US20150066055A1 - Redundant tissue closure methods and apparatuses - Google Patents

Redundant tissue closure methods and apparatuses Download PDF

Info

Publication number
US20150066055A1
US20150066055A1 US14/532,537 US201414532537A US2015066055A1 US 20150066055 A1 US20150066055 A1 US 20150066055A1 US 201414532537 A US201414532537 A US 201414532537A US 2015066055 A1 US2015066055 A1 US 2015066055A1
Authority
US
United States
Prior art keywords
tissue
opening
engaging members
closure element
everted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/532,537
Inventor
Wilmer L. Sibbitt, Jr.
Robert M. Curtis
Randy R. Sibbitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abbott Vascular Inc
Original Assignee
Abbott Vascular Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/508,662 external-priority patent/US8920442B2/en
Priority claimed from US11/508,715 external-priority patent/US9456811B2/en
Priority claimed from US11/508,656 external-priority patent/US8758397B2/en
Application filed by Abbott Vascular Inc filed Critical Abbott Vascular Inc
Priority to US14/532,537 priority Critical patent/US20150066055A1/en
Assigned to ABBOTT VASCULAR INC. reassignment ABBOTT VASCULAR INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SIBBITT, WILMER L., JR., CURTIS, ROBERT M., SIBBITT, RANDY R.
Publication of US20150066055A1 publication Critical patent/US20150066055A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/10Surgical instruments, devices or methods, e.g. tourniquets for applying or removing wound clamps, e.g. containing only one clamp or staple; Wound clamp magazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • A61B17/0643Surgical staples, i.e. penetrating the tissue with separate closing member, e.g. for interlocking with staple
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/08Wound clamps or clips, i.e. not or only partly penetrating the tissue ; Devices for bringing together the edges of a wound
    • A61B17/083Clips, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00646Type of implements
    • A61B2017/00663Type of implements the implement being a suture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00646Type of implements
    • A61B2017/00668Type of implements the implement being a tack or a staple
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • A61B2017/0641Surgical staples, i.e. penetrating the tissue having at least three legs as part of one single body

Definitions

  • U.S. patent application Ser. No. 12/559,377 is a continuation-in-part of U.S. patent application Ser. No. 11/508,662, filed 23 Aug. 2006, entitled “VASCULAR OPENING EDGE EVERSION METHODS AND APPARATUSES,” which claims the benefit of and priority to U.S. Provisional Pat. App. No. 60/711,279, filed 24 Aug. 2005, entitled “VASCULAR CLOSURE METHODS AND APPARATUSES,” and claims benefit of and priority to U.S. Provisional Pat. App. No. 60/726,985, filed 14 Oct.
  • the present disclosure relates to tissue closure apparatuses and methods.
  • catheters are typically inserted through an incision or puncture in the skin and underlying tissues to access an artery or vein, typically in the groin, neck, or subclavian areas of a patient.
  • the catheter can be inserted through a puncture in the blood vessel and guided to the desired site to perform interventional procedures such as angiography, angioplasty, stent delivery, plaque removal, and infusion of a therapeutic substance.
  • interventional procedures such as angiography, angioplasty, stent delivery, plaque removal, and infusion of a therapeutic substance.
  • the access hole must be closed to prevent massive hemorrhage. This is typically achieved by applying pressure over the blood vessel manually and then by applying a pressure bandage or a compressive weight.
  • vascular sealing methods and devices and other tissue closure methods and devices have an inherent failure rate due to incomplete sealing of holes or wounds in vascular or other tissue. Achieving complete wound closure is particularly important in sealing arterial punctures, which are relatively high pressure systems. For example, under normal blood pressure, the arterial system has a pressure of about 120/80 mmHg or more. Failure to completely close arterial holes can result in hematoma, exsanguination, and other catastrophic consequences, including limb amputation and death.
  • many currently employed vascular devices employ methods and materials that remain on the intravascular endothelial surface or otherwise in the sealed vessel. Materials that remain intravascularly can be a nidus for thrombus or intravascular mural hyperplasia with later spontaneous and catastrophic closure of the vessel.
  • the present disclosure provides methods and apparatuses that are suitable for closure of vascular punctures or other openings in bodily tissues.
  • the apparatuses and methods disclosed herein provide a redundancy of closure, which enhances wound healing and patient safety.
  • the devices and methods described herein are configured for wound closure on the external surface of the wound, which allows wound healing with little endothelial disruption thereby reducing the chances of intravascular thrombosis or embolism or intimal hyperplasia.
  • the present disclosure describes a closure device for closing an opening in a tissue.
  • An exemplary tissue closure device includes at least one tubular member, a tissue eversion apparatus configured to form an everted tissue region around the opening in the tissue, a first closure element, which can be deployed over the tissue opening around the portion of everted tissue, and a second, redundant closure element that is applied in addition to the first closure element to ensure efficient closure. Combining a first closure and a second, redundant closure provides for wound closure with a failure rate and/or complication rate lower than either acting alone.
  • the devices described herein can be supplied in different diameters (e.g., French sizes) to accommodate different sizes of catheters and different sizes of puncture holes.
  • the tissue eversion apparatus, the first closure element, and the second closure element are typically disposed in a lumen of one or more tubular members and deployable therefrom.
  • the tubular members can be sheaths having various shapes and/or be formed from various materials, as examples a solid walled or porous walled cylinder or other shape, or a plurality of guide rods or bars mounted relative to each other.
  • Tissue openings can include openings in a body lumen such as an opening in a blood vessel.
  • An exemplary method for closing an opening in a tissue includes (a) deploying a tissue eversion apparatus into the opening in the body lumen, the tissue eversion apparatus having a plurality of elongate tissue engaging members capable of approximating and everting edges of the opening to form an everted tissue region, (b) deploying a first closure element in a first configuration to the everted tissue region around the opening in the body lumen, (c) transitioning the first closure element that was disposed around the portion of everted tissue to a second, smaller configuration so as to close the opening in the body lumen, (d) retracting the tissue eversion apparatus so as to release the everted edges, and (e) deploying a second closure element over or around the first closure element so as to redundantly close the opening in the body lumen.
  • the act of deploying a second closure element over or around the first closure element can be performed either before or after retracting the tissue eversion apparatus so as to release the everted edges.
  • the first closure element can include a cincture element having a first size and a second size that is smaller than the first size. Accordingly, the first size is configured to surround a portion of the everted tissue region around the opening and the second size is configured to capture a portion of the everted tissue region and close the opening when the cincture element is transitioned from the first size towards and/or to the second size.
  • the cincture element includes a loop of suture having at least one pre-tied knot, such that the loop can be tightened by pulling on a free-end so as to close the loop and close the tissue opening.
  • the pre-tied knot can be, for example, a slip knot.
  • the loop of suture can include at least one dentate configured to maintain the cincture element in a closed position. That is, the at least one dentate can permit the loop to be pulled closed while simultaneously functioning to prevent re-opening of the loop.
  • the cincture element can be formed from a shape memory material having an expanded delivery configuration and a contracted deployed configuration.
  • the shape memory cincture element can be a ring-like structure formed from a metallic material (e.g., NiTi) or a polymeric material (e.g., a rubber-like material) that resiliently closes the opening when the first closure element is deployed around the everted tissue region.
  • the shape memory cincture element may be biased towards the contracted deployed configuration.
  • Suitable examples of second closure elements that can be applied to the wound after the first closure element is placed can include, but are not limited to, sealant plugs, adhesive glues, occlusive substances, extraluminal clips, RF energy, thermal energy, electrical induction, infrared light, ultrasonic vibration, microwave or laser irradiation, sutures, and combinations thereof.
  • FIGS. 1A-1D illustrate schematic views of a tissue eversion apparatus according to one embodiment of the present disclosure.
  • FIGS. 2A-2D illustrate schematic views of a tissue eversion apparatus according to several embodiments of the present disclosure.
  • FIGS. 3A and 3B illustrate a tissue cincture apparatus according to one embodiment of the present disclosure.
  • FIGS. 4A and 4B illustrate a tissue cincture apparatus according to one embodiment of the present disclosure.
  • FIGS. 5A and 5B illustrate a tissue cincture apparatus according to one embodiment of the present disclosure.
  • FIGS. 6A-6G schematically illustrate closure of an opening in a body lumen using a tissue eversion apparatus and a tissue cincture apparatus according to one embodiment of the present disclosure.
  • FIGS. 7A-7H schematically illustrate a number of tissue cinctures that can be used to close an opening according to one embodiment of the present disclosure.
  • FIGS. 8A-8F illustrate closure of an opening in a body lumen using a redundant closure system according to one embodiment of the present disclosure.
  • FIGS. 9A-9E illustrate closure of an opening in a body lumen using a redundant closure system according to one embodiment of the present disclosure.
  • FIGS. 10A-10C illustrate closure of an opening in a body lumen using a redundant closure system according to one embodiment of the present disclosure.
  • FIGS. 11A-11H illustrate closure of an opening in a body lumen using a redundant closure system according to one embodiment of the present disclosure.
  • the present disclosure provides apparatuses and methods for closing a vascular puncture wound or any tissue aperture, for example those resulting from the insertion of a vascular catheter or surgical instrument, trauma or disease.
  • the apparatuses and methods disclosed herein provide a redundancy of closure, which enhances wound healing and patient safety.
  • the devices and methods described herein are configured for wound closure on the external surface of the wound, which allows wound healing with little endothelial disruption and thereby reducing the chances of intravascular thrombosis or embolism or intimal hyperplasia.
  • An exemplary tissue closure device includes at least one tubular member, a tissue eversion apparatus configured to form an everted tissue region around the opening in the tissue, a first closure element, which can be deployed over the tissue opening around the portion of everted tissue, and a second, redundant closure element that is applied in addition to the first closure element to ensure efficient closure.
  • FIG. 1A is a lateral, cutaway view of a tissue eversion apparatus 100 in a closed or undeployed state.
  • a plurality of tissue engaging members 102 a are shown in a retracted state disposed in an elongate tubular sheath member 104 .
  • two tissue engaging members 102 a are disposed in the sheath 104 .
  • tissue engaging members 102 a can be disposed in the sheath 104 such that the tissue engaging members 102 a can engage with or otherwise grasp tissue surrounding an opening when the tissue engaging members 102 a are deployed.
  • the elongate tubular sheath member 104 is configured to accommodate a guidewire, or in another embodiment can be inserted through a sheath or a closure device and used like a guidewire.
  • FIG. 1B is a lateral, cutaway view of the tissue eversion apparatus 100 in an extended or deployed state, where the tissue engaging members 102 b are extended. As shown in FIG. 1B , the tissue engaging members 102 b can curl up when they are in the extended position.
  • the tissue engaging members can be formed from a shape-memory material such as a nickel-titanium alloy to facilitate the shape change from the retracted to the deployed state.
  • the tissue engaging members can be formed from a deformable material, such that the tissue engaging members can bent for disposal in the delivery sheath.
  • the tissue engaging members can include a sharp bend that directs the distal ends of the tissue engaging members toward the proximal end of the delivery sheath.
  • the pre-bent shape allows the tissue engaging members to engage with the vessel walls.
  • the tissue engaging members can include hinged members near the distal ends of the engaging members. The hinges can be configured to allow the tissue engaging members to be folded for disposal in the delivery sheath and the hinges can be configured to allow the distal ends of the engaging members to splay out and engage with the vessel walls when the engaging members are deployed into the vessel lumen.
  • FIG. 1C is a lateral view showing the tissue eversion apparatus 100 in the retracted state with a plunger mechanism 106 that can be used to extend the tissue engaging members 102 a and finger flanges or rests 108 to control the device.
  • FIG. 1D is a lateral view showing the tissue eversion apparatus 100 in the deployed state.
  • the tissue eversion apparatus 100 shown in FIGS. 1A-1D can be guided or placed into a puncture wound by means of a guidewire that can be accommodated within the sheath 104 .
  • the tissue eversion apparatus shown in FIGS. 1A-1D can be placed into the puncture wound by means of a sheath that can accommodate the everter device 100 internally.
  • the tissue eversion apparatus shown in FIGS. 1A-1D can be placed into the puncture wound using other methods. Regardless, once the tissue eversion apparatus 100 is in the vessel, the tissue engaging members 102 can be deployed and used to evert the tissue around the opening or wound.
  • FIGS. 2A-2D illustrate alternative embodiments of a tissue eversion apparatus 200 , according to the present disclosure.
  • FIG. 2A is a lateral cutaway view of a tissue eversion apparatus 200 a with tissue engaging members 202 a in a retracted state.
  • tissue engaging members 202 a are retracted within internal lumens 206 that are disposed within lumen 204 .
  • FIG. 2B is a lateral view of a tissue eversion apparatus 200 b in the extended or opened state, where the tissue engaging members 202 b are extended, and curl up to allow engagement with a vessel wall.
  • FIG. 2C is another schematic illustration of a tissue eversion apparatus 200 c. As shown in FIG. 2C , the tissue engaging members 202 c extend in a cross-wise function across the sheath 204 , the purpose being that the wound edges can be more efficiently and mechanically brought into apposition by the tissue engaging members 202 c when members 200 c engage with the tissue around the wound and the device 200 c is retracted from the wound in order to draw the tissue up and form a portion of everted tissue.
  • FIG. 2C is another schematic illustration of a tissue eversion apparatus 200 c. As shown in FIG. 2C , the tissue engaging members 202 c extend in a cross-wise function across the sheath 204 , the purpose being that the wound edges can be more efficiently and mechanically brought into ap
  • FIG. 2D is another schematic illustration of a tissue eversion apparatus 200 d.
  • the tissue engaging members 202 d extend towards one another towards the central axis of the sheath 204 , the purpose being that the wound edges can be more efficiently and mechanically brought into apposition by the tissue engaging members 202 d when members 200 d engage with the tissue around the wound and the device 200 d is retracted from the wound in order to draw the tissue up and form a portion of everted tissue.
  • the plurality of tissue engaging members are shown as separate elongate members.
  • the plurality of members can be coupled together at a point proximal to the distal ends of each of the individual tissue engaging members.
  • the plurality of members can be coupled to an elongate columnar member that can allow the tissue engaging members to be deployed and retracted. Coupling the tissue engaging members proximal to their ends can also be advantageous in that it can reduce the diameter of the tissue region everted by the engaging members in a manner similar to what is shown in FIG. 2D .
  • FIGS. 1A-2D present for illustration purposes two tissue engaging members; the devices shown can include as few as two tissue engaging members, but can include any plurality, and as many as are practical within applicable design considerations.
  • the tissue engagement features e.g., 102 a ), shown as sharp hook-like portions of the active members in the figure, can include textured portions or attachments, mating portions with apposing feet, penetrating devices, hooks, teeth, or other adaptations to allow firm engagement of the tissue.
  • tissue eversion apparatuses that can be adapted for use in the devices and methods discussed herein can be found in U.S. patent application Ser. No. 11/316,775, filed 23 Dec. 2005, now abandoned, entitled “VASCULAR CLOSURE METHODS AND APPARATUSES” and U.S. patent application Ser. No. 11/508,662, filed 23 Aug. 2006, entitled “VASCULAR OPENING EDGE EVERSION METHODS AND APPARATUSES,” the entireties of which are incorporated herein by reference.
  • FIGS. 3A and 3B illustrate a cincture apparatus 300 according to one embodiment of the present disclosure.
  • the cincture apparatus 300 includes a tubular member 302 (e.g., a delivery sheath) and a cincture (shown as 304 a in FIG. 3A and 304 b in FIG. 3B ) disposed in the lumen of tubular member 302 .
  • the cincture shown in FIGS. 3A and 3B is transitionable from an open configuration 304 a to a contracted or closed configuration 304 b.
  • 3A and 3B can be used in conjunction with the tissue eversion apparatuses discussed above to deliver a closure element (such as cincture 304 a, 304 b ) to a portion of everted tissue according to the devices and methods disclosed herein.
  • a closure element such as cincture 304 a, 304 b
  • the interior wall of the delivery sheath 302 delivers a cincture 304 a, which can be held in place in the sheath 302 by a retention structure 306 .
  • the retention structure 306 can prevent the cincture 304 a from malpositioning and/or from prematurely contracting.
  • the cincture 304 a which can be held by the retention structure 306 , can be sufficiently rigid to not readily change position and/or can be temporarily held in place by a wax-like or other semi-solid biocompatible material that will give way with contraction of the cincture 304 a.
  • the cincture 304 a can be attached to a retractable suture loop 310 , which is contained in a lumen 308 , shown in the Figure as a cylindrical structure.
  • the lumen 308 can include a narrowed portion 312 that permits the cincture material to pass, but prevents a tightening feature (e.g., a functional slipknot) from passing.
  • a tightening feature e.g., a functional slipknot
  • FIGS. 4A and 4B illustrate a cincture apparatus 400 according to another embodiment of the present disclosure.
  • the cincture apparatus 400 includes a tubular member 402 (e.g., a delivery sheath) and a cincture (shown as 404 a in FIG. 4A and 404 b in FIG. 4B ) disposed on the outer surface of the tubular member 402 .
  • the cincture shown in FIGS. 4A and 4B is transitionable from an open configuration 404 a to a contracted or closed configuration 404 b.
  • FIG. 4A and 4B can be used in conjunction with the tissue eversion apparatuses discussed above to deliver a closure element (such as cincture 404 a, 404 b ) to a portion of everted tissue according to the devices and methods disclosed herein.
  • a closure element such as cincture 404 a, 404 b
  • the delivery sheath 402 delivers a cincture 404 a, which can be held in place on the sheath 402 by a retention structure 406 .
  • the retention structure 406 can prevent the cincture 404 a from malpositioning and/or from prematurely contracting.
  • the retention structure 406 can be slidably positioned on the sheath 402 , such that the retention structure 406 can be slid distally on the sheath 402 to act as an actuator to slide the cincture 404 a off the sheath 402 .
  • the cincture 404 a which can be held by the retention structure 406 , can be sufficiently rigid to not readily change position and/or can be temporarily held in place by a wax-like or other semi-solid biocompatible material that will give way, allowing the cincture 404 a to slide off the sheath 402 and contract.
  • the cincture 404 a can be attached to a retractable suture loop 410 , which is contained in a lumen 408 , shown in the Figure as a cylindrical structure.
  • the lumen 408 can comprise a narrowed portion 412 that permits the cincture material to pass, but prevents a tightening feature (e.g., a functional slipknot) from passing.
  • a tightening feature e.g., a functional slipknot
  • FIGS. 5A and 5B illustrate a cincture apparatus 500 according to yet another embodiment of the present disclosure.
  • the cincture apparatus 500 includes a tubular member 502 (e.g., a delivery sheath) and a cincture (shown as 504 a in FIG. 5A and 504 b in FIG. 5B ) disposed on the outer surface of the tubular member 502 .
  • the cincture shown in FIGS. 5A and 5B which in this embodiment is formed from a resilient or shape-memory material, can transition from an open configuration 504 a to a contracted or closed configuration 504 b when the cincture 504 a is removed from the tubular member 502 .
  • the cincture apparatus 500 shown in FIGS. 5A and 5B can be used in conjunction with the tissue eversion apparatuses discussed above to deliver a closure element (such as cincture 504 a, 504 b ) to a portion of everted tissue according to the devices and methods disclosed herein.
  • a closure element such as cincture 504 a, 504 b
  • the delivery sheath 502 delivers a cincture 504 a, which can be held in place on the sheath 502 by a retention structure 506 .
  • the retention structure 506 can prevent the cincture 504 a from malpositioning and/or from prematurely contracting.
  • the retention structure 506 can be slidably positioned on the sheath 502 , such that the retention structure 506 can be slid distally on the sheath 502 to act as an actuator to slide the cincture 504 a off the sheath 502 .
  • the cincture 504 a which can be held by the retention structure 506 , can be sufficiently rigid to not readily change position and/or can be temporarily held in place by a wax-like or other semi-solid biocompatible material that will give way, allowing the cincture 504 a to slide off the sheath 502 and contract.
  • the cincture 504 a can be attached to a retractable suture loop 510 , which is contained in a lumen 508 , shown in the Figure as a cylindrical structure.
  • the retractable suture loop 510 can be used to pull the cincture 504 a past the end of the sheath 502 . If the retention structure 506 is slidably disposed on the sheath 502 , or otherwise has the ability to move the cincture past the end of the sheath 502 , then the suture loop 510 may not be might not be necessary (although it can still be useful for retrieving misplaced cinctures).
  • FIGS. 6A-6G schematically illustrate steps in a method of closing a tissue opening using at least one tubular member, a tissue eversion apparatus, and as cincture closure according to the present disclosure.
  • a sheath 602 for example a sheath like that described in relation to FIG. 1 , is guided into an opening in a vessel 620 with the aid of a guidewire 608 .
  • the sheath 602 includes elongate tissue engaging members 604 a disposed in the lumen of the sheath 620 .
  • the elongate tissue engaging members 604 b are deployed so that they can engage the edges of the opening 606 .
  • the tissue engaging members 604 b curve back away from sheath 602 when they are deployed so that the tissue engaging members 604 b are positioned to engage the tissue around the opening and evert the tissue when the sheath 602 is retracted.
  • FIG. 6C once the elongate tissue engaging members 604 b are engaged with the tissue edges 606 , the sheath 602 can be retracted creating an everted tissue region 606 a.
  • the elongate tissue engaging members 604 b pierce a portion of the everted tissue region 606 a. Nonetheless, one will appreciate that the tissue engaging members 604 b need not pierce the tissue in order to engage the tissue to form the everted tissue region 606 a.
  • any known gripping means such as apposing feet, hooks, teeth, adhesive devices and the like can be used to engage the tissue around the opening to form the everted tissue region.
  • a cincture 612 a can be advanced from a second sheath 610 , and tightened 612 b over the everted edges of the opening, as shown in FIG. 6E .
  • the cincture 612 a, 612 b is placed around the everted tissue region 606 a below the portion of the everted region 606 a that is punctured by the tissue engaging members. This ensures that the portions of the vessel that are punctured by the tissue engaging members do not cause additional bleeding after the cincture 612 a, 612 b is placed.
  • placing the cinture 612 a, 612 b below the portion of the tissue engaged by the tissue engaging members can prevent the tissue engaging members from interfering with complete closure of the opening and/or can facilitate good contact between the vascular epithelial layers to facilitate wound healing.
  • the second sheath 610 can be removed, leaving the opening closed by the cincture 612 b, as shown in FIG. 6F .
  • the tissue engaging members 604 a can also be retracted into the sheath 602 , all as shown in FIG. 6F .
  • the suture loop 614 (if required), tissue engaging members 604 a and sheath 602 , the second sheath 610 , and the guidewire 608 can all be removed, leaving the cincture 612 b in place closing the opening in the vessel 620 , as shown in FIG. 6G .
  • a number of second, redundant closure elements may be applied following placement of the first closure element (e.g., the cincture) in order to provide redundant closure to the opening.
  • FIGS. 7A-7H illustrate various cincture configurations that can be adapted for use with the devices and methods disclosed herein.
  • Cincture 11 shown in FIG. 7A , illustrates a simple cincture in an open configuration and cincture 12 is the simple cincture of 11 in a closed position.
  • Cinctures 11 and 12 include a slip-knot with only one suture end to be pulled and distal loop for the pulling suture.
  • Cinctures 21 and 22 shown in FIG. 7B , illustrate a cincture configuration with a slip-knot device, with both suture ends to be pulled through the slip-knot device, resulting in a loop of material when the cincture is completely closed.
  • Cinctures 31 and 32 illustrated in FIG. 7C , illustrate a cincture configuration that includes a loop and the pulling suture is functionally internal to the cincture initially, resulting in very little trailing material when the cincture is completely closed.
  • Cinctures 41 and 42 shown in FIG. 7D , illustrate a cincture configuration that includes dentates on the suture. When cinctures 41 and 42 are closed, the dentates act to lock the suture in the closed position.
  • Cinctures 51 and 52 shown in FIG. 7E , illustrate a cincture configuration that includes multiple strands of material, resulting in a multiple level complex closed cincture.
  • Cinctures 61 and 62 shown in FIG.
  • Cinctures 71 and 72 illustrated in FIG. 7G , illustrate a cincture made of memory material, so that when the cincture is released from the delivery sheath it contracts to effect closure of the opening.
  • Cinctures 81 and 82 shown in FIG. 7H , illustrate a cincture made of a rubber-like or memory material, that when pushed off of the delivery sheath, can contract more-or-less uniformly to close the cincture and thereby close the opening or wound.
  • FIGS. 8A-8F illustrate a schematic depiction of a typical embodiment of a hemostatic plug that can be used in combination with a cincture to provide a redundant closure to further reduce the potential failure rate.
  • FIG. 8A demonstrates a typical hemostatic plug 901 made of a biocompatible material preferably shaped as a columnar structure with a cylindrical or toroidal cross section with an internal lumen 902 that permits movement of a grasper device and guidewire. Other cross sectional configurations are possible, with or without a central hole.
  • FIG. 8B demonstrates the hemostatic plug after hydration, where it may assume a larger volume 903 and may decrease the internal diameter of the lumen 904 .
  • FIG. 8C demonstrates the cincture delivery device with the hemostatic plug 905 and a pushing device 906 which permits expulsion of the hemostatic plug out the suture delivery device onto the closed puncture wound 907 and onto the tines of the tissue engaging members 908 .
  • FIG. 8D shows the hemostatic plug 909 being pushed by the expulsion device 910 while the tissue engaging members 908 and cincture delivery device 911 are withdrawn to permit the plug to seat on the puncture wound and the cincture 912 .
  • FIG. 8E shows the expulsed hemostatic plug 913 seated directly over the cinctured puncture wound 914 .
  • FIG. 8F shows the expulsed hemostatic plug 915 after it has assumed its fully hydrated shape applying pressure to and/or further sealing the cinctured puncture 916 .
  • the cincture could be temporary to achieve immediate hemostasis while the plug is adhering to local tissues, and then the cincture could be removed using a number of methods leaving the plug as the primary hemostatic instrument.
  • FIG. 9A-9F illustrate a schematic depiction of a typical embodiment of a cincture closure device combined with a biocompatible injectable adhesive or occluding material to provide redundant wound closure.
  • the biocompatible injectable adhesive or occluding material may be bioabsorbable and/or bioresorbable or not.
  • FIG. 9A depicts the cincture delivery device 1001 with a cincture seated 1002 on the puncture wound and a tissue eversion apparatus 1010 with tissue engaging members 1012 engaged with the everted tissue.
  • FIG. 9B demonstrates injectable or extrudable adhesive or occluding material 1003 being injected through the cincture delivery device 1001 and around the tissue eversion apparatus 1010 .
  • FIG. 9C demonstrates an injectable or extrudable adhesive or occluding material 1004 being injected through the lumen of the tissue eversion apparatus 1010 .
  • FIG. 9D depicts the injected adhesive or occlusive material 1005 surrounding the cincture 1002 .
  • FIG. 9E depicts the injected adhesive or occlusive material 1006 surrounding, sealing, and/or further binding the puncture wound and cincture 1002 . Note that the cincture 1002 can prevent the adhesive or occlusive material 1006 from entering the blood vessel.
  • FIGS. 10A-10C illustrate a schematic depiction of the application of an extramural clip over a cincture device in order to provide redundant closure.
  • FIG. 10A illustrates a tissue eversion apparatus 1110 with tissue engagement members 1112 engaged with a portion of everted tissue, a cincture delivery device 1101 , a clip 1102 riding on the cincture delivery device 1101 , a device 1103 that pushes the clip 1102 , a cincture 1108 over the puncture wound 1104 .
  • FIG. 10B represents the clip 1106 being pushed off the cincture delivery device 1101 by the pushers 1107 .
  • FIG. 20C shows a representation of the clip 1109 residing on the closed puncture 1104 , providing redundancy for the cincture closure 1108 . It is to be understood the cincture 1108 could be temporary to achieve immediate hemostasis.
  • the clip 1102 shown in FIGS. 10A-10C can include a base member shaped to allow passage of the clip over the delivery sheath 1102 , and a plurality of grasping members that are configured to engage with the everted tissue region (e.g., 606 a in FIG. 6A ).
  • the base member can be shaped as a ring or a complete circular or cylindrical band, or the base member can be a discontinuous circle to better accommodate the delivery sheath 1102 .
  • the base member can also include shape memory materials to better accommodate the delivery sheath 1102 and to assume a lower profile when delivered (e.g., clip 1109 ).
  • the clip 1102 can include as few as two grasping members and as many as are practical within applicable design considerations.
  • the grasping members can include textured portions or attachments, mating portions with apposing feet, penetrating devices, hooks, teeth, or other adaptations to allow firm grip of the everted tissue region proximal to the tissue cincture.
  • FIGS. 11A-11H illustrate a schematic depiction of an alternate design of an extramural clip 1200 that can be used to provide redundant closure over a cincture.
  • FIG. 11A represents a typical wafer clip 1200 or collar consisting of a disk-like structure with inwardly protruding members 1201 having sharpened or compressive ends, and a space 1202 between the members 1201 .
  • FIG. 11B is an oblique of the typical wafer clip 1200 demonstrating the members 1203 and intermember spaces 1204 .
  • FIG. 11A represents a typical wafer clip 1200 or collar consisting of a disk-like structure with inwardly protruding members 1201 having sharpened or compressive ends, and a space 1202 between the members 1201 .
  • FIG. 11B is an oblique of the typical wafer clip 1200 demonstrating the members 1203 and intermember spaces 1204 .
  • 11C represents an important property of the hemostatic adherent wafer clip 1200 , that the members 1201 , although sharp and rigid or semi-rigid, can be displaced 1205 under force, but are resilient and return to the planar low energy state as shown in FIG. 11B .
  • FIG. 11D demonstrates the interaction of the hemostatic adherent wafer clip 1200 and its intermember spaces 1202 with a tissue eversion apparatus 1207 , the tissue engaging members 1208 have engaged the wound edges 1209 of the puncture.
  • tissue engaging members 1208 have been pulled through the intermember spaces 1202 of the wafer clip 1200 , pulling the wound edges 1211 through the hemostatic clip 1200 , and members 1208 engaging and holding the puncture wound edges in opposition and closing the wound.
  • FIG. 11F shows a hemostatic clip 1200 engaging puncture wound tissues after a cincture 1214 has been placed.
  • FIG. 11G shows the hemostatic wafer clip 1200 providing redundant closure in addition to the cincture 1214 .
  • FIG. 11H shows the hemostatic wafer clip members 1200 seated on the wound edges 1218 providing redundant closure to the cincture 1214 .
  • second, redundant closure elements that can be applied to or around the wound after placing the first closure element can include, but are not limited to, RF energy, thermal energy, electrical induction, infrared light, ultrasonic vibration, microwave or laser irradiation, sutures, and combinations thereof.
  • heat i.e., thermal energy
  • tissue eversion apparatus and the first and second closure elements being delivered by separate elongate members (i.e., sheaths).
  • elongate members i.e., sheaths
  • the figures are presented for illustrative purposes, and that the tissue eversion apparatus and the first and second closure elements can be delivered by a single elongate member.
  • knots examples include, but are not limited to, the overhand knot or half knot, the double overhand knot, the multifold-overhand-knot, the Flemish eight, hitches (single simple, half, clove, two half, buntline, rolling Magnus, midshipman's tautline, adjustable jamming, cow, reversed half, lobster buoy), single loops (bowline, Dutch marine bowline, cowboy bowline, double figure-of-eight loop, Flemish eight, bowstring knot, tucked double overhand, butterfly loop, lineman's loop, artillery loop, pendant hitch), clove hitch, reef knot, square knot, noose (simple noose, strangle-snare, scaffold knot, gallows knot, hangman's knot, reverse eight-noose), monkey fist, the dolly, fisherman's bend, surgeon's knot, sheet bend knot, timber hitch, fisherman's knot, reef knot, square knot, Dur
  • suture material at can be suitable for use with the present disclosure include, but are not limited to, absorbable, non-absorbable, braided, monofilament, pseudo-monofilament, multifilament, barbed, smooth, directional, and bidirectional.
  • the suture material can be composed of but not limited to polyglycolic acid, polydioxanon, polylactate, polycaprone, silk, linen, cotton, treated and non-treated collagen, “catgut”, chromic, Vicryl, Monocyrl, PDS, polyesther, polypropylene, polyamide, stainless steel, and others.
  • the cincture device can be made from other suitable materials, including typical suture materials, flexible polymeric materials with elastomeric properties including polyurethane, polyethylene, polyestenurethane, polyimide, olyethreimide, polycarbonate, polysiloxane, polyvinyls, hydroxyethylmethacrylate, related polymers, co-polymers of these or other polymers, or drug-embedded or drug-eluting polymers to prevent coagulation or intimal hyperplasia (such as Taxol), also which can be made radiopaque by markers and addition of appropriate radiopaque materials.
  • suitable materials including typical suture materials, flexible polymeric materials with elastomeric properties including polyurethane, polyethylene, polyestenurethane, polyimide, olyethreimide, polycarbonate, polysiloxane, polyvinyls, hydroxyethylmethacrylate, related polymers, co-polymers of these or other polymers
  • the tines or gripping portion of a the tissue engaging members or components of the sheath or cincture device can be made from any number of suitable materials, including radiopaque materials and materials coated to be made radiopaque, including bioabsorbable polymers or compounds, non-absorbable alloys and compounds including stainless steel, MP35, Nitinol, Nickel-Titanium alloy, Kevlar, nylon polyester acrylic, gold, platinum, tantalum, niobium, molybdenum, rhodium, palladium silver, hafnium, tungsten, iridium. Materials with memory can be useful to allow tines to spontaneously open after extended from the sheath.
  • Piano wire, super elastic memory wire, chromium allows, alloys of titanium and nickel, and other elastic memory materials previously mentioned as well as others can be used as well.
  • the sealant plug, injected sealant, and injected occlusive material can be composed of an appropriate biocompatible materials including but not limited to fibrin and cross-linked fibrin autologous blood clot formed by blood mixed with topical thrombin, the above clot treated with epsilon-aminocaproic acid providing a more stable clot and delaying lysis; Gelfoam, Ivalon, Oxycel and other particulate materials, biocompatible polymer including an alginate, chitosan and poly-L-amino acid, sodium alginate, potassium alginate, strontium alginate, barium alginate, magnesium alginate or any other alginate or a mixture thereof; poly-L-lysine, poly-L-arginine, poly-L-glutamic acid, poly-L-histidine, poly-a-D-glutamic acid or a mixture thereof; platelet-rich plasma and a biocompatible polymer; mixture of fibrin and fibrinogen; fibrin microbeads
  • the extraluminal clip and/or hemostatic wafer clip could be constructed of any of the above absorbable or non-absorbable materials but also any number of suitable materials, including radiopaque materials and materials coated to be made radiopaque, including bioabsorbable polymers or compounds, non-absorbable alloys and compounds including stainless steel, MP35, Nitinol, Nickel-Titanium alloy, Kevlar, nylon polyester acrylic, gold, platinum, tantalum, niobium, molybdenum, rhodium, palladium silver, hafnium, tungsten, iridium.
  • suitable materials including radiopaque materials and materials coated to be made radiopaque, including bioabsorbable polymers or compounds, non-absorbable alloys and compounds including stainless steel, MP35, Nitinol, Nickel-Titanium alloy, Kevlar, nylon polyester acrylic, gold, platinum, tantalum, niobium, molybdenum, rhodium, palladium silver

Abstract

A tissue closure device including a tissue eversion apparatus, and a first and a second, redundant closure element that are placed on the external surface of a tissue puncture wound to enhance the efficacy of closure. The first closure element and the second closure element are left resident on the external surface of or in proximity to the tissue puncture wound in order to provide redundancy of closure.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional application of U.S. patent application Ser. No. 12/559,377, filed 14 Sep. 2009, entitled “REDUNDANT TISSUE CLOSURE METHODS AND APPARATUSES, which claims the benefit of and priority to U.S. Provisional App. No. 61/097,072, filed 15 Sep. 2008, entitled “REDUNDANT TISSUE CLOSURE METHODS AND APPARATUSES.” U.S. patent application Ser. No. 12/559,377 is a continuation of U.S. patent application Ser. No. 12/365,397, filed 4 Feb. 2009, entitled “VASCULAR CLOSURE METHODS AND APPARATUSES,” now U.S. Pat No. 8,048,108, which is a continuation of U.S. patent application Ser. No. 11/316,775, filed 23 Dec. 2005, entitled “VASCULAR CLOSURE METHODS AND APPARATUSES,” now abandoned, which claims the benefit of and priority to U.S. Provisional App. No. 60/711,279, filed 24 Aug. 2005, entitled “VASCULAR CLOSURE METHODS AND APPARATUSES.” U.S. patent application Ser. No. 12/559,377 is a continuation-in-part of U.S. patent application Ser. No. 11/508,656, filed 23 Aug. 2006, entitled “VASCULAR CLOSURE METHODS AND APPARATUSES,” now U.S. Pat. No. 8,758,397, which claims the benefit of and priority to U.S. Provisional Pat. App. No. 60/711,279, filed 24 Aug. 2005, entitled “VASCULAR CLOSURE METHODS AND APPARATUSES,” and which is a continuation-in-part of U.S. patent application Ser. No. 11/316,775, filed 23 Dec. 2005, entitled, “VASCULAR CLOSURE METHODS AND APPARATUSES,” now abandoned, which claims the benefit of and priority to U.S. Provisional Pat. App. No. 60/711,279, filed 24 Aug. 2005, entitled “VASCULAR CLOSURE METHODS AND APPARATUSES.” U.S. patent application Ser. No. 12/559,377 is a continuation-in-part of U.S. patent application Ser. No. 11/508,715, filed 23 Aug. 2006, entitled “VASCULAR CLOSURE METHODS AND APPARATUSES,” which claims the benefit of and priority to U.S. Provisional Pat. App. No. 60/711,279, filed 24 Aug. 2005, entitled “VASCULAR CLOSURE METHODS AND APPARATUSES,” and which is a continuation-in-part of U.S. patent application Ser. No. 11/316,775, filed 23 Dec. 2005, entitled, “VASCULAR CLOSURE METHODS AND APPARATUSES,” now abandoned, which claims the benefit of and priority to U.S. Provisional Pat. App. No. 60/711,279, filed 24 Aug. 2005, entitled “VASCULAR CLOSURE METHODS AND APPARATUSES.” U.S. patent application Ser. No. 12/559,377 is a continuation-in-part of U.S. patent application Ser. No. 11/508,662, filed 23 Aug. 2006, entitled “VASCULAR OPENING EDGE EVERSION METHODS AND APPARATUSES,” which claims the benefit of and priority to U.S. Provisional Pat. App. No. 60/711,279, filed 24 Aug. 2005, entitled “VASCULAR CLOSURE METHODS AND APPARATUSES,” and claims benefit of and priority to U.S. Provisional Pat. App. No. 60/726,985, filed 14 Oct. 2005, entitled “SEALANT PLUG SYRINGES, TUBES, AND PENCILS,” and which is a continuation-in-part of U.S. patent application Ser. No. 11/316,775, filed 23 Dec. 2005, entitled, “VASCULAR CLOSURE METHODS AND APPARATUSES,” now abandoned, which claims the benefit of and priority to U.S. Provisional Pat. App. No. 60/711,279, filed 24 Aug. 2005, entitled “VASCULAR CLOSURE METHODS AND APPARATUSES,” the disclosures of which are hereby incorporated by reference in their entireties.
  • BACKGROUND
  • 1. The Field of the Invention
  • The present disclosure relates to tissue closure apparatuses and methods.
  • 2. The Relevant Technology
  • During intravascular and other related procedures, catheters are typically inserted through an incision or puncture in the skin and underlying tissues to access an artery or vein, typically in the groin, neck, or subclavian areas of a patient. The catheter can be inserted through a puncture in the blood vessel and guided to the desired site to perform interventional procedures such as angiography, angioplasty, stent delivery, plaque removal, and infusion of a therapeutic substance. After the procedure is completed and the catheter is removed from the patient, however, the access hole must be closed to prevent massive hemorrhage. This is typically achieved by applying pressure over the blood vessel manually and then by applying a pressure bandage or a compressive weight. With conventional methods, the rate of post-puncture hemorrhage is high, which can cause considerable complications. This complication is exacerbated by the concomitant use of anticoagulant medications such as heparin or warfarin and by anti-platelet drugs, which are commonly used following a procedure in order to prevent clot formation and thrombus and/or to treat vascular disease.
  • It is generally recognized that many currently employed vascular sealing methods and devices and other tissue closure methods and devices have an inherent failure rate due to incomplete sealing of holes or wounds in vascular or other tissue. Achieving complete wound closure is particularly important in sealing arterial punctures, which are relatively high pressure systems. For example, under normal blood pressure, the arterial system has a pressure of about 120/80 mmHg or more. Failure to completely close arterial holes can result in hematoma, exsanguination, and other catastrophic consequences, including limb amputation and death. Moreover, many currently employed vascular devices employ methods and materials that remain on the intravascular endothelial surface or otherwise in the sealed vessel. Materials that remain intravascularly can be a nidus for thrombus or intravascular mural hyperplasia with later spontaneous and catastrophic closure of the vessel.
  • BRIEF SUMMARY
  • The present disclosure provides methods and apparatuses that are suitable for closure of vascular punctures or other openings in bodily tissues. The apparatuses and methods disclosed herein provide a redundancy of closure, which enhances wound healing and patient safety. The devices and methods described herein are configured for wound closure on the external surface of the wound, which allows wound healing with little endothelial disruption thereby reducing the chances of intravascular thrombosis or embolism or intimal hyperplasia.
  • The present disclosure describes a closure device for closing an opening in a tissue. An exemplary tissue closure device according to the present disclosure includes at least one tubular member, a tissue eversion apparatus configured to form an everted tissue region around the opening in the tissue, a first closure element, which can be deployed over the tissue opening around the portion of everted tissue, and a second, redundant closure element that is applied in addition to the first closure element to ensure efficient closure. Combining a first closure and a second, redundant closure provides for wound closure with a failure rate and/or complication rate lower than either acting alone. The devices described herein can be supplied in different diameters (e.g., French sizes) to accommodate different sizes of catheters and different sizes of puncture holes.
  • The tissue eversion apparatus, the first closure element, and the second closure element are typically disposed in a lumen of one or more tubular members and deployable therefrom. The tubular members can be sheaths having various shapes and/or be formed from various materials, as examples a solid walled or porous walled cylinder or other shape, or a plurality of guide rods or bars mounted relative to each other.
  • The present disclosure also describes methods for closing an opening in a tissue using, for example, an embodiment of an apparatus as described above. Tissue openings can include openings in a body lumen such as an opening in a blood vessel. An exemplary method for closing an opening in a tissue includes (a) deploying a tissue eversion apparatus into the opening in the body lumen, the tissue eversion apparatus having a plurality of elongate tissue engaging members capable of approximating and everting edges of the opening to form an everted tissue region, (b) deploying a first closure element in a first configuration to the everted tissue region around the opening in the body lumen, (c) transitioning the first closure element that was disposed around the portion of everted tissue to a second, smaller configuration so as to close the opening in the body lumen, (d) retracting the tissue eversion apparatus so as to release the everted edges, and (e) deploying a second closure element over or around the first closure element so as to redundantly close the opening in the body lumen.
  • According to the present disclosure, the act of deploying a second closure element over or around the first closure element can be performed either before or after retracting the tissue eversion apparatus so as to release the everted edges.
  • According to the present disclosure, the first closure element can include a cincture element having a first size and a second size that is smaller than the first size. Accordingly, the first size is configured to surround a portion of the everted tissue region around the opening and the second size is configured to capture a portion of the everted tissue region and close the opening when the cincture element is transitioned from the first size towards and/or to the second size.
  • In one embodiment, the cincture element includes a loop of suture having at least one pre-tied knot, such that the loop can be tightened by pulling on a free-end so as to close the loop and close the tissue opening. In one embodiment, the pre-tied knot can be, for example, a slip knot. In one embodiment, the loop of suture can include at least one dentate configured to maintain the cincture element in a closed position. That is, the at least one dentate can permit the loop to be pulled closed while simultaneously functioning to prevent re-opening of the loop.
  • In one embodiment, the cincture element can be formed from a shape memory material having an expanded delivery configuration and a contracted deployed configuration. For instance, the shape memory cincture element can be a ring-like structure formed from a metallic material (e.g., NiTi) or a polymeric material (e.g., a rubber-like material) that resiliently closes the opening when the first closure element is deployed around the everted tissue region. The shape memory cincture element may be biased towards the contracted deployed configuration.
  • Suitable examples of second closure elements that can be applied to the wound after the first closure element is placed can include, but are not limited to, sealant plugs, adhesive glues, occlusive substances, extraluminal clips, RF energy, thermal energy, electrical induction, infrared light, ultrasonic vibration, microwave or laser irradiation, sutures, and combinations thereof.
  • These and other objects and features of the present disclosure will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • To further clarify the above and other advantages and features of the present disclosure, a more particular description of the invention will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. It is appreciated that these drawings depict only illustrated embodiments of the invention and are therefore not to be considered limiting of its scope. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
  • FIGS. 1A-1D illustrate schematic views of a tissue eversion apparatus according to one embodiment of the present disclosure.
  • FIGS. 2A-2D illustrate schematic views of a tissue eversion apparatus according to several embodiments of the present disclosure.
  • FIGS. 3A and 3B illustrate a tissue cincture apparatus according to one embodiment of the present disclosure.
  • FIGS. 4A and 4B illustrate a tissue cincture apparatus according to one embodiment of the present disclosure.
  • FIGS. 5A and 5B illustrate a tissue cincture apparatus according to one embodiment of the present disclosure.
  • FIGS. 6A-6G schematically illustrate closure of an opening in a body lumen using a tissue eversion apparatus and a tissue cincture apparatus according to one embodiment of the present disclosure.
  • FIGS. 7A-7H schematically illustrate a number of tissue cinctures that can be used to close an opening according to one embodiment of the present disclosure.
  • FIGS. 8A-8F illustrate closure of an opening in a body lumen using a redundant closure system according to one embodiment of the present disclosure.
  • FIGS. 9A-9E illustrate closure of an opening in a body lumen using a redundant closure system according to one embodiment of the present disclosure.
  • FIGS. 10A-10C illustrate closure of an opening in a body lumen using a redundant closure system according to one embodiment of the present disclosure.
  • FIGS. 11A-11H illustrate closure of an opening in a body lumen using a redundant closure system according to one embodiment of the present disclosure.
  • DETAILED DESCRIPTION
  • The present disclosure provides apparatuses and methods for closing a vascular puncture wound or any tissue aperture, for example those resulting from the insertion of a vascular catheter or surgical instrument, trauma or disease. The apparatuses and methods disclosed herein provide a redundancy of closure, which enhances wound healing and patient safety. The devices and methods described herein are configured for wound closure on the external surface of the wound, which allows wound healing with little endothelial disruption and thereby reducing the chances of intravascular thrombosis or embolism or intimal hyperplasia.
  • The description included herein refers to “vessels” for convenience; the present disclosure is applicable to facilitate closure of various types of tissue openings.
  • The present disclosure describes a closure device for closing an opening in a tissue. An exemplary tissue closure device according to the present disclosure includes at least one tubular member, a tissue eversion apparatus configured to form an everted tissue region around the opening in the tissue, a first closure element, which can be deployed over the tissue opening around the portion of everted tissue, and a second, redundant closure element that is applied in addition to the first closure element to ensure efficient closure.
  • Referring now to FIGS. 1A-1D, schematic illustrations of a tissue eversion apparatus 100 according to one embodiment of the present disclosure are shown. FIG. 1A is a lateral, cutaway view of a tissue eversion apparatus 100 in a closed or undeployed state. A plurality of tissue engaging members 102 a are shown in a retracted state disposed in an elongate tubular sheath member 104. As shown in a non-limiting example in FIG. 1A, two tissue engaging members 102 a are disposed in the sheath 104. However, any practical number of tissue engaging members 102 a can be disposed in the sheath 104 such that the tissue engaging members 102 a can engage with or otherwise grasp tissue surrounding an opening when the tissue engaging members 102 a are deployed. The elongate tubular sheath member 104 is configured to accommodate a guidewire, or in another embodiment can be inserted through a sheath or a closure device and used like a guidewire.
  • FIG. 1B is a lateral, cutaway view of the tissue eversion apparatus 100 in an extended or deployed state, where the tissue engaging members 102 b are extended. As shown in FIG. 1B, the tissue engaging members 102 b can curl up when they are in the extended position. In one embodiment, the tissue engaging members can be formed from a shape-memory material such as a nickel-titanium alloy to facilitate the shape change from the retracted to the deployed state.
  • In another embodiment, the tissue engaging members can be formed from a deformable material, such that the tissue engaging members can bent for disposal in the delivery sheath. For example, the tissue engaging members can include a sharp bend that directs the distal ends of the tissue engaging members toward the proximal end of the delivery sheath. When the tissue engaging members are deployed out of the delivery sheath, the pre-bent shape allows the tissue engaging members to engage with the vessel walls. In yet another embodiment, the tissue engaging members can include hinged members near the distal ends of the engaging members. The hinges can be configured to allow the tissue engaging members to be folded for disposal in the delivery sheath and the hinges can be configured to allow the distal ends of the engaging members to splay out and engage with the vessel walls when the engaging members are deployed into the vessel lumen.
  • FIG. 1C is a lateral view showing the tissue eversion apparatus 100 in the retracted state with a plunger mechanism 106 that can be used to extend the tissue engaging members 102 a and finger flanges or rests 108 to control the device. FIG. 1D is a lateral view showing the tissue eversion apparatus 100 in the deployed state.
  • The tissue eversion apparatus 100 shown in FIGS. 1A-1D can be guided or placed into a puncture wound by means of a guidewire that can be accommodated within the sheath 104. The tissue eversion apparatus shown in FIGS. 1A-1D can be placed into the puncture wound by means of a sheath that can accommodate the everter device 100 internally. The tissue eversion apparatus shown in FIGS. 1A-1D can be placed into the puncture wound using other methods. Regardless, once the tissue eversion apparatus 100 is in the vessel, the tissue engaging members 102 can be deployed and used to evert the tissue around the opening or wound.
  • FIGS. 2A-2D illustrate alternative embodiments of a tissue eversion apparatus 200, according to the present disclosure. FIG. 2A is a lateral cutaway view of a tissue eversion apparatus 200 a with tissue engaging members 202 a in a retracted state. In the embodiment shown in FIG. 2A, tissue engaging members 202 a are retracted within internal lumens 206 that are disposed within lumen 204.
  • FIG. 2B is a lateral view of a tissue eversion apparatus 200 b in the extended or opened state, where the tissue engaging members 202 b are extended, and curl up to allow engagement with a vessel wall. FIG. 2C is another schematic illustration of a tissue eversion apparatus 200 c. As shown in FIG. 2C, the tissue engaging members 202 c extend in a cross-wise function across the sheath 204, the purpose being that the wound edges can be more efficiently and mechanically brought into apposition by the tissue engaging members 202 c when members 200 c engage with the tissue around the wound and the device 200 c is retracted from the wound in order to draw the tissue up and form a portion of everted tissue. FIG. 2D is another schematic illustration of a tissue eversion apparatus 200 d. As shown in FIG. 2D, the tissue engaging members 202 d extend towards one another towards the central axis of the sheath 204, the purpose being that the wound edges can be more efficiently and mechanically brought into apposition by the tissue engaging members 202 d when members 200 d engage with the tissue around the wound and the device 200 d is retracted from the wound in order to draw the tissue up and form a portion of everted tissue.
  • In the embodiments illustrated herein the plurality of tissue engaging members are shown as separate elongate members. One will appreciate, however, that the plurality of members can be coupled together at a point proximal to the distal ends of each of the individual tissue engaging members. For example, the plurality of members can be coupled to an elongate columnar member that can allow the tissue engaging members to be deployed and retracted. Coupling the tissue engaging members proximal to their ends can also be advantageous in that it can reduce the diameter of the tissue region everted by the engaging members in a manner similar to what is shown in FIG. 2D.
  • FIGS. 1A-2D present for illustration purposes two tissue engaging members; the devices shown can include as few as two tissue engaging members, but can include any plurality, and as many as are practical within applicable design considerations. The tissue engagement features (e.g., 102 a), shown as sharp hook-like portions of the active members in the figure, can include textured portions or attachments, mating portions with apposing feet, penetrating devices, hooks, teeth, or other adaptations to allow firm engagement of the tissue.
  • Additional discussion of tissue eversion apparatuses that can be adapted for use in the devices and methods discussed herein can be found in U.S. patent application Ser. No. 11/316,775, filed 23 Dec. 2005, now abandoned, entitled “VASCULAR CLOSURE METHODS AND APPARATUSES” and U.S. patent application Ser. No. 11/508,662, filed 23 Aug. 2006, entitled “VASCULAR OPENING EDGE EVERSION METHODS AND APPARATUSES,” the entireties of which are incorporated herein by reference.
  • FIGS. 3A and 3B illustrate a cincture apparatus 300 according to one embodiment of the present disclosure. The cincture apparatus 300 includes a tubular member 302 (e.g., a delivery sheath) and a cincture (shown as 304 a in FIG. 3A and 304 b in FIG. 3B) disposed in the lumen of tubular member 302. The cincture shown in FIGS. 3A and 3B is transitionable from an open configuration 304 a to a contracted or closed configuration 304 b. The cincture apparatus 300 shown in FIGS. 3A and 3B can be used in conjunction with the tissue eversion apparatuses discussed above to deliver a closure element (such as cincture 304 a, 304 b) to a portion of everted tissue according to the devices and methods disclosed herein.
  • Referring to FIG. 3A, the interior wall of the delivery sheath 302 delivers a cincture 304 a, which can be held in place in the sheath 302 by a retention structure 306. The retention structure 306 can prevent the cincture 304 a from malpositioning and/or from prematurely contracting. The cincture 304 a, which can be held by the retention structure 306, can be sufficiently rigid to not readily change position and/or can be temporarily held in place by a wax-like or other semi-solid biocompatible material that will give way with contraction of the cincture 304 a.
  • The cincture 304 a can be attached to a retractable suture loop 310, which is contained in a lumen 308, shown in the Figure as a cylindrical structure. The lumen 308 can include a narrowed portion 312 that permits the cincture material to pass, but prevents a tightening feature (e.g., a functional slipknot) from passing. Thus when the suture loop 310 is pulled, the cincture 304 a is reduced in diameter and transitioned towards and/or to the smaller diameter 304 b. When the suture loop 310 is pulled in its entirety, the cincture loop 304 b completely closes, effecting closure around a portion of everted tissue around an opening (e.g., a puncture wound).
  • FIGS. 4A and 4B illustrate a cincture apparatus 400 according to another embodiment of the present disclosure. The cincture apparatus 400 includes a tubular member 402 (e.g., a delivery sheath) and a cincture (shown as 404 a in FIG. 4A and 404 b in FIG. 4B) disposed on the outer surface of the tubular member 402. The cincture shown in FIGS. 4A and 4B is transitionable from an open configuration 404 a to a contracted or closed configuration 404 b. The cincture apparatus 400 shown in FIGS. 4A and 4B can be used in conjunction with the tissue eversion apparatuses discussed above to deliver a closure element (such as cincture 404 a, 404 b) to a portion of everted tissue according to the devices and methods disclosed herein.
  • The delivery sheath 402 delivers a cincture 404 a, which can be held in place on the sheath 402 by a retention structure 406. The retention structure 406 can prevent the cincture 404 a from malpositioning and/or from prematurely contracting. In some embodiments, the retention structure 406 can be slidably positioned on the sheath 402, such that the retention structure 406 can be slid distally on the sheath 402 to act as an actuator to slide the cincture 404 a off the sheath 402. The cincture 404 a, which can be held by the retention structure 406, can be sufficiently rigid to not readily change position and/or can be temporarily held in place by a wax-like or other semi-solid biocompatible material that will give way, allowing the cincture 404 a to slide off the sheath 402 and contract.
  • The cincture 404 a can be attached to a retractable suture loop 410, which is contained in a lumen 408, shown in the Figure as a cylindrical structure. The lumen 408 can comprise a narrowed portion 412 that permits the cincture material to pass, but prevents a tightening feature (e.g., a functional slipknot) from passing. Thus when the suture loop 410 is pulled, the cincture 404 a is reduced in diameter and transitioned to the smaller diameter 404 b. When the suture loop 410 is pulled in its entirety, the cincture loop 404 b completely closes, effecting closure around a portion of everted tissue around an opening (e.g., a puncture wound).
  • FIGS. 5A and 5B illustrate a cincture apparatus 500 according to yet another embodiment of the present disclosure. The cincture apparatus 500 includes a tubular member 502 (e.g., a delivery sheath) and a cincture (shown as 504 a in FIG. 5A and 504 b in FIG. 5B) disposed on the outer surface of the tubular member 502. The cincture shown in FIGS. 5A and 5B, which in this embodiment is formed from a resilient or shape-memory material, can transition from an open configuration 504 a to a contracted or closed configuration 504 b when the cincture 504 a is removed from the tubular member 502. The cincture apparatus 500 shown in FIGS. 5A and 5B can be used in conjunction with the tissue eversion apparatuses discussed above to deliver a closure element (such as cincture 504 a, 504 b) to a portion of everted tissue according to the devices and methods disclosed herein.
  • The delivery sheath 502 delivers a cincture 504 a, which can be held in place on the sheath 502 by a retention structure 506. The retention structure 506 can prevent the cincture 504 a from malpositioning and/or from prematurely contracting. In some embodiments, the retention structure 506 can be slidably positioned on the sheath 502, such that the retention structure 506 can be slid distally on the sheath 502 to act as an actuator to slide the cincture 504 a off the sheath 502. The cincture 504 a, which can be held by the retention structure 506, can be sufficiently rigid to not readily change position and/or can be temporarily held in place by a wax-like or other semi-solid biocompatible material that will give way, allowing the cincture 504 a to slide off the sheath 502 and contract.
  • The cincture 504 a can be attached to a retractable suture loop 510, which is contained in a lumen 508, shown in the Figure as a cylindrical structure. The retractable suture loop 510 can be used to pull the cincture 504 a past the end of the sheath 502. If the retention structure 506 is slidably disposed on the sheath 502, or otherwise has the ability to move the cincture past the end of the sheath 502, then the suture loop 510 may not be might not be necessary (although it can still be useful for retrieving misplaced cinctures). When the self contracting cincture 504 a is moved past the end of the sheath 502, by action of the suture loop 510 or the retention device 506, the cincture contracts adopting configuration 504 b, reducing its radius, effecting closure around a portion of everted tissue around an opening (e.g., a puncture wound).
  • FIGS. 6A-6G schematically illustrate steps in a method of closing a tissue opening using at least one tubular member, a tissue eversion apparatus, and as cincture closure according to the present disclosure. In FIG. 6A, a sheath 602, for example a sheath like that described in relation to FIG. 1, is guided into an opening in a vessel 620 with the aid of a guidewire 608. The sheath 602 includes elongate tissue engaging members 604 a disposed in the lumen of the sheath 620.
  • As shown in FIG. 6B, the elongate tissue engaging members 604 b are deployed so that they can engage the edges of the opening 606. In a non-limiting example, the tissue engaging members 604 b curve back away from sheath 602 when they are deployed so that the tissue engaging members 604 b are positioned to engage the tissue around the opening and evert the tissue when the sheath 602 is retracted. As shown in FIG. 6C, once the elongate tissue engaging members 604 b are engaged with the tissue edges 606, the sheath 602 can be retracted creating an everted tissue region 606 a.
  • As shown, the elongate tissue engaging members 604 b pierce a portion of the everted tissue region 606 a. Nonetheless, one will appreciate that the tissue engaging members 604 b need not pierce the tissue in order to engage the tissue to form the everted tissue region 606 a. For example, any known gripping means such as apposing feet, hooks, teeth, adhesive devices and the like can be used to engage the tissue around the opening to form the everted tissue region.
  • Referring now to FIGS. 6D-6G, a cincture 612 a can be advanced from a second sheath 610, and tightened 612 b over the everted edges of the opening, as shown in FIG. 6E. As shown in FIGS. 6D-6E, the cincture 612 a, 612 b is placed around the everted tissue region 606 a below the portion of the everted region 606 a that is punctured by the tissue engaging members. This ensures that the portions of the vessel that are punctured by the tissue engaging members do not cause additional bleeding after the cincture 612 a, 612 b is placed. Moreover, placing the cinture 612 a, 612 b below the portion of the tissue engaged by the tissue engaging members can prevent the tissue engaging members from interfering with complete closure of the opening and/or can facilitate good contact between the vascular epithelial layers to facilitate wound healing.
  • After the cincture 612 b is placed, the second sheath 610 can be removed, leaving the opening closed by the cincture 612 b, as shown in FIG. 6F. The tissue engaging members 604 a can also be retracted into the sheath 602, all as shown in FIG. 6F. The suture loop 614 (if required), tissue engaging members 604 a and sheath 602, the second sheath 610, and the guidewire 608 can all be removed, leaving the cincture 612 b in place closing the opening in the vessel 620, as shown in FIG. 6G. As will be discussed below in reference to FIGS. 8A-11H, a number of second, redundant closure elements may be applied following placement of the first closure element (e.g., the cincture) in order to provide redundant closure to the opening.
  • FIGS. 7A-7H illustrate various cincture configurations that can be adapted for use with the devices and methods disclosed herein. Cincture 11, shown in FIG. 7A, illustrates a simple cincture in an open configuration and cincture 12 is the simple cincture of 11 in a closed position. Cinctures 11 and 12 include a slip-knot with only one suture end to be pulled and distal loop for the pulling suture. Cinctures 21 and 22, shown in FIG. 7B, illustrate a cincture configuration with a slip-knot device, with both suture ends to be pulled through the slip-knot device, resulting in a loop of material when the cincture is completely closed. Cinctures 31 and 32, shown in FIG. 7C, illustrate a cincture configuration that includes a loop and the pulling suture is functionally internal to the cincture initially, resulting in very little trailing material when the cincture is completely closed. Cinctures 41 and 42, shown in FIG. 7D, illustrate a cincture configuration that includes dentates on the suture. When cinctures 41 and 42 are closed, the dentates act to lock the suture in the closed position. Cinctures 51 and 52, shown in FIG. 7E, illustrate a cincture configuration that includes multiple strands of material, resulting in a multiple level complex closed cincture. Cinctures 61 and 62, shown in FIG. 7F, illustrate a cincture configuration that includes beads or other geometric structures or grippers that fit together and hold the wound closed when the cincture is closed. Cinctures 71 and 72, shown in FIG. 7G, illustrate a cincture made of memory material, so that when the cincture is released from the delivery sheath it contracts to effect closure of the opening. Cinctures 81 and 82, shown in FIG. 7H, illustrate a cincture made of a rubber-like or memory material, that when pushed off of the delivery sheath, can contract more-or-less uniformly to close the cincture and thereby close the opening or wound.
  • Additional discussion of cincture apparatuses that can be adapted for use with the devices and methods discussed herein can be found in U.S. patent application Ser. No. 11/508,715, filed 23 Aug. 2006, entitled “VASCULAR CLOSURE METHODS AND APPARATUSES,” the entirety of which is incorporated herein by reference.
  • FIGS. 8A-8F illustrate a schematic depiction of a typical embodiment of a hemostatic plug that can be used in combination with a cincture to provide a redundant closure to further reduce the potential failure rate. FIG. 8A demonstrates a typical hemostatic plug 901 made of a biocompatible material preferably shaped as a columnar structure with a cylindrical or toroidal cross section with an internal lumen 902 that permits movement of a grasper device and guidewire. Other cross sectional configurations are possible, with or without a central hole. FIG. 8B demonstrates the hemostatic plug after hydration, where it may assume a larger volume 903 and may decrease the internal diameter of the lumen 904.
  • FIG. 8C demonstrates the cincture delivery device with the hemostatic plug 905 and a pushing device 906 which permits expulsion of the hemostatic plug out the suture delivery device onto the closed puncture wound 907 and onto the tines of the tissue engaging members 908. FIG. 8D shows the hemostatic plug 909 being pushed by the expulsion device 910 while the tissue engaging members 908 and cincture delivery device 911 are withdrawn to permit the plug to seat on the puncture wound and the cincture 912. FIG. 8E shows the expulsed hemostatic plug 913 seated directly over the cinctured puncture wound 914. FIG. 8F shows the expulsed hemostatic plug 915 after it has assumed its fully hydrated shape applying pressure to and/or further sealing the cinctured puncture 916. It is to be understood the cincture could be temporary to achieve immediate hemostasis while the plug is adhering to local tissues, and then the cincture could be removed using a number of methods leaving the plug as the primary hemostatic instrument.
  • FIG. 9A-9F illustrate a schematic depiction of a typical embodiment of a cincture closure device combined with a biocompatible injectable adhesive or occluding material to provide redundant wound closure. The biocompatible injectable adhesive or occluding material may be bioabsorbable and/or bioresorbable or not. FIG. 9A depicts the cincture delivery device 1001 with a cincture seated 1002 on the puncture wound and a tissue eversion apparatus 1010 with tissue engaging members 1012 engaged with the everted tissue. FIG. 9B demonstrates injectable or extrudable adhesive or occluding material 1003 being injected through the cincture delivery device 1001 and around the tissue eversion apparatus 1010. In the alternative, FIG. 9C demonstrates an injectable or extrudable adhesive or occluding material 1004 being injected through the lumen of the tissue eversion apparatus 1010. FIG. 9D depicts the injected adhesive or occlusive material 1005 surrounding the cincture 1002. FIG. 9E depicts the injected adhesive or occlusive material 1006 surrounding, sealing, and/or further binding the puncture wound and cincture 1002. Note that the cincture 1002 can prevent the adhesive or occlusive material 1006 from entering the blood vessel.
  • FIGS. 10A-10C illustrate a schematic depiction of the application of an extramural clip over a cincture device in order to provide redundant closure. FIG. 10A illustrates a tissue eversion apparatus 1110 with tissue engagement members 1112 engaged with a portion of everted tissue, a cincture delivery device 1101, a clip 1102 riding on the cincture delivery device 1101, a device 1103 that pushes the clip 1102, a cincture 1108 over the puncture wound 1104. FIG. 10B represents the clip 1106 being pushed off the cincture delivery device 1101 by the pushers 1107. FIG. 20C shows a representation of the clip 1109 residing on the closed puncture 1104, providing redundancy for the cincture closure 1108. It is to be understood the cincture 1108 could be temporary to achieve immediate hemostasis.
  • The clip 1102 shown in FIGS. 10A-10C can include a base member shaped to allow passage of the clip over the delivery sheath 1102, and a plurality of grasping members that are configured to engage with the everted tissue region (e.g., 606 a in FIG. 6A). The base member can be shaped as a ring or a complete circular or cylindrical band, or the base member can be a discontinuous circle to better accommodate the delivery sheath 1102. The base member can also include shape memory materials to better accommodate the delivery sheath 1102 and to assume a lower profile when delivered (e.g., clip 1109). The clip 1102 can include as few as two grasping members and as many as are practical within applicable design considerations. The grasping members can include textured portions or attachments, mating portions with apposing feet, penetrating devices, hooks, teeth, or other adaptations to allow firm grip of the everted tissue region proximal to the tissue cincture.
  • FIGS. 11A-11H illustrate a schematic depiction of an alternate design of an extramural clip 1200 that can be used to provide redundant closure over a cincture. FIG. 11A represents a typical wafer clip 1200 or collar consisting of a disk-like structure with inwardly protruding members 1201 having sharpened or compressive ends, and a space 1202 between the members 1201. FIG. 11B is an oblique of the typical wafer clip 1200 demonstrating the members 1203 and intermember spaces 1204. FIG. 11C represents an important property of the hemostatic adherent wafer clip 1200, that the members 1201, although sharp and rigid or semi-rigid, can be displaced 1205 under force, but are resilient and return to the planar low energy state as shown in FIG. 11B.
  • FIG. 11D demonstrates the interaction of the hemostatic adherent wafer clip 1200 and its intermember spaces 1202 with a tissue eversion apparatus 1207, the tissue engaging members 1208 have engaged the wound edges 1209 of the puncture. In FIG. 11E, tissue engaging members 1208 have been pulled through the intermember spaces 1202 of the wafer clip 1200, pulling the wound edges 1211 through the hemostatic clip 1200, and members 1208 engaging and holding the puncture wound edges in opposition and closing the wound.
  • FIG. 11F shows a hemostatic clip 1200 engaging puncture wound tissues after a cincture 1214 has been placed. FIG. 11G shows the hemostatic wafer clip 1200 providing redundant closure in addition to the cincture 1214. FIG. 11H shows the hemostatic wafer clip members 1200 seated on the wound edges 1218 providing redundant closure to the cincture 1214.
  • Additional discussion of clip apparatuses that can be adapted for use with the devices and methods discussed herein can be found in U.S. patent application Ser. No. 11/508,656, filed 23 Aug. 2006, entitled “VASCULAR CLOSURE METHODS AND APPARATUSES,” the entirety of which is incorporated herein by reference.
  • Additional examples of second, redundant closure elements that can be applied to or around the wound after placing the first closure element can include, but are not limited to, RF energy, thermal energy, electrical induction, infrared light, ultrasonic vibration, microwave or laser irradiation, sutures, and combinations thereof. For example, heat (i.e., thermal energy) can be applied to the wound region after applying the first closure element to cauterize the wound and provide redundant closure.
  • The embodiments shown in the Figures presented herein show the tissue eversion apparatus and the first and second closure elements being delivered by separate elongate members (i.e., sheaths). One will appreciate, however, that the figures are presented for illustrative purposes, and that the tissue eversion apparatus and the first and second closure elements can be delivered by a single elongate member.
  • Examples of knots that can be suitable for use with the present disclosure include, but are not limited to, the overhand knot or half knot, the double overhand knot, the multifold-overhand-knot, the Flemish eight, hitches (single simple, half, clove, two half, buntline, rolling Magnus, midshipman's tautline, adjustable jamming, cow, reversed half, lobster buoy), single loops (bowline, Dutch marine bowline, cowboy bowline, double figure-of-eight loop, Flemish eight, bowstring knot, tucked double overhand, butterfly loop, lineman's loop, artillery loop, pendant hitch), clove hitch, reef knot, square knot, noose (simple noose, strangle-snare, scaffold knot, gallows knot, hangman's knot, reverse eight-noose), monkey fist, the dolly, fisherman's bend, surgeon's knot, sheet bend knot, timber hitch, fisherman's knot, reef knot, square knot, DuraKnot, sliding knots, simple sliding knot, Nicky's knot, Roeder's knot, Seoul Medical Centre knot, Smith & Nephew's knot, Tennesee's knot, purse string, surgical knot with extra loop, other knots and/or cincture devices or combinations thereof could also be used and are anticipated. Endoscopic knot tying devices and suture cutting devices can also be used to create the cincture for this device and are also anticipated.
  • Examples of suture material at can be suitable for use with the present disclosure include, but are not limited to, absorbable, non-absorbable, braided, monofilament, pseudo-monofilament, multifilament, barbed, smooth, directional, and bidirectional. The suture material can be composed of but not limited to polyglycolic acid, polydioxanon, polylactate, polycaprone, silk, linen, cotton, treated and non-treated collagen, “catgut”, chromic, Vicryl, Monocyrl, PDS, polyesther, polypropylene, polyamide, stainless steel, and others. The cincture device can be made from other suitable materials, including typical suture materials, flexible polymeric materials with elastomeric properties including polyurethane, polyethylene, polyestenurethane, polyimide, olyethreimide, polycarbonate, polysiloxane, polyvinyls, hydroxyethylmethacrylate, related polymers, co-polymers of these or other polymers, or drug-embedded or drug-eluting polymers to prevent coagulation or intimal hyperplasia (such as Taxol), also which can be made radiopaque by markers and addition of appropriate radiopaque materials.
  • The tines or gripping portion of a the tissue engaging members or components of the sheath or cincture device can be made from any number of suitable materials, including radiopaque materials and materials coated to be made radiopaque, including bioabsorbable polymers or compounds, non-absorbable alloys and compounds including stainless steel, MP35, Nitinol, Nickel-Titanium alloy, Kevlar, nylon polyester acrylic, gold, platinum, tantalum, niobium, molybdenum, rhodium, palladium silver, hafnium, tungsten, iridium. Materials with memory can be useful to allow tines to spontaneously open after extended from the sheath. These can be made in the form of wires, fibers, filaments, small beams, and other extruded, woven, or formed shapes. Piano wire, super elastic memory wire, chromium allows, alloys of titanium and nickel, and other elastic memory materials previously mentioned as well as others can be used as well.
  • The sealant plug, injected sealant, and injected occlusive material can be composed of an appropriate biocompatible materials including but not limited to fibrin and cross-linked fibrin autologous blood clot formed by blood mixed with topical thrombin, the above clot treated with epsilon-aminocaproic acid providing a more stable clot and delaying lysis; Gelfoam, Ivalon, Oxycel and other particulate materials, biocompatible polymer including an alginate, chitosan and poly-L-amino acid, sodium alginate, potassium alginate, strontium alginate, barium alginate, magnesium alginate or any other alginate or a mixture thereof; poly-L-lysine, poly-L-arginine, poly-L-glutamic acid, poly-L-histidine, poly-a-D-glutamic acid or a mixture thereof; platelet-rich plasma and a biocompatible polymer; mixture of fibrin and fibrinogen; fibrin microbeads, collagen, cross-linked collagen and other collagen-derivatives, polysaccharides, cellulosics, polymers (natural and synthetic), inorganic oxides, ceramics, zeolites, glasses, metals, and composites; dextran beads; microporous polysaccharide beads; tackified natural rubbers; synthetic rubbers such as butyl rubber; and tackified linear, radial, star, and branched and tapered styrene block copolymers, such as styrene-butadiene, styrene-ethylene/butylene and styrene-isoprene; polyurethanes; polyvinyl ethers; acrylics, especially those having long chain alkyl groups; poly-a-olefins; and silicones; a platelet glue (platelets-fibrinogen-fibrinogen activator) wound sealant; pressure glues, polymer glues, polyglycolic acid, polydioxanon, polylactate, polycaprone; flexible polymeric materials with elastomeric properties including polyurethane, polyethylene, polyestenurethane, polyimide, olyethreimide, polycarbonate, polysiloxane, polyvinyls, hydroxyethylmethacrylate, related polymers, co-polymers of these or other polymers, or drug-embedded or drug-eluting polymers to prevent coagulation or intimal hyperplasia (such as Taxol), also which can be made radiopaque by markers and addition of appropriate radiopaque materials.
  • The extraluminal clip and/or hemostatic wafer clip could be constructed of any of the above absorbable or non-absorbable materials but also any number of suitable materials, including radiopaque materials and materials coated to be made radiopaque, including bioabsorbable polymers or compounds, non-absorbable alloys and compounds including stainless steel, MP35, Nitinol, Nickel-Titanium alloy, Kevlar, nylon polyester acrylic, gold, platinum, tantalum, niobium, molybdenum, rhodium, palladium silver, hafnium, tungsten, iridium.
  • The present disclosure may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims (19)

What is claimed is:
1. A method of closing an opening in a body lumen, comprising:
(a) deploying a tissue eversion apparatus into the opening in the body lumen;
(b) everting edges of the opening with a plurality of elongate tissue engaging members to form an everted tissue region;
(b) deploying a first closure element in a first configuration to the everted tissue region around the opening in the body lumen;
(c) transitioning the first closure element to a second smaller configuration so as to close the opening in the body lumen; and
(d) retracting the tissue eversion apparatus so as to release the everted edges.
2. The method as recited in claim 1, further comprising deploying a second closure element over or around the first closure element so as to redundantly close the opening in the body lumen.
3. The method as recited in claim 2, optionally performing deploying of the second closure element before retracting the tissue eversion apparatus.
4. The method as recited in claim 2, the tissue eversion apparatus, the first closure element, and the second closure element being operatively coupled to the tubular member and deployable therefrom.
5. The method as recited in claim 1, the elongate tissue engaging members of the tissue eversion apparatus having a first configuration substantially parallel to a long axis of the tubular member when disposed within the tubular member, and having a second configuration curving away from the long axis of the tubular member when the elongate tissue engaging members are deployed from the tubular member.
6. The method as recited in claim 1, the deploying the tissue eversion apparatus further comprising:
inserting at least a portion of the tissue eversion apparatus into the opening in the body lumen, the plurality of elongate tissue engaging members having a first configuration characterized by a long axis;
projecting the plurality of elongate tissue engaging members into the opening in the body lumen causing a distal portion of the elongate tissue engaging members to adopt a second configuration curving away from the long axis; and
partially retracting the tissue eversion apparatus causing the distal portion of the tissue engaging members to engage with tissue around the opening and forming the everted tissue region.
7. The method as recited in claim 6, the elongate tissue engaging members having sharpened distal ends configured to penetrate a portion of the everted tissue region.
8. The method as recited in claim 6, further comprising deploying the first closure element on the everted tissue region distal to the tissue engaging members.
9. A method of closing an opening in a body lumen, comprising:
(a) deploying a tissue eversion apparatus into the opening in the body lumen, the tissue eversion apparatus having a plurality of elongate tissue engaging members capable of approximating and everting edges of the opening to form an everted tissue region;
(b) deploying a first closure element in a first configuration to the everted tissue region around the opening in the body lumen;
(c) transitioning the first closure element to a second smaller configuration so as to close the opening in the body lumen;
(d) retracting the tissue eversion apparatus so as to release the everted edges; and
(e) deploying a second closure element over or around the first closure element so as to redundantly close the opening in the body lumen.
10. The method as recited in claim 9, optionally performing act (e) before performing act (d).
11. The method as recited in claim 9, the deploying the tissue eversion apparatus further comprising:
inserting at least a portion of the tissue eversion apparatus into the opening in the body lumen, the plurality of elongate tissue engaging members having a first configuration characterized by a long axis;
projecting the plurality of elongate tissue engaging members into the opening in the body lumen causing a distal portion of the elongate tissue engaging members to adopt a second configuration curving away from the long axis; and
partially retracting the tissue eversion apparatus causing the distal portion of the tissue engaging members to engage with tissue around the opening and forming the everted tissue region.
12. The method as recited in claim 9, the first closure element being a cincture element, the cincture element being selected from a group consisting of a loop of suture having at least one pre-tied slip-knot, a shape memory material having an expanded deliver configuration and a deployed configuration that resiliently closes the opening when the first closure element is deployed around the everted tissue region, and combinations thereof.
13. The method as recited in claim 9, the second closure element being selected from a group consisting of sealant plugs, adhesive glues, occlusive substances, extraluminal clips, RF energy, thermal energy, electrical induction, infrared light, ultrasonic vibration, microwave or laser irradiation, sutures, and combinations thereof.
14. A method of closing an opening in a blood vessel, comprising:
(a) inserting a tubular member having a proximal end and a distal end regions, an exterior surface, and a lumen extending along an entire length of the tubular member into the opening in the blood vessel;
(b) deploying a tissue eversion apparatus having a plurality of elongate tissue engaging members capable of approximating and everting edges of the opening to form an everted tissue region, the tissue eversion apparatus being disposed within the lumen of the tubular member and deployable therefrom;
(c) partially withdrawing the tubular member proximally causing a distal portion of the tissue engaging members to engage with tissue around the opening and forming the everted tissue region;
(d) applying a first closure element in a first configuration to the everted tissue region distal to the tissue engaging members, the first closure element being operatively coupled to tubular member and deployable therefrom;
(e) transitioning the first closure element to a second smaller configuration so as to close the opening in the blood vessel;
(f) retracting the tissue eversion apparatus so as to release the everted edges; and
(g) applying a second closure element over or around the first closure element so as to redundantly close the opening in the body lumen, the second closure element being operatively coupled to the tubular member and deployable therefrom.
15. The method as recited in claim 14, optionally performing act (g) before performing act (f).
16. The method as recited in claim 14, the elongate tissue engaging members of the tissue eversion apparatus having a first configuration substantially parallel to a long axis of the tubular member when disposed within the tubular member, and having a second configuration curving away from the long axis of the tubular member when the elongate tissue engaging members are deployed from the tubular member.
17. The method as recited in claim 14, the elongate tissue engaging members having sharpened distal ends configured to penetrate a portion of the everted tissue region.
18. The method as recited in claim 14, the first closure element being a cincture element, the cincture element being selected from a group consisting of a loop of suture having at least one pre-tied slip-knot, a shape memory material having an expanded deliver configuration and a deployed configuration that resiliently closes the opening when the first closure element is deployed around the everted tissue region, and combinations thereof.
19. The method as recited in claim 14, the second closure element being selected from a group consisting of sealant plugs, adhesive glues, occlusive substances, extraluminal clips, RF energy, thermal energy, electrical induction, infrared light, ultrasonic vibration, microwave or laser irradiation, sutures, and combinations thereof.
US14/532,537 2005-08-24 2014-11-04 Redundant tissue closure methods and apparatuses Abandoned US20150066055A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/532,537 US20150066055A1 (en) 2005-08-24 2014-11-04 Redundant tissue closure methods and apparatuses

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US71127905P 2005-08-24 2005-08-24
US72698505P 2005-10-14 2005-10-14
US11/316,775 US20070060895A1 (en) 2005-08-24 2005-12-23 Vascular closure methods and apparatuses
US11/508,662 US8920442B2 (en) 2005-08-24 2006-08-23 Vascular opening edge eversion methods and apparatuses
US11/508,715 US9456811B2 (en) 2005-08-24 2006-08-23 Vascular closure methods and apparatuses
US11/508,656 US8758397B2 (en) 2005-08-24 2006-08-23 Vascular closure methods and apparatuses
US9707208P 2008-09-15 2008-09-15
US12/365,397 US8048108B2 (en) 2005-08-24 2009-02-04 Vascular closure methods and apparatuses
US12/559,377 US8932324B2 (en) 2005-08-24 2009-09-14 Redundant tissue closure methods and apparatuses
US14/532,537 US20150066055A1 (en) 2005-08-24 2014-11-04 Redundant tissue closure methods and apparatuses

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/559,377 Division US8932324B2 (en) 2005-08-24 2009-09-14 Redundant tissue closure methods and apparatuses

Publications (1)

Publication Number Publication Date
US20150066055A1 true US20150066055A1 (en) 2015-03-05

Family

ID=37772371

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/316,775 Abandoned US20070060895A1 (en) 2005-08-24 2005-12-23 Vascular closure methods and apparatuses
US12/365,397 Expired - Fee Related US8048108B2 (en) 2005-08-24 2009-02-04 Vascular closure methods and apparatuses
US12/559,377 Expired - Fee Related US8932324B2 (en) 2005-08-24 2009-09-14 Redundant tissue closure methods and apparatuses
US14/532,537 Abandoned US20150066055A1 (en) 2005-08-24 2014-11-04 Redundant tissue closure methods and apparatuses

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US11/316,775 Abandoned US20070060895A1 (en) 2005-08-24 2005-12-23 Vascular closure methods and apparatuses
US12/365,397 Expired - Fee Related US8048108B2 (en) 2005-08-24 2009-02-04 Vascular closure methods and apparatuses
US12/559,377 Expired - Fee Related US8932324B2 (en) 2005-08-24 2009-09-14 Redundant tissue closure methods and apparatuses

Country Status (3)

Country Link
US (4) US20070060895A1 (en)
EP (1) EP1928326B1 (en)
WO (1) WO2007025019A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9782156B2 (en) 2015-09-28 2017-10-10 M-V Arterica AB Vascular closure device
US10448938B2 (en) 2016-06-16 2019-10-22 Phillips Medical, LLC Methods and systems for sealing a puncture of a vessel
US10624620B2 (en) 2017-05-12 2020-04-21 Phillips Medical, LLC Systems and methods for sealing a puncture of a vessel
US10716551B2 (en) 2017-05-12 2020-07-21 Phillips Medical, LLC Systems and methods for sealing a puncture of a vessel
CN111836585A (en) * 2018-02-28 2020-10-27 威诺克医疗有限公司 Medical device and method for closing an opening in tissue
EP3785643A1 (en) * 2019-08-26 2021-03-03 Venock Medical GmbH Medical apparatus and method for closing an opening in a tissue
WO2021037943A1 (en) * 2019-08-26 2021-03-04 Venock Medical Gmbh Medical apparatus and method for closing an aperture in a tissue
US11179145B2 (en) 2017-11-16 2021-11-23 M-V Arterica AB Collapsible tube for hemostasis
US11938288B2 (en) 2019-11-19 2024-03-26 Arterica Inc. Vascular closure devices and methods

Families Citing this family (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020095164A1 (en) * 1997-06-26 2002-07-18 Andreas Bernard H. Device and method for suturing tissue
US6964668B2 (en) 1999-03-04 2005-11-15 Abbott Laboratories Articulating suturing device and method
US8137364B2 (en) 2003-09-11 2012-03-20 Abbott Laboratories Articulating suturing device and method
US20040092964A1 (en) 1999-03-04 2004-05-13 Modesitt D. Bruce Articulating suturing device and method
US7842048B2 (en) 2006-08-18 2010-11-30 Abbott Laboratories Articulating suture device and method
US7001400B1 (en) 1999-03-04 2006-02-21 Abbott Laboratories Articulating suturing device and method
US7235087B2 (en) 1999-03-04 2007-06-26 Abbott Park Articulating suturing device and method
US8758400B2 (en) 2000-01-05 2014-06-24 Integrated Vascular Systems, Inc. Closure system and methods of use
US7842068B2 (en) 2000-12-07 2010-11-30 Integrated Vascular Systems, Inc. Apparatus and methods for providing tactile feedback while delivering a closure device
US6461364B1 (en) 2000-01-05 2002-10-08 Integrated Vascular Systems, Inc. Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use
US9579091B2 (en) 2000-01-05 2017-02-28 Integrated Vascular Systems, Inc. Closure system and methods of use
US6391048B1 (en) 2000-01-05 2002-05-21 Integrated Vascular Systems, Inc. Integrated vascular device with puncture site closure component and sealant and methods of use
EP1435842B8 (en) 2000-09-08 2011-03-02 Abbott Vascular Inc. Device for locating a puncture hole in a liquid-carrying vessel
US6626918B1 (en) * 2000-10-06 2003-09-30 Medical Technology Group Apparatus and methods for positioning a vascular sheath
US7905900B2 (en) 2003-01-30 2011-03-15 Integrated Vascular Systems, Inc. Clip applier and methods of use
US6623510B2 (en) 2000-12-07 2003-09-23 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US8690910B2 (en) 2000-12-07 2014-04-08 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US6695867B2 (en) 2002-02-21 2004-02-24 Integrated Vascular Systems, Inc. Plunger apparatus and methods for delivering a closure device
US7211101B2 (en) 2000-12-07 2007-05-01 Abbott Vascular Devices Methods for manufacturing a clip and clip
US7806904B2 (en) * 2000-12-07 2010-10-05 Integrated Vascular Systems, Inc. Closure device
US7029480B2 (en) * 2001-01-24 2006-04-18 Abott Laboratories Device and method for suturing of internal puncture sites
IES20010547A2 (en) 2001-06-07 2002-12-11 Christy Cummins Surgical Staple
WO2003101310A1 (en) 2002-06-04 2003-12-11 Christy Cummins Blood vessel closure clip and delivery device
AU2003297665A1 (en) * 2002-12-06 2004-06-30 Fast Country, Inc. Systems and methods for providing interactive guest resources
US7160309B2 (en) 2002-12-31 2007-01-09 Laveille Kao Voss Systems for anchoring a medical device in a body lumen
US8821534B2 (en) 2010-12-06 2014-09-02 Integrated Vascular Systems, Inc. Clip applier having improved hemostasis and methods of use
US8758398B2 (en) 2006-09-08 2014-06-24 Integrated Vascular Systems, Inc. Apparatus and method for delivering a closure element
US7857828B2 (en) * 2003-01-30 2010-12-28 Integrated Vascular Systems, Inc. Clip applier and methods of use
US8905937B2 (en) 2009-02-26 2014-12-09 Integrated Vascular Systems, Inc. Methods and apparatus for locating a surface of a body lumen
US8202293B2 (en) 2003-01-30 2012-06-19 Integrated Vascular Systems, Inc. Clip applier and methods of use
US8398656B2 (en) 2003-01-30 2013-03-19 Integrated Vascular Systems, Inc. Clip applier and methods of use
AU2004246998A1 (en) * 2003-06-16 2004-12-23 Nanyang Technological University Polymeric stent and method of manufacture
EP1667586A1 (en) 2003-09-15 2006-06-14 Abbott Laboratories Suture locking device and methods
US7462188B2 (en) 2003-09-26 2008-12-09 Abbott Laboratories Device and method for suturing intracardiac defects
IES20040368A2 (en) 2004-05-25 2005-11-30 James E Coleman Surgical stapler
US8926633B2 (en) 2005-06-24 2015-01-06 Abbott Laboratories Apparatus and method for delivering a closure element
US8313497B2 (en) 2005-07-01 2012-11-20 Abbott Laboratories Clip applier and methods of use
US7883517B2 (en) 2005-08-08 2011-02-08 Abbott Laboratories Vascular suturing device
US8083754B2 (en) 2005-08-08 2011-12-27 Abbott Laboratories Vascular suturing device with needle capture
US20070060895A1 (en) * 2005-08-24 2007-03-15 Sibbitt Wilmer L Jr Vascular closure methods and apparatuses
US9456811B2 (en) 2005-08-24 2016-10-04 Abbott Vascular Inc. Vascular closure methods and apparatuses
US8758397B2 (en) * 2005-08-24 2014-06-24 Abbott Vascular Inc. Vascular closure methods and apparatuses
US8920442B2 (en) 2005-08-24 2014-12-30 Abbott Vascular Inc. Vascular opening edge eversion methods and apparatuses
US20100168767A1 (en) 2008-06-30 2010-07-01 Cardiva Medical, Inc. Apparatus and methods for delivering hemostatic materials for blood vessel closure
US8911472B2 (en) 2005-12-13 2014-12-16 Cardiva Medical, Inc. Apparatus and methods for delivering hemostatic materials for blood vessel closure
US7749249B2 (en) 2006-02-21 2010-07-06 Kardium Inc. Method and device for closing holes in tissue
US8808310B2 (en) 2006-04-20 2014-08-19 Integrated Vascular Systems, Inc. Resettable clip applier and reset tools
WO2007131110A2 (en) 2006-05-03 2007-11-15 Raptor Ridge, Llc Systems and methods of tissue closure
US7975697B2 (en) * 2006-05-11 2011-07-12 Conceptus, Inc. Methods and apparatus for occluding reproductive tracts to effect contraception
US9889275B2 (en) 2006-06-28 2018-02-13 Abbott Laboratories Expandable introducer sheath to preserve guidewire access
US8449605B2 (en) 2006-06-28 2013-05-28 Kardium Inc. Method for anchoring a mitral valve
US8556930B2 (en) * 2006-06-28 2013-10-15 Abbott Laboratories Vessel closure device
US7837610B2 (en) * 2006-08-02 2010-11-23 Kardium Inc. System for improving diastolic dysfunction
US8784439B1 (en) * 2006-11-28 2014-07-22 Stephen V. Ward Percutaneous medical procedures and devices for closing vessels using mechanical closures
US8721679B2 (en) 2007-02-05 2014-05-13 Boston Scientific Scimed, Inc. Apparatus and method for closing an opening in a blood vessel using a permanent implant
US7655004B2 (en) 2007-02-15 2010-02-02 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US20080228202A1 (en) * 2007-03-16 2008-09-18 Ethicon Endo-Surgery, Inc. Endoscopic tissue approximation system
US20080228199A1 (en) * 2007-03-16 2008-09-18 Ethicon Endo-Surgery, Inc. Endoscopic tissue approximation method
US9545258B2 (en) * 2007-05-17 2017-01-17 Boston Scientific Scimed, Inc. Tissue aperture securing and sealing apparatuses and related methods of use
US8574244B2 (en) 2007-06-25 2013-11-05 Abbott Laboratories System for closing a puncture in a vessel wall
US8226681B2 (en) 2007-06-25 2012-07-24 Abbott Laboratories Methods, devices, and apparatus for managing access through tissue
US8333787B2 (en) * 2007-12-31 2012-12-18 St. Jude Medical Puerto Rico Llc Vascular closure device having a flowable sealing material
US8568445B2 (en) 2007-08-21 2013-10-29 St. Jude Medical Puerto Rico Llc Extra-vascular sealing device and method
US7875054B2 (en) * 2007-10-01 2011-01-25 Boston Scientific Scimed, Inc. Connective tissue closure device and method
US20090157101A1 (en) * 2007-12-17 2009-06-18 Abbott Laboratories Tissue closure system and methods of use
US8893947B2 (en) 2007-12-17 2014-11-25 Abbott Laboratories Clip applier and methods of use
US7841502B2 (en) 2007-12-18 2010-11-30 Abbott Laboratories Modular clip applier
US8840640B2 (en) * 2007-12-31 2014-09-23 St. Jude Medical Puerto Rico Llc Vascular closure device having an improved plug
US20090287304A1 (en) 2008-05-13 2009-11-19 Kardium Inc. Medical Device for Constricting Tissue or a Bodily Orifice, for example a mitral valve
US9282965B2 (en) 2008-05-16 2016-03-15 Abbott Laboratories Apparatus and methods for engaging tissue
US8206635B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US8206636B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US10898620B2 (en) 2008-06-20 2021-01-26 Razmodics Llc Composite stent having multi-axial flexibility and method of manufacture thereof
US8888792B2 (en) 2008-07-14 2014-11-18 Ethicon Endo-Surgery, Inc. Tissue apposition clip application devices and methods
CA2736836C (en) * 2008-08-29 2013-11-12 Wilson-Cook Medical Inc. Stapling device for closing perforations
AU2013201924B2 (en) * 2008-08-29 2014-05-08 Cook Medical Technologies Llc Stapling device for closing perforations
US9241696B2 (en) 2008-10-30 2016-01-26 Abbott Vascular Inc. Closure device
US8157834B2 (en) 2008-11-25 2012-04-17 Ethicon Endo-Surgery, Inc. Rotational coupling device for surgical instrument with flexible actuators
US20100145362A1 (en) * 2008-12-09 2010-06-10 Wilson-Cook Medical Inc. Apparatus and methods for controlled release of tacking devices
US8858594B2 (en) 2008-12-22 2014-10-14 Abbott Laboratories Curved closure device
US8323312B2 (en) 2008-12-22 2012-12-04 Abbott Laboratories Closure device
US9173644B2 (en) * 2009-01-09 2015-11-03 Abbott Vascular Inc. Closure devices, systems, and methods
US20100179589A1 (en) 2009-01-09 2010-07-15 Abbott Vascular Inc. Rapidly eroding anchor
US9414820B2 (en) 2009-01-09 2016-08-16 Abbott Vascular Inc. Closure devices, systems, and methods
US20110218568A1 (en) * 2009-01-09 2011-09-08 Voss Laveille K Vessel closure devices, systems, and methods
US9486191B2 (en) 2009-01-09 2016-11-08 Abbott Vascular, Inc. Closure devices
US20100179567A1 (en) * 2009-01-09 2010-07-15 Abbott Vascular Inc. Closure devices, systems, and methods
US9089311B2 (en) * 2009-01-09 2015-07-28 Abbott Vascular Inc. Vessel closure devices and methods
US8361066B2 (en) 2009-01-12 2013-01-29 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US20100185234A1 (en) 2009-01-16 2010-07-22 Abbott Vascular Inc. Closure devices, systems, and methods
US8821532B2 (en) * 2009-01-30 2014-09-02 Cook Medical Technologies Llc Vascular closure device
AU2010254151B2 (en) * 2009-05-28 2013-11-28 Cook Medical Technologies Llc Tacking device and methods of deployment
US20110054492A1 (en) 2009-08-26 2011-03-03 Abbott Laboratories Medical device for repairing a fistula
EP2482749B1 (en) 2009-10-01 2017-08-30 Kardium Inc. Kit for constricting tissue or a bodily orifice, for example, a mitral valve
US20110087282A1 (en) * 2009-10-09 2011-04-14 Tyco Healthcare Group Lp Atraumatic Tissue Anchor
US20110098704A1 (en) 2009-10-28 2011-04-28 Ethicon Endo-Surgery, Inc. Electrical ablation devices
WO2011053673A1 (en) * 2009-10-30 2011-05-05 Wilson-Cook Medical Inc. Apparatus and methods for achieving serosa-to-serosa closure of a bodily opening
US20120253387A1 (en) * 2009-12-02 2012-10-04 Apica Cardiovascular Ireland Limited Device system and method for tissue access site closure
US9028483B2 (en) 2009-12-18 2015-05-12 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US20110152923A1 (en) * 2009-12-18 2011-06-23 Ethicon Endo-Surgery, Inc. Incision closure device
US8475525B2 (en) 2010-01-22 2013-07-02 4Tech Inc. Tricuspid valve repair using tension
US10058323B2 (en) 2010-01-22 2018-08-28 4 Tech Inc. Tricuspid valve repair using tension
US9307980B2 (en) 2010-01-22 2016-04-12 4Tech Inc. Tricuspid valve repair using tension
US8512393B2 (en) * 2010-02-26 2013-08-20 ProMed, Inc. Apparatus for vessel access closure
US8758399B2 (en) 2010-08-02 2014-06-24 Abbott Cardiovascular Systems, Inc. Expandable bioabsorbable plug apparatus and method
US8603116B2 (en) 2010-08-04 2013-12-10 Abbott Cardiovascular Systems, Inc. Closure device with long tines
US9370353B2 (en) 2010-09-01 2016-06-21 Abbott Cardiovascular Systems, Inc. Suturing devices and methods
US8740936B2 (en) 2010-09-13 2014-06-03 Boston Scientific Scimed, Inc. Pinch vascular closure apparatus and method
US8597340B2 (en) 2010-09-17 2013-12-03 Boston Scientific Scimed, Inc. Torque mechanism actuated bioabsorbable vascular closure device
US8940002B2 (en) 2010-09-30 2015-01-27 Kardium Inc. Tissue anchor system
WO2012047815A2 (en) * 2010-10-04 2012-04-12 The Johns Hopkins University Method and device for closure of intraluminal perforations
US9072517B2 (en) * 2010-11-15 2015-07-07 Wake Forest University Health Sciences Natural orifice transluminal endoscopic devices for closure of luminal perforations and associated methods
US9161751B2 (en) * 2010-12-02 2015-10-20 Coloplast A/S Suture system and assembly
US9149265B2 (en) 2011-02-26 2015-10-06 Abbott Cardiovascular Systems, Inc. Hinged tissue support device
US9233241B2 (en) 2011-02-28 2016-01-12 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9254169B2 (en) 2011-02-28 2016-02-09 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9049987B2 (en) 2011-03-17 2015-06-09 Ethicon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
US9149276B2 (en) 2011-03-21 2015-10-06 Abbott Cardiovascular Systems, Inc. Clip and deployment apparatus for tissue closure
US9072511B2 (en) 2011-03-25 2015-07-07 Kardium Inc. Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve
US9414822B2 (en) 2011-05-19 2016-08-16 Abbott Cardiovascular Systems, Inc. Tissue eversion apparatus and tissue closure device and methods for use thereof
US9055932B2 (en) 2011-08-26 2015-06-16 Abbott Cardiovascular Systems, Inc. Suture fastener combination device
US20130060279A1 (en) 2011-09-02 2013-03-07 Cardiva Medical, Inc. Catheter with sealed hydratable hemostatic occlusion element
EP2747669B1 (en) 2011-11-28 2017-01-04 St. Jude Medical Puerto Rico LLC Anchor device for large bore vascular closure
US9332976B2 (en) 2011-11-30 2016-05-10 Abbott Cardiovascular Systems, Inc. Tissue closure device
US9138214B2 (en) * 2012-03-02 2015-09-22 Abbott Cardiovascular Systems, Inc. Suture securing systems, devices and methods
US9456814B2 (en) * 2012-04-09 2016-10-04 Abbott Cardiovascular Systems, Inc. Closure devices, systems, and methods
US8858573B2 (en) 2012-04-10 2014-10-14 Abbott Cardiovascular Systems, Inc. Apparatus and method for suturing body lumens
US9427255B2 (en) 2012-05-14 2016-08-30 Ethicon Endo-Surgery, Inc. Apparatus for introducing a steerable camera assembly into a patient
US9241707B2 (en) 2012-05-31 2016-01-26 Abbott Cardiovascular Systems, Inc. Systems, methods, and devices for closing holes in body lumens
US8961594B2 (en) * 2012-05-31 2015-02-24 4Tech Inc. Heart valve repair system
JP2014004016A (en) * 2012-06-21 2014-01-16 Olympus Corp Access port
US9078662B2 (en) 2012-07-03 2015-07-14 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
US9545290B2 (en) 2012-07-30 2017-01-17 Ethicon Endo-Surgery, Inc. Needle probe guide
US10314649B2 (en) 2012-08-02 2019-06-11 Ethicon Endo-Surgery, Inc. Flexible expandable electrode and method of intraluminal delivery of pulsed power
US9572623B2 (en) 2012-08-02 2017-02-21 Ethicon Endo-Surgery, Inc. Reusable electrode and disposable sheath
US11547396B2 (en) 2012-08-10 2023-01-10 W. L. Gore & Associates, Inc. Devices and methods for securing medical devices within an anatomy
US9277957B2 (en) 2012-08-15 2016-03-08 Ethicon Endo-Surgery, Inc. Electrosurgical devices and methods
US9364209B2 (en) 2012-12-21 2016-06-14 Abbott Cardiovascular Systems, Inc. Articulating suturing device
CN105007832B (en) 2013-01-09 2018-01-23 4科技有限公司 Organize ancora equipment
US9486132B2 (en) 2013-01-17 2016-11-08 Abbott Cardiovascular Systems, Inc. Access device for accessing tissue
US11253242B2 (en) 2013-01-21 2022-02-22 Cyndrx, Llc Vessel sealing device
US9131931B2 (en) 2013-01-21 2015-09-15 Vi Bravoseal, Llc Vessel sealing device with automatic deployment
US10307145B2 (en) 2013-01-21 2019-06-04 Cyndrx, Llc Vessel sealing device
US9138215B2 (en) 2013-01-21 2015-09-22 Vi Bravoseal, Llc Vessel sealing device
US10098527B2 (en) 2013-02-27 2018-10-16 Ethidcon Endo-Surgery, Inc. System for performing a minimally invasive surgical procedure
WO2014141239A1 (en) 2013-03-14 2014-09-18 4Tech Inc. Stent with tether interface
GB2516423B (en) * 2013-07-10 2015-07-15 Cook Medical Technologies Llc Vascular closure device
US10039643B2 (en) 2013-10-30 2018-08-07 4Tech Inc. Multiple anchoring-point tension system
US10052095B2 (en) 2013-10-30 2018-08-21 4Tech Inc. Multiple anchoring-point tension system
US10485545B2 (en) 2013-11-19 2019-11-26 Datascope Corp. Fastener applicator with interlock
CN104013476B (en) * 2014-06-17 2016-08-17 浙江中医药大学 Rodent lower back experiment drag hook
EP3157607B1 (en) 2014-06-19 2019-08-07 4Tech Inc. Cardiac tissue cinching
US9795366B2 (en) * 2014-09-18 2017-10-24 Edwards Lifesciences Corporation Bio-absorbable wound closure device and method
CN106999178B (en) 2014-12-02 2019-12-24 4科技有限公司 Eccentric tissue anchor
WO2017019525A1 (en) * 2015-07-24 2017-02-02 The Johns Hopkins University Method and device for tissue acquisition or closure
WO2017075467A1 (en) * 2015-10-29 2017-05-04 Trocare, LLC Fascia closure device and method
EP3380017A4 (en) 2015-11-25 2019-11-27 Talon Medical, LLC Tissue engagement devices, systems, and methods
US20170172551A1 (en) * 2015-12-18 2017-06-22 Rao Innovations Llc. Fascia Closure Tool
US10709433B2 (en) 2016-09-23 2020-07-14 Boston Scientific Scimed, Inc. Large bore vascular closure system
US10531868B2 (en) 2017-12-01 2020-01-14 Cardiva Medical, Inc. Apparatus and methods for accessing and closing multiple penetrations on a blood vessel
AU2019243731A1 (en) 2018-03-28 2020-10-08 Datascope Corp. Device for atrial appendage exclusion
US11304688B2 (en) 2019-06-05 2022-04-19 Maine Medical Center Gastrocutaneous closure device
US11439383B2 (en) 2019-08-20 2022-09-13 Abbott Cardiovascular Systems, Inc. Self locking suture and self locking suture mediated closure device
JP2022551425A (en) * 2019-09-25 2022-12-09 カーディアック・インプランツ・エルエルシー Heart annulus reduction system
WO2024001651A1 (en) * 2022-06-28 2024-01-04 微创投资控股有限公司 Blocking device and blocking system

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5507744A (en) * 1992-04-23 1996-04-16 Scimed Life Systems, Inc. Apparatus and method for sealing vascular punctures
US5649959A (en) * 1995-02-10 1997-07-22 Sherwood Medical Company Assembly for sealing a puncture in a vessel
US5674231A (en) * 1995-10-20 1997-10-07 United States Surgical Corporation Apparatus and method for vascular hole closure
US5681334A (en) * 1994-08-24 1997-10-28 Kensey Nash Corporation Apparatus and methods of use for preventing blood seepage at a percutaneous puncture site
US5897487A (en) * 1997-04-15 1999-04-27 Asahi Kogaku Kogyo Kabushiki Kaisha Front end hood for endoscope
US5910155A (en) * 1998-06-05 1999-06-08 United States Surgical Corporation Vascular wound closure system
US5919207A (en) * 1998-06-02 1999-07-06 Taheri; Syde A. Percutaneous arterial closure with staples
US5964782A (en) * 1997-09-18 1999-10-12 Scimed Life Systems, Inc. Closure device and method
US5972024A (en) * 1996-12-24 1999-10-26 Metacardia, Inc. Suture-staple apparatus and method
US6143004A (en) * 1998-08-18 2000-11-07 Atrion Medical Products, Inc. Suturing device
US6165183A (en) * 1998-07-15 2000-12-26 St. Jude Medical, Inc. Mitral and tricuspid valve repair
US6248124B1 (en) * 1999-02-22 2001-06-19 Tyco Healthcare Group Arterial hole closure apparatus
US6524326B1 (en) * 1995-12-07 2003-02-25 Loma Linda University Medical Center Tissue opening locator and everter and method
US6626930B1 (en) * 1999-10-21 2003-09-30 Edwards Lifesciences Corporation Minimally invasive mitral valve repair method and apparatus
US20040093027A1 (en) * 2002-03-04 2004-05-13 Walter Fabisiak Barbed tissue connector for sealing vascular puncture wounds
US20050256532A1 (en) * 2004-05-12 2005-11-17 Asha Nayak Cardiovascular defect patch device and method
US7060084B1 (en) * 1998-05-29 2006-06-13 By-Pass, Inc. Vascular closure device
US7396359B1 (en) * 1998-05-29 2008-07-08 Bypass, Inc. Vascular port device
US8480687B2 (en) * 2009-10-30 2013-07-09 Cook Medical Technologies Llc Apparatus and methods for achieving serosa-to-serosa closure of a bodily opening
US9149276B2 (en) * 2011-03-21 2015-10-06 Abbott Cardiovascular Systems, Inc. Clip and deployment apparatus for tissue closure

Family Cites Families (880)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US597165A (en) 1898-01-11 Thread package
US312408A (en) 1885-02-17 Surgical needle
US287046A (en) 1883-10-23 Combined cork and screw nozzle
US438400A (en) 1890-10-14 Connector for electric conductors
USRE22857E (en) 1947-03-25 Suturing instrument
US659422A (en) 1900-06-12 1900-10-09 George W Shidler Surgical instrument.
US989231A (en) 1908-06-05 1911-04-11 Wilbur L Chamberlain Insulator-support.
US1088393A (en) * 1913-09-20 1914-02-24 Oscar E Backus Button.
US1242139A (en) 1915-08-20 1917-10-09 Robert L Callahan Means for fastening sacks.
US1331401A (en) * 1919-09-12 1920-02-17 Summers Henry Clay Button-fastening
US1480935A (en) 1922-04-03 1924-01-15 Dora P Gleason Barrette
US1574362A (en) 1922-09-23 1926-02-23 Isabel G Callahan Hemostatic forceps
US1596004A (en) 1923-04-04 1926-08-17 Bengoa Miguel Becerro De Hypodermic syringe
US1625602A (en) 1926-04-06 1927-04-19 Harold G Gould Surgical appliance
US1647958A (en) 1926-11-02 1927-11-01 Ariberto E Ciarlante Hair-curling material and method of preparing the same
US1880569A (en) 1930-09-27 1932-10-04 John P Weis Surgical clip applying instrument
US2012776A (en) 1931-05-23 1935-08-27 Roeder Hans Albert Ligator
US1940351A (en) 1933-03-22 1933-12-19 Dougald T Mckinnon Surgical instrument
US2127903A (en) 1936-05-05 1938-08-23 Davis & Geck Inc Tube for surgical purposes and method of preparing and using the same
US2087074A (en) 1936-08-17 1937-07-13 Tucker Ralph Button
US2108206A (en) * 1937-03-09 1938-02-15 Lillian Pearl Mecker Tenaculum
US2131321A (en) 1937-10-11 1938-09-27 Hart Wilber Ligator
US2254620A (en) 1939-11-14 1941-09-02 George I Miller Clip
US2397823A (en) 1941-02-12 1946-04-02 Carl W Walter Forceps
US2371978A (en) * 1941-12-13 1945-03-20 Roy G Perham Clamp for retaining the edges of a wound in apposition
US2316297A (en) * 1943-01-15 1943-04-13 Beverly A Southerland Surgical instrument
US2453227A (en) 1946-09-21 1948-11-09 George Martin Button staple anchor and shield
US2583625A (en) * 1946-10-29 1952-01-29 Thomas & Betts Corp Method of and tool for crimping tubes
US2595086A (en) 1948-11-30 1952-04-29 Henry B Larzelere Surgical instrument
US2610631A (en) 1949-11-02 1952-09-16 David J Calicchio Ligator
US2588589A (en) 1950-12-14 1952-03-11 Tauber Joseph Surgeon's prethreaded needle holder
US2646045A (en) 1951-05-01 1953-07-21 Bruno S Priestley Mechanical suturing device
US2910067A (en) 1952-10-13 1959-10-27 Technical Oil Tool Corp Wound clip and extractor therefor
US2684070A (en) 1953-03-23 1954-07-20 Walter L Kelsey Surgical clip
US2692599A (en) 1953-11-02 1954-10-26 Raymond C Creelman Identifying holder for surgical ligatures
US2951482A (en) 1955-09-22 1960-09-06 Gregory B Sullivan Surgical saw
US3113379A (en) 1956-02-28 1963-12-10 Joseph J Frank Closure fastening
US2944311A (en) 1956-10-20 1960-07-12 Schneckenberger Adolf Detachable fastening device
US2941489A (en) 1957-03-05 1960-06-21 Fischbein Dave Movable thread cutter for electric sewing machines
US2959172A (en) 1957-08-27 1960-11-08 American Cystoscope Makers Inc Self-threading suturing instrument
US3015403A (en) * 1959-04-08 1962-01-02 American Thermos Products Comp Threaded stopper expanding pouring lip combination for vacuum bottle
US2969887A (en) * 1959-04-08 1961-01-31 American Thermos Products Comp Threaded pouring lip stopper combination for vacuum bottle
US3033156A (en) 1960-03-16 1962-05-08 Alberta L Verbish Suture rack
US3120230A (en) * 1960-10-24 1964-02-04 Jack H Sanders Surgical clamp
US3209754A (en) 1961-08-10 1965-10-05 Ernest C Wood Surgical clip
US3413397A (en) 1961-08-17 1968-11-26 Eastman Kodak Co Process for stretching polypropylene filaments
US3104666A (en) 1962-11-02 1963-09-24 Myron T Hale Surgical instrument for performing a tracheotomy
US3359983A (en) 1963-01-23 1967-12-26 American Cyanamid Co Synthetic surgical sutures
US3142878A (en) 1963-04-10 1964-08-04 James V Santora Staple button fastener
US3197102A (en) 1964-09-09 1965-07-27 Bates Bernice Thread support having a fixed cutter
US3357070A (en) 1966-03-11 1967-12-12 Harriet L Soloan Accessories for hairdos and articles of apparel
US3587115A (en) 1966-05-04 1971-06-28 Donald P Shiley Prosthetic sutureless heart valves and implant tools therefor
US3422181A (en) 1966-05-23 1969-01-14 American Cyanamid Co Method for heat setting of stretch oriented polyglycolic acid filament
US3470875A (en) 1966-10-06 1969-10-07 Alfred A Johnson Surgical clamping and suturing instrument
US3494533A (en) * 1966-10-10 1970-02-10 United States Surgical Corp Surgical stapler for stitching body organs
US3348595A (en) 1967-03-15 1967-10-24 Walter Landor Bag closure structure
US3482428A (en) 1967-07-12 1969-12-09 Nikolai Nikolaevich Kapitanov Surgical apparatus for suturing tissues with metal staples
US3523351A (en) 1967-10-20 1970-08-11 Sargent & Co Locator and holder in a crimping tool for an electrical connector
US3586002A (en) 1968-01-08 1971-06-22 Ernest C Wood Surgical skin clip
US3604425A (en) 1969-04-11 1971-09-14 New Research And Dev Lab Inc Hemostatic clip
US3630205A (en) 1969-07-31 1971-12-28 Ethicon Inc Polypropylene monofilament sutures
US3618447A (en) 1969-09-15 1971-11-09 Phillips Petroleum Co Deterioration fasteners
US3653388A (en) 1969-12-04 1972-04-04 Battelle Development Corp Catheter insertion trocar
US3665926A (en) 1970-04-08 1972-05-30 Bard Inc C R Ligature and applicator therefor
US3682180A (en) 1970-06-08 1972-08-08 Coilform Co Inc Drain clip for surgical drain
US3757629A (en) 1971-05-10 1973-09-11 R Schneider Resilient plastic staple
US3814104A (en) 1971-07-05 1974-06-04 W Irnich Pacemaker-electrode
BE789131A (en) 1971-09-24 1973-03-22 Extracorporeal Med Spec SURGICAL NEEDLE FOR PERFORMING MEDICAL OPERATIONS
US3840017A (en) 1971-10-29 1974-10-08 A Violante Surgical instrument
US3802438A (en) 1972-03-31 1974-04-09 Technibiotics Surgical instrument
US3776237A (en) 1972-05-11 1973-12-04 Tecna Corp Surgical tool and method of providing a surgical opening
US3985138A (en) 1972-08-25 1976-10-12 Jarvik Robert K Preformed ligatures for bleeders and methods of applying such ligatures
US3856016A (en) 1972-11-03 1974-12-24 H Davis Method for mechanically applying an occlusion clip to an anatomical tubular structure
DE2300840C3 (en) 1973-01-09 1975-08-28 Richard Wolf Gmbh, 7134 Knittlingen Device for preparing ligatures of the fallopian tubes
US3874388A (en) * 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US3856018A (en) 1973-02-26 1974-12-24 P Perisse Process for ligating sectioned blood vessels
US3828791A (en) 1973-03-21 1974-08-13 M Santos Surgical instruments
US3805337A (en) * 1973-04-23 1974-04-23 Raymond Lee Organization Inc Spring wire hose clamp
BE801915A (en) 1973-07-04 1974-01-04 Vnii Khirurgicheskoi Apparatur HOLLOW BODY FOLDING DEVICE AND SUTURING DEVICE INCLUDING THIS FOLDING DEVICE
US3878848A (en) 1973-12-27 1975-04-22 Extracorporeal Med Spec Surgical needle capturing device
NL7403762A (en) * 1974-03-20 1975-09-23 Leer Koninklijke Emballage STOP OF PLASTIC OR SIMILAR MATERIAL, WITH EXTERNAL THREADS.
DE2513868C2 (en) * 1974-04-01 1982-11-04 Olympus Optical Co., Ltd., Tokyo Bipolar electrodiathermy forceps
JPS50135132U (en) * 1974-04-10 1975-11-07
US3918455A (en) 1974-04-29 1975-11-11 Albany Int Corp Combined surgical suture and needle
US4018229A (en) * 1974-09-13 1977-04-19 Olympus Optical Co., Ltd. Apparatus for ligation of affected part in coeloma
US3939820A (en) * 1974-10-29 1976-02-24 Datascope Corporation Single-chamber, multi-section balloon for cardiac assistance
US3926194A (en) 1974-11-20 1975-12-16 Ethicon Inc Sutures with reduced diameter at suture tip
US4018228A (en) * 1975-02-24 1977-04-19 Goosen Carl C Surgical punch apparatus
GB1486351A (en) 1975-06-06 1977-09-21 Rocket Of London Ltd Surgical clip applicator
US4014492A (en) * 1975-06-11 1977-03-29 Senco Products, Inc. Surgical staple
FR2298313A1 (en) 1975-06-23 1976-08-20 Usifroid LINEAR REDUCER FOR VALVULOPLASTY
MX144149A (en) 1976-04-28 1981-09-02 Kendall & Co IMPROVED DEVICE TO VERIFY THE POSITION OF A NEEDLE IN THE BODY OF A PATIENT
CA1101289A (en) 1976-09-07 1981-05-19 Vsesojuzny Nauchno-Issledovatelsky I Ispytatelny Institut Meditsinskoi T Ekhniki Surgical apparatus for suturing soft tissues with lengths of suturing material with spicules
US4128100A (en) 1976-10-08 1978-12-05 Wendorff Erwin R Suture
DE2658478C2 (en) * 1976-12-23 1978-11-30 Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen Vascular clips for surgical use
SU715082A1 (en) * 1977-01-24 1980-02-15 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical suturing apparatus
US4109658A (en) 1977-02-04 1978-08-29 Hughes Joe L Needle holding device with pick-up means
US4217902A (en) 1977-05-02 1980-08-19 March Alfred L Hemostatic clip
US4169476A (en) 1977-08-12 1979-10-02 Wolf Medical Instruments Corporation Applicator for surgical clip
US4201215A (en) * 1977-09-06 1980-05-06 Crossett E S Apparatus and method for closing a severed sternum
US4345606A (en) 1977-12-13 1982-08-24 Littleford Philip O Split sleeve introducers for pacemaker electrodes and the like
US4185636A (en) 1977-12-29 1980-01-29 Albert Einstein College Of Medicine Of Yeshiva University Suture organizer, prosthetic device holder, and related surgical procedures
US4135623A (en) 1978-01-20 1979-01-23 Ethicon, Inc. Package for armed sutures
US4168073A (en) 1978-03-01 1979-09-18 Owens-Illinois, Inc. Glass article handling chuck
US4215699A (en) 1978-04-03 1980-08-05 The Kendall Company Position indicating device
US4161951A (en) 1978-04-27 1979-07-24 Scanlan International, Inc. Needle driver
US4235238A (en) 1978-05-11 1980-11-25 Olympus Optical Co., Ltd. Apparatus for suturing coeliac tissues
US4182339A (en) 1978-05-17 1980-01-08 Hardy Thomas G Jr Anastomotic device and method
US4216776A (en) 1978-05-19 1980-08-12 Thoratec Laboratories Corporation Disposable aortic perforator
US4207870A (en) 1978-06-15 1980-06-17 Becton, Dickinson And Company Blood sampling assembly having porous vent means vein entry indicator
US4189808A (en) 1978-09-20 1980-02-26 Brown Theodore G Retainer and closure for a garbage can liner bag
USRE31855F1 (en) 1978-12-01 1986-08-19 Tear apart cannula
US4214587A (en) 1979-02-12 1980-07-29 Sakura Chester Y Jr Anastomosis device and method
US4235177A (en) 1979-02-23 1980-11-25 Raymond C. Kelder Suturing device
US4440170A (en) * 1979-03-06 1984-04-03 Ethicon, Inc. Surgical clip applying instrument
JPS55151956A (en) 1979-05-17 1980-11-26 Janome Sewing Machine Co Ltd Sewing machine for medical treatment
US4267995A (en) 1979-10-09 1981-05-19 Mcmillan Ronald R Wire holder
US4278091A (en) 1980-02-01 1981-07-14 Howmedica, Inc. Soft tissue retainer for use with bone implants, especially bone staples
US4396139A (en) 1980-02-15 1983-08-02 Technalytics, Inc. Surgical stapling system, apparatus and staple
US4317445A (en) * 1980-03-31 1982-03-02 Baxter Travenol Laboratories, Inc. Catheter insertion unit with separate flashback indication for the cannula
US4318401A (en) * 1980-04-24 1982-03-09 President And Fellows Of Harvard College Percutaneous vascular access portal and catheter
US4428376A (en) * 1980-05-02 1984-01-31 Ethicon Inc. Plastic surgical staple
US4327485A (en) * 1980-05-21 1982-05-04 Amp Incorporated Pistol grip tool
US4505274A (en) * 1980-10-17 1985-03-19 Propper Manufacturing Co., Inc. Suture clip
US4469101A (en) 1980-10-23 1984-09-04 Battelle Memorial Institute Suture device
US4368736A (en) * 1980-11-17 1983-01-18 Kaster Robert L Anastomotic fitting
US4526174A (en) 1981-03-27 1985-07-02 Minnesota Mining And Manufacturing Company Staple and cartridge for use in a tissue stapling device and a tissue closing method
US4411654A (en) 1981-04-30 1983-10-25 Baxter Travenol Laboratories, Inc. Peelable catheter with securing ring and suture sleeve
US4412832A (en) 1981-04-30 1983-11-01 Baxter Travenol Laboratories, Inc. Peelable catheter introduction device
US4485816A (en) 1981-06-25 1984-12-04 Alchemia Shape-memory surgical staple apparatus and method for use in surgical suturing
US4480356A (en) 1981-10-07 1984-11-06 Martin Donald A Double-grip clip
US4724840A (en) * 1982-02-03 1988-02-16 Ethicon, Inc. Surgical fastener applier with rotatable front housing and laterally extending curved needle for guiding a flexible pusher
DE3204532C2 (en) * 1982-02-10 1983-12-08 B. Braun Melsungen Ag, 3508 Melsungen Surgical skin staple
DE3204522A1 (en) 1982-02-10 1983-08-25 B. Braun Melsungen Ag, 3508 Melsungen SURGICAL SKIN CLIP DEVICE
US4860746A (en) 1982-04-20 1989-08-29 Inbae Yoon Elastic surgical ring clip and ring loader
US4501276A (en) * 1982-07-16 1985-02-26 Illinois Tool Works Inc. Fetal electrode apparatus
US4492229A (en) 1982-09-03 1985-01-08 Grunwald Ronald P Suture guide holder
US4492232A (en) 1982-09-30 1985-01-08 United States Surgical Corporation Surgical clip applying apparatus having fixed jaws
US4493323A (en) 1982-12-13 1985-01-15 University Of Iowa Research Foundation Suturing device and method for using same
US4525157A (en) 1983-07-28 1985-06-25 Manresa, Inc. Closed system catheter with guide wire
US4586614A (en) 1983-08-22 1986-05-06 Ralph Ger Apparatus and method for organizing suture materials and monitoring suture needles
IL74460A (en) 1983-09-02 1990-01-18 Istec Ind & Technologies Ltd Surgical implement particularly useful for suturing prosthetic valves
US4665906A (en) * 1983-10-14 1987-05-19 Raychem Corporation Medical devices incorporating sim alloy elements
US4586503A (en) * 1983-12-01 1986-05-06 University Of New Mexico Surgical microclip
US4929240A (en) 1983-12-01 1990-05-29 University Of New Mexico Surgical clip and applier
US5669936A (en) 1983-12-09 1997-09-23 Endovascular Technologies, Inc. Endovascular grafting system and method for use therewith
US5104399A (en) 1986-12-10 1992-04-14 Endovascular Technologies, Inc. Artificial graft and implantation method
US6221102B1 (en) 1983-12-09 2001-04-24 Endovascular Technologies, Inc. Intraluminal grafting system
US4553543A (en) 1984-03-05 1985-11-19 Amarasinghe Disamodha C Suturing assembly and method
US4917087A (en) 1984-04-10 1990-04-17 Walsh Manufacturing (Mississuaga) Limited Anastomosis devices, kits and method
US4607638A (en) 1984-04-20 1986-08-26 Design Standards Corporation Surgical staples
JPS60234671A (en) 1984-05-09 1985-11-21 テルモ株式会社 Catheter inserter
DE3420455C1 (en) 1984-06-01 1985-05-15 Peter Dr.-Ing. 7889 Grenzach-Wyhlen Osypka Separating device for an insertion sleeve
US4651733A (en) 1984-06-06 1987-03-24 Mobin Uddin Kazi Blood vessel holding device and surgical method using same
JPS6144825A (en) 1984-08-09 1986-03-04 Unitika Ltd Hemostatic agent
US4610248A (en) 1984-09-18 1986-09-09 University Of Medicine And Dentistry Of New Jersey Surgical finger assembly
IL73081A (en) 1984-09-26 1988-12-30 Istec Ind & Technologies Ltd Suturing implement particularly useful in surgical operations for the attachment of a prosthetic valve
US4610252A (en) 1984-10-15 1986-09-09 Catalano J Denis Dual muscle clamp
US4596559A (en) 1984-11-02 1986-06-24 Fleischhacker John J Break-away handle for a catheter introducer set
US4587969A (en) 1985-01-28 1986-05-13 Rolando Gillis Support assembly for a blood vessel or like organ
US4610251A (en) 1985-04-19 1986-09-09 Kumar Sarbjeet S Surgical staple
US4738666A (en) 1985-06-11 1988-04-19 Genus Catheter Technologies, Inc. Variable diameter catheter
DE3565240D1 (en) 1985-06-27 1988-11-03 Haagexport Bv Device for closing bags and the like
US4635634A (en) * 1985-07-12 1987-01-13 Santos Manuel V Surgical clip applicator system
CN85106639B (en) * 1985-09-03 1988-08-03 第三军医大学野战外科研究所 Instrument for blood vessel anastomosis
DE3533423A1 (en) 1985-09-19 1987-03-26 Wolf Gmbh Richard APPLICATOR PLIERS FOR SURGICAL HANDLING FOR USE IN ENDOSCOPY
US4693249A (en) 1986-01-10 1987-09-15 Schenck Robert R Anastomosis device and method
JPS62236560A (en) 1986-04-09 1987-10-16 テルモ株式会社 Catheter for repairing blood vessel
US4777950A (en) 1986-04-11 1988-10-18 Kees Surgical Specialty Co. Vascular clip
US5350395A (en) 1986-04-15 1994-09-27 Yock Paul G Angioplasty apparatus facilitating rapid exchanges
US4874122A (en) 1986-07-14 1989-10-17 Minnesota Mining And Manufacturing Company Bent back box staple and staple closing mechanism with split actuator
DE3630210A1 (en) * 1986-09-04 1988-03-17 Wisap Gmbh INSTRUMENT HANDLE
US4723549A (en) 1986-09-18 1988-02-09 Wholey Mark H Method and apparatus for dilating blood vessels
US4738658A (en) * 1986-09-19 1988-04-19 Aries Medical Incorporated Tapered hemostatic device for use in conjunction with a catheter for alleviating blood leakage and method for using same
US4789090A (en) 1986-11-03 1988-12-06 Blake Joseph W Iii Surgical stapler
US4771782A (en) 1986-11-14 1988-09-20 Millar Instruments, Inc. Method and assembly for introducing multiple catheters into a biological vessel
GB8628090D0 (en) 1986-11-25 1986-12-31 Ahmad R Clipon surgical suture cutter
US4748982A (en) 1987-01-06 1988-06-07 Advanced Cardiovascular Systems, Inc. Reinforced balloon dilatation catheter with slitted exchange sleeve and method
US4834757A (en) 1987-01-22 1989-05-30 Brantigan John W Prosthetic implant
US4719917A (en) * 1987-02-17 1988-01-19 Minnesota Mining And Manufacturing Company Surgical staple
US4744364A (en) * 1987-02-17 1988-05-17 Intravascular Surgical Instruments, Inc. Device for sealing percutaneous puncture in a vessel
US4890612A (en) 1987-02-17 1990-01-02 Kensey Nash Corporation Device for sealing percutaneous puncture in a vessel
USRE34866E (en) 1987-02-17 1995-02-21 Kensey Nash Corporation Device for sealing percutaneous puncture in a vessel
US4852568A (en) 1987-02-17 1989-08-01 Kensey Nash Corporation Method and apparatus for sealing an opening in tissue of a living being
US4865026A (en) 1987-04-23 1989-09-12 Barrett David M Sealing wound closure device
US4772266A (en) 1987-05-04 1988-09-20 Catheter Technology Corp. Catheter dilator/sheath assembly and method
US5478353A (en) * 1987-05-14 1995-12-26 Yoon; Inbae Suture tie device system and method for suturing anatomical tissue proximate an opening
US5100418A (en) * 1987-05-14 1992-03-31 Inbae Yoon Suture tie device system and applicator therefor
US5171250A (en) 1987-05-14 1992-12-15 Inbae Yoon Surgical clips and surgical clip applicator and cutting and transection device
US4803984A (en) 1987-07-06 1989-02-14 Montefiore Hospital Association Of Western Pennsylvania Method for performing small vessel anastomosis
US4836204A (en) 1987-07-06 1989-06-06 Landymore Roderick W Method for effecting closure of a perforation in the septum of the heart
SU1616624A1 (en) 1987-07-14 1990-12-30 Предприятие П/Я А-3697 Surgical suturing apparatus
US4957498A (en) 1987-11-05 1990-09-18 Concept, Inc. Suturing instrument
US4887601A (en) 1987-11-06 1989-12-19 Ophthalmic Ventures Limited Partnership Adjustable surgical staple and method of using the same
US5030226A (en) 1988-01-15 1991-07-09 United States Surgical Corporation Surgical clip applicator
JP2561853B2 (en) 1988-01-28 1996-12-11 株式会社ジェイ・エム・エス Shaped memory molded article and method of using the same
US4926860A (en) 1988-02-05 1990-05-22 Flexmedics Corporation ARthroscopic instrumentation and method
US4836205A (en) 1988-03-21 1989-06-06 Barrett Gene R Grasper-stitcher device for arthroscopic anterior cruciate ligament repair
US4911164A (en) 1988-04-26 1990-03-27 Roth Robert A Surgical tool and method of use
US5114065A (en) * 1988-05-23 1992-05-19 Technalytics, Inc. Surgical stapler
US5330445A (en) 1988-05-26 1994-07-19 Haaga John R Sheath for wound closure caused by a medical tubular device
US5254105A (en) 1988-05-26 1993-10-19 Haaga John R Sheath for wound closure caused by a medical tubular device
US5002562A (en) 1988-06-03 1991-03-26 Oberlander Michael A Surgical clip
CA2004658C (en) 1988-06-03 1995-10-10 Michael A. Oberlander Arthroscopic clip and insertion tool
US5015247A (en) 1988-06-13 1991-05-14 Michelson Gary K Threaded spinal implant
US5100419A (en) 1990-04-17 1992-03-31 Ehlers Robert L Device for removing diverticula in the colon
US4902508A (en) 1988-07-11 1990-02-20 Purdue Research Foundation Tissue graft composition
US4917089A (en) 1988-08-29 1990-04-17 Sideris Eleftherios B Buttoned device for the transvenous occlusion of intracardiac defects
US5167643A (en) 1990-04-27 1992-12-01 Lynn Lawrence A Needle protection station
US4984581A (en) 1988-10-12 1991-01-15 Flexmedics Corporation Flexible guide having two-way shape memory alloy
US5047047A (en) 1988-10-26 1991-09-10 Inbae Yoon Wound closing device
US4929246A (en) 1988-10-27 1990-05-29 C. R. Bard, Inc. Method for closing and sealing an artery after removing a catheter
US4961729A (en) 1988-12-13 1990-10-09 Vaillancourt Vincent L Catheter insertion assembly
US4983168A (en) 1989-01-05 1991-01-08 Catheter Technology Corporation Medical layered peel away sheath and methods
FR2641692A1 (en) 1989-01-17 1990-07-20 Nippon Zeon Co Plug for closing an opening for a medical application, and device for the closure plug making use thereof
US4997439A (en) 1989-01-26 1991-03-05 Chen Fusen H Surgical closure or anastomotic device
US4966600A (en) 1989-01-26 1990-10-30 Songer Robert J Surgical securance method
JPH07103457B2 (en) * 1989-02-10 1995-11-08 トミー株式会社 Shape memory alloy straightening wire
US4969891A (en) 1989-03-06 1990-11-13 Gewertz Bruce L Removable vascular filter
US5192294A (en) 1989-05-02 1993-03-09 Blake Joseph W Iii Disposable vascular punch
US5074874A (en) 1989-05-16 1991-12-24 Inbae Yoon Suture devices particularly useful in endoscopic surgery
US4981149A (en) 1989-05-16 1991-01-01 Inbae Yoon Method for suturing with a bioabsorbable needle
US5100422A (en) 1989-05-26 1992-03-31 Impra, Inc. Blood vessel patch
US6764500B1 (en) * 1989-05-29 2004-07-20 Kensey Nash Corporation Sealing device
US5620461A (en) 1989-05-29 1997-04-15 Muijs Van De Moer; Wouter M. Sealing device
US5078721A (en) 1989-06-16 1992-01-07 Mckeating John A Device for surgical ligation
US5009643A (en) 1989-08-09 1991-04-23 Richard Wolf Medical Instruments Corp. Self-retaining electrically insulative trocar sleeve and trocar
US5904690A (en) 1989-08-16 1999-05-18 Medtronic, Inc. Device or apparatus for manipulating matter
US4935027A (en) 1989-08-21 1990-06-19 Inbae Yoon Surgical suture instrument with remotely controllable suture material advancement
US5207703A (en) 1989-10-20 1993-05-04 Jain Krishna M Suture organizer
US5007921A (en) 1989-10-26 1991-04-16 Brown Alan W Surgical staple
US5026390A (en) 1989-10-26 1991-06-25 Brown Alan W Surgical staple
US5059201A (en) * 1989-11-03 1991-10-22 Asnis Stanley E Suture threading, stitching and wrapping device for use in open and closed surgical procedures
GB8924806D0 (en) 1989-11-03 1989-12-20 Neoligaments Ltd Prosthectic ligament system
US5156788A (en) 1989-11-14 1992-10-20 United States Surgical Corporation Method and apparatus for heat tipping sutures
US5122122A (en) 1989-11-22 1992-06-16 Dexide, Incorporated Locking trocar sleeve
US4950285A (en) 1989-11-27 1990-08-21 Wilk Peter J Suture device
US5061274A (en) 1989-12-04 1991-10-29 Kensey Nash Corporation Plug device for sealing openings and method of use
CA2122041A1 (en) 1989-12-04 1993-04-29 Kenneth Kensey Plug device for sealing openings and method of use
US5797958A (en) 1989-12-05 1998-08-25 Yoon; Inbae Endoscopic grasping instrument with scissors
US5226908A (en) 1989-12-05 1993-07-13 Inbae Yoon Multi-functional instruments and stretchable ligating and occluding devices
US5156609A (en) 1989-12-26 1992-10-20 Nakao Naomi L Endoscopic stapling device and method
US5891088A (en) 1990-02-02 1999-04-06 Ep Technologies, Inc. Catheter steering assembly providing asymmetric left and right curve configurations
US5002563A (en) 1990-02-22 1991-03-26 Raychem Corporation Sutures utilizing shape memory alloys
JPH03244445A (en) 1990-02-22 1991-10-31 Matsutani Seisakusho Co Ltd Medical suture needle
US5032127A (en) 1990-03-07 1991-07-16 Frazee John G Hemostatic clip and applicator therefor
US5163946A (en) 1990-04-25 1992-11-17 Mitek Surgical Products, Inc. Suture rundown tool and cutter system
US5021059A (en) 1990-05-07 1991-06-04 Kensey Nash Corporation Plug device with pulley for sealing punctures in tissue and methods of use
DE4014653A1 (en) 1990-05-08 1991-11-14 Beiersdorf Ag SURGICAL CLAMP
US5037433A (en) 1990-05-17 1991-08-06 Wilk Peter J Endoscopic suturing device and related method and suture
US5116349A (en) * 1990-05-23 1992-05-26 United States Surgical Corporation Surgical fastener apparatus
US5078731A (en) * 1990-06-05 1992-01-07 Hayhurst John O Suture clip
US5041129A (en) 1990-07-02 1991-08-20 Acufex Microsurgical, Inc. Slotted suture anchor and method of anchoring a suture
US5395332A (en) 1990-08-28 1995-03-07 Scimed Life Systems, Inc. Intravascualr catheter with distal tip guide wire lumen
US5368595A (en) 1990-09-06 1994-11-29 United States Surgical Corporation Implant assist apparatus
US5176691A (en) * 1990-09-11 1993-01-05 Pierce Instruments, Inc. Knot pusher
US5047039A (en) 1990-09-14 1991-09-10 Odis Lynn Avant Method and apparatus for effecting dorsal vein ligation and tubular anastomosis and laparoscopic prostatectomy
US5080664A (en) 1990-09-18 1992-01-14 Jain Krishna M Device for holding a vein during vascular surgery
US5391183A (en) 1990-09-21 1995-02-21 Datascope Investment Corp Device and method sealing puncture wounds
US7008439B1 (en) 1990-09-21 2006-03-07 Datascope Investments Corp. Device and method for sealing puncture wounds
US5108421A (en) 1990-10-01 1992-04-28 Quinton Instrument Company Insertion assembly and method of inserting a vessel plug into the body of a patient
US5192300A (en) 1990-10-01 1993-03-09 Quinton Instrument Company Insertion assembly and method of inserting a vessel plug into the body of a patient
US5129913A (en) 1990-10-04 1992-07-14 Norbert Ruppert Surgical punch apparatus
US5611794A (en) 1990-10-11 1997-03-18 Lasersurge, Inc. Clamp for approximating tissue sections
CA2027427A1 (en) * 1990-10-12 1992-04-13 William S. Laidlaw Plug for sealing wood preservative in wood structures
FR2668361A1 (en) 1990-10-30 1992-04-30 Mai Christian OSTEOSYNTHESIS CLIP AND PLATE WITH SELF-RETENTIVE DYNAMIC COMPRESSION.
FR2668698B1 (en) 1990-11-06 1997-06-06 Ethnor SURGICAL INSTRUMENT FORMING TROCART.
US5053008A (en) 1990-11-21 1991-10-01 Sandeep Bajaj Intracardiac catheter
US5366458A (en) 1990-12-13 1994-11-22 United States Surgical Corporation Latchless surgical clip
US5122156A (en) 1990-12-14 1992-06-16 United States Surgical Corporation Apparatus for securement and attachment of body organs
US5425489A (en) 1990-12-20 1995-06-20 United States Surgical Corporation Fascia clip and instrument
CA2055985A1 (en) 1990-12-20 1992-06-21 Daniel Shichman Fascia clip
US5129882A (en) 1990-12-27 1992-07-14 Novoste Corporation Wound clotting device and method of using same
US5419765A (en) 1990-12-27 1995-05-30 Novoste Corporation Wound treating device and method for treating wounds
US5320629B1 (en) 1991-01-07 2000-05-02 Advanced Surgical Inc Device and method for applying suture
US5129912B2 (en) 1991-01-07 2000-01-11 Urohealth Systems Inc Device and method for applying suture
US5259846A (en) 1991-01-07 1993-11-09 United States Surgical Corporation Loop threaded combined surgical needle-suture device
US5211650A (en) 1991-01-07 1993-05-18 Laparomed Corporation Dual function suturing device and method
US5250058A (en) 1991-01-17 1993-10-05 Ethicon, Inc. Absorbable anastomosic fastener means
DK166600B1 (en) 1991-01-17 1993-06-21 Therkel Bisgaard TOOL USE TOUCH BY SUTURING IN DEEP OPERATING OPENINGS OR BODY SPACES
US5131379A (en) 1991-01-29 1992-07-21 Sewell Jr Frank K Device and method for inserting a cannula into a duct
US5108420A (en) * 1991-02-01 1992-04-28 Temple University Aperture occlusion device
CA2060040A1 (en) 1991-02-08 1992-08-10 Miguel A. Velez Surgical staple and endoscopic stapler
US5470010A (en) 1991-04-04 1995-11-28 Ethicon, Inc. Multiple fire endoscopic stapling mechanism
US5246156A (en) 1991-09-12 1993-09-21 Ethicon, Inc. Multiple fire endoscopic stapling mechanism
US5171249A (en) 1991-04-04 1992-12-15 Ethicon, Inc. Endoscopic multiple ligating clip applier
US5192287A (en) * 1991-04-05 1993-03-09 American Cyanamid Company Suture knot tying device
US5203864A (en) 1991-04-05 1993-04-20 Phillips Edward H Surgical fastener system
CA2202800A1 (en) 1991-04-11 1992-10-12 Alec A. Piplani Endovascular graft having bifurcation and apparatus and method for deploying the same
CA2065205C (en) 1991-04-11 2002-12-03 David T. Green Reduced mass absorbable surgical fastener and retainer
US5217470A (en) 1991-04-29 1993-06-08 Weston Peter V Apparatuses and methods for formation and use of a slipknot as a surgical suture knot
US5147373A (en) 1991-04-29 1992-09-15 Ferzli George S Laparoscopic instrument
US5295993A (en) 1991-04-30 1994-03-22 United States Surgical Corporation Safety trocar
AR244071A1 (en) 1991-09-05 1993-10-29 Groiso Jorge Abel An elastic staple for osteosynthesis and a tool for placing it.
US5192602A (en) 1991-05-14 1993-03-09 Spencer Victor V Louvered filter and paint arrestor
US5217471A (en) 1991-05-30 1993-06-08 Burkhart Stephen S Endoscopic suture knotting instrument
US5243857A (en) 1991-06-14 1993-09-14 Molex Incorporated Fixture for testing electrical terminations
US5160339A (en) 1991-06-18 1992-11-03 Ethicon, Inc. Endoscopic suture clip
US5144961A (en) 1991-07-11 1992-09-08 Ethicon, Inc. Endoscopic ligating device
US5217485A (en) 1991-07-12 1993-06-08 United States Surgical Corporation Polypropylene monofilament suture and process for its manufacture
US5109780A (en) 1991-07-15 1992-05-05 Slouf James W Embroidery tool
US5433700A (en) 1992-12-03 1995-07-18 Stanford Surgical Technologies, Inc. Method for intraluminally inducing cardioplegic arrest and catheter for use therein
US5452733A (en) 1993-02-22 1995-09-26 Stanford Surgical Technologies, Inc. Methods for performing thoracoscopic coronary artery bypass
US5458574A (en) 1994-03-16 1995-10-17 Heartport, Inc. System for performing a cardiac procedure
US5236435A (en) 1991-07-22 1993-08-17 Sewell Jr Frank Laparoscopic surgical staple system
US5234443A (en) 1991-07-26 1993-08-10 The Regents Of The University Of California Endoscopic knot tying apparatus and methods
US5167634A (en) 1991-08-22 1992-12-01 Datascope Investment Corp. Peelable sheath with hub connector
GR920100358A (en) 1991-08-23 1993-06-07 Ethicon Inc Surgical anastomosis stapling instrument.
US5219358A (en) 1991-08-29 1993-06-15 Ethicon, Inc. Shape memory effect surgical needles
CA2078530A1 (en) 1991-09-23 1993-03-24 Jay Erlebacher Percutaneous arterial puncture seal device and insertion tool therefore
US5281422A (en) 1991-09-24 1994-01-25 Purdue Research Foundation Graft for promoting autogenous tissue growth
WO1993006878A1 (en) 1991-10-11 1993-04-15 Boston Scientific Corporation Catheter introducer sheath assembly
US5497933A (en) 1991-10-18 1996-03-12 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
US5289963A (en) 1991-10-18 1994-03-01 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
US5290310A (en) 1991-10-30 1994-03-01 Howmedica, Inc. Hemostatic implant introducer
US5282827A (en) 1991-11-08 1994-02-01 Kensey Nash Corporation Hemostatic puncture closure system and method of use
US5676689A (en) 1991-11-08 1997-10-14 Kensey Nash Corporation Hemostatic puncture closure system including vessel location device and method of use
US5222974A (en) 1991-11-08 1993-06-29 Kensey Nash Corporation Hemostatic puncture closure system and method of use
US5411520A (en) 1991-11-08 1995-05-02 Kensey Nash Corporation Hemostatic vessel puncture closure system utilizing a plug located within the puncture tract spaced from the vessel, and method of use
DE4137218C1 (en) 1991-11-13 1993-02-11 Heidmueller, Harald, 5000 Koeln, De
US5201744A (en) 1991-12-05 1993-04-13 Jones Mark W Method and device for suturing using a rod with a needle holder
US5395349A (en) 1991-12-13 1995-03-07 Endovascular Technologies, Inc. Dual valve reinforced sheath and method
US5176648A (en) 1991-12-13 1993-01-05 Unisurge, Inc. Introducer assembly and instrument for use therewith
US6056768A (en) 1992-01-07 2000-05-02 Cates; Christopher U. Blood vessel sealing system
DE4200255A1 (en) 1992-01-08 1993-07-15 Sueddeutsche Feinmechanik SPLIT CANNULA AND METHOD FOR PRODUCING SUCH A
US5433721A (en) 1992-01-17 1995-07-18 Ethicon, Inc. Endoscopic instrument having a torsionally stiff drive shaft for applying fasteners to tissue
IL100721A (en) 1992-01-21 1996-12-05 Milo Simcha Punch for opening passages between two compartments
ES2296320T3 (en) 1992-01-21 2008-04-16 Regents Of The University Of Minnesota DEVICE FOR THE OCLUSION OF A DEFECT IN AN ANATOMICAL TABIQUE.
US5271543A (en) 1992-02-07 1993-12-21 Ethicon, Inc. Surgical anastomosis stapling instrument with flexible support shaft and anvil adjusting mechanism
US5237996A (en) 1992-02-11 1993-08-24 Waldman Lewis K Endocardial electrical mapping catheter
DK0627911T3 (en) 1992-02-28 2000-11-20 Univ Texas Photopolymerizable biodegradable hydrogels as tissue contact materials and controlled release carriers
US5171251A (en) 1992-03-02 1992-12-15 Ethicon, Inc. Surgical clip having hole therein and method of anchoring suture
US5178629A (en) 1992-03-03 1993-01-12 Ethicon, Inc. Method of forming a suture knot
US6059825A (en) 1992-03-05 2000-05-09 Angiodynamics, Inc. Clot filter
CA2090980C (en) 1992-03-06 2004-11-30 David Stefanchik Ligating clip applier
DE4303374A1 (en) 1992-03-12 1993-09-23 Wolf Gmbh Richard
US5318578A (en) 1992-03-17 1994-06-07 Harrith M. Hasson Apparatus for delivering a suture into a body cavity and method of using the apparatus
US5217024A (en) 1992-03-27 1993-06-08 Dorsey Denis P Tissue sampling device with visual and tactile indicator
US5411481A (en) 1992-04-08 1995-05-02 American Cyanamid Co. Surgical purse string suturing instrument and method
WO1993020768A1 (en) 1992-04-13 1993-10-28 Ep Technologies, Inc. Steerable microwave antenna systems for cardiac ablation
US5236440A (en) 1992-04-14 1993-08-17 American Cyanamid Company Surgical fastener
US6063085A (en) 1992-04-23 2000-05-16 Scimed Life Systems, Inc. Apparatus and method for sealing vascular punctures
US5368601A (en) 1992-04-30 1994-11-29 Lasersurge, Inc. Trocar wound closure device
US5540712A (en) 1992-05-01 1996-07-30 Nitinol Medical Technologies, Inc. Stent and method and apparatus for forming and delivering the same
US5290284A (en) 1992-05-01 1994-03-01 Adair Edwin Lloyd Laparoscopic surgical ligation and electrosurgical coagulation and cutting device
US5336231A (en) 1992-05-01 1994-08-09 Adair Edwin Lloyd Parallel channel fixation, repair and ligation suture device
US5250054A (en) 1992-05-01 1993-10-05 Li Medical Technologies, Inc. Intracorporeal knot tying apparatus and method
US5242457A (en) 1992-05-08 1993-09-07 Ethicon, Inc. Surgical instrument and staples for applying purse string sutures
DE4215449C1 (en) 1992-05-11 1993-09-02 Ethicon Gmbh & Co Kg, 2000 Norderstedt, De
US5766246A (en) 1992-05-20 1998-06-16 C. R. Bard, Inc. Implantable prosthesis and method and apparatus for loading and delivering an implantable prothesis
US5192288A (en) 1992-05-26 1993-03-09 Origin Medsystems, Inc. Surgical clip applier
US5269792A (en) 1992-05-26 1993-12-14 Origin Medsystems, Inc. Surgical clip
US5431667A (en) 1992-05-26 1995-07-11 Origin Medsystems, Inc. Gas-sealed instruments for use in laparoscopic surgery
US5250053A (en) 1992-05-29 1993-10-05 Linvatec Corporation Suture shuttle device
US5258003A (en) 1992-06-01 1993-11-02 Conmed Corporation Method and apparatus for induction of pneumoperitoneum
JPH0647050A (en) 1992-06-04 1994-02-22 Olympus Optical Co Ltd Tissue suture and ligature device
US5797931A (en) 1992-06-04 1998-08-25 Olympus Optical Co., Ltd. Tissue-fixing surgical instrument, tissue-fixing device, and method of fixing tissues
US5281236A (en) 1992-06-23 1994-01-25 Boston Scientific Corporation Method and device for intracorporeal knot tying
US5254126A (en) 1992-06-24 1993-10-19 Ethicon, Inc. Endoscopic suture punch
CA2098896C (en) 1992-06-30 2005-03-29 H. Jonathan Tovey Specimen retrieval pouch and method for use
US5242459A (en) 1992-07-10 1993-09-07 Laparomed Corporation Device and method for applying a ligating loop
US5290243A (en) 1992-07-16 1994-03-01 Technalytics, Inc. Trocar system
US5413571A (en) 1992-07-16 1995-05-09 Sherwood Medical Company Device for sealing hemostatic incisions
US5403330A (en) * 1992-07-17 1995-04-04 Tuason; Leo B. Suture knot pusher
US5292332A (en) 1992-07-27 1994-03-08 Lee Benjamin I Methods and device for percutanceous sealing of arterial puncture sites
US5443481A (en) 1992-07-27 1995-08-22 Lee; Benjamin I. Methods and device for percutaneous sealing of arterial puncture sites
US5334199A (en) 1992-08-17 1994-08-02 Inbae Yoon Ligating instrument and methods of ligating tissue in endoscopic operative procedures
US5254113A (en) 1992-08-31 1993-10-19 Wilk Peter J Anastomosis method
US6048351A (en) 1992-09-04 2000-04-11 Scimed Life Systems, Inc. Transvaginal suturing system
US5713910A (en) 1992-09-04 1998-02-03 Laurus Medical Corporation Needle guidance system for endoscopic suture device
US5540704A (en) 1992-09-04 1996-07-30 Laurus Medical Corporation Endoscopic suture system
US5364408A (en) 1992-09-04 1994-11-15 Laurus Medical Corporation Endoscopic suture system
GB2270725B (en) 1992-09-07 1995-08-02 Bespak Plc Connecting apparatus for medical conduits
US5387227A (en) 1992-09-10 1995-02-07 Grice; O. Drew Method for use of a laparo-suture needle
US5342369A (en) 1992-09-11 1994-08-30 The Board Of Regents Of The University Of Washington System for repair of bankart lesions
US5624446A (en) 1992-09-11 1997-04-29 University Of Washington System for repair of capsulo-labral separations
US5284485A (en) 1992-09-16 1994-02-08 Ethicon, Inc. Endoscopic knotting device
US5354312A (en) 1992-09-18 1994-10-11 Ethicon, Inc. Endoscopic anvil grasping instrument
US5330491A (en) 1992-09-18 1994-07-19 Ethicon, Inc. Endoscopic suturing device
US5234445A (en) 1992-09-18 1993-08-10 Ethicon, Inc. Endoscopic suturing device
CA2106127A1 (en) 1992-09-23 1994-03-24 Peter W.J. Hinchliffe Instrument for closing trocar puncture wounds
US5281237A (en) 1992-09-25 1994-01-25 Gimpelson Richard J Surgical stitching device and method of use
US5312423A (en) 1992-10-01 1994-05-17 Advanced Surgical Intervention, Inc. Apparatus and method for laparaoscopic ligation
US5306254A (en) 1992-10-01 1994-04-26 Kensey Nash Corporation Vessel position locating device and method of use
US5292327A (en) 1992-10-08 1994-03-08 Dodd Joseph T Surgical knot pusher
US5300078A (en) 1992-10-09 1994-04-05 Laparomed Corporation Device and method for applying large-diameter ligating loop
US5489288A (en) 1992-10-09 1996-02-06 Advanced Surgical, Inc. Device and method for applying large-diameter ligating loop
US5383905A (en) * 1992-10-09 1995-01-24 United States Surgical Corporation Suture loop locking device
US5304184A (en) 1992-10-19 1994-04-19 Indiana University Foundation Apparatus and method for positive closure of an internal tissue membrane opening
DE4235506A1 (en) 1992-10-21 1994-04-28 Bavaria Med Tech Drug injection catheter
US5676974A (en) 1992-10-23 1997-10-14 Santiago H. Valdes Pharmaceutical compositions containing giroxina and phospholipase A2 and methods of increasing a patient's CD4 count using the pharmaceutical compositions
US5250033A (en) 1992-10-28 1993-10-05 Interventional Thermodynamics, Inc. Peel-away introducer sheath having proximal fitting
US5304185A (en) 1992-11-04 1994-04-19 Unisurge, Inc. Needle holder
US5336230A (en) 1992-11-04 1994-08-09 Charles S. Taylor Endoscopic suture tying method
FR2700464B1 (en) 1992-11-13 1995-04-14 Maurice Bertholet Connecting piece for bone elements.
CZ281454B6 (en) 1992-11-23 1996-10-16 Milan Mudr. Csc. Krajíček Aid for non-surgical closing of a hole in a vessel wall
US5584842A (en) 1992-12-02 1996-12-17 Intramed Laboratories, Inc. Valvulotome and method of using
US6036699A (en) 1992-12-10 2000-03-14 Perclose, Inc. Device and method for suturing tissue
US20020095164A1 (en) 1997-06-26 2002-07-18 Andreas Bernard H. Device and method for suturing tissue
US6355050B1 (en) 1992-12-10 2002-03-12 Abbott Laboratories Device and method for suturing tissue
US5417699A (en) 1992-12-10 1995-05-23 Perclose Incorporated Device and method for the percutaneous suturing of a vascular puncture site
US5334216A (en) 1992-12-10 1994-08-02 Howmedica Inc. Hemostatic plug
US5480407A (en) 1992-12-17 1996-01-02 Wan; Shaw P. Suturing instrument with hemorrhaging control
EP0604789A1 (en) 1992-12-31 1994-07-06 K. Widmann Ag Surgical clamping element for making a purse string
US5292309A (en) 1993-01-22 1994-03-08 Schneider (Usa) Inc. Surgical depth measuring instrument and method
US5336229A (en) 1993-02-09 1994-08-09 Laparomed Corporation Dual ligating and dividing apparatus
US5304204A (en) 1993-02-09 1994-04-19 Ethicon, Inc. Receiverless surgical fasteners
US5799661A (en) 1993-02-22 1998-09-01 Heartport, Inc. Devices and methods for port-access multivessel coronary artery bypass surgery
US5728151A (en) 1993-02-22 1998-03-17 Heartport, Inc. Intercostal access devices for less-invasive cardiovascular surgery
US5972030A (en) 1993-02-22 1999-10-26 Heartport, Inc. Less-invasive devices and methods for treatment of cardiac valves
US5425705A (en) 1993-02-22 1995-06-20 Stanford Surgical Technologies, Inc. Thoracoscopic devices and methods for arresting the heart
US5403331A (en) * 1993-03-12 1995-04-04 United States Surgical Corporation Looped suture ligating device containing a heat-shrinkable element
US5320639A (en) 1993-03-12 1994-06-14 Meadox Medicals, Inc. Vascular plug delivery system
US5374275A (en) 1993-03-25 1994-12-20 Synvasive Technology, Inc. Surgical suturing device and method of use
US5397326A (en) 1993-04-15 1995-03-14 Mangum; William K. Knot pusher for videoendoscopic surgery
US5456400A (en) 1993-04-22 1995-10-10 United States Surgical Corporation Apparatus and clip for fastening body tissue
US5843167A (en) 1993-04-22 1998-12-01 C. R. Bard, Inc. Method and apparatus for recapture of hooked endoprosthesis
FR2704132B1 (en) * 1993-04-23 1995-07-13 Ethnor System for ligature and / or suture for endoscopic surgery.
US5335680A (en) 1993-04-26 1994-08-09 Moore Pamela K Hair clip
US5613975A (en) * 1993-04-28 1997-03-25 Christy; William J. Endoscopic suturing device and method
US5447265A (en) 1993-04-30 1995-09-05 Minnesota Mining And Manufacturing Company Laparoscopic surgical instrument with a mechanism for preventing its entry into the abdominal cavity once it is depleted and removed from the abdominal cavity
US5352229A (en) 1993-05-12 1994-10-04 Marlowe Goble E Arbor press staple and washer and method for its use
US5464426A (en) 1993-05-14 1995-11-07 Bonutti; Peter M. Method of closing discontinuity in tissue
US5385569A (en) 1993-05-21 1995-01-31 Surgical Safety Products, Inc. Surgical suturing accessory
US5383896A (en) 1993-05-25 1995-01-24 Gershony; Gary Vascular sealing device
US5391176A (en) 1993-06-02 1995-02-21 General Surgical Innovations, Inc. Surgical instrument for tying a knot in a length of suture at a remote location
US5527321A (en) 1993-07-14 1996-06-18 United States Surgical Corporation Instrument for closing trocar puncture wounds
US5454820A (en) 1993-07-14 1995-10-03 Ethicon, Inc. Method of tying knots using a tube knot applicator
US5478354A (en) 1993-07-14 1995-12-26 United States Surgical Corporation Wound closing apparatus and method
US5486195A (en) 1993-07-26 1996-01-23 Myers; Gene Method and apparatus for arteriotomy closure
US5569269A (en) 1993-07-26 1996-10-29 Innovasive Devices, Inc. Surgical grasping and suturing device and method
US5507755A (en) 1993-08-03 1996-04-16 Origin Medsystems, Inc. Apparatus and method for closing puncture wounds
US5391182A (en) 1993-08-03 1995-02-21 Origin Medsystems, Inc. Apparatus and method for closing puncture wounds
US5462561A (en) * 1993-08-05 1995-10-31 Voda; Jan K. Suture device
US5830125A (en) 1993-08-12 1998-11-03 Scribner-Browne Medical Design Incorporated Catheter introducer with suture capability
US5431639A (en) 1993-08-12 1995-07-11 Boston Scientific Corporation Treating wounds caused by medical procedures
US5507758A (en) 1993-08-25 1996-04-16 Inlet Medical, Inc. Insertable suture grasping probe guide, and methodology for using same
FR2710254B1 (en) 1993-09-21 1995-10-27 Mai Christian Multi-branch osteosynthesis clip with self-retaining dynamic compression.
US5591206A (en) 1993-09-30 1997-01-07 Moufarr+E,Gra E+Ee Ge; Richard Method and device for closing wounds
US5569271A (en) 1993-10-04 1996-10-29 Hoel; Steven B. Surgical instrument for suturing
US5722981A (en) 1993-10-08 1998-03-03 Tahoe Surgical Instruments Double needle ligature device
US5462560A (en) 1993-10-08 1995-10-31 Tahoe Surgical Instruments Double needle ligature device
US5560532A (en) 1993-10-08 1996-10-01 United States Surgical Corporation Apparatus and method for applying surgical staples to body tissue
US5607436A (en) 1993-10-08 1997-03-04 United States Surgical Corporation Apparatus for applying surgical clips
US5470338A (en) 1993-10-08 1995-11-28 United States Surgical Corporation Instrument for closing trocar puncture wounds
US5725554A (en) 1993-10-08 1998-03-10 Richard-Allan Medical Industries, Inc. Surgical staple and stapler
WO1995010296A1 (en) 1993-10-12 1995-04-20 Glycomed Incorporated A library of glyco-peptides useful for identification of cell adhesion inhibitors
US5423857A (en) 1993-11-02 1995-06-13 Ethicon, Inc. Three piece surgical staple
US5728143A (en) * 1995-08-15 1998-03-17 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US5536267A (en) 1993-11-08 1996-07-16 Zomed International Multiple electrode ablation apparatus
US5527322A (en) 1993-11-08 1996-06-18 Perclose, Inc. Device and method for suturing of internal puncture sites
US6569159B1 (en) * 1993-11-08 2003-05-27 Rita Medical Systems, Inc. Cell necrosis apparatus
US5397325A (en) 1993-11-09 1995-03-14 Badiaco, Inc. Laparoscopic suturing device
US5609597A (en) * 1993-12-09 1997-03-11 Lehrer; Theodor Apparatus and method of extracorporeally applying and locking laparoscopic suture and loop ligatures
US5536273A (en) 1993-12-09 1996-07-16 Lehrer; Theodor Apparatus and method of extracorporeally applying and locking laparoscopic suture and loop ligatures
DK0732954T3 (en) 1993-12-10 1999-01-11 Schneider Usa Inc Guiding catheter
US5545180A (en) 1993-12-13 1996-08-13 Ethicon, Inc. Umbrella-shaped suture anchor device with actuating ring member
WO1995016407A1 (en) 1993-12-13 1995-06-22 Brigham And Women's Hospital Aortic valve supporting device
US5376096A (en) 1993-12-17 1994-12-27 Vance Products Inc. Medical instrument for driving a suture needle
US5492119A (en) * 1993-12-22 1996-02-20 Heart Rhythm Technologies, Inc. Catheter tip stabilizing apparatus
US5741280A (en) 1994-01-18 1998-04-21 Coral Medical Knot tying method and apparatus
US5549618A (en) 1994-01-18 1996-08-27 Coral Medical Knot tying method and apparatus
US5728122A (en) 1994-01-18 1998-03-17 Datascope Investment Corp. Guide wire with releaseable barb anchor
US5443477A (en) 1994-02-10 1995-08-22 Stentco, Inc. Apparatus and method for deployment of radially expandable stents by a mechanical linkage
US5431666A (en) 1994-02-24 1995-07-11 Lasersurge, Inc. Surgical suture instrument
CA2141911C (en) 1994-02-24 2002-04-23 Jude S. Sauer Surgical crimping device and method of use
US5520702A (en) 1994-02-24 1996-05-28 United States Surgical Corporation Method and apparatus for applying a cinch member to the ends of a suture
US5453090A (en) 1994-03-01 1995-09-26 Cordis Corporation Method of stent delivery through an elongate softenable sheath
US5404621A (en) 1994-03-10 1995-04-11 Heinke; Richard M. Closure for plastic bags
DE4408108A1 (en) 1994-03-10 1995-09-14 Bavaria Med Tech Catheter for injecting a fluid or a drug
US6117157A (en) 1994-03-18 2000-09-12 Cook Incorporated Helical embolization coil
US5364407A (en) 1994-03-21 1994-11-15 Poll Wayne L Laparoscopic suturing system
US5716369A (en) 1994-03-25 1998-02-10 Riza; Erol D. Apparatus facilitating suturing in laparoscopic surgery
US5562688A (en) 1994-03-25 1996-10-08 Riza; Erol D. Apparatus facilitating suturing in laparoscopic surgery
JP3526609B2 (en) 1994-03-31 2004-05-17 テルモ株式会社 Suture instrument
WO1995026683A1 (en) 1994-03-31 1995-10-12 Boston Scientific Corporation Vascular plug with vessel locator
US5695524A (en) 1994-04-05 1997-12-09 Tracor Aerospace, Inc. Constant width, adjustable grip, staple apparatus and method
US5476470A (en) 1994-04-15 1995-12-19 Fitzgibbons, Jr.; Robert J. Trocar site suturing device
US5634942A (en) 1994-04-21 1997-06-03 B. Braun Celsa Assembly comprising a blood filter for temporary or definitive use and a device for implanting it
US5416584A (en) 1994-04-25 1995-05-16 Honeywell Inc. Sinusoidal noise injection into the dither of a ring laser gyroscope
US5545178A (en) 1994-04-29 1996-08-13 Kensey Nash Corporation System for closing a percutaneous puncture formed by a trocar to prevent tissue at the puncture from herniating
US5425740A (en) * 1994-05-17 1995-06-20 Hutchinson, Jr.; William B. Endoscopic hernia repair clip and method
US5540701A (en) 1994-05-20 1996-07-30 Hugh Sharkey Passive fixation anastomosis method and device
US5607435A (en) 1994-05-23 1997-03-04 Memory Medical Systems, Inc. Instrument for endoscopic-type procedures
US5478309A (en) 1994-05-27 1995-12-26 William P. Sweezer, Jr. Catheter system and method for providing cardiopulmonary bypass pump support during heart surgery
WO1995032671A1 (en) 1994-06-01 1995-12-07 Perclose, Inc. Method and device for providing vascular hemostasis
WO1995032669A1 (en) 1994-06-01 1995-12-07 Perclose, Inc. Apparatus and method for advancing surgical knots
US5498201A (en) 1994-06-06 1996-03-12 Volk Enterprises, Inc. Retainer for poultry hocks
US5732872A (en) 1994-06-17 1998-03-31 Heartport, Inc. Surgical stapling instrument
US6009877A (en) * 1994-06-24 2000-01-04 Edwards; Stuart D. Method for treating a sphincter
US6056744A (en) * 1994-06-24 2000-05-02 Conway Stuart Medical, Inc. Sphincter treatment apparatus
US5725552A (en) 1994-07-08 1998-03-10 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US5520655A (en) 1994-07-15 1996-05-28 Cordis Corporation Catheter hemostasis valve
US5573540A (en) 1994-07-18 1996-11-12 Yoon; Inbae Apparatus and method for suturing an opening in anatomical tissue
US5509902A (en) 1994-07-25 1996-04-23 Raulerson; J. Daniel Subcutaneous catheter stabilizing devices and methods for securing a catheter using the same
US5544802A (en) 1994-07-27 1996-08-13 Crainich; Lawrence Surgical staple and stapler device therefor
US5531700A (en) 1994-07-29 1996-07-02 Cardiovascular Imaging Systems, Inc. Convertible tip catheters and sheaths
US5545171A (en) 1994-09-22 1996-08-13 Vidamed, Inc. Anastomosis catheter
US5562684A (en) 1994-10-11 1996-10-08 Ethicon, Inc. Surgical knot pusher device and improved method of forming knots
US5496332A (en) 1994-10-20 1996-03-05 Cordis Corporation Wound closure apparatus and method for its use
US5554162A (en) 1994-12-02 1996-09-10 Delange; Gregory S. Method and device for surgically joining luminal structures
US6171329B1 (en) 1994-12-19 2001-01-09 Gore Enterprise Holdings, Inc. Self-expanding defect closure device and method of making and using
US5879366A (en) 1996-12-20 1999-03-09 W.L. Gore & Associates, Inc. Self-expanding defect closure device and method of making and using
US5620452A (en) 1994-12-22 1997-04-15 Yoon; Inbae Surgical clip with ductile tissue penetrating members
US5643295A (en) 1994-12-29 1997-07-01 Yoon; Inbae Methods and apparatus for suturing tissue
US5720755A (en) 1995-01-18 1998-02-24 Dakov; Pepi Tubular suturing device and methods of use
JP3798838B2 (en) * 1995-01-20 2006-07-19 オリンパス株式会社 Ligation device
US5964773A (en) 1995-02-15 1999-10-12 Automated Medical Products, Inc. Laparascopic suturing device and suture needles
US5695504A (en) * 1995-02-24 1997-12-09 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US5797933A (en) 1996-07-16 1998-08-25 Heartport, Inc. Coronary shunt and method of use
US5904697A (en) 1995-02-24 1999-05-18 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US5695505A (en) 1995-03-09 1997-12-09 Yoon; Inbae Multifunctional spring clips and cartridges and applicators therefor
US5868740A (en) * 1995-03-24 1999-02-09 Board Of Regents-Univ Of Nebraska Method for volumetric tissue ablation
US5562686A (en) 1995-04-19 1996-10-08 United States Surgical Corporation Apparaus and method for suturing body tissue
US5591179A (en) 1995-04-19 1997-01-07 Applied Medical Resources Corporation Anastomosis suturing device and method
US5575771A (en) 1995-04-24 1996-11-19 Walinsky; Paul Balloon catheter with external guidewire
FR2733413B1 (en) 1995-04-27 1997-10-17 Jbs Sa CERVICAL CAGE DEVICE FOR PERFORMING INTERSOMATIC ARTHRODESIS
US5634911A (en) 1995-05-19 1997-06-03 General Surgical Innovations, Inc. Screw-type skin seal with inflatable membrane
US5755727A (en) 1995-06-02 1998-05-26 Cardiologics L.L.C. Method device for locating and sealing a blood vessel
US5593421A (en) 1995-06-06 1997-01-14 Bauer; William Suture element delivery device and method
US6132438A (en) * 1995-06-07 2000-10-17 Ep Technologies, Inc. Devices for installing stasis reducing means in body tissue
US5645565A (en) 1995-06-13 1997-07-08 Ethicon Endo-Surgery, Inc. Surgical plug
US5902311A (en) 1995-06-15 1999-05-11 Perclose, Inc. Low profile intraluminal suturing device and method
US5814052A (en) 1995-06-29 1998-09-29 Nakao; Naomi L. Surgical cauterization snare with ligating suture
US6013084A (en) 1995-06-30 2000-01-11 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils (II)
USD372310S (en) 1995-06-30 1996-07-30 Pilling Weck Incorporated Surgical punch
US5700273A (en) 1995-07-14 1997-12-23 C.R. Bard, Inc. Wound closure apparatus and method
US5846253A (en) 1995-07-14 1998-12-08 C. R. Bard, Inc. Wound closure apparatus and method
US5669935A (en) 1995-07-28 1997-09-23 Ethicon, Inc. One-way suture retaining device for braided sutures
US5810846A (en) 1995-08-03 1998-09-22 United States Surgical Corporation Vascular hole closure
US5951547A (en) 1995-08-15 1999-09-14 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US5980517A (en) 1995-08-15 1999-11-09 Rita Medical Systems, Inc. Cell necrosis apparatus
US5672174A (en) 1995-08-15 1997-09-30 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US6117144A (en) 1995-08-24 2000-09-12 Sutura, Inc. Suturing device and method for sealing an opening in a blood vessel or other biological structure
US6562052B2 (en) 1995-08-24 2003-05-13 Sutura, Inc. Suturing device and method
US5860990A (en) 1995-08-24 1999-01-19 Nr Medical, Inc. Method and apparatus for suturing
US5683405A (en) 1995-08-25 1997-11-04 Research Medical Inc. Vascular occluder
US5645566A (en) 1995-09-15 1997-07-08 Sub Q Inc. Apparatus and method for percutaneous sealing of blood vessel punctures
US6071300A (en) 1995-09-15 2000-06-06 Sub-Q Inc. Apparatus and method for percutaneous sealing of blood vessel punctures
US5704943A (en) * 1995-09-25 1998-01-06 Yoon; Inbae Ligating instrument with multiple loop ligature supply and methods therefor
US5700270A (en) 1995-10-20 1997-12-23 United States Surgical Corporation Surgical clip applier
US5707379A (en) 1995-10-20 1998-01-13 Coral Medical Method and apparatus for intracorporeal suturing
DE69612507T2 (en) 1995-10-30 2001-08-09 Childrens Medical Center SELF-CENTERING, SHIELD-LIKE DEVICE FOR CLOSING A SEPTAL DEFECT
US5993468A (en) 1995-10-31 1999-11-30 Oticon A/S Method and anastomotic instrument for use when performing an end-to-side anastomosis
US5720574A (en) 1995-11-02 1998-02-24 Kristar Enterprises, Inc. Contaminant absorbing drainage trough apparatus
US5827298A (en) 1995-11-17 1998-10-27 Innovasive Devices, Inc. Surgical fastening system and method for using the same
US6004341A (en) 1996-12-05 1999-12-21 Loma Linda University Medical Center Vascular wound closure device
US6287322B1 (en) 1995-12-07 2001-09-11 Loma Linda University Medical Center Tissue opening locator and everter and method
US5792151A (en) 1996-01-24 1998-08-11 The Ohio State University Method and apparatus for ligating a blood vessel, tissue or other bodily duct
JP2001502605A (en) 1996-01-30 2001-02-27 メドトロニック,インコーポレーテッド Articles and methods for making a stent
USD383539S (en) 1996-02-01 1997-09-09 Ethicon Endo-Surgery, Inc. Handle for a surgical instrument
US5810776A (en) 1996-02-13 1998-09-22 Imagyn Medical, Inc. Method and apparatus for performing laparoscopy
US5769870A (en) 1996-02-20 1998-06-23 Cardiothoracic Systems, Inc. Perfusion device for maintaining blood flow in a vessel while isolating an anastomosis
US5693061A (en) 1996-02-23 1997-12-02 Pierce; Javin C. Knot puller instrument for use with surgical suture in tying surgical knots
US5782844A (en) 1996-03-05 1998-07-21 Inbae Yoon Suture spring device applicator
US5810851A (en) 1996-03-05 1998-09-22 Yoon; Inbae Suture spring device
JPH09259964A (en) 1996-03-22 1997-10-03 Kel Corp Face contact connector
US5853422A (en) 1996-03-22 1998-12-29 Scimed Life Systems, Inc. Apparatus and method for closing a septal defect
US5741276A (en) 1996-03-28 1998-04-21 Innovative Surgical Instruments Apparatus for facilitating the performance of surgical procedures such as the placement of sutures, ligatures and the like
US5871502A (en) 1996-04-08 1999-02-16 Ethicon, Inc. Process for manufacturing a polypropylene monofilament suture
US5728132A (en) 1996-04-08 1998-03-17 Tricardia, L.L.C. Self-sealing vascular access device
AR001590A1 (en) 1996-04-10 1997-11-26 Jorge Alberto Baccaro Abnormal vascular communications occluder device and applicator cartridge of said device
US6149660A (en) 1996-04-22 2000-11-21 Vnus Medical Technologies, Inc. Method and apparatus for delivery of an appliance in a vessel
US6117125A (en) 1996-05-02 2000-09-12 Cook Incorporated Method for predetermining uniform flow rate of a fluid from a tubular body and device therefrom
US5824010A (en) 1996-05-23 1998-10-20 Mcdonald; Garth R. Suture needle guide
US5855585A (en) 1996-06-11 1999-01-05 X-Site, L.L.C. Device and method for suturing blood vessels and the like
US6436109B1 (en) 1996-06-11 2002-08-20 X-Site, L.L.C. Device and method for suturing blood vessels and the like
US5690674A (en) 1996-07-02 1997-11-25 Cordis Corporation Wound closure with plug
US5728133A (en) 1996-07-09 1998-03-17 Cardiologics, L.L.C. Anchoring device and method for sealing percutaneous punctures in vessels
US7169158B2 (en) 1996-07-23 2007-01-30 Tyco Healthcare Group Lp Anastomosis instrument and method for performing same
US5833698A (en) 1996-07-23 1998-11-10 United States Surgical Corporation Anastomosis instrument and method
US5855312A (en) 1996-07-25 1999-01-05 Toledano; Haviv Flexible annular stapler for closed surgery of hollow organs
US5820631A (en) 1996-08-01 1998-10-13 Nr Medical, Inc. Device and method for suturing tissue adjacent to a blood vessel
US5902310A (en) 1996-08-12 1999-05-11 Ethicon Endo-Surgery, Inc. Apparatus and method for marking tissue
US6482224B1 (en) * 1996-08-22 2002-11-19 The Trustees Of Columbia University In The City Of New York Endovascular flexible stapling device
DE69725592T2 (en) 1996-08-23 2004-08-05 Cook Biotech, Inc., West Lafayette METHOD FOR OBTAINING A SUITABLE COLLAGEN-BASED MATRIX FROM SUBMUKOSA TISSUE
US6488692B1 (en) 1996-09-16 2002-12-03 Origin Medsystems, Inc. Access and cannulation device and method for rapidly placing same and for rapidly closing same in minimally invasive surgery
US5868763A (en) 1996-09-16 1999-02-09 Guidant Corporation Means and methods for performing an anastomosis
US6152936A (en) * 1996-09-23 2000-11-28 Esd Medical, Llc Surgical loop delivery device
US5766217A (en) * 1996-09-23 1998-06-16 Christy; William J. Surgical loop delivery device and method
US5755778A (en) 1996-10-16 1998-05-26 Nitinol Medical Technologies, Inc. Anastomosis device
GB2318295A (en) * 1996-10-17 1998-04-22 Malachy Gleeson Wire-guided surgical stapler for closure of a puncture site in a blood vessel
US5766183A (en) 1996-10-21 1998-06-16 Lasersurge, Inc. Vascular hole closure
CA2271056A1 (en) 1996-11-15 1998-05-22 Cook Incorporated Splittable sleeve, stent deployment device
US5759188A (en) 1996-11-27 1998-06-02 Yoon; Inbae Suturing instrument with rotatably mounted needle driver and catcher
US5957937A (en) 1996-11-27 1999-09-28 Yoon; Inbae Suturing instrument with spreadable needle holder mounted for arcuate movement
US5993466A (en) 1997-06-17 1999-11-30 Yoon; Inbae Suturing instrument with multiple rotatably mounted spreadable needle holders
US5766186A (en) 1996-12-03 1998-06-16 Simon Fraser University Suturing device
US5947999A (en) 1996-12-03 1999-09-07 Groiso; Jorge A. Surgical clip and method
US5749890A (en) 1996-12-03 1998-05-12 Shaknovich; Alexander Method and system for stent placement in ostial lesions
US5735873A (en) 1996-12-19 1998-04-07 Maclean; David S. Surgical tool handle
US5782861A (en) * 1996-12-23 1998-07-21 Sub Q Inc. Percutaneous hemostasis device
US5848714A (en) 1996-12-23 1998-12-15 Deknatel Technology Corporation Suture rack
US5868755A (en) 1997-01-16 1999-02-09 Atrion Medical Products, Inc. Sheath retractor mechanism and method
US5824111A (en) 1997-01-31 1998-10-20 Prosthetic Design, Inc. Method for fabricating a prosthetic limb socket
US5957938A (en) * 1997-02-05 1999-09-28 United States Surgical Corporation Tissue everting needle
US5861005A (en) 1997-02-11 1999-01-19 X-Site, L.L.C. Arterial stapling device
US6056770A (en) 1997-02-11 2000-05-02 Biointerventional Corporation Expansile device for use in blood vessels and tracts in the body and method
US6045570A (en) 1997-02-11 2000-04-04 Biointerventional Corporation Biological sealant mixture and system for use in percutaneous occlusion of puncture sites and tracts in the human body and method
US6056769A (en) 1997-02-11 2000-05-02 Biointerventional Corporation Expansile device for use in blood vessels and tracts in the body and tension application device for use therewith and method
US5951589A (en) 1997-02-11 1999-09-14 Biointerventional Corporation Expansile device for use in blood vessels and tracts in the body and tension application device for use therewith and method
US5782860A (en) 1997-02-11 1998-07-21 Biointerventional Corporation Closure device for percutaneous occlusion of puncture sites and tracts in the human body and method
US5759189A (en) 1997-02-25 1998-06-02 Smith & Nephew Inc. Knot pusher
US5752966A (en) 1997-03-07 1998-05-19 Chang; David W. Exovascular anastomotic device
US5876411A (en) 1997-03-11 1999-03-02 X-Site L.L.C. Device and method for locating and sealing a blood vessel
US5728109A (en) 1997-04-08 1998-03-17 Ethicon Endo-Surgery, Inc. Surgical knot and method for its formation
US5749898A (en) 1997-04-08 1998-05-12 Ethicon Endo-Surgery, Inc. Suture cartridge assembly for a surgical knot
US5871490A (en) 1997-04-08 1999-02-16 Ethicon Endo-Surgery, Inc. Suture cartridge assembly for a surgical knot
US5897564A (en) 1997-04-08 1999-04-27 Ethicon Endo-Surgery, Inc. Endoscopic instrument assembly for fastening tissue
US6038472A (en) 1997-04-29 2000-03-14 Medtronic, Inc. Implantable defibrillator and lead system
US5957936A (en) * 1997-05-01 1999-09-28 Inbae Yoon Instrument assemblies for performing anatomical tissue ligation
GB2325488A (en) 1997-05-16 1998-11-25 Joseph Michael Paul Criscuolo Retaining clip
US6896687B2 (en) 1997-05-19 2005-05-24 Pepi Dakov Connectors for hollow anatomical structures and methods of use
US6409739B1 (en) 1997-05-19 2002-06-25 Cardio Medical Solutions, Inc. Device and method for assisting end-to side anastomosis
US5845657A (en) 1997-05-29 1998-12-08 Carberry; Geoff Hair styling device
US5976158A (en) * 1997-06-02 1999-11-02 Boston Scientific Corporation Method of using a textured ligating band
US5810849A (en) 1997-06-09 1998-09-22 Cardiologics, L.L.C. Device and method for suturing blood vessels and the like
US6443158B1 (en) 1997-06-19 2002-09-03 Scimed Life Systems, Inc. Percutaneous coronary artery bypass through a venous vessel
US6001110A (en) 1997-06-20 1999-12-14 Boston Scientific Corporation Hemostatic clips
US6161263A (en) 1997-06-25 2000-12-19 Anderson; Paul Sock pair retention apparatus
EP0895753A1 (en) * 1997-07-31 1999-02-10 Academisch Ziekenhuis Utrecht Temporary vascular seal for anastomosis
WO1999008607A1 (en) 1997-08-05 1999-02-25 Boston Scientific Limited Detachable aneurysm neck bridge
JP2000014634A (en) 1998-07-02 2000-01-18 Olympus Optical Co Ltd Endoscope system
US6059719A (en) 1997-08-06 2000-05-09 Olympus Optical Co., Ltd. Endoscope system
US6024750A (en) 1997-08-14 2000-02-15 United States Surgical Ultrasonic curved blade
US6063114A (en) 1997-09-04 2000-05-16 Kensey Nash Corporation Connector system for vessels, ducts, lumens or hollow organs and methods of use
US6059800A (en) 1997-09-10 2000-05-09 Applied Medical Resources Corporation Suturing apparatus and method
US5954732A (en) 1997-09-10 1999-09-21 Hart; Charles C. Suturing apparatus and method
FR2768324B1 (en) 1997-09-12 1999-12-10 Jacques Seguin SURGICAL INSTRUMENT FOR PERCUTANEOUSLY FIXING TWO AREAS OF SOFT TISSUE, NORMALLY MUTUALLY REMOTE, TO ONE ANOTHER
US5858082A (en) 1997-09-15 1999-01-12 Cruz; Hector Gonzalo Self-interlocking reinforcement fibers
US6276704B1 (en) 1997-09-23 2001-08-21 Charles J. Suiter Adjustable wheelchair having a tilting and reclining seat
US6015815A (en) 1997-09-26 2000-01-18 Abbott Laboratories Tetrazole-containing rapamycin analogs with shortened half-lives
US6030364A (en) 1997-10-03 2000-02-29 Boston Scientific Corporation Apparatus and method for percutaneous placement of gastro-intestinal tubes
US5984949A (en) 1997-10-06 1999-11-16 Levin; John M. Tissue hooks and tools for applying same
US5984934A (en) 1997-10-10 1999-11-16 Applied Medical Resources Corporation Low-profile surgical clip
US6117148A (en) 1997-10-17 2000-09-12 Ravo; Biagio Intraluminal anastomotic device
US6139556A (en) 1997-10-29 2000-10-31 X-Site, L.L.C. Device and method for suturing blood vessels and the like
US5951518A (en) 1997-10-31 1999-09-14 Teleflex, Incorporated Introducing device with flared sheath end
US6171277B1 (en) 1997-12-01 2001-01-09 Cordis Webster, Inc. Bi-directional control handle for steerable catheter
US5906631A (en) 1997-12-05 1999-05-25 Surface Genesis, Inc. Method and device for sealing vascular puncture wounds
US6254642B1 (en) 1997-12-09 2001-07-03 Thomas V. Taylor Perorally insertable gastroesophageal anti-reflux valve prosthesis and tool for implantation thereof
US6036720A (en) 1997-12-15 2000-03-14 Target Therapeutics, Inc. Sheet metal aneurysm neck bridge
US6033427A (en) 1998-01-07 2000-03-07 Lee; Benjamin I. Method and device for percutaneous sealing of internal puncture sites
US5976161A (en) * 1998-01-07 1999-11-02 University Of New Mexico Tissue everting apparatus and method
US6120513A (en) 1998-01-09 2000-09-19 Bailey; Robert W. Laparoscopic surgery instrumentation and method of its use
US6193734B1 (en) 1998-01-23 2001-02-27 Heartport, Inc. System for performing vascular anastomoses
WO1999039643A1 (en) 1998-02-06 1999-08-12 Evans David K Method and apparatus for establishing anastomotic passageways
US6352543B1 (en) 2000-04-29 2002-03-05 Ventrica, Inc. Methods for forming anastomoses using magnetic force
US6280460B1 (en) 1998-02-13 2001-08-28 Heartport, Inc. Devices and methods for performing vascular anastomosis
JP4157183B2 (en) * 1998-02-17 2008-09-24 オリンパス株式会社 Endoscopic treatment tool
US5951576A (en) 1998-03-02 1999-09-14 Wakabayashi; Akio End-to-side vascular anastomosing stapling device
US6517498B1 (en) * 1998-03-03 2003-02-11 Senorx, Inc. Apparatus and method for tissue capture
US6042601A (en) 1998-03-18 2000-03-28 United States Surgical Corporation Apparatus for vascular hole closure
NO981277D0 (en) 1998-03-20 1998-03-20 Erik Fosse Method and apparatus for suture-free anastomosis
US5972009A (en) * 1998-04-07 1999-10-26 Boston Scientific Corporation Ligating band with rounded edges and method of use of same
JPH11299725A (en) 1998-04-21 1999-11-02 Olympus Optical Co Ltd Hood for endoscope
US5944728A (en) 1998-04-23 1999-08-31 Boston Scientific Corporation Surgical retrieval basket with the ability to capture and release material
US5997555A (en) 1998-05-01 1999-12-07 X-Site, L.L.C. Device and method for suturing blood vessels
US5980539A (en) 1998-05-06 1999-11-09 X-Site L.L.C. Device and method for suturing blood vessels and the like
US6077279A (en) 1998-05-08 2000-06-20 X-Site L.L.C. Device and method employing adhesive for sealing blood vessels and the like
WO1999058081A2 (en) 1998-05-11 1999-11-18 Hovland Claire T Devices and methods for treating e.g. urinary stress incontinence
US7063711B1 (en) * 1998-05-29 2006-06-20 By-Pass, Inc. Vascular surgery
US6726704B1 (en) 1998-05-29 2004-04-27 By-Pass, Inc. Advanced closure device
US6613059B2 (en) 1999-03-01 2003-09-02 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US6599311B1 (en) 1998-06-05 2003-07-29 Broncus Technologies, Inc. Method and assembly for lung volume reduction
US5951590A (en) 1998-06-09 1999-09-14 Goldfarb; Michael A. Soft tissue suture anchor
US5941890A (en) 1998-06-26 1999-08-24 Ethicon Endo-Surgery, Inc. Implantable surgical marker
US6241746B1 (en) 1998-06-29 2001-06-05 Cordis Corporation Vascular filter convertible to a stent and method
US6048357A (en) 1998-07-09 2000-04-11 X-Site, L.L.C. Anchoring device and method for sealing punctures in vessels
US6228098B1 (en) 1998-07-10 2001-05-08 General Surgical Innovations, Inc. Apparatus and method for surgical fastening
US6048358A (en) 1998-07-13 2000-04-11 Barak; Shlomo Method and apparatus for hemostasis following arterial catheterization
IL141014A0 (en) 1998-07-22 2002-02-10 Angiolink Corp Vascular suction cannula, dilator and surgical stapler
US6334865B1 (en) 1998-08-04 2002-01-01 Fusion Medical Technologies, Inc. Percutaneous tissue track closure assembly and method
US6206913B1 (en) 1998-08-12 2001-03-27 Vascular Innovations, Inc. Method and system for attaching a graft to a blood vessel
US6703047B2 (en) * 2001-02-02 2004-03-09 Incept Llc Dehydrated hydrogel precursor-based, tissue adherent compositions and methods of use
US6605294B2 (en) * 1998-08-14 2003-08-12 Incept Llc Methods of using in situ hydration of hydrogel articles for sealing or augmentation of tissue or vessels
US7790192B2 (en) * 1998-08-14 2010-09-07 Accessclosure, Inc. Apparatus and methods for sealing a vascular puncture
US6198974B1 (en) 1998-08-14 2001-03-06 Cordis Webster, Inc. Bi-directional steerable catheter
US6397110B1 (en) * 1998-08-26 2002-05-28 Advanced Bionics Corporation Cochlear electrode system including detachable flexible positioner
DE19839188C2 (en) 1998-08-28 2003-08-21 Storz Endoskop Gmbh Schaffhaus endoscope
US6200329B1 (en) 1998-08-31 2001-03-13 Smith & Nephew, Inc. Suture collet
US6093194A (en) 1998-09-14 2000-07-25 Endocare, Inc. Insertion device for stents and methods for use
US6203553B1 (en) 1999-09-08 2001-03-20 United States Surgical Stapling apparatus and method for heart valve replacement
US6296657B1 (en) 1998-10-07 2001-10-02 Gregory G. Brucker Vascular sealing device and method
US6220248B1 (en) 1998-10-21 2001-04-24 Ethicon Endo-Surgery, Inc. Method for implanting a biopsy marker
WO2000024331A1 (en) 1998-10-23 2000-05-04 Sherwood Services Ag Endoscopic bipolar electrosurgical forceps
US6152144A (en) 1998-11-06 2000-11-28 Appriva Medical, Inc. Method and device for left atrial appendage occlusion
US6152937A (en) 1998-11-06 2000-11-28 St. Jude Medical Cardiovascular Group, Inc. Medical graft connector and methods of making and installing same
US6113612A (en) 1998-11-06 2000-09-05 St. Jude Medical Cardiovascular Group, Inc. Medical anastomosis apparatus
US6102271A (en) 1998-11-23 2000-08-15 Ethicon Endo-Surgery, Inc. Circular stapler for hemorrhoidal surgery
US6080183A (en) 1998-11-24 2000-06-27 Embol-X, Inc. Sutureless vessel plug and methods of use
US6210407B1 (en) 1998-12-03 2001-04-03 Cordis Webster, Inc. Bi-directional electrode catheter
US20020188275A1 (en) 1998-12-09 2002-12-12 Mcguckin James F. Multi Directional infusion needle
US6126675A (en) 1999-01-11 2000-10-03 Ethicon, Inc. Bioabsorbable device and method for sealing vascular punctures
US6221084B1 (en) * 1999-01-15 2001-04-24 Pare Surgical, Inc. Knot tying apparatus having a notched thread cover and method for using same
US6048354A (en) 1999-02-01 2000-04-11 Lawrence; Jeffrey M. Sliding knife and needle assembly for making a portal for endoscopic or arthroscopic surgery
US6904647B2 (en) 1999-02-10 2005-06-14 James H. Byers, Jr. Clamping devices
US6120524A (en) * 1999-02-16 2000-09-19 Taheri; Syde A. Device for closing an arterial puncture and method
US6132439A (en) 1999-02-17 2000-10-17 X-Site, L.L.C. Knot pusher
US6083242A (en) 1999-02-17 2000-07-04 Holobeam, Inc. Surgical staples with deformation zones of non-uniform cross section
US7842048B2 (en) * 2006-08-18 2010-11-30 Abbott Laboratories Articulating suture device and method
US7235087B2 (en) 1999-03-04 2007-06-26 Abbott Park Articulating suturing device and method
US6964668B2 (en) 1999-03-04 2005-11-15 Abbott Laboratories Articulating suturing device and method
US7001400B1 (en) 1999-03-04 2006-02-21 Abbott Laboratories Articulating suturing device and method
US6136010A (en) 1999-03-04 2000-10-24 Perclose, Inc. Articulating suturing device and method
WO2000055932A1 (en) 1999-03-15 2000-09-21 Bolder Technologies Corporation Tin-clad substrates for use as current collectors, batteries comprised thereof and methods for preparing same
CA2366703A1 (en) 1999-03-19 2000-09-28 By-Pass, Inc. Vascular surgery
US6569173B1 (en) 1999-12-14 2003-05-27 Integrated Vascular Interventional Technologies, L.C. Compression plate anastomosis apparatus
JP2000300571A (en) 1999-04-19 2000-10-31 Nissho Corp Closure plug for transcatheter operation
US6712836B1 (en) 1999-05-13 2004-03-30 St. Jude Medical Atg, Inc. Apparatus and methods for closing septal defects and occluding blood flow
AU5143000A (en) 1999-05-18 2000-12-05 Vascular Innovations, Inc. Implantable medical device such as an anastomosis device
US6699256B1 (en) 1999-06-04 2004-03-02 St. Jude Medical Atg, Inc. Medical grafting apparatus and methods
US6165204A (en) * 1999-06-11 2000-12-26 Scion International, Inc. Shaped suture clip, appliance and method therefor
USRE44297E1 (en) 1999-06-18 2013-06-11 Radi Medical Systems Ab Tool, a sealing device, a system and a method for closing a wound
US6511489B2 (en) 1999-08-03 2003-01-28 Frederic P. Field Surgical suturing instrument and method of use
JP3917332B2 (en) 1999-08-04 2007-05-23 ペンタックス株式会社 Endoscope operation wire connecting part
US6110184A (en) 1999-08-04 2000-08-29 Weadock; Kevin S. Introducer with vascular sealing mechanism
EP1211983B1 (en) 1999-09-13 2007-03-07 Rex Medical, LP Vascular closure
US6190396B1 (en) 1999-09-14 2001-02-20 Perclose, Inc. Device and method for deploying and organizing sutures for anastomotic and other attachments
US6358258B1 (en) 1999-09-14 2002-03-19 Abbott Laboratories Device and method for performing end-to-side anastomosis
US6231561B1 (en) 1999-09-20 2001-05-15 Appriva Medical, Inc. Method and apparatus for closing a body lumen
US6319258B1 (en) 1999-09-29 2001-11-20 Ethicon, Inc. Absorbable rivet/pin applier for use in surgical procedures
US6689150B1 (en) 1999-10-27 2004-02-10 Atritech, Inc. Filter apparatus for ostium of left atrial appendage
JP2003524480A (en) 1999-11-05 2003-08-19 オーナックス・メディカル・インコーポレーテッド Apparatus and method for joining and closing a hole or puncture wall in a physiological shell structure
US6428548B1 (en) 1999-11-18 2002-08-06 Russell F. Durgin Apparatus and method for compressing body tissue
US6641592B1 (en) 1999-11-19 2003-11-04 Lsi Solutions, Inc. System for wound closure
US6602263B1 (en) 1999-11-30 2003-08-05 St. Jude Medical Atg, Inc. Medical grafting methods and apparatus
US6790218B2 (en) 1999-12-23 2004-09-14 Swaminathan Jayaraman Occlusive coil manufacture and delivery
US6942674B2 (en) 2000-01-05 2005-09-13 Integrated Vascular Systems, Inc. Apparatus and methods for delivering a closure device
US6197042B1 (en) 2000-01-05 2001-03-06 Medical Technology Group, Inc. Vascular sheath with puncture site closure apparatus and methods of use
US6780197B2 (en) 2000-01-05 2004-08-24 Integrated Vascular Systems, Inc. Apparatus and methods for delivering a vascular closure device to a body lumen
US6391048B1 (en) 2000-01-05 2002-05-21 Integrated Vascular Systems, Inc. Integrated vascular device with puncture site closure component and sealant and methods of use
US6461364B1 (en) 2000-01-05 2002-10-08 Integrated Vascular Systems, Inc. Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use
US6361546B1 (en) 2000-01-13 2002-03-26 Endotex Interventional Systems, Inc. Deployable recoverable vascular filter and methods for use
US6547806B1 (en) * 2000-02-04 2003-04-15 Ni Ding Vascular sealing device and method of use
US7252666B2 (en) 2000-02-14 2007-08-07 Sherwood Services Ag Arterial hole closure apparatus
JP3742542B2 (en) 2000-03-10 2006-02-08 ペンタックス株式会社 Endoscope foreign matter collection tool
US6451031B1 (en) 2000-03-21 2002-09-17 X-Site, L.L.C. Blood vessel suturing device with single guide-wire/needle receiving lumen
JP3844661B2 (en) 2000-04-19 2006-11-15 ラディ・メディカル・システムズ・アクチェボラーグ Intra-arterial embolus
US6786915B2 (en) 2000-04-19 2004-09-07 Radi Medical Systems Ab Reinforced absorbable medical sealing device
US6942691B1 (en) 2000-04-27 2005-09-13 Timothy A. M. Chuter Modular bifurcated graft for endovascular aneurysm repair
US7361185B2 (en) * 2001-05-09 2008-04-22 Canica Design, Inc. Clinical and surgical system and method for moving and stretching plastic tissue
US6305891B1 (en) 2000-05-15 2001-10-23 Mark S. Burlingame Fastening device and a spacer, and a method of using the same
JP4674975B2 (en) * 2000-05-26 2011-04-20 オリンパス株式会社 Endoscope hood
US7534242B2 (en) * 2003-02-25 2009-05-19 Artemis Medical, Inc. Tissue separating catheter assembly and method
IL136702A (en) 2000-06-12 2005-11-20 Niti Alloys Tech Ltd Surgical clip
US6689147B1 (en) 2000-06-13 2004-02-10 J. Kenneth Koster, Jr. Anastomosis punch device and method
WO2001095809A1 (en) 2000-06-14 2001-12-20 Sterilis, Inc. Suturing method and apparatus
ATE381291T1 (en) 2000-06-23 2008-01-15 Viacor Inc AUTOMATIC ANNUAL FOLDING FOR MITRAL VALVE REPAIR
US6558399B1 (en) 2000-06-30 2003-05-06 Abbott Laboratories Devices and method for handling a plurality of suture elements during a suturing procedure
WO2002005865A2 (en) 2000-07-14 2002-01-24 Sub-Q, Inc. Sheath-mounted arterial plug delivery device
US6443963B1 (en) * 2000-07-26 2002-09-03 Orthopaedic Biosystems, Ltd. Apparatus and method for repairing or reattaching soft tissue
EP1368088A4 (en) 2000-08-04 2005-11-16 Univ Duke Temporary vascular filters and methods
US6428472B1 (en) * 2000-08-08 2002-08-06 Kent Haas Surgical retractor having a malleable support
US6485501B1 (en) 2000-08-11 2002-11-26 Cordis Corporation Vascular filter system with guidewire and capture mechanism
US6572629B2 (en) * 2000-08-17 2003-06-03 Johns Hopkins University Gastric reduction endoscopy
US6322580B1 (en) 2000-09-01 2001-11-27 Angiolink Corporation Wound site management and wound closure device
US6533762B2 (en) 2000-09-01 2003-03-18 Angiolink Corporation Advanced wound site management systems and methods
US6767356B2 (en) 2000-09-01 2004-07-27 Angiolink Corporation Advanced wound site management systems and methods
US6755842B2 (en) 2000-09-01 2004-06-29 Angiolink Corporation Advanced wound site management systems and methods
EP1435842B8 (en) 2000-09-08 2011-03-02 Abbott Vascular Inc. Device for locating a puncture hole in a liquid-carrying vessel
JP2004508879A (en) 2000-09-21 2004-03-25 アトリテック, インコーポレイテッド Apparatus for implanting a device in the atrial appendage
US6551330B1 (en) 2000-09-21 2003-04-22 Opus Medical, Inc. Linear suturing apparatus and methods
US6716228B2 (en) 2000-09-30 2004-04-06 Yale University Surgical access device
US6626918B1 (en) 2000-10-06 2003-09-30 Medical Technology Group Apparatus and methods for positioning a vascular sheath
US6776785B1 (en) 2000-10-12 2004-08-17 Cardica, Inc. Implantable superelastic anastomosis device
US6508828B1 (en) 2000-11-03 2003-01-21 Radi Medical Systems Ab Sealing device and wound closure device
US7029481B1 (en) 2000-11-06 2006-04-18 Abbott Laboratories Systems, devices and methods for suturing patient tissue
US6551319B2 (en) 2000-11-08 2003-04-22 The Cleveland Clinic Foundation Apparatus for implantation into bone
US6695867B2 (en) 2002-02-21 2004-02-24 Integrated Vascular Systems, Inc. Plunger apparatus and methods for delivering a closure device
US6719777B2 (en) 2000-12-07 2004-04-13 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US6623510B2 (en) 2000-12-07 2003-09-23 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US7211101B2 (en) 2000-12-07 2007-05-01 Abbott Vascular Devices Methods for manufacturing a clip and clip
US7806904B2 (en) 2000-12-07 2010-10-05 Integrated Vascular Systems, Inc. Closure device
US6969397B2 (en) * 2000-12-14 2005-11-29 Ensure Medical, Inc. Guide wire element for positioning vascular closure devices and methods for use
US6890343B2 (en) * 2000-12-14 2005-05-10 Ensure Medical, Inc. Plug with detachable guidewire element and methods for use
US6846319B2 (en) * 2000-12-14 2005-01-25 Core Medical, Inc. Devices for sealing openings through tissue and apparatus and methods for delivering them
US6896692B2 (en) * 2000-12-14 2005-05-24 Ensure Medical, Inc. Plug with collet and apparatus and method for delivering such plugs
US8083768B2 (en) 2000-12-14 2011-12-27 Ensure Medical, Inc. Vascular plug having composite construction
US6623509B2 (en) * 2000-12-14 2003-09-23 Core Medical, Inc. Apparatus and methods for sealing vascular punctures
US6632237B2 (en) 2001-01-11 2003-10-14 Bio-Seal Tech, Inc. Device and method for sealing a puncture in a blood vessel
US7029480B2 (en) 2001-01-24 2006-04-18 Abott Laboratories Device and method for suturing of internal puncture sites
US6569185B2 (en) 2001-02-15 2003-05-27 Scimed Life Systems Inc Continuous infusion technique for arterial sealing
US6578585B1 (en) 2001-02-21 2003-06-17 Barbara Stachowski Barrette
US6743195B2 (en) 2001-03-14 2004-06-01 Cardiodex Balloon method and apparatus for vascular closure following arterial catheterization
US6428559B1 (en) 2001-04-03 2002-08-06 Cordis Corporation Removable, variable-diameter vascular filter system
USD457958S1 (en) 2001-04-06 2002-05-28 Sherwood Services Ag Vessel sealer and divider
JP4267867B2 (en) 2001-05-03 2009-05-27 ラディ・メディカル・システムズ・アクチェボラーグ Wound occlusion element guide device
FR2824253B1 (en) 2001-05-04 2005-02-18 Francis Navarro INTRUMENT FOR CLOSING BY SUTURE SUBCUTANEOUS AN ORIFICE REALIZED IN THE ABDOMINAL WALL OF A PATIENT
ATE272359T1 (en) 2001-05-09 2004-08-15 Radi Medical Systems DEVICE FOR SEALING AN ARTERIAL PERFORATION
US7338514B2 (en) * 2001-06-01 2008-03-04 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods and tools, and related methods of use
IES20010547A2 (en) 2001-06-07 2002-12-11 Christy Cummins Surgical Staple
AU2002310364B2 (en) 2001-06-08 2006-02-23 Morris Innovative Research, Inc. Method and apparatus for sealing access
US7033379B2 (en) 2001-06-08 2006-04-25 Incisive Surgical, Inc. Suture lock having non-through bore capture zone
US6743259B2 (en) * 2001-08-03 2004-06-01 Core Medical, Inc. Lung assist apparatus and methods for use
IES20010749A2 (en) 2001-08-09 2003-02-19 Christy Cummins Surgical Stapling Device
IES20010748A2 (en) 2001-08-09 2003-02-19 Christy Cummins Surgical Stapling Device and Method
US6645205B2 (en) 2001-08-15 2003-11-11 Core Medical, Inc. Apparatus and methods for reducing lung volume
US6634537B2 (en) 2001-08-23 2003-10-21 Tung-I Chen Detachable insulation wire-pressing element of a stapling device
US6989003B2 (en) 2001-08-31 2006-01-24 Conmed Corporation Obturator and cannula for a trocar adapted for ease of insertion and removal
US6745079B2 (en) 2001-11-07 2004-06-01 Medtronic, Inc. Electrical tissue stimulation apparatus and method
US6746457B2 (en) 2001-12-07 2004-06-08 Abbott Laboratories Snared suture trimmer
WO2003069765A1 (en) * 2002-02-18 2003-08-21 Ebm-Papst St. Georgen Gmbh & Co. Kg Electronically commutated internal rotor motor
US6736822B2 (en) 2002-02-20 2004-05-18 Mcclellan Scott B. Device and method for internal ligation of tubular structures
US20030187457A1 (en) * 2002-04-02 2003-10-02 Weber John A. Apparatus and method for removing an object from a body
JP3890589B2 (en) 2002-04-15 2007-03-07 ニプロ株式会社 Intracardiac suture device
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
CA2734078C (en) 2002-05-10 2015-09-01 Ensure Medical, Inc. Plug with detachable guidewire element
US20030233095A1 (en) * 2002-06-12 2003-12-18 Urbanski Mark G. Device and method for attaching soft tissue to bone
AU2003249547A1 (en) 2002-07-03 2004-01-23 Christy Cummins Surgical stapling device
US7731655B2 (en) 2002-09-20 2010-06-08 Id, Llc Tissue retractor and method for using the retractor
US7211089B2 (en) 2002-10-18 2007-05-01 Scimed Life Systems, Inc. Medical retrieval device
US20040087999A1 (en) 2002-10-31 2004-05-06 Gjalt Bosma Vascular filter with improved anchor or other position retention
US20040116943A1 (en) 2002-12-13 2004-06-17 Brandt C. Phillip Method and apparatus for endoscopically ligating an elongate tissue structure at multiple sites
US20040122349A1 (en) * 2002-12-20 2004-06-24 Lafontaine Daniel M. Closure device with textured surface
US7160309B2 (en) 2002-12-31 2007-01-09 Laveille Kao Voss Systems for anchoring a medical device in a body lumen
US7008442B2 (en) 2003-01-20 2006-03-07 Medtronic Vascular, Inc. Vascular sealant delivery device and sheath introducer and method
US8758398B2 (en) * 2006-09-08 2014-06-24 Integrated Vascular Systems, Inc. Apparatus and method for delivering a closure element
JP4094445B2 (en) 2003-01-31 2008-06-04 オリンパス株式会社 Endoscopic mucosal resection tool
JP4197965B2 (en) * 2003-01-31 2008-12-17 オリンパス株式会社 High frequency snare and medical equipment
DE10310995B3 (en) 2003-03-06 2004-09-16 Aesculap Ag & Co. Kg Closure device for a puncture channel and applicator device
US7381210B2 (en) 2003-03-14 2008-06-03 Edwards Lifesciences Corporation Mitral valve repair system and method for use
KR101078544B1 (en) * 2003-03-17 2011-11-01 스미또모 베이크라이트 가부시키가이샤 Clip and clipping instrument for biological tissues
US7179266B2 (en) 2003-04-17 2007-02-20 X-Site, L.L.C. Surgical device
US7850654B2 (en) 2003-04-24 2010-12-14 St. Jude Medical Puerto Rico B.V. Device and method for positioning a closure device
US9289195B2 (en) * 2003-06-04 2016-03-22 Access Closure, Inc. Auto-retraction apparatus and methods for sealing a vascular puncture
US7331979B2 (en) * 2003-06-04 2008-02-19 Access Closure, Inc. Apparatus and methods for sealing a vascular puncture
US7942897B2 (en) * 2003-07-10 2011-05-17 Boston Scientific Scimed, Inc. System for closing an opening in a body cavity
JP4266743B2 (en) 2003-08-08 2009-05-20 オリンパス株式会社 Endoscopic hood and endoscopic mucosal resection tool
US8114123B2 (en) * 2003-09-19 2012-02-14 St. Jude Medical, Inc. Apparatus and methods for tissue gathering and securing
US7462188B2 (en) 2003-09-26 2008-12-09 Abbott Laboratories Device and method for suturing intracardiac defects
US7931670B2 (en) * 2003-10-15 2011-04-26 St. Jude Medical Puerto Rico Llc Tissue puncture closure device with automatic tamping
US8007514B2 (en) 2003-10-17 2011-08-30 St. Jude Medical Puerto Rico Llc Automatic suture locking device
US8852229B2 (en) 2003-10-17 2014-10-07 Cordis Corporation Locator and closure device and method of use
US7361183B2 (en) * 2003-10-17 2008-04-22 Ensure Medical, Inc. Locator and delivery device and method of use
US7326230B2 (en) * 2003-10-23 2008-02-05 Sundaram Ravikumar Vascular sealing device and method of use
US7731726B2 (en) 2003-12-03 2010-06-08 St. Jude Medical Puerto Rico Llc Suture based vascular closure apparatus and method incorporating a pre-tied knot
US7390328B2 (en) 2003-12-19 2008-06-24 Abbott Laboratories Device and method for suturing of internal puncture sites
US7449024B2 (en) 2003-12-23 2008-11-11 Abbott Laboratories Suturing device with split arm and method of suturing tissue
US20050245876A1 (en) * 2003-12-24 2005-11-03 Accessclosure, Inc. Apparatus and methods for facilitating access through a puncture including sealing compound therein
US20050149117A1 (en) * 2003-12-24 2005-07-07 Farhad Khosravi Apparatus and methods for delivering sealing materials during a percutaneous procedure to facilitate hemostasis
US20070060950A1 (en) * 2003-12-24 2007-03-15 Farhad Khosravi Apparatus and methods for delivering sealing materials during a percutaneous procedure to facilitate hemostasis
JP4955534B2 (en) 2004-03-22 2012-06-20 アクセスクロージャー,インク. Device for sealing vascular perforations
US7648493B2 (en) * 2004-04-20 2010-01-19 St. Jude Medical Puerto Rico Llc Method and apparatus for locating vascular punctures
US7799042B2 (en) 2004-05-13 2010-09-21 The Cleveland Clinic Foundation Skin lesion exciser and skin-closure device therefor
JP4746348B2 (en) * 2004-05-20 2011-08-10 パンカジュ・ジャイ・パスリチャ Therapeutic treatment device
US7645285B2 (en) 2004-05-26 2010-01-12 Idx Medical, Ltd Apparatus and methods for occluding a hollow anatomical structure
US8348971B2 (en) 2004-08-27 2013-01-08 Accessclosure, Inc. Apparatus and methods for facilitating hemostasis within a vascular puncture
US20060058844A1 (en) 2004-09-13 2006-03-16 St. Jude Medical Puerto Rico B.V. Vascular sealing device with locking system
US20060089635A1 (en) * 2004-10-22 2006-04-27 Scimed Life Systems, Inc. Methods and apparatus for focused bipolar tissue ablation using an insulated shaft
US7524318B2 (en) * 2004-10-28 2009-04-28 Boston Scientific Scimed, Inc. Ablation probe with flared electrodes
US8262693B2 (en) 2004-11-05 2012-09-11 Accessclosure, Inc. Apparatus and methods for sealing a vascular puncture
US20060106420A1 (en) * 2004-11-12 2006-05-18 Medtronic Vascular, Inc. Patch for treating a septal defect
US7270672B1 (en) 2005-02-11 2007-09-18 Adam Joel Singer Rod for transferring and tightening knotted suture into patient's body
US7806856B2 (en) * 2005-04-22 2010-10-05 Accessclosure, Inc. Apparatus and method for temporary hemostasis
DK1876962T3 (en) 2005-04-22 2017-05-22 Access Closure Inc DEVICE FOR SEALING A POINT IN TISSUE
US8002742B2 (en) * 2005-04-22 2011-08-23 Accessclosure, Inc. Apparatus and methods for sealing a puncture in tissue
US8088144B2 (en) 2005-05-04 2012-01-03 Ensure Medical, Inc. Locator and closure device and method of use
USD566272S1 (en) 2005-05-19 2008-04-08 Integrated Vascular Systems, Inc. Vessel closure device
US8313497B2 (en) 2005-07-01 2012-11-20 Abbott Laboratories Clip applier and methods of use
US8758397B2 (en) * 2005-08-24 2014-06-24 Abbott Vascular Inc. Vascular closure methods and apparatuses
US9456811B2 (en) 2005-08-24 2016-10-04 Abbott Vascular Inc. Vascular closure methods and apparatuses
US20070060895A1 (en) * 2005-08-24 2007-03-15 Sibbitt Wilmer L Jr Vascular closure methods and apparatuses
US8920442B2 (en) * 2005-08-24 2014-12-30 Abbott Vascular Inc. Vascular opening edge eversion methods and apparatuses
US20070060951A1 (en) 2005-09-15 2007-03-15 Shannon Francis L Atrial tissue fixation device
US20070083231A1 (en) * 2005-10-07 2007-04-12 Benjamin Lee Vascular closure
WO2007059243A1 (en) 2005-11-15 2007-05-24 Aoi Medical, Inc. Arterial closure button
EP1971273B1 (en) 2006-01-09 2010-12-01 Cook Incorporated Patent foramen ovale closure device
US7749249B2 (en) * 2006-02-21 2010-07-06 Kardium Inc. Method and device for closing holes in tissue
US7892244B2 (en) 2006-03-09 2011-02-22 Niti Surgical Solutions Ltd. Surgical compression clips
EP2019632B1 (en) 2006-05-03 2015-07-01 Indiana University Research and Technology Corporation Apparatus for reshaping the esophagus and other body lumens
USD611144S1 (en) 2006-06-28 2010-03-02 Abbott Laboratories Apparatus for delivering a closure element
US7533790B1 (en) 2007-03-08 2009-05-19 Cardica, Inc. Surgical stapler
US9545258B2 (en) 2007-05-17 2017-01-17 Boston Scientific Scimed, Inc. Tissue aperture securing and sealing apparatuses and related methods of use
US7875054B2 (en) * 2007-10-01 2011-01-25 Boston Scientific Scimed, Inc. Connective tissue closure device and method
US8062308B2 (en) 2007-10-23 2011-11-22 Minos Medical Devices and methods for securing tissue
US20090157101A1 (en) 2007-12-17 2009-06-18 Abbott Laboratories Tissue closure system and methods of use
WO2010031050A1 (en) 2008-09-15 2010-03-18 Abbott Vascular Inc. Redundant tissue closure methods and apparatuses
KR101075531B1 (en) 2009-09-14 2011-10-20 국립암센터 Hemostatic clip and hemostatic clip operation apparatus using the same
US9414822B2 (en) 2011-05-19 2016-08-16 Abbott Cardiovascular Systems, Inc. Tissue eversion apparatus and tissue closure device and methods for use thereof

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5507744A (en) * 1992-04-23 1996-04-16 Scimed Life Systems, Inc. Apparatus and method for sealing vascular punctures
US5681334A (en) * 1994-08-24 1997-10-28 Kensey Nash Corporation Apparatus and methods of use for preventing blood seepage at a percutaneous puncture site
US5649959A (en) * 1995-02-10 1997-07-22 Sherwood Medical Company Assembly for sealing a puncture in a vessel
US5674231A (en) * 1995-10-20 1997-10-07 United States Surgical Corporation Apparatus and method for vascular hole closure
US6524326B1 (en) * 1995-12-07 2003-02-25 Loma Linda University Medical Center Tissue opening locator and everter and method
US5972024A (en) * 1996-12-24 1999-10-26 Metacardia, Inc. Suture-staple apparatus and method
US5897487A (en) * 1997-04-15 1999-04-27 Asahi Kogaku Kogyo Kabushiki Kaisha Front end hood for endoscope
US5964782A (en) * 1997-09-18 1999-10-12 Scimed Life Systems, Inc. Closure device and method
US7396359B1 (en) * 1998-05-29 2008-07-08 Bypass, Inc. Vascular port device
US7060084B1 (en) * 1998-05-29 2006-06-13 By-Pass, Inc. Vascular closure device
US5919207A (en) * 1998-06-02 1999-07-06 Taheri; Syde A. Percutaneous arterial closure with staples
US5910155A (en) * 1998-06-05 1999-06-08 United States Surgical Corporation Vascular wound closure system
US6165183A (en) * 1998-07-15 2000-12-26 St. Jude Medical, Inc. Mitral and tricuspid valve repair
US6143004A (en) * 1998-08-18 2000-11-07 Atrion Medical Products, Inc. Suturing device
US6248124B1 (en) * 1999-02-22 2001-06-19 Tyco Healthcare Group Arterial hole closure apparatus
US6626930B1 (en) * 1999-10-21 2003-09-30 Edwards Lifesciences Corporation Minimally invasive mitral valve repair method and apparatus
US20040093027A1 (en) * 2002-03-04 2004-05-13 Walter Fabisiak Barbed tissue connector for sealing vascular puncture wounds
US20050256532A1 (en) * 2004-05-12 2005-11-17 Asha Nayak Cardiovascular defect patch device and method
US8480687B2 (en) * 2009-10-30 2013-07-09 Cook Medical Technologies Llc Apparatus and methods for achieving serosa-to-serosa closure of a bodily opening
US9149276B2 (en) * 2011-03-21 2015-10-06 Abbott Cardiovascular Systems, Inc. Clip and deployment apparatus for tissue closure

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9782156B2 (en) 2015-09-28 2017-10-10 M-V Arterica AB Vascular closure device
US10159474B2 (en) 2015-09-28 2018-12-25 M-V Arterica AB Vascular closure device
US10639020B2 (en) 2015-09-28 2020-05-05 M-V Arterica AB Vascular closure device
US11723639B2 (en) 2015-09-28 2023-08-15 Arterica Inc. Vascular closure device
US10448938B2 (en) 2016-06-16 2019-10-22 Phillips Medical, LLC Methods and systems for sealing a puncture of a vessel
US11751860B2 (en) 2016-06-16 2023-09-12 Phillips Medical, LLC Methods and systems for sealing a puncture of a vessel
US11185318B2 (en) 2016-06-16 2021-11-30 Phillips Medical, LLC Methods and systems for sealing a puncture of a vessel
US10624620B2 (en) 2017-05-12 2020-04-21 Phillips Medical, LLC Systems and methods for sealing a puncture of a vessel
US10716551B2 (en) 2017-05-12 2020-07-21 Phillips Medical, LLC Systems and methods for sealing a puncture of a vessel
US11179145B2 (en) 2017-11-16 2021-11-23 M-V Arterica AB Collapsible tube for hemostasis
CN111836585A (en) * 2018-02-28 2020-10-27 威诺克医疗有限公司 Medical device and method for closing an opening in tissue
WO2021037943A1 (en) * 2019-08-26 2021-03-04 Venock Medical Gmbh Medical apparatus and method for closing an aperture in a tissue
EP3785643A1 (en) * 2019-08-26 2021-03-03 Venock Medical GmbH Medical apparatus and method for closing an opening in a tissue
US11938288B2 (en) 2019-11-19 2024-03-26 Arterica Inc. Vascular closure devices and methods

Also Published As

Publication number Publication date
WO2007025019A2 (en) 2007-03-01
US8048108B2 (en) 2011-11-01
US20070060895A1 (en) 2007-03-15
WO2007025019A3 (en) 2007-11-22
EP1928326B1 (en) 2017-01-04
EP1928326A4 (en) 2013-06-26
US20100130965A1 (en) 2010-05-27
EP1928326A2 (en) 2008-06-11
US20090254119A1 (en) 2009-10-08
US8932324B2 (en) 2015-01-13

Similar Documents

Publication Publication Date Title
US8932324B2 (en) Redundant tissue closure methods and apparatuses
WO2010031050A1 (en) Redundant tissue closure methods and apparatuses
US9456811B2 (en) Vascular closure methods and apparatuses
US8920442B2 (en) Vascular opening edge eversion methods and apparatuses
US8758397B2 (en) Vascular closure methods and apparatuses
US10918391B2 (en) Method and apparatus for clamping tissue and occluding tubular body lumens
EP2663244B1 (en) Apparatus for securing tissue layers together
US5478353A (en) Suture tie device system and method for suturing anatomical tissue proximate an opening
JP4776881B2 (en) Device for endoscopic suturing
US20070083231A1 (en) Vascular closure
CA2492702C (en) Apparatus for sealing punctures in blood vessels
US10631870B2 (en) Method and apparatus for occluding a blood vessel
JP2010514467A (en) Systems and methods for treating septal defects using capture devices and other devices
WO1997007741A1 (en) Suture tie device system and method for suturing anatomical tissue proximate an opening
US9414822B2 (en) Tissue eversion apparatus and tissue closure device and methods for use thereof
AU2017357804A1 (en) Minimally-invasive tissue suturing device

Legal Events

Date Code Title Description
AS Assignment

Owner name: ABBOTT VASCULAR INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SIBBITT, WILMER L., JR.;CURTIS, ROBERT M.;SIBBITT, RANDY R.;SIGNING DATES FROM 20100120 TO 20100121;REEL/FRAME:034100/0459

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION