US20150118337A1 - Extract of greyia radlkoferi and use thereof - Google Patents

Extract of greyia radlkoferi and use thereof Download PDF

Info

Publication number
US20150118337A1
US20150118337A1 US14/400,645 US201314400645A US2015118337A1 US 20150118337 A1 US20150118337 A1 US 20150118337A1 US 201314400645 A US201314400645 A US 201314400645A US 2015118337 A1 US2015118337 A1 US 2015118337A1
Authority
US
United States
Prior art keywords
plant extract
solvent
leaves
skin
pigmentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/400,645
Inventor
Marco Nuno De Canha
Namrita Lall
Ahmed Hussein
Elizabeth Mogapi
lndres Moodley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Pretoria
University of Kwazulu Natal
Original Assignee
University of Pretoria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Pretoria filed Critical University of Pretoria
Publication of US20150118337A1 publication Critical patent/US20150118337A1/en
Assigned to UNIVERSITY OF PRETORIA, UNIVERSITY OF KWAZULU-NATAL reassignment UNIVERSITY OF PRETORIA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUSSEIN, AHMED, MOGAPI, Elizabeth, MOODLEY, INDRES, DE CANHA, MARCO NUNO, LALL, NAMRITA
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9789Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/77Sapindaceae (Soapberry family), e.g. lychee or soapberry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/02Preparations for care of the skin for chemically bleaching or whitening the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/30Extraction of the material
    • A61K2236/39Complex extraction schemes, e.g. fractionation or repeated extraction steps

Definitions

  • This invention relates to the isolation and use of a plant extract in the treatment of skin hyper-pigmentation. More particularly, this invention relates to the isolation of a tyrosinase inhibitor from plant material of the Greyia radikoferi ( G. radlkoferi ) plant.
  • Skin hyper-pigmentation is a condition caused by the overproduction of melanin, a pigment present in about 10% of melanocytes.
  • the copper containing mono-oxygenase enzyme referred to as ‘tyrosinase’ is a key enzyme in the synthesis of melanin, due to melanin biosynthesis being regulated by the tyrosinase enzyme which is responsible for catalysing the rate limiting step in the biosynthetic pathway.
  • Over-activity of tyrosinase leads to over production of melanin which ultimately leads to hyper-pigmentation of the skin.
  • Hyper-pigmentation of the skin can be attributed to excessive exposure to UV light, adverse reactions to drugs and also occurs during ageing.
  • Inhibition of the tyrosinase enzyme is therefore a well known target for the treatment of skin hyper-pigmentation.
  • Many known products used for the treatment of skin hyper-pigmentation have been associated with toxicity and other adverse effects. These known products include agents such as hydroquinone, kojic acid, arbutin, glabridin and isoliquiritigenin. Some cosmetic products containing these agents have shown to be cytotoxic and mutagenic in humans. In addition to being cytotoxic and mutagenic, known treatments for skin hyper-pigmentation have also been known to cause specific and unwanted side effects, as explained in more detail below.
  • Hydroquinone has been largely acknowledged in medical research and literature as the primary topical ingredient for inhibition of melanin production. It has been known to cause skin irritation, and fears exist about perceived carcinogenic properties. It has accordingly been banned from use as a skin lightening agent in the member states of the European Union, and is regulated by the FDA in the United States of America insofar as over the counter sales are concerned.
  • Kojic acid is a by-product obtained from fermenting rice in the production of Japanese rice wine, or sake as it is also commonly known. It has been advocated as an effective inhibitor of melanin production, and is widely accepted as one of the most effective pure products indicated in the treatment of skin hyper pigmentation.
  • the use of kojic acid in the treatment of skin hyper-pigmentation has become more and more controversial, due to certain studies suggesting that kojic acid might be carcinogenic, and it has subsequently been banned from cosmetic use in Korea and Japan.
  • Over and above the suggested carcinogenic potential of kojic acid it has also been found to be a potential cause of irritant contact dermatitis; is allergenic; has a high sensitising potential; and a high frequency of contact sensitivity.
  • Kojic acid has also been found to discolour to a brown colour upon exposure to sunlight and ambient air, which also leads to decreased efficiency.
  • Kojic dipalmitate has been suggested as an alternative to kojic acid to overcome the disadvantages associated with kojic acid, but tests have revealed that kojic dipalmitate does not exhibit the same effectiveness as kojic acid.
  • arbutin is derived from various berry-plants, including mulberry, cranberry and blueberry. It is indicated as having skin lightening properties, but has been associated with skin irritation.
  • Glabridin and isoliquiritigenin both extracted from liquorice ( Glycyrrhiza glabra ) have also been found to exhibit skin lightening properties, but do not penetrate the skin effectively, and are both unstable when used in formulations.
  • a method for preparing a plant extract having tyrosinase inhibitor activity for the treatment of skin hyper-pigmentation including the steps of:
  • the solvent may be selected from the group consisting of water and ethanol.
  • the step of mixing the pulverised leaves with solvent may include the further step of agitating the mixture to improve leaching of phenolic compounds from the leaves into the solvent.
  • the step of separating the pulverised leaves from the solvent may include the step of passing the solvent through a vacuum filter system.
  • the method includes the step of adding a preservative to the plant extract.
  • the preservative is in the form of 1% of a mixture of phenoxyethanol and ethylhexylglycerin added to the plant extract on a weight per weight basis.
  • the method includes the further step of preparing the plant extract in a topical dosage form selected from the group consisting of creams; lotions; aqueous solutions; balms; sunscreens; skin-oils and ointments.
  • a plant extract for the treatment of skin hyper-pigmentation by inhibiting tyrosinase activity prepared in accordance with a method of the first aspect of the invention, characterised in that the extract includes 5,7-dihidroxyflavone[(2S)-pinocembrin]; 2′,6′-dihydroxy-4′-methoxydihydrochalcone; 2 ′,4′,6′-trihydroxyhydrochalcone; 3,5,7-trihydroxyflavone and 4′,5′7-trihydroxyisoflavone.
  • the plant extract displays tyrosinase inhibitory activity by exhibiting a 50% inhibitory concentration (IC 50 ) ranging from 17,96 ⁇ g/ml to 32.62 ⁇ g/ml when using L-tyrosine and dihydroxyphenylalanine (DOPA) as substrates.
  • IC 50 50% inhibitory concentration
  • a third aspect of the invention there is provided for use of the plant extract according to the first and second aspects of the invention in the preparation of a topical dosage form for use in a method of treating a patient suffering from skin hyper-pigmentation.
  • a topical dosage form selected from any one of the group consisting of a cream; lotion; aqueous solution; balm; sunscreen; skin-oil; and an ointment, for the treatment of skin hyper-pigmentation comprising a plant extract according to the second aspect of the invention, in a suitable dermatologically acceptable carrier.
  • a method for preparing a plant extract having tyrosinase inhibitor activity for the treatment of skin hyper-pigmentation includes the steps of:
  • the solvent used to mix with the pulverised leaves is preferably 70% ethanol.
  • Deionised distilled water could be used as an alternative solvent to ethanol to provide an organic extract.
  • the plant extract is preserved by adding a preservative in the form of 1% of a mixture of phenoxyethanol and ethylhexylglycerin added to the plant extract on a weight per weight basis, after which it is stored in a cold room at 4° Celsius.
  • the preservative challenge test indicated that the preservative that was added to the extract was successful at inhibiting the growth of certain microorganisms, including Eschericia coli, Staphylococcus aureus, Pseudomonas aureginosa, Candida albicans and Aspergillus.
  • the plant extract is subjected to bioassay guided fractionation. In doing so, approximately 59.5 g of the plant extract is dissolved in a minimal amount of acetone solvent and mixed with silica gel. The mixture is then left to dry until formation of a fine powder. This fine powder is then chromatographed on a silica gel column using hexane (Hex):ethylacetate (EtOAc) mixtures of increasing polarity (100:0 Hex to 0:100 EtOAc). A total of 40 preliminary fractions of approximately 500 ml each are collected. The column is then washed with 2 litres of 100% methanol (MeOH).
  • Hex hexane
  • EtOAc ethylacetate
  • the preliminary fractions are then concentrated using a rotor vapour and spotted on a thin layer chromatography (TLC) plate which is then developed with dichoromethane (DCM:MeOH) 95:5, viewed under UV light and immersed in a vanillin solution (7.5 g vanillin, 250 ml EtOH and 5 ml concentrated 98% sulphuric acid (H 2 SO 4 )) and heated to detect compounds not absorbing under UV light.
  • a vanillin solution 7.5 g vanillin, 250 ml EtOH and 5 ml concentrated 98% sulphuric acid (H 2 SO 4 )
  • the end products of the bioassay guided fractination are the isolation of five known phenolic compounds, namely 5,7-dihidroxyflavone[(2S)-pinocembrin] (C1); 2′,6′-dihydroxy-4′-methoxydihydrochalcone (C2); 2′,4′,6′-trihydroxyhydrochalcone (C3); 3,5,7-trihydroxyflavone (C4) and 4′,5′7-trihydroxyisoflavone (C5), all of which have been shown to exhibit individual tyrosinase inhibitory capabilities, as well as a synergistic action in the inhibition of tyrosinase activity.
  • C1 5,7-dihidroxyflavone[(2S)-pinocembrin]
  • C2S 2′,6′-dihydroxy-4′-methoxydihydrochalcone
  • C3 2′,4′,6′-trihydroxyhydrochalcone
  • C3 (2′, 4′, 6′-trihydroxydihydrochalcone) exhibits an 50% inhibitory concentration (IC 50 ) value of 17.86 ⁇ g/ml
  • C4 (3,5,7-trihydroxyflavone, also known as galangin) exhibits an IC 50 value of 2.23 ⁇ g/ml with more than 50% of melanin being inhibited at concentrations as low as 3.1 ⁇ g/ml.
  • the plant extract from G. radlkoferi shows significant inhibitory activity by exhibiting a IC 50 value of 17.96 ⁇ g/ml when L-tyrosine and DOPA are used as substrates, which IC 50 compares favourably against known compounds like kojic acid (3.78 ⁇ g/ml), isoliquirtigenin (896.88 ⁇ g/ml), arbutin (149 ⁇ g/ml) and an extract from Greya flanaganii (32.62 ⁇ g/ml).
  • the plant extract also exhibits increased skin even tone at 3% in a clinical study known as the spot reduction and skin even tone test, whereas G. flanaganii does not show the same effectiveness at 3%.
  • the inhibition of hyper-pigmentation is not restricted to inhibition at the enzyme level but melanin inhibition can also be achieved in vitro by the inhibition of melanin release by melanocyte cells.
  • melanin inhibition can also be achieved in vitro by the inhibition of melanin release by melanocyte cells.
  • the plant extract was compared with an arbutin positive control, and 50% melanin reduction in melanocytes was observed with cells being viable at concentrations up to 50 ⁇ g/ml.
  • the plant extract is non-mutagenic even when tested at a relatively high concentration of 5.0 mg/ml.
  • the plant extract according to the invention is to be included in a topical dosage form for the treatment of skin hyper-pigmentation, formulated to provide the application of approximately 5 ml plant extract per 20 cm 2 of skin affected by skin hyper-pigmentation.
  • This topical dosage form is prepared as a cream; lotion; aqueous solution; balm; sunscreen; skin-oil; and/or an ointment in a suitable dermatologically acceptable carrier such as aqueous cream.
  • the plant extract also shows increased skin penetration, and accordingly overcomes the disadvantage of decreased skin penetration shown by other known compounds like glabridin and isoliquiritigenin which can be extracted from the liquorice plant.

Abstract

This invention relates to the isolation, and use of a plant extract in the treatment of skin hyper-pigmentation. More particularly, this invention relates to the isolation of a tyrosinase inhibitor in an extract of plant material from the Greyia radlkoferi (G. radlkoferi) plant, the extract including 5,7-dihidroxyflavone[(2S)-pinocembrin]; 2′, 6′-dihydroxy-4′-methoxydihydrochalcone; 2′,4′,6′-trihydroxyhydrochalcone; 3,5,7-trihydroxyflavone and 4′,5′7-thhydroxyisoflavone.

Description

    INTRODUCTION AND BACKGROUND TO THE INVENTION
  • This invention relates to the isolation and use of a plant extract in the treatment of skin hyper-pigmentation. More particularly, this invention relates to the isolation of a tyrosinase inhibitor from plant material of the Greyia radikoferi (G. radlkoferi) plant.
  • Skin hyper-pigmentation is a condition caused by the overproduction of melanin, a pigment present in about 10% of melanocytes. The copper containing mono-oxygenase enzyme referred to as ‘tyrosinase’ is a key enzyme in the synthesis of melanin, due to melanin biosynthesis being regulated by the tyrosinase enzyme which is responsible for catalysing the rate limiting step in the biosynthetic pathway. Over-activity of tyrosinase leads to over production of melanin which ultimately leads to hyper-pigmentation of the skin. Hyper-pigmentation of the skin can be attributed to excessive exposure to UV light, adverse reactions to drugs and also occurs during ageing.
  • Inhibition of the tyrosinase enzyme is therefore a well known target for the treatment of skin hyper-pigmentation. Many known products used for the treatment of skin hyper-pigmentation have been associated with toxicity and other adverse effects. These known products include agents such as hydroquinone, kojic acid, arbutin, glabridin and isoliquiritigenin. Some cosmetic products containing these agents have shown to be cytotoxic and mutagenic in humans. In addition to being cytotoxic and mutagenic, known treatments for skin hyper-pigmentation have also been known to cause specific and unwanted side effects, as explained in more detail below.
  • Hydroquinone has been largely acknowledged in medical research and literature as the primary topical ingredient for inhibition of melanin production. It has been known to cause skin irritation, and fears exist about perceived carcinogenic properties. It has accordingly been banned from use as a skin lightening agent in the member states of the European Union, and is regulated by the FDA in the United States of America insofar as over the counter sales are concerned.
  • Kojic acid is a by-product obtained from fermenting rice in the production of Japanese rice wine, or sake as it is also commonly known. It has been touted as an effective inhibitor of melanin production, and is widely accepted as one of the most effective pure products indicated in the treatment of skin hyper pigmentation. However, the use of kojic acid in the treatment of skin hyper-pigmentation has become more and more controversial, due to certain studies suggesting that kojic acid might be carcinogenic, and it has subsequently been banned from cosmetic use in Korea and Japan. Over and above the suggested carcinogenic potential of kojic acid, it has also been found to be a potential cause of irritant contact dermatitis; is allergenic; has a high sensitising potential; and a high frequency of contact sensitivity. Kojic acid has also been found to discolour to a brown colour upon exposure to sunlight and ambient air, which also leads to decreased efficiency. Kojic dipalmitate has been suggested as an alternative to kojic acid to overcome the disadvantages associated with kojic acid, but tests have revealed that kojic dipalmitate does not exhibit the same effectiveness as kojic acid.
  • A further known compound indicated in the treatment of skin hyper-pigmentation is arbutin, which is derived from various berry-plants, including mulberry, cranberry and blueberry. It is indicated as having skin lightening properties, but has been associated with skin irritation.
  • Glabridin and isoliquiritigenin, both extracted from liquorice (Glycyrrhiza glabra) have also been found to exhibit skin lightening properties, but do not penetrate the skin effectively, and are both unstable when used in formulations.
  • OBJECT OF THE INVENTION
  • It is accordingly an object of the current invention to provide a tyrosinase inhibitor with which the above disadvantages experienced with known tyrosinase inhibitors and other treatments of skin hyper-pigmentation could at least partially be overcome, or to provide a relatively more useful, environmentally friendly, organic alternative to the known tyrosinase inhibitors in a cost efficient manner.
  • SUMMARY OF THE INVENTION
  • According to a first aspect of the invention there is provided a method for preparing a plant extract having tyrosinase inhibitor activity for the treatment of skin hyper-pigmentation, the method including the steps of:
      • drying leaves of Greyia radlkoferi (G. radlkoferi);
      • pulverising the dried leaves;
      • mixing the pulverised leaves with a solvent to allow phenolic compounds to leach into the solvent; and
      • removing the pulverised leaves from the solvent, such that the plant extract remains in the solvent.
  • Further according to the invention, the solvent may be selected from the group consisting of water and ethanol.
  • The step of mixing the pulverised leaves with solvent may include the further step of agitating the mixture to improve leaching of phenolic compounds from the leaves into the solvent.
  • The step of separating the pulverised leaves from the solvent may include the step of passing the solvent through a vacuum filter system.
  • Further according to the invention the method includes the step of adding a preservative to the plant extract. Preferably, the preservative is in the form of 1% of a mixture of phenoxyethanol and ethylhexylglycerin added to the plant extract on a weight per weight basis.
  • Further according to the invention, the method includes the further step of preparing the plant extract in a topical dosage form selected from the group consisting of creams; lotions; aqueous solutions; balms; sunscreens; skin-oils and ointments.
  • According to a second aspect of the invention there is provided a plant extract for the treatment of skin hyper-pigmentation by inhibiting tyrosinase activity prepared in accordance with a method of the first aspect of the invention, characterised in that the extract includes 5,7-dihidroxyflavone[(2S)-pinocembrin]; 2′,6′-dihydroxy-4′-methoxydihydrochalcone; 2′,4′,6′-trihydroxyhydrochalcone; 3,5,7-trihydroxyflavone and 4′,5′7-trihydroxyisoflavone.
  • Further according the invention, the plant extract displays tyrosinase inhibitory activity by exhibiting a 50% inhibitory concentration (IC50) ranging from 17,96 μg/ml to 32.62 μg/ml when using L-tyrosine and dihydroxyphenylalanine (DOPA) as substrates.
  • According to a third aspect of the invention there is provided for use of the plant extract according to the first and second aspects of the invention in the preparation of a topical dosage form for use in a method of treating a patient suffering from skin hyper-pigmentation.
  • According to a fourth aspect of the invention there is provided a topical dosage form selected from any one of the group consisting of a cream; lotion; aqueous solution; balm; sunscreen; skin-oil; and an ointment, for the treatment of skin hyper-pigmentation comprising a plant extract according to the second aspect of the invention, in a suitable dermatologically acceptable carrier.
  • DESCRIPTION OF A PREFERRED EMBODIMENT OF THE INVENTION
  • A preferred embodiment of the invention will now be described in more detail with reference to a non-limiting example.
  • In accordance with a preferred embodiment of the invention, a method for preparing a plant extract having tyrosinase inhibitor activity for the treatment of skin hyper-pigmentation includes the steps of:
      • air drying leaves of G. radlkoferi away from exposure to the sun at room temperature;
      • pulverising the dried leaves;
      • mixing 25 g of the pulverised leaves with 200 ml solvent to form a mixture;
      • subjecting the mixture to shaking for 48 hours to allow phenolic compounds to leach into the solvent; and
      • separating the pulverised leaves from the solvent through vacuum filtration by using a Buchner funnel to form the plant extract.
  • The solvent used to mix with the pulverised leaves is preferably 70% ethanol. Deionised distilled water could be used as an alternative solvent to ethanol to provide an organic extract.
  • The plant extract is preserved by adding a preservative in the form of 1% of a mixture of phenoxyethanol and ethylhexylglycerin added to the plant extract on a weight per weight basis, after which it is stored in a cold room at 4° Celsius. The preservative challenge test indicated that the preservative that was added to the extract was successful at inhibiting the growth of certain microorganisms, including Eschericia coli, Staphylococcus aureus, Pseudomonas aureginosa, Candida albicans and Aspergillus.
  • To determine the constituent compounds of the plant extract, the plant extract is subjected to bioassay guided fractionation. In doing so, approximately 59.5 g of the plant extract is dissolved in a minimal amount of acetone solvent and mixed with silica gel. The mixture is then left to dry until formation of a fine powder. This fine powder is then chromatographed on a silica gel column using hexane (Hex):ethylacetate (EtOAc) mixtures of increasing polarity (100:0 Hex to 0:100 EtOAc). A total of 40 preliminary fractions of approximately 500 ml each are collected. The column is then washed with 2 litres of 100% methanol (MeOH). The preliminary fractions are then concentrated using a rotor vapour and spotted on a thin layer chromatography (TLC) plate which is then developed with dichoromethane (DCM:MeOH) 95:5, viewed under UV light and immersed in a vanillin solution (7.5 g vanillin, 250 ml EtOH and 5 ml concentrated 98% sulphuric acid (H2SO4)) and heated to detect compounds not absorbing under UV light. Fractions which contained a similar profile of compounds on the TLC plate are combined and concentrated using a rotor vapour. These fractions are then further chromatographed for isolation and identification of bioactive compounds. Following this step, certain fractions are then subjected to a series of sephadex columns LH-20 eluted with 100% EtOH and then washed with 100% MeOH to yield Compound C1. Other fractions are firstly subjected to series of sephadex columns using 100% MeOH as a solvent to yield certain fractions, one of which is also subjected to a sephadex column using 100% MeOH to obtain sub-fractions. One of these sub-fractions is subjected to a preparative TLC eluted with DCM:MeOH (9:1) to isolate Compound C2. A further fraction is subjected to a sephadex column using 100% MeOH, from this Compound C3 is isolated. Compounds C4 and C5 are isolated using similar methods.
  • The end products of the bioassay guided fractination are the isolation of five known phenolic compounds, namely 5,7-dihidroxyflavone[(2S)-pinocembrin] (C1); 2′,6′-dihydroxy-4′-methoxydihydrochalcone (C2); 2′,4′,6′-trihydroxyhydrochalcone (C3); 3,5,7-trihydroxyflavone (C4) and 4′,5′7-trihydroxyisoflavone (C5), all of which have been shown to exhibit individual tyrosinase inhibitory capabilities, as well as a synergistic action in the inhibition of tyrosinase activity.
  • These compounds have previously been extracted from other plants and their tyrosinase inhibitory qualities have been documented before. G. radlkoferi is however the first plant wherein all five of these compounds (C1 to C5) have been found in one single plant, which is also indigenous to South Africa.
  • These individual phenolic compounds exhibit differing levels of tyrosinase inhibition when used in isolation. C3 (2′, 4′, 6′-trihydroxydihydrochalcone) exhibits an 50% inhibitory concentration (IC50) value of 17.86 μg/ml, C4 (3,5,7-trihydroxyflavone, also known as galangin) exhibits an IC50 value of 2.23 μg/ml with more than 50% of melanin being inhibited at concentrations as low as 3.1 μg/ml. 02 (2′,6′-dihydroxy-4′-methoxydihydrochalcone, also known as genistein) exhibits an IC50 value of 21.42 μg/ml and 20% melanin reduction is observed at 3.125 μg/ml.
  • The plant extract from G. radlkoferi shows significant inhibitory activity by exhibiting a IC50 value of 17.96 μg/ml when L-tyrosine and DOPA are used as substrates, which IC50 compares favourably against known compounds like kojic acid (3.78 μg/ml), isoliquirtigenin (896.88 μg/ml), arbutin (149 μg/ml) and an extract from Greya flanaganii (32.62 μg/ml).
  • The plant extract also exhibits increased skin even tone at 3% in a clinical study known as the spot reduction and skin even tone test, whereas G. flanaganii does not show the same effectiveness at 3%.
  • The inhibition of hyper-pigmentation is not restricted to inhibition at the enzyme level but melanin inhibition can also be achieved in vitro by the inhibition of melanin release by melanocyte cells. In conducting this test, the plant extract was compared with an arbutin positive control, and 50% melanin reduction in melanocytes was observed with cells being viable at concentrations up to 50 μg/ml.
  • The plant extract is non-mutagenic even when tested at a relatively high concentration of 5.0 mg/ml.
  • Microbial and heavy metal analysis investigation of the cosmeceutical actives of G. radikoferi shows absence of any microbial contamination and heavy metals such as lead, arsenic and mercury.
  • The plant extract according to the invention is to be included in a topical dosage form for the treatment of skin hyper-pigmentation, formulated to provide the application of approximately 5 ml plant extract per 20 cm2 of skin affected by skin hyper-pigmentation. This topical dosage form is prepared as a cream; lotion; aqueous solution; balm; sunscreen; skin-oil; and/or an ointment in a suitable dermatologically acceptable carrier such as aqueous cream.
  • One of the disadvantages that has been recorded with known compounds for the treatment for skin hyper-pigmentation, like arbutin, is skin irritation. This disadvantage is accordingly overcome by the plant extract and method for extracting same according to the invention.
  • The plant extract also shows increased skin penetration, and accordingly overcomes the disadvantage of decreased skin penetration shown by other known compounds like glabridin and isoliquiritigenin which can be extracted from the liquorice plant.
  • Serious disadvantages, including cytotoxicity, mutagenicity and carcinogenicity, that are associated with hydroquinone and kojic acid, both known treatments of skin hyper-pigmentation, are also overcome by the plant extract according to the invention.
  • It will be appreciated that variations in details are possible with a plant extract and method of extracting the same, for use in the treatment of skin hyper-pigmentation according to the invention, without departing from the scope of the appended claims.

Claims (14)

1. A method for preparing a plant extract having tyrosinase inhibitor activity, the method including the steps of:
drying leaves of Greyia radikoferi (G. radikoferi);
pulverising the dried leaves;
mixing the pulverised leaves with a solvent to allow phenolic compounds to leach into the solvent; and
removing the pulverised leaves from the solvent, such that the plant extract remains in the solvent.
2. A method according to claim 1, wherein the solvent is selected from the group consisting of water and ethanol.
3. A method according to claim 1, wherein the step of mixing the pulverised leaves with solvent includes the further step of agitating the mixture to improve leaching of phenolic compounds from the leaves into the solvent.
4. A method according to claim 1, wherein the step of removing the pulverised leaves from the solvent includes the step of passing the solvent through a vacuum filter system.
5. A method according to claim 1, including the further step of adding a preservative to the plant extract.
6. A method according to claim 5 wherein the preservative is in the form of 1% of a mixture of phenoxyethanol and ethylhexylglycerin added to the plant extract on a weight per weight basis.
7. A method according to claim 1, including the further step of preparing the plant extract in a topical dosage form selected from the group consisting of creams; lotions; aqueous solutions; balms; sunscreens; skin-oils and ointments.
8. A plant extract for inhibiting tyrosinase activity prepared in accordance with a method of claim 1, characterised in that the extract includes 5,7-dihidroxyflavone[(2S)-pinocembrin]; 2′,6′-dihydroxy-4′-methoxydihydrochalcone; 2′,4′,6′-trihydroxyhydrochalcone; 3,5,7-trihydroxyflavone and 4′,5′7-trihydroxyisoflavone.
9. A plant extract according to claim 8 displaying tyrosinase inhibitory activity by exhibiting a 50% inhibitory concentration (IC50) ranging from 17,96 μg/ml to 32.62 μg/ml when using L-tyrosine and dihydroxyphenylalanine (DOPA) as substrates.
10. Use of a plant extract according to claim 8 in the treatment of skin hyper-pigmentation.
11. Use of a plant extract according to claim 8 in the preparation of a topical dosage form for use in a method of treating a patient suffering from skin hyper-pigmentation.
12. A topical dosage form selected from any one of the group consisting of a cream; lotion; aqueous solution; balm; sunscreen; skin-oil; and an ointment, for the treatment of skin hyper-pigmentation comprising a plant extract according to claim 8, in a suitable dermatologically acceptable carrier.
13. A method for preparing a plant extract having tyrosinase inhibitor activity for the treatment of skin hyper-pigmentation from leaves of Greyia radlkoferi (G. radlkoferi) substantially as herein described.
14. A plant extract from the leaves of Greyia radlkoferi (G. radlkoferi) having tyrosinase inhibitor activity for the treatment of skin hyper-pigmentation substantially as herein described.
US14/400,645 2012-05-18 2013-05-17 Extract of greyia radlkoferi and use thereof Abandoned US20150118337A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ZA2012/03648 2012-05-18
ZA201203648 2012-05-18
PCT/IB2013/054054 WO2013171720A1 (en) 2012-05-18 2013-05-17 Extract of greyia radlkoferi and use thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/054054 A-371-Of-International WO2013171720A1 (en) 2012-05-18 2013-05-17 Extract of greyia radlkoferi and use thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/816,544 Division US10695283B2 (en) 2012-05-18 2017-11-17 Extract of Greyia radlkoferi and use thereof

Publications (1)

Publication Number Publication Date
US20150118337A1 true US20150118337A1 (en) 2015-04-30

Family

ID=48700659

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/400,645 Abandoned US20150118337A1 (en) 2012-05-18 2013-05-17 Extract of greyia radlkoferi and use thereof
US15/816,544 Active 2033-08-03 US10695283B2 (en) 2012-05-18 2017-11-17 Extract of Greyia radlkoferi and use thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/816,544 Active 2033-08-03 US10695283B2 (en) 2012-05-18 2017-11-17 Extract of Greyia radlkoferi and use thereof

Country Status (8)

Country Link
US (2) US20150118337A1 (en)
EP (1) EP2849768B1 (en)
KR (1) KR102098583B1 (en)
CN (1) CN104582713B (en)
IN (1) IN2014DN09558A (en)
MY (1) MY175298A (en)
WO (1) WO2013171720A1 (en)
ZA (1) ZA201408128B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2878288T3 (en) * 2016-12-29 2021-11-18 Sachem Inc Novel antioxidants for cosmetics and pharmaceutical compositions containing glycerol alkyl ethers
IT201900022740A1 (en) * 2019-12-02 2021-06-02 Metabolic Insights Ltd Pinocembrina dihydrocalcone and its compositions and their use as pesticides

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070011762A1 (en) * 2005-06-23 2007-01-11 The Procter & Gamble Company Individualized trichomes and products employing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR059545A1 (en) 2006-02-28 2008-04-09 Bayer Consumer Care Ag VERBACOSIDE AND LUTEOLINE COMBINATION

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070011762A1 (en) * 2005-06-23 2007-01-11 The Procter & Gamble Company Individualized trichomes and products employing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Bohm et al. (Flavonoids and Affinities of Greyiaceae with a Discussion of the Occurrence of B-Ring Deoxyflavonoids in DIcotyledonous Families), Systematic Botany (1192), 17(2), pp. 272-281). *

Also Published As

Publication number Publication date
KR20150079496A (en) 2015-07-08
CN104582713A (en) 2015-04-29
EP2849768A1 (en) 2015-03-25
ZA201408128B (en) 2015-12-23
IN2014DN09558A (en) 2015-07-17
EP2849768B1 (en) 2016-06-01
US20180071204A1 (en) 2018-03-15
US10695283B2 (en) 2020-06-30
MY175298A (en) 2020-06-18
CN104582713B (en) 2019-05-28
KR102098583B1 (en) 2020-04-09
WO2013171720A1 (en) 2013-11-21

Similar Documents

Publication Publication Date Title
Masci et al. Evaluation of different extraction methods from pomegranate whole fruit or peels and the antioxidant and antiproliferative activity of the polyphenolic fraction
Boroja et al. The biological activities of roots and aerial parts of Alchemilla vulgaris L.
Singh et al. Umbelliferone–An antioxidant isolated from Acacia nilotica (L.) Willd. ex. Del.
Abdennacer et al. Determination of phytochemicals and antioxidant activity of methanol extracts obtained from the fruit and leaves of Tunisian Lycium intricatum Boiss.
Danino et al. Antioxidant activity of 1, 3-dicaffeoylquinic acid isolated from Inula viscosa
Liu et al. Antioxidant triterpenoids from the stems of Momordica charantia
KR101506647B1 (en) Protecting and regenerating composition
Kumar et al. Appraisal of total phenol, flavonoid contents, and antioxidant potential of folkloric Lannea coromandelica using in vitro and in vivo assays
Nono et al. Antimicrobial, antioxidant, anti-inflammatory activities and phytoconstituents of extracts from the roots of Dissotis thollonii Cogn.(Melastomataceae)
Bittová et al. Monitoring of HPLC profiles of selected polyphenolic compounds in sea buckthorn (Hippophaë rhamnoides L.) plant parts during annual growth cycle and estimation of their antioxidant potential
Šliumpaitė et al. Antioxidant properties and phenolic composition of wood betony (Betonica officinalis L., syn. Stachys officinalis L.)
Kaneria et al. Nontargeted metabolomics approach to determine metabolites profile and antioxidant study of Tropical Almond (Terminalia catappa L.) fruit peels using GC-QTOF-MS and LC-QTOF-MS
Kim et al. Polyamine derivatives from the bee pollen of Quercus mongolica with tyrosinase inhibitory activity
Rubio-Senent et al. Phenolic extract obtained from steam-treated olive oil waste: Characterization and antioxidant activity
Komolafe et al. In vitro antioxidant activity and effect of Parkia biglobosa bark extract on mitochondrial redox status
Khongkarat et al. Safflospermidines from the bee pollen of Helianthus annuus L. exhibit a higher in vitro antityrosinase activity than kojic acid
Xu et al. An in vitro study on the dental caries preventing effect of oligomeric procyanidins in sorghum episperm
Sharma et al. Evaluation of Bauhinia variegata L. bark fractions for in vitro antioxidant potential and protective effect against H2O2-induced oxidative damage to pBR322 DNA
US10695283B2 (en) Extract of Greyia radlkoferi and use thereof
WO2016110276A1 (en) Topical composition containing obakunone and skin-whitening method using same
Poomanee et al. Multifunctional biological properties and phytochemical constituents of Mangifera indica L. seed kernel extract for preventing skin aging
WO2015135927A1 (en) Compounds with a combined antioxidant activity against free radicals together with an anti-inflammatory action, and pharmaceutical and cosmetic compositions containing them for the treatment of skin and hair
KR101240816B1 (en) Cryptomeria japonica extracts having whitening effect and anti-oxydation activity
Saidi et al. Study toward antioxidant activity of Clematis flammula extracts: Purification and identification of two flavonoids-glucoside and trisaccharide
J Wille et al. Bioactives derived from ripe corn tassels: A possible new natural skin whitener, 4-hydroxy-1-oxindole-3-acetic acid

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNIVERSITY OF PRETORIA, SOUTH AFRICA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DE CANHA, MARCO NUNO;LALL, NAMRITA;HUSSEIN, AHMED;AND OTHERS;SIGNING DATES FROM 20150104 TO 20150220;REEL/FRAME:035584/0835

Owner name: UNIVERSITY OF KWAZULU-NATAL, SOUTH AFRICA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DE CANHA, MARCO NUNO;LALL, NAMRITA;HUSSEIN, AHMED;AND OTHERS;SIGNING DATES FROM 20150104 TO 20150220;REEL/FRAME:035584/0835

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION