation flux.
  • a ratio of N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) included in the mixed solvent may be 90:10 to 60:40 or 80:20 to 70:30.
  • a ratio of N,N-dimethylformamide (DMF) and ⁇ -butyrolactone (GBL) included in the mixed solvent may be 95:5 to 50:50 or 90:10 to 60:40.
  • the ratio of N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) or the ratio of N,N-dimethylformamide (DMF) and ⁇ -butyrolactone (GBL) satisfies the above range, the number of pores formed in the surface of the polysulfone layer and uniformity in the diameters of the pores may be increased. Therefore, the polyamide layer may be stably formed on the polysulfone layer, resulting in improved performance of the reverse osmosis membrane.
  • the number of micro pores formed in the polysulfone layer may be increased.
  • the outflow rates of respective solvents included in the mixed solvent may be finely adjusted according to variations in the mixture ratio thereof, thereby further increasing the number of micro pores and significantly reducing the number of pores having a diameter of 40 nm or greater.
  • the plurality of micro pores may be easily formed and the pore diameter distribution, density, pore area ratio, and the like, thereof may be easily adjusted, in the case of manufacturing a reverse osmosis membrane by the method of manufacturing a reverse osmosis membrane according to the embodiment of the invention, as compared with a conventional method of manufacturing a reverse osmosis membrane including a polysulfone layer formed by only using DMF as a solvent.
  • the reverse osmosis membrane manufactured by the above-described method has an effect of significantly improving the performance thereof such as salt rejection, permeation flux and the like, as compared with the conventional method.
  • the forming of the polysulfone layer on the surface of the porous support may be performed by a method known in the art.
  • the method of forming the polysulfone layer is not particularly limited.
  • the surface of the porous support may be coated with a solution obtained by dissolving a polysulfone polymer in a mixed solvent including two or more solvents having different solubility parameter values at a constant coating thickness and be then brought into contact with water to discharge the solvents therefrom, whereby a porous polysulfone support may be formed.
  • the contact process may be performed by dipping, coating, spraying or the like, and in particular, the dipping process may be appropriate.
  • the forming of the active layer on the porous polysulfone support may be performed using a method known in the art, without limitation.
  • the active layer may be formed by dipping the porous support into an aqueous m-phenylenediamine (mPD) solution to form an mPD layer, and dipping the mPD layer into an organic solvent containing trimesoyl chloride (TMC) to allow the mPD layer to be brought into contact with the TMC so as to be interfacially polymerized.
  • mPD m-phenylenediamine
  • TMC trimesoyl chloride
  • the active layer may be formed by spraying, coating or the like, instead of dipping.
  • the active layer may be formed using an amine compound and an acyl halide compound through interfacial polymerization.
  • the amine compound may include, for example, m-phenylenediamine, p-phenylenediamine, 1,3,6-benzenetriamine, 4-chloro-1,3-phenylendiamine, 6-chloro-1,3-phenylendiamine, 3-chloro-1,4-phenylendiamine or mixtures thereof, but is not limited thereto.
  • the acyl halide compound may include, for example, trimesoyl chloride, isophthaloyl chloride, terephthaloyl chloride, or mixtures thereof, but is not limited thereto.
  • drying and washing processes may be performed.
  • the drying process may be performed at 60° C. to 70° C. for five to ten minutes.
  • the washing process is not particularly limited and may be, for example, performed using a basic aqueous solution.
  • the basic aqueous solution is not particularly limited, and may be, for example, a sodium carbonate aqueous solution.
  • the washing process may be performed at room temperature for two hours or longer.
  • the reverse osmosis membrane manufactured by the above-described method according to the embodiment of the invention was significantly improved in terms of salt rejection and permeation flux, as compared with existing reverse osmosis membranes.
  • the reverse osmosis membrane manufactured by the above-described method according to the embodiment of the invention did not suffer from a significant degradation of a water purifying function even after two hours from injection of a fouling material, casein. That is, the reverse osmosis membrane according to the embodiment of the invention had equivalent or superior antifouling properties and durability as compared to those of existing reverse osmosis membranes.
  • the reverse osmosis membrane according to the embodiment of the invention may achieve improved permeation flux while having superior supporting force, salt rejection, antifouling properties, and durability, as compared with existing reverse osmosis membranes, by adjusting the pore diameter distribution, average diameter, pore area ratio, and the like, of pores formed in the polysulfone layer using a difference in the outflow rates of the solvents through the mixed solvent containing two or more solvents having different solubility parameter values in the forming of the polysulfone layer.
  • the reverse osmosis membrane according to the embodiment of the invention since the reverse osmosis membrane according to the embodiment of the invention has significantly increased permeation flux while having superior salt rejection, the efficiency thereof is excellent. Therefore, the reverse osmosis membrane according to the embodiment of the invention may be advantageously used in the desalination of saltwater and seawater, the production of ultrapure water for semiconductor industrial use, the disposal of various types of industrial waste water, and the like.
  • N,N-dimethylformamide (DMF) having a solubility parameter value of 24.9 (J/cm 3 ) 1/2 ) and dimethyl sulfoxide (DMSO) having a solubility parameter value of 26.7 (J/cm 3 ) 1/2 ) were mixed in a ratio of 90:10 to prepare a mixed solvent, and 18 wt % of polysulfone was added thereto and stirred at 80° C. for twelve hours or longer to prepare a uniformly combined liquid phase solution.
  • the solution was cast on a non-woven polyester fabric having a thickness of 100 ⁇ m to obtain the resultant fabric having a thickness of 150 ⁇ m and the resultant fabric was dipped into water to manufacture a porous polysulfone support.
  • the support was dipped into an ISOL-C solution (SKC Corp.) containing 0.1 wt % of trimesoyl chloride (TMC), then removed, and dried in an oven at 60° C. for ten minutes in order to remove an excessive amount of the organic solution therefrom. Thereafter, the support was washed in an aqueous solution containing 0.2 wt % of sodium carbonate at room temperature for two hours or longer, and then washed using distilled water. In this manner, a reverse osmosis membrane including a polyamide active layer having a thickness of 1 ⁇ m or less was manufactured.
  • ISOL-C solution SSC Corp.
  • TMC trimesoyl chloride
  • a reverse osmosis membrane was manufactured in the same manner as that of Inventive Example 1, except that DMF and DMSO were mixed in a ratio of 80:20.
  • FIG. 1 An image of the surface of the polysulfone layer analyzed by a scanning electron microscope (SEM) is shown in FIG. 1 .
  • a reverse osmosis membrane was manufactured in the same manner as that of Inventive Example 1, except that DMF and DMSO were mixed in a ratio of 70:30.
  • a reverse osmosis membrane was manufactured in the same manner as that of Inventive Example 1, except that DMF and DMSO were mixed in a ratio of 60:40.
  • a reverse osmosis membrane was manufactured in the same manner as that of Inventive Example 1, except that, instead of the mixed solvent of DMF and DMSO, N,N-dimethylformamide (DMF) having a solubility parameter value of 24.9(J/cm 3 ) 1/2 ) and ⁇ -butyrolactone (GBL) having a solubility parameter value of 25.6 (J/cm 3 ) 1/2 ) were mixed in a ratio of 90:10 to prepare a mixed solvent, and 16 wt % of polysulfone was added thereto.
  • DMF N,N-dimethylformamide
  • GBL ⁇ -butyrolactone
  • a reverse osmosis membrane was manufactured in the same manner as that of Inventive Example 1, except that DMF and GBL, instead of the mixed solvent of DMF and DMSO, were mixed in a ratio of 80:20 and 16 wt % of polysulfone was added thereto.
  • FIG. 3 An image of the surface of the polysulfone layer analyzed by a scanning electron microscope (SEM) is shown in FIG. 3 .
  • a reverse osmosis membrane was manufactured in the same manner as that of Inventive Example 1, except that DMF and GBL, instead of the mixed solvent of DMF and DMSO, were mixed in a ratio of 70:30 and 16 wt % of polysulfone was added thereto.
  • a reverse osmosis membrane was manufactured in the same manner as that of Inventive Example 1, except that DMF and GBL, instead of the mixed solvent of DMF and DMSO, were mixed in a ratio of 60:40 and 16 wt % of polysulfone was added thereto.
  • a reverse osmosis membrane was manufactured in the same manner as that of Inventive Example 1, except that only DMF was used as a solvent in the forming of the porous polysulfone support.
  • FIG. 2 An image of the surface of the polysulfone layer analyzed by a scanning electron microscope (SEM) is shown in FIG. 2 .
  • a reverse osmosis membrane was manufactured in the same manner as that of Inventive Example 5, except that only DMF was used as a solvent in the forming of the porous polysulfone support.
  • FIG. 4 An image of the surface of the polysulfone layer analyzed by a scanning electron microscope (SEM) is shown in FIG. 4 .
  • the initial salt rejection and the initial permeation flux of the reverse osmosis membranes manufactured according to Inventive Examples 1 to 8 and Comparative Example 1 and 2 were measured.
  • the initial salt rejection and the initial permeation flux were measured while supplying an aqueous sodium chloride solution of 32,000 ppm at a flow rate of 4,500 mL/min under 25° C. and 800 psi.
  • An apparatus for evaluating the reverse osmosis membranes was a Sepa CF II cell (manufactured by GE Osmonics) including a flat type transmission cell, a high pressure pump, a storage bath and a cooler.
  • the structure of the flat type transmission cell was a cross-flow type, and had an effective transmission area of 140 cm 2 .
  • the antifouling properties of the reverse osmosis membranes manufactured according to Inventive Examples 1 to 8 and Comparative Examples 1 and 2 were evaluated.
  • the evaluation of the antifouling properties was conducted by using a mixture solution of an aqueous NaCl solution of 32,000 ppm and an aqueous casein solution of 100 ppm under a pressure of 800 psi. After evaluating the initial salt rejection and the initial permeation flux, the aqueous casein solution of 100 ppm was injected into an evaluation tank, and changes in salt rejection and flux were immediately measured. After two hours, changes in salt rejection and flux were measured. The casein was used after dissolving in an aqueous solution with a pH of 11 or greater. The measured results are shown in Table 3.
  • the pore diameter distribution was measured in the surfaces of the respective polysulfone layers of the reverse osmosis membranes manufactured according to Inventive Examples 1 to 8 and Comparative Examples 1 and 2.
  • the measurement of the pore diameter distribution was performed using a count/size function of an image-Pro Plus with respect to an SEM image of the surface of the polysulfone layer compensated in a manner in which the contrast value of the SEM image was compensated as 80.
  • the measured results are illustrated in Table 4.
  • the reverse osmosis membranes manufactured according to Inventive Examples 1 to 8 showed a significant reduction in the formation of pores having a diameter of 40 nm or greater in the surface of the polysulfone layer, as compared with those manufactured according to Comparative Examples 1 and 2.
  • a reverse osmosis membrane includes a polysulfone layer having pores formed in a surface thereof, the pores having predetermined ranges of distribution, average diameter, pore area ratio, and the like, thus achieving improved initial permeation flux while having superior salt rejection, antifouling properties and durability, as compared with existing reverse osmosis membranes.

Abstract

There is provided a reverse osmosis membrane including a porous support; a polysulfone layer formed on the porous support and having pores formed in a surface thereof, pores having a diameter of 40 nm or greater accounting for less than 0.5% of total pores; and an active layer.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a Continuation of U.S. patent application Ser. No. 14/026,869 filed on Sep. 13, 2013, which is a Bypass Continuation Application of International Patent Application No. PCT/KR2013/004583, filed May 24, 2013, and claims the benefit of Korean Patent Application Nos. 10-2012-0055591 filed on May 24, 2012, and 10-2013-0059347 filed on May 24, 2013, in the Korean Intellectual Property Office, the disclosures of which are incorporated herein by reference.
  • TECHNICAL FIELD
  • The present disclosure relates to a reverse osmosis membrane, and more particularly, to a reverse osmosis membrane including a polysulfone layer having pores formed in a surface thereof, the pores having predetermined ranges of distribution, average diameter, pore area ratio, and the like.
  • BACKGROUND
  • Osmosis is a phenomenon in which a solvent moves from a solution having a low solute concentration to another solution having a high solute concentration by passing through a semi-permeable separation membrane isolating the two solutions. In this case, pressure acting on the solution having a high solute concentration through the movement of the solvent is known as osmotic pressure. However, when external pressure having a level greater than that of osmotic pressure is applied, the solvent moves towards the solution having a low solute concentration, and such a phenomenon is known as reverse osmosis. Various types of salt or organic material may be separated by a semi-permeable membrane using a pressure gradient as driving force, according to the reverse osmosis principle. A reverse osmosis membrane using a reverse osmosis phenomenon has been used to separate molecular-level materials, remove salts from salt water or sea water and supply water available for domestic, commercial and industrial use.
  • The reverse osmosis membrane may representatively include a polyamide-based reverse osmosis membrane, by way of example. The polyamide-based reverse osmosis membrane may be manufactured by forming a polyamide active layer on a microporous support. More particularly, the polyamide-based reverse osmosis membrane may be manufactured by preparing a microporous support by forming a polysulfone layer on a non-woven fabric, dipping the microporous support into an aqueous m-phenylenediamine (mPD) solution to form an mPD layer, dipping the mPD layer into an organic solvent containing trimesoyl chloride (TMC) to allow the mPD layer to be brought into contact with the TMC so as to be interfacially polymerized to thereby form a polyamide layer.
  • However, the polyamide-based reverse osmosis membrane manufactured by the above conventional method may suffer from low initial permeation flux efficiency, resulting in deterioration of a water purifying function. Furthermore, in the case of water treatment using a reverse osmosis membrane, a solute or an ionic compound may be adsorbed to the surface of the reverse osmosis membrane to pollute the reverse osmosis membrane, and thus, water permeability characteristics such as permeation flux and salt rejection have been degraded over time.
  • Therefore, research into development of a reverse osmosis membrane having superior durability as well as improvements in water permeability characteristics such as permeation flux and salt rejection is urgently in demand.
  • SUMMARY
  • An aspect of the present disclosure provides a reverse osmosis membrane able to achieve superior antifouling properties and durability and to increase permeation flux while improving salt rejection.
  • According to an aspect of the present disclosure, there is provided a reverse osmosis membrane, including: a porous support; a polysulfone layer formed on the porous support and having pores formed in a surface thereof, pores having a diameter of 40 nm or greater accounting for less than 0.5% of total pores; and an active layer.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other aspects, features and other advantages of the present inventive concept will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a scanning electron microscope (SEM) image showing a surface of a polysulfone layer of a reverse osmosis membrane manufactured according to Inventive Example 2;
  • FIG. 2 is a scanning electron microscope (SEM) image showing a surface of a polysulfone layer of a reverse osmosis membrane manufactured according to Comparative Example 1;
  • FIG. 3 is a scanning electron microscope (SEM) image showing a surface of a polysulfone layer of a reverse osmosis membrane manufactured according to Inventive Example 6;
  • FIG. 4 is a scanning electron microscope (SEM) image showing a surface of a polysulfone layer of a reverse osmosis membrane manufactured according to Comparative Example 2; and
  • FIG. 5 is a graph showing a ratio of pores having a diameter of 40 nm or greater to the total pores formed in a surface of a polysulfone layer of a reverse osmosis membrane, respectively manufactured according to Inventive Examples 1 to 8 and Comparative Examples 1 and 2.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Embodiments of the present inventive concept will now be described in detail with reference to the accompanying drawings.
  • The inventive concept may, however, be exemplified in many different forms and should not be construed as being limited to the specific embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the inventive concept to those skilled in the art.
  • Throughout the present specification, numerical values related to the distribution of pores having a diameter of 40 nm or greater, a pore area ratio, an average diameter of pores, and the like are obtained by performing measurements by selecting a 10 cm×10 square region based on any point on a surface of a polysulfone layer.
  • In addition, a pore diameter refers to a value obtained by measuring the longest distance across a pore formed in a surface of a polysulfone layer in a case in which the pore has a circular or oval shape.
  • Furthermore, solubility parameters refer to ‘Hansen Solubility Parameters’ and solubility parameter values of respective solvents are obtained from Hansen's 1971 parameters listed in the Handbook of Solubility Parameters, Allan F. M. Barton. Ph.D., CRC Press, 1983, page 153-157.
  • The inventors of the invention have conducted repeated experimentation in order to develop a reverse osmosis membrane able to improve permeation flux while having superior salt rejection, and have found that when a reverse osmosis membrane is manufactured using a mixed solvent containing two or more solvents having different solubility parameter values at the time of forming a polysulfone layer, the performance of the reverse osmosis membrane may be improved, as compared with existing reverse osmosis membranes, by adjusting the diameters and density of pores formed in the polysulfone layer using a change in the outflow rates of the solvents at the time of forming the membrane.
  • In the case of forming a polysulfone layer at the time of manufacturing a reverse osmosis membrane according to the related art, N,N-dimethylformamide (DMF) has generally been used as a solvent. In this case, pores formed in the surface of the polysulfone layer have excessively large diameters, and thus, an active layer formed on the polysulfone layer has not been stably formed. However, a reverse osmosis membrane according to an embodiment of the invention may have a uniform active layer by increasing the number of micro pores formed in the polysulfone layer, and thus, the reverse osmosis membrane may be manufactured to have superior antifouling properties and durability and significantly improve the performance thereof such as salt rejection, initial permeation flux and the like.
  • The reverse osmosis membrane according to the embodiment of the invention may include a porous support; a polysulfone layer formed on the porous support and having pores formed in a surface thereof, pores having a diameter of 40 nm or greater accounting for less than 0.50 of total pores; and an active layer.
  • Here, a general porous support known in the art may be used without limitation. For example, the porous support may be a non-woven fabric. Materials for the non-woven fabric may include polyester, polycarbonate, finely porous polypropylene, polyphenylene ether, poly vinylindene fluoride and the like, but are not limited thereto.
  • In addition, the polysulfone layer may be formed on the porous support and have the pores formed in the surface thereof. The polysulfone layer may be formed of a polymer having a sulfonic acid group.
  • For example, the polymer having a sulfonic acid group may be selected from the group consisting of polysulfone, polyethersulfone, polyarylsulfone, poly alkyl sulfone, poly aralkyl sulfone, polyphenyl sulfone, and poly ether ether sulfone, but is not limited thereto.
  • In particular, in the reverse osmosis membrane according to the embodiment of the invention, pores having a diameter of 40 nm or greater among the pores formed in the surface of the polysulfone layer may account for less than 0.5% of total pores or less than 0.3% thereof. In a case in which the distribution of the pores having a diameter of 40 nm or greater among the pores formed in the surface of the polysulfone layer satisfies the above range, damage to a polyamide layer formed on the polysulfone layer may be delayed even in the case that fluid pressure is relatively high, and a surface area for forming the polyamide layer may be increased, whereby the active layer may be stably formed. In addition, the reverse osmosis membrane according to the embodiment of the invention may improve salt rejection while maintaining high initial permeation flux, by allowing water to pass therethrough with salt ions being blocked, as well as selectively separating suspended materials, polysaccharides, proteins, polymer materials and the like, which are generally separable from a porous support.
  • Meanwhile, in the reverse osmosis membrane according to the embodiment of the invention, a ratio of a total area of the pores to a total surface area of the polysulfone layer may be 1% to 20%, 4% to 18%, 6% to 19% or 8% to 16%. In a case in which the total area of the pores with respect to the total surface area of the polysulfone layer satisfies the above range, the reverse osmosis membrane may achieve superior initial permeation flux while maintaining high salt rejection.
  • In addition, an average diameter of the pores formed in the polysulfone layer may be 8.0 nm to 10.0 nm or 8.5 nm to 9.7 nm. In a case in which the average diameter of the pores satisfies the above range, the polyamide layer may be densely formed on the polysulfone layer, and thus, adhesive strength between the polysulfone layer and the polyamide layer may be improved. The reverse osmosis membrane according to the embodiment of the invention including the polysulfone layer and the polyamide layer may have improved supporting force and delay damage to the surface of the membrane even after a relatively long period of operations, thereby achieving improved durability.
  • Meanwhile, the distribution of the pores having a diameter of 40 nm or greater among the pores formed in the surface of the polysulfone layer and the average diameter of the pores have the following relationship therebetween: when the diameters of the pores are measured based on the same surface area of the polysulfone layer, even though the average diameter of the pores is, for example, identically measured as 8.0 nm, in a case in which the pores having a diameter of 40 nm or greater account for less than 0.50, the number of pores formed in the surface of the polysulfone layer may be greater than that in a counterpart case, resulting in an increase in pore diameter uniformity. In addition, the polyamide layer, i.e., the active layer may be further uniformly formed. Since the polyamide layer having relevance to the performance of the reverse osmosis membrane is formed to be stable, the performance of the reverse osmosis membrane such as salt rejection, initial permeation flux and the like may be further improved.
  • Meanwhile, the active layer may be formed using an amine compound and an acyl halide compound through interfacial polymerization. Here, the amine compound may include, for example, m-phenylenediamine, p-phenylenediamine, 1,3,6-benzenetriamine, 4-chloro-1,3-phenylendiamine, 6-chloro-1,3-phenylendiamine, 3-chloro-1,4-phenylendiamine or mixtures thereof, but is not limited thereto. In addition, the acyl halide compound may include, for example, trimesoyl chloride, isophthaloyl chloride, terephthaloyl chloride, or mixtures thereof, but is not limited thereto.
  • Hereinafter, a method of manufacturing a reverse osmosis membrane according to an embodiment of the invention will be described by way of example.
  • A reverse osmosis membrane according to the embodiment of the invention includes (1) forming a polysulfone layer by applying a mixed solvent containing two or more solvents having different solubility parameter values to a surface of a porous support; and (2) forming an active layer on the polysulfone layer.
  • In addition, the forming of the polysulfone layer may be performed using a solution including a polymer having a sulfonic acid group and a mixed solvent containing two or more solvents having different solubility parameter values.
  • In addition, an amount of the polymer having a sulfonic acid group may be 5 to 45 parts by weight, 7 to 40 parts by weight or 10 to 30 parts by weight, based on 100 parts by weight of the solution. In a case in which the amount of the polymer having a sulfonic acid group satisfies the above ranges, the polymer may be easily dissolved in the mixed solvent, whereby the forming of the polysulfone layer may be facilitated.
  • Meanwhile, an amount of the mixed solvent containing two or more solvents having different solubility parameter values may be 55 to 95 parts by weight, 60 to 93 parts by weight or 66 to 90 parts by weight, based on 100 parts by weight of the solution. In a case in which the amount of the mixed solvent containing two or more solvents having different solubility parameter values satisfies the above ranges, when they are coated on the surface of the porous support in order to form the polysulfone layer, a thickness of the coating layer may be easily adjusted, and thus, the relevant process may be effectively simplified.
  • In the method of manufacturing a reverse osmosis membrane according to the embodiment of the invention, a difference in the solubility parameter values of two or more solvents included in the mixed solvent for use in the forming of the polysulfone layer may be 0.1 to 15, 0.1 to 10, 0.2 to 8.5, 0.1 to 5, or 0.1 to 3. In a case in which the difference in the solubility parameter values satisfies the above ranges, the outflow rates of the solvents from the solution including the polymer having a sulfonic acid group and the mixed solvent containing two or more solvents having different solubility parameter values may be easily adjusted to thereby control the diameters of the pores formed in the surface of the polysulfone layer within a desired range.
  • Meanwhile, the mixed solvent containing two or more solvents having different solubility parameter values are not particularly limited so long as a difference in the solubility parameter values of respective solvents is within a range of 0.1 to 15. For example, the mixed solvent may include two or more solvents selected from the group consisting of dimethylacetamide, methyl acetate, hydrazine, trichloromethane, diiodomethane, trichloroethylene, styrene, 2-butanone, tetrahydrofuran, cyclohexanone, acetone, benzonitrile, isophorone, 2-ethyl-1-hexanol, dichloromethane, dibutyl phthalate, 1,4-Dioxane, 1,2-dichlorobenzene, 1,2-dichloroethane, 2-butoxyethanol, 1-bromonaphthalene, acetic acid, epichlorohydrin, benzaldehyde, morpholine, acrylonitrile, acetophenone, pyridine, 2-butanol, cyclohexanol, aniline, 2-methylpropyl alcohol, 3-methylphenol, N-methyl-2-pyrrolidine, 1-butanol, bromine, 2-ethoxyethanol, phenoxyethanol, 2-propanol, benzyl alcohol, dimethylethanolamine, 2-furanmethanol, acetonitrile, 1-propanol, 2-methoxymethanol, methanoic acid, N,N-dimethylformamide, nitromethane, ethanol, dimethyl sulfoxide, propylene carbonate, 1,3-butanediol, diethylene glycol, methanol, 1,2-propanediol, 2-aminoethanol, ethylene glycol, ethylene carbonate, diethyl sulfate, nitroethane, allyl alcohol and γ-butyrolactone.
  • More specifically, in the method of manufacturing a reverse osmosis membrane according to the embodiment of the invention, the mixed solvent used in the forming of the polysulfone layer may be, for example, a mixture of {circle around (1)} a first solvent having a solubility parameter value of 21(J/cm3)1/2 to 30 (J/cm3)1/2 and {circle around (2)} a second solvent having a solubility parameter value different from that of the first solvent by 0.1 to 15. In a case in which the first solvent satisfies the above solubility parameter range, it may allow the polymer having a sulfonic acid group to be easily dissolved therein, thereby being effective in the formation of the polysulfone layer. In addition, in a case in which the first solvent is mixed with the second solvent having a solubility parameter difference of 0.1 to 15 with respect to the solubility parameter value of the first solvent, when the polysulfone layer is formed on the porous support, the outflow rates of the solvents may be appropriately adjusted to thereby control the diameters of the pores formed in the surface of the polysulfone layer within a desired range. That is, the pore diameter distribution, density, pore area ratio, and the like, of the pores may be easily adjusted within desired ranges by appropriately using the difference in the solubility parameter values.
  • Meanwhile, the first solvent having a solubility parameter value of 21(J/cm3)1/2 to 30 (J/CM3)1/2 may be selected from the group consisting of acetic acid, epichlorohydrin, benzaldehyde, morpholine, acrylonitrile, acetophenone, pyridine, 2-butanol, cyclohexanol, aniline, 2-methylpropyl alcohol, 3-Methylphenol, N-methyl-2-pyrrolidine, 1-butanol, bromine, 2-ethoxyethanol, phenoxyethanol, 2-propanol, benzyl alcohol, dimethylethanolamine, 2-furanmethanol, acetonitrile, 1-propanol, 2-methoxymethanol, methanoic acid, N,N-dimethylformamide, nitromethane, ethanol, dimethyl sulfoxide, propylene carbonate, 1,3-butanediol, diethylene glycol, methanol, ethylene carbonate, diethyl sulfate, nitroethane, allyl alcohol and γ-butyrolactone, but is not limited thereto.
  • In addition, the second solvent having a solubility parameter difference of 0.1 to 15 with respect to the solubility parameter value of the first solvent may be selected from the group consisting of 2-butanol, cyclohexanol, aniline, 2-methylpropyl alcohol, 3-methylphenol, N-methyl-2-pyrrolidine, 1-butanol, bromine, 2-ethoxyethanol, phenoxyethanol, 2-propanol, benzyl alcohol, dimethylethanolamine, 2-furanmethanol, acetonitrile, 1-propanol, 2-methoxymethanol, methanoic acid, N,N-dimethylformamide, nitromethane, ethanol, dimethyl sulfoxide, propylene carbonate, 1,3-butanediol, diethylene glycol, methanol, ethylene carbonate, diethyl sulfate, nitroethane, allyl alcohol and γ-butyrolactone, but is not limited thereto.
  • More specifically, the mixed solvent may be, for example, a mixture of N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) or a mixture of N,N-dimethylformamide (DMF) and γ-butyrolactone (GBL).
  • Here, N,N-dimethylformamide (DMF) has a slight solubility parameter difference from the solubility parameter value of polysulfone, that is, it has superior affinity with the polysulfone polymer, and thus, it may cause the polysulfone polymer to be more easily dissolved therein, thereby effectively facilitating the forming of the polysulfone layer. In addition, dimethyl sulfoxide (DMSO) or γ-butyrolactone (GBL) mixed with N,N-dimethylformamide (DMF) has a relatively large difference from the solubility parameter value of polysulfone, that is, it has low affinity with the polysulfone polymer, and thus, it may be rapidly discharged during the forming the polysulfone layer. By adjusting the outflow rates of the solvents, the number of micro pores formed in the surface of the polysulfone layer may be increased.
  • Meanwhile, in the method of manufacturing a reverse osmosis membrane according to the embodiment of the invention, a ratio of the solvents included in the mixed solvent for use in the forming of the polysulfone layer, for example, a ratio of the first solvent having a solubility parameter value of 21 (J/cm3)1/2 to 30(J/cm3)1/2 and the second solvent having a solubility parameter value different from that of the first solvent by 0.1 to 15, may be 95:5 to 50:50, 90:10 to 55:45, or 85:15 to 60:40. In a case in which the mixture ratio satisfies the above range, the number of pores having a diameter of 40 nm or greater may be adjusted to be less than 0.5% of the total number of pores formed in the surface of the polysulfone layer, resulting in allowing for a polyamide layer to be uniformly formed on the polysulfone-based support layer. In this manner, the performance of the active layer, i.e., the polyamide layer may be improved, whereby the reverse osmosis membrane including such a polyamide layer may be significantly improved in terms of salt rejection and initial permeation flux.
  • More specifically, a ratio of N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) included in the mixed solvent may be 90:10 to 60:40 or 80:20 to 70:30. Alternatively, a ratio of N,N-dimethylformamide (DMF) and γ-butyrolactone (GBL) included in the mixed solvent may be 95:5 to 50:50 or 90:10 to 60:40. In a case in which the ratio of N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) or the ratio of N,N-dimethylformamide (DMF) and γ-butyrolactone (GBL) satisfies the above range, the number of pores formed in the surface of the polysulfone layer and uniformity in the diameters of the pores may be increased. Therefore, the polyamide layer may be stably formed on the polysulfone layer, resulting in improved performance of the reverse osmosis membrane.
  • In the method of manufacturing a reverse osmosis membrane according to the embodiment of the invention, in a case in which the mixed solvent containing two or more solvents having different solubility parameter values is used at the time of forming the polysulfone layer, as described above, the number of micro pores formed in the polysulfone layer may be increased. In addition, the outflow rates of respective solvents included in the mixed solvent may be finely adjusted according to variations in the mixture ratio thereof, thereby further increasing the number of micro pores and significantly reducing the number of pores having a diameter of 40 nm or greater. Therefore, the plurality of micro pores may be easily formed and the pore diameter distribution, density, pore area ratio, and the like, thereof may be easily adjusted, in the case of manufacturing a reverse osmosis membrane by the method of manufacturing a reverse osmosis membrane according to the embodiment of the invention, as compared with a conventional method of manufacturing a reverse osmosis membrane including a polysulfone layer formed by only using DMF as a solvent. In addition, the reverse osmosis membrane manufactured by the above-described method has an effect of significantly improving the performance thereof such as salt rejection, permeation flux and the like, as compared with the conventional method.
  • Meanwhile, the forming of the polysulfone layer on the surface of the porous support may be performed by a method known in the art. The method of forming the polysulfone layer is not particularly limited. For example, the surface of the porous support may be coated with a solution obtained by dissolving a polysulfone polymer in a mixed solvent including two or more solvents having different solubility parameter values at a constant coating thickness and be then brought into contact with water to discharge the solvents therefrom, whereby a porous polysulfone support may be formed. Here, the contact process may be performed by dipping, coating, spraying or the like, and in particular, the dipping process may be appropriate.
  • Then, the forming of the active layer on the porous polysulfone support may be performed using a method known in the art, without limitation. For example, the active layer may be formed by dipping the porous support into an aqueous m-phenylenediamine (mPD) solution to form an mPD layer, and dipping the mPD layer into an organic solvent containing trimesoyl chloride (TMC) to allow the mPD layer to be brought into contact with the TMC so as to be interfacially polymerized. In addition, the active layer may be formed by spraying, coating or the like, instead of dipping.
  • Here, the active layer may be formed using an amine compound and an acyl halide compound through interfacial polymerization. Here, the amine compound may include, for example, m-phenylenediamine, p-phenylenediamine, 1,3,6-benzenetriamine, 4-chloro-1,3-phenylendiamine, 6-chloro-1,3-phenylendiamine, 3-chloro-1,4-phenylendiamine or mixtures thereof, but is not limited thereto. In addition, the acyl halide compound may include, for example, trimesoyl chloride, isophthaloyl chloride, terephthaloyl chloride, or mixtures thereof, but is not limited thereto.
  • After the active layer is formed on the porous polysulfone support as described above, drying and washing processes may be performed. Here, the drying process may be performed at 60° C. to 70° C. for five to ten minutes. In addition, the washing process is not particularly limited and may be, for example, performed using a basic aqueous solution. The basic aqueous solution is not particularly limited, and may be, for example, a sodium carbonate aqueous solution. The washing process may be performed at room temperature for two hours or longer.
  • Meanwhile, as shown in Tables 1 and 2 obtained through experimentation, the reverse osmosis membrane manufactured by the above-described method according to the embodiment of the invention was significantly improved in terms of salt rejection and permeation flux, as compared with existing reverse osmosis membranes.
  • In addition, as shown in Table 3 obtained through a further experiment, the reverse osmosis membrane manufactured by the above-described method according to the embodiment of the invention did not suffer from a significant degradation of a water purifying function even after two hours from injection of a fouling material, casein. That is, the reverse osmosis membrane according to the embodiment of the invention had equivalent or superior antifouling properties and durability as compared to those of existing reverse osmosis membranes.
  • Therefore, the reverse osmosis membrane according to the embodiment of the invention may achieve improved permeation flux while having superior supporting force, salt rejection, antifouling properties, and durability, as compared with existing reverse osmosis membranes, by adjusting the pore diameter distribution, average diameter, pore area ratio, and the like, of pores formed in the polysulfone layer using a difference in the outflow rates of the solvents through the mixed solvent containing two or more solvents having different solubility parameter values in the forming of the polysulfone layer.
  • Meanwhile, since the reverse osmosis membrane according to the embodiment of the invention has significantly increased permeation flux while having superior salt rejection, the efficiency thereof is excellent. Therefore, the reverse osmosis membrane according to the embodiment of the invention may be advantageously used in the desalination of saltwater and seawater, the production of ultrapure water for semiconductor industrial use, the disposal of various types of industrial waste water, and the like.
  • INVENTIVE EXAMPLE 1
  • N,N-dimethylformamide (DMF) having a solubility parameter value of 24.9 (J/cm3)1/2) and dimethyl sulfoxide (DMSO) having a solubility parameter value of 26.7 (J/cm3)1/2) were mixed in a ratio of 90:10 to prepare a mixed solvent, and 18 wt % of polysulfone was added thereto and stirred at 80° C. for twelve hours or longer to prepare a uniformly combined liquid phase solution. The solution was cast on a non-woven polyester fabric having a thickness of 100 μm to obtain the resultant fabric having a thickness of 150 μm and the resultant fabric was dipped into water to manufacture a porous polysulfone support.
  • After dipping the manufactured porous polysulfone support into an aqueous solution containing 2 wt % of m-phenylenediamine (mPD) for two minutes and removing it therefrom, an excessive amount of the aqueous solution on the support was removed by using a 25 psi roller and dried at room temperature for 1 minute.
  • Then, the support was dipped into an ISOL-C solution (SKC Corp.) containing 0.1 wt % of trimesoyl chloride (TMC), then removed, and dried in an oven at 60° C. for ten minutes in order to remove an excessive amount of the organic solution therefrom. Thereafter, the support was washed in an aqueous solution containing 0.2 wt % of sodium carbonate at room temperature for two hours or longer, and then washed using distilled water. In this manner, a reverse osmosis membrane including a polyamide active layer having a thickness of 1 μm or less was manufactured.
  • INVENTIVE EXAMPLE 2
  • A reverse osmosis membrane was manufactured in the same manner as that of Inventive Example 1, except that DMF and DMSO were mixed in a ratio of 80:20.
  • Here, an image of the surface of the polysulfone layer analyzed by a scanning electron microscope (SEM) is shown in FIG. 1.
  • INVENTIVE EXAMPLE 3
  • A reverse osmosis membrane was manufactured in the same manner as that of Inventive Example 1, except that DMF and DMSO were mixed in a ratio of 70:30.
  • INVENTIVE EXAMPLE 4
  • A reverse osmosis membrane was manufactured in the same manner as that of Inventive Example 1, except that DMF and DMSO were mixed in a ratio of 60:40.
  • INVENTIVE EXAMPLE 5
  • A reverse osmosis membrane was manufactured in the same manner as that of Inventive Example 1, except that, instead of the mixed solvent of DMF and DMSO, N,N-dimethylformamide (DMF) having a solubility parameter value of 24.9(J/cm3)1/2) and γ-butyrolactone (GBL) having a solubility parameter value of 25.6 (J/cm3)1/2) were mixed in a ratio of 90:10 to prepare a mixed solvent, and 16 wt % of polysulfone was added thereto.
  • INVENTIVE EXAMPLE 6
  • A reverse osmosis membrane was manufactured in the same manner as that of Inventive Example 1, except that DMF and GBL, instead of the mixed solvent of DMF and DMSO, were mixed in a ratio of 80:20 and 16 wt % of polysulfone was added thereto.
  • Here, an image of the surface of the polysulfone layer analyzed by a scanning electron microscope (SEM) is shown in FIG. 3.
  • INVENTIVE EXAMPLE 7
  • A reverse osmosis membrane was manufactured in the same manner as that of Inventive Example 1, except that DMF and GBL, instead of the mixed solvent of DMF and DMSO, were mixed in a ratio of 70:30 and 16 wt % of polysulfone was added thereto.
  • INVENTIVE EXAMPLE 8
  • A reverse osmosis membrane was manufactured in the same manner as that of Inventive Example 1, except that DMF and GBL, instead of the mixed solvent of DMF and DMSO, were mixed in a ratio of 60:40 and 16 wt % of polysulfone was added thereto.
  • COMPARATIVE EXAMPLE 1
  • A reverse osmosis membrane was manufactured in the same manner as that of Inventive Example 1, except that only DMF was used as a solvent in the forming of the porous polysulfone support.
  • Here, an image of the surface of the polysulfone layer analyzed by a scanning electron microscope (SEM) is shown in FIG. 2.
  • COMPARATIVE EXAMPLE 2
  • A reverse osmosis membrane was manufactured in the same manner as that of Inventive Example 5, except that only DMF was used as a solvent in the forming of the porous polysulfone support.
  • Here, an image of the surface of the polysulfone layer analyzed by a scanning electron microscope (SEM) is shown in FIG. 4.
  • Experiment 1 Evaluation on Water Purifying Performance
  • The initial salt rejection and the initial permeation flux of the reverse osmosis membranes manufactured according to Inventive Examples 1 to 8 and Comparative Example 1 and 2 were measured. The initial salt rejection and the initial permeation flux were measured while supplying an aqueous sodium chloride solution of 32,000 ppm at a flow rate of 4,500 mL/min under 25° C. and 800 psi. An apparatus for evaluating the reverse osmosis membranes was a Sepa CF II cell (manufactured by GE Osmonics) including a flat type transmission cell, a high pressure pump, a storage bath and a cooler. The structure of the flat type transmission cell was a cross-flow type, and had an effective transmission area of 140 cm2. After installing the washed reverse osmosis membrane on the transmission cell, a preliminary operation was sufficiently conducted for about 1 hour by using thirdly distilled water to stabilize the evaluation apparatus. Then, the thirdly distilled water was replaced with the aqueous sodium chloride solution of 32,000 ppm, and the operation of the evaluation apparatus was conducted for about 1 hour until the pressure and the permeation flux reached a normal state. Then, the amount of water transmitted for eight to ten minutes was measured, and the flux was calculated. The salt rejection was calculated by analyzing the concentration of salt before and after the transmission of water by using a conductivity meter. The measured results are shown in following Tables 1 and 2.
  • TABLE 1
    Rejection (%) Flux (GFD)
    Inventive 97.1 32.5
    Example 1
    Inventive 98.1 33.1
    Example 2
    Inventive 98.1 30.9
    Example 3
    Inventive 97.6 30.5
    Example 4
    Comparative 96.8 26.9
    Example 1
  • TABLE 2
    Rejection (%) Flux (GFD)
    Inventive 97.3 40.4
    Example 5
    Inventive 98.0 47.3
    Example 6
    Inventive 98.4 42.1
    Example 7
    Inventive 98.1 37.9
    Example 8
    Comparative 97.1 33.2
    Example 2
  • Experiment 2 Evaluation on Antifouling Properties
  • The antifouling properties of the reverse osmosis membranes manufactured according to Inventive Examples 1 to 8 and Comparative Examples 1 and 2 were evaluated. The evaluation of the antifouling properties was conducted by using a mixture solution of an aqueous NaCl solution of 32,000 ppm and an aqueous casein solution of 100 ppm under a pressure of 800 psi. After evaluating the initial salt rejection and the initial permeation flux, the aqueous casein solution of 100 ppm was injected into an evaluation tank, and changes in salt rejection and flux were immediately measured. After two hours, changes in salt rejection and flux were measured. The casein was used after dissolving in an aqueous solution with a pH of 11 or greater. The measured results are shown in Table 3.
  • TABLE 3
    Salt Salt Initial Flux
    Rejection Initial Flux Rejection After
    Immediately Immediately After 2 Hours 2 Hours
    After After from from
    Injection of Injection of Injection of Injection of
    Casein Casein Casein Casein
    Inventive 97.1 32.5 97.3 31.2
    Example 1
    Inventive 98.1 33.1 98.2 30.4
    Example 2
    Inventive 98.1 30.9 98.5 30.7
    Example 3
    Inventive 97.6 30.5 98.6 31.6
    Example 4
    Inventive 97.3 40.4 98.8 34.9
    Example 5
    Inventive 98.0 47.3 98.4 39.8
    Example 6
    Inventive 98.4 42.1 99.1 38.4
    Example 7
    Inventive 98.1 37.9 98.7 35.6
    Example 8
    Comparative 96.8 26.9 96.9 21.3
    Example 1
    Comparative 97.1 33.2 97.3 24.6
    Example 2
  • Experiment 3 Measurement of Pore Diameter Distribution
  • The pore diameter distribution was measured in the surfaces of the respective polysulfone layers of the reverse osmosis membranes manufactured according to Inventive Examples 1 to 8 and Comparative Examples 1 and 2. The measurement of the pore diameter distribution was performed using a count/size function of an image-Pro Plus with respect to an SEM image of the surface of the polysulfone layer compensated in a manner in which the contrast value of the SEM image was compensated as 80. The measured results are illustrated in Table 4.
  • With reference to Table 4 and FIG. 5, the reverse osmosis membranes manufactured according to Inventive Examples 1 to 8 showed a significant reduction in the formation of pores having a diameter of 40 nm or greater in the surface of the polysulfone layer, as compared with those manufactured according to Comparative Examples 1 and 2.
  • TABLE 4
    Ratio of Pores
    Number of Pores Having Diameter
    Having Diameter of 40 nm or
    Total Number of of 40 nm or greater to Total
    Pores greater Pores
    Inventive 12907 52 0.40%
    Example 1
    Inventive 12892 48 0.37%
    Example 2
    Inventive 12794 55 0.43%
    Example 3
    Inventive 12705 57 0.45%
    Example 4
    Inventive 12903 58 0.45%
    Example 5
    Inventive 12805 26 0.20%
    Example 6
    Inventive 12726 32 0.25%
    Example 7
    Inventive 12500 35 0.28%
    Example 8
    Comparative 12998 103 0.79%
    Example 1
    Comparative 13089 109 0.83%
    Example 2
  • As set forth above, according to embodiments of the inventive concept, a reverse osmosis membrane includes a polysulfone layer having pores formed in a surface thereof, the pores having predetermined ranges of distribution, average diameter, pore area ratio, and the like, thus achieving improved initial permeation flux while having superior salt rejection, antifouling properties and durability, as compared with existing reverse osmosis membranes.
  • While the present inventive concept has been shown and described in connection with the embodiments, it will be apparent to those skilled in the art that modifications and variations can be made without departing from the spirit and scope of the inventive concept as defined by the appended claims.

Claims (11)

What is claimed is:
1. A reverse osmosis membrane, comprising:
a porous support;
a polysulfone layer formed on the porous support and having pores formed in a surface thereof, pores having a diameter of 40 nm or greater accounting for less than 0.5% of total pores; and
an active layer.
2. The reverse osmosis membrane of claim 1, wherein a total area of the pores formed in the surface of the polysulfone layer accounts for 1% to 20% of a total area of the surface of the polysulfone layer.
3. The reverse osmosis membrane of claim 1, wherein the pores formed in the surface of the polysulfone layer have an average diameter of 8.0 nm to 10.0 nm.
4. The reverse osmosis membrane of claim 1, wherein the pores formed in the surface of the polysulfone layer is formed by using a solution including a mixed solvent containing two or more solvents having different solubility parameter values.
5. The reverse osmosis membrane of claim 4, wherein the solution comprises:
a polymer having a sulfonic acid group in an amount of 5 to 45 parts by weight, based on 100 parts by weight of the solution; and
the mixed solvent containing two or more solvents in an amount of 55 to 95 parts by weight, based on 100 parts by weight of the solution.
6. The reverse osmosis membrane of claim 4, wherein the two or more solvents included in the mixed solvent have a difference in solubility parameter values therebetween of 0.1 to 15.
7. The reverse osmosis membrane of claim 4, wherein the mixed solvent includes two or more solvents selected from the group consisting of dimethylacetamide, methyl acetate, hydrazine, trichloromethane, diiodomethane, trichloroethylene, styrene, 2-butanone, tetrahydrofuran, cyclohexanone, acetone, benzonitrile, isophorone, 2-ethyl-1-hexanol, dichloromethane, dibutyl phthalate, 1,4-Dioxane, 1,2-dichlorobenzene, 1,2-dichloroethane, 2-butoxyethanol, 1-bromonaphthalene, acetic acid, epichlorohydrin, benzaldehyde, morpholine, acrylonitrile, acetophenone, pyridine, 2-butanol, cyclohexanol, aniline, 2-methylpropyl alcohol, 3-methylphenol, N-methyl-2-pyrrolidine, 1-butanol, bromine, 2-ethoxyethanol, phenoxyethanol, 2-propanol, benzyl alcohol, dimethylethanolamine, 2-furanmethanol, acetonitrile, 1-propanol, 2-methoxymethanol, methanoic acid, N,N-dimethylformamide, nitromethane, ethanol, dimethyl sulfoxide, propylene carbonate, 1,3-butanediol, diethylene glycol, methanol, 1,2-propanediol, 2-aminoethanol, ethylene glycol, and γ-butyrolactone.
8. The reverse osmosis membrane of claim 4, wherein the mixed solvent includes a first solvent having a solubility parameter value of 21(J/cm3)1/2 to 30(J/cm3)1/2 and a second solvent having a solubility parameter value different from that of the first solvent by 0.1 to 15, the first solvent and the second solvent being mixed in a ratio of 95:5 to 50:50.
9. The reverse osmosis membrane of claim 4, wherein the mixed solvent includes N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO).
10. The reverse osmosis membrane of claim 4, wherein the mixed solvent includes N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) mixed in a ratio of 90:10 to 60:40.
11. The reverse osmosis membrane of claim 4, wherein the mixed solvent includes N,N-dimethylformamide (DMF) and γ-butyrolactone (GBL) mixed in a ratio of 95:5 to 50:50.
US14/662,157 2012-05-24 2015-03-18 Reverse osmosis membrane Abandoned US20150190761A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/662,157 US20150190761A1 (en) 2012-05-24 2015-03-18 Reverse osmosis membrane

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
KR10-2012-0055591 2012-05-24
KR20120055591 2012-05-24
KR1020130059347A KR101432219B1 (en) 2012-05-24 2013-05-24 Reverse osmosis membrane
PCT/KR2013/004583 WO2013176524A1 (en) 2012-05-24 2013-05-24 Reverse osmosis membrane
KR10-2013-0059347 2013-05-24
US14/026,869 US9079139B2 (en) 2012-05-24 2013-09-13 Reverse osmosis membrane
US14/662,157 US20150190761A1 (en) 2012-05-24 2015-03-18 Reverse osmosis membrane

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/026,869 Continuation US9079139B2 (en) 2012-05-24 2013-09-13 Reverse osmosis membrane

Publications (1)

Publication Number Publication Date
US20150190761A1 true US20150190761A1 (en) 2015-07-09

Family

ID=49981212

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/026,869 Active US9079139B2 (en) 2012-05-24 2013-09-13 Reverse osmosis membrane
US14/662,157 Abandoned US20150190761A1 (en) 2012-05-24 2015-03-18 Reverse osmosis membrane

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/026,869 Active US9079139B2 (en) 2012-05-24 2013-09-13 Reverse osmosis membrane

Country Status (6)

Country Link
US (2) US9079139B2 (en)
EP (1) EP2857087A4 (en)
JP (1) JP5969019B2 (en)
KR (1) KR101432219B1 (en)
CN (1) CN103687662B (en)
WO (1) WO2013176524A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11383208B2 (en) 2017-12-26 2022-07-12 Toray Industries, Inc. Gas separation membrane, gas separation membrane element, and gas separation method

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8177978B2 (en) 2008-04-15 2012-05-15 Nanoh20, Inc. Reverse osmosis membranes
KR101412563B1 (en) * 2012-05-24 2014-07-02 주식회사 엘지화학 Method of manufacturing reverse osmosis membrane and reverse osmosis membrane manufactured thereby
WO2014069786A1 (en) * 2012-11-05 2014-05-08 주식회사 엘지화학 Polyamide-based water treatment separating film having superior contamination resistance and method for manufacturing same
US10010833B2 (en) 2015-02-18 2018-07-03 Lg Nanoh2O, Inc. Spiral wound membrane module with reinforced fold line
US9731985B2 (en) 2015-06-03 2017-08-15 Lg Nanoh2O, Inc. Chemical additives for enhancement of water flux of a membrane
US9695065B2 (en) 2015-06-03 2017-07-04 Lg Nanoh2O, Inc. Combination of chemical additives for enhancement of water flux of a membrane
US9724651B2 (en) 2015-07-14 2017-08-08 Lg Nanoh2O, Inc. Chemical additives for water flux enhancement
US9861940B2 (en) 2015-08-31 2018-01-09 Lg Baboh2O, Inc. Additives for salt rejection enhancement of a membrane
US9737859B2 (en) 2016-01-11 2017-08-22 Lg Nanoh2O, Inc. Process for improved water flux through a TFC membrane
RU2614024C1 (en) * 2016-02-10 2017-03-22 Публичное акционерное общество криогенного машиностроения (ПАО "Криогенмаш") Composition for moulding hollow fibre membrane
US10155203B2 (en) 2016-03-03 2018-12-18 Lg Nanoh2O, Inc. Methods of enhancing water flux of a TFC membrane using oxidizing and reducing agents
KR101894077B1 (en) * 2016-08-05 2018-09-04 한국화학연구원 Polysulfone-based polymeric holleow fiber membrane with good selectivity
CN106345308B (en) * 2016-10-13 2019-06-14 哈尔滨工业大学 A kind of chlorine resistance is strong and the preparation method of resistant to pollution polyesteramide composite nanometer filtering film
CN108355500A (en) * 2018-02-28 2018-08-03 深圳市海通膜科技有限公司 A kind of reverse osmosis membrane
KR102212128B1 (en) * 2018-05-10 2021-02-17 주식회사 엘지화학 Reverse osmosis membrane, method for preparing reverse osmosis membrane, and water treatment module
CN113293542B (en) * 2021-04-10 2023-05-09 重庆海通环保科技有限公司 Spraying device for manufacturing reverse osmosis membrane
CN113244789A (en) * 2021-04-27 2021-08-13 陕西禹慧智通环保科技有限公司 Hollow fiber reverse osmosis membrane and preparation method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277344A (en) * 1979-02-22 1981-07-07 Filmtec Corporation Interfacially synthesized reverse osmosis membrane
US4765897A (en) * 1986-04-28 1988-08-23 The Dow Chemical Company Polyamide membranes useful for water softening
US4983291A (en) * 1989-12-14 1991-01-08 Allied-Signal Inc. Dry high flux semipermeable membranes
US5234538A (en) * 1991-02-08 1993-08-10 Oxyphen Gmbh Process for producing polymer film filters
US5620790A (en) * 1994-06-23 1997-04-15 Seitz-Filter-Werke Gmbh Und Co. Multi-layer microfiltration membrane having an integrated prefiltration layer and method of making same
US5762798A (en) * 1991-04-12 1998-06-09 Minntech Corporation Hollow fiber membranes and method of manufacture
US20040007521A1 (en) * 2000-05-23 2004-01-15 Kurth Christopher J. Polysulfonamide matrices
US20040065607A1 (en) * 1996-12-12 2004-04-08 I-Fan Wang Highly asymmetric, hydrophilic, microfiltration membranes having large pore diameters
US20080197072A1 (en) * 2005-06-09 2008-08-21 Wolfgang Ansorge Microfiltration Membrane With Improved Filtration Properties
US7891500B2 (en) * 2000-05-24 2011-02-22 Millipore Corporation Process of forming multilayered structures
US20120318729A1 (en) * 2009-12-03 2012-12-20 Yale University Office Of Cooperative Research High Flux Thin-Film Composite Forward Osmosis and Pressure-Retarded Osmosis Membranes
US20140048477A1 (en) * 2011-11-04 2014-02-20 Samsung Electronics Co., Ltd. Hybrid porous structured material, membrane including the same, and method of preparing hybrid porous structured material

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132111A (en) * 1982-01-29 1983-08-06 Asahi Chem Ind Co Ltd Polysulfone hollow fiber
US4761234A (en) * 1985-08-05 1988-08-02 Toray Industries, Inc. Interfacially synthesized reverse osmosis membrane
US5795920A (en) * 1995-08-21 1998-08-18 Korea Institute Of Science And Technology Polymeric dope solution for use in the preparation of an integrally skinned asymmetric membrane
JP4502412B2 (en) * 1996-12-10 2010-07-14 ダイセル化学工業株式会社 Porous membrane and method for producing the same
EP1098691B1 (en) * 1998-06-29 2006-02-01 Microban Products Company Antimicrobial semi-permeable membranes
KR20000028037A (en) * 1998-10-30 2000-05-15 조정래 Production method of reverse osmotic membrane having excellent chemical resistance
JP2000153137A (en) * 1998-11-20 2000-06-06 Nitto Denko Corp Composite reverse osmosis membrane
NL1030288C2 (en) * 2004-10-29 2006-10-09 Toray Industries Semi-permeable composite membrane, production method thereof, and element, fluid separation plant and method for treatment of water using the same.
JP5283311B2 (en) * 2005-08-11 2013-09-04 学校法人明治大学 Modified porous support membrane and method for producing the same
JP5430249B2 (en) * 2009-06-23 2014-02-26 キヤノン株式会社 Method for producing porous polymer membrane and porous polymer membrane produced by the production method
KR101114668B1 (en) * 2009-12-11 2012-03-05 주식회사 효성 Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby
KR20110072154A (en) * 2009-12-22 2011-06-29 주식회사 효성 Manufacturing method for polyamide-based reverse osmosis membrane with high salt rejection

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277344A (en) * 1979-02-22 1981-07-07 Filmtec Corporation Interfacially synthesized reverse osmosis membrane
US4765897A (en) * 1986-04-28 1988-08-23 The Dow Chemical Company Polyamide membranes useful for water softening
US4983291A (en) * 1989-12-14 1991-01-08 Allied-Signal Inc. Dry high flux semipermeable membranes
US5234538A (en) * 1991-02-08 1993-08-10 Oxyphen Gmbh Process for producing polymer film filters
US5762798A (en) * 1991-04-12 1998-06-09 Minntech Corporation Hollow fiber membranes and method of manufacture
US5620790A (en) * 1994-06-23 1997-04-15 Seitz-Filter-Werke Gmbh Und Co. Multi-layer microfiltration membrane having an integrated prefiltration layer and method of making same
US20040065607A1 (en) * 1996-12-12 2004-04-08 I-Fan Wang Highly asymmetric, hydrophilic, microfiltration membranes having large pore diameters
US20040007521A1 (en) * 2000-05-23 2004-01-15 Kurth Christopher J. Polysulfonamide matrices
US7891500B2 (en) * 2000-05-24 2011-02-22 Millipore Corporation Process of forming multilayered structures
US20080197072A1 (en) * 2005-06-09 2008-08-21 Wolfgang Ansorge Microfiltration Membrane With Improved Filtration Properties
US20120318729A1 (en) * 2009-12-03 2012-12-20 Yale University Office Of Cooperative Research High Flux Thin-Film Composite Forward Osmosis and Pressure-Retarded Osmosis Membranes
US20140048477A1 (en) * 2011-11-04 2014-02-20 Samsung Electronics Co., Ltd. Hybrid porous structured material, membrane including the same, and method of preparing hybrid porous structured material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11383208B2 (en) 2017-12-26 2022-07-12 Toray Industries, Inc. Gas separation membrane, gas separation membrane element, and gas separation method

Also Published As

Publication number Publication date
US20140014575A1 (en) 2014-01-16
EP2857087A1 (en) 2015-04-08
JP5969019B2 (en) 2016-08-10
CN103687662B (en) 2015-11-25
JP2014524827A (en) 2014-09-25
US9079139B2 (en) 2015-07-14
EP2857087A4 (en) 2016-02-17
WO2013176524A1 (en) 2013-11-28
CN103687662A (en) 2014-03-26
KR101432219B1 (en) 2014-08-21
KR20130132331A (en) 2013-12-04

Similar Documents

Publication Publication Date Title
US9079139B2 (en) Reverse osmosis membrane
US9643209B2 (en) Method of manufacturing reverse osmosis membrane, and reverse osmosis membrane manufactured thereby
KR101985351B1 (en) Composite semipermeable membrane, composite semipermeable membrane element, and method for manufacturing composite semipermeable membrane
JP6295949B2 (en) Composite semipermeable membrane and method for producing the same
US20150352501A1 (en) Polyamide water-treatment separation membrane having properties of high salt rejection and high flux and manufacturing method thereof
US20170056838A1 (en) Forward osmosis-based separation membrane based on multilayer thin film, using crosslinking between organic monomers, and preparation method therefor
CN107708846B (en) Water treatment membrane and method for manufacturing the same
WO2017091645A1 (en) Support layers for forward osmosis membranes
KR20140003086A (en) Hollow fiber nano filtration membrane and manufacturing method thereof
KR101659122B1 (en) Polyamide water-treatment membranes having properies of high salt rejection and high flux and manufacturing method thereof
JP2018012072A (en) Forward osmosis membrane and method for manufacturing the same
JP6302074B2 (en) Water treatment separation membrane including ion exchange polymer layer and method for producing the same
JP2013223861A (en) Composite diaphragm
KR20170064425A (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
EP3202487B1 (en) Method for manufacturing polyamide-based water-treatment separator having excellent permeation flux characteristics
KR102235320B1 (en) reverse osmosis membrane and manufacturing method thereof
KR102294542B1 (en) Method for manufacturing water-treatment membrane and water-treatment membrane manufactured thereby
KR102288033B1 (en) Method for manufacturing water-treatment membrane and water-treatment membrane manufactured thereby
KR20100046675A (en) Manufacturing method of polyether sulfone membrane and high flow folding type catridge filter employing the same
KR101474062B1 (en) Reverse osmosis membrane and method of manufacturing the same
Kumano et al. Development and Characterization of a New Composite Nanofiltration Hollow Fiber Membrane

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION