US20150018358A1 - Compositions and methods for treating purpura - Google Patents

Compositions and methods for treating purpura Download PDF

Info

Publication number
US20150018358A1
US20150018358A1 US14/505,100 US201414505100A US2015018358A1 US 20150018358 A1 US20150018358 A1 US 20150018358A1 US 201414505100 A US201414505100 A US 201414505100A US 2015018358 A1 US2015018358 A1 US 2015018358A1
Authority
US
United States
Prior art keywords
adrenergic receptor
receptor agonist
selective
adrenergic
brimonidine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/505,100
Inventor
Stuart D. Shanler
Andrew Ondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EPI Health LLC
Original Assignee
Allergan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allergan Inc filed Critical Allergan Inc
Priority to US14/505,100 priority Critical patent/US20150018358A1/en
Publication of US20150018358A1 publication Critical patent/US20150018358A1/en
Assigned to ALLERGAN, INC. reassignment ALLERGAN, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VICEPT THERAPEUTICS, INC.
Assigned to ACLARIS THERAPEUTICS, INC. reassignment ACLARIS THERAPEUTICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALLERGAN, INC.
Assigned to EPI HEALTH, LLC reassignment EPI HEALTH, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ACLARIS THERAPEUTICS, INC.
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/498Pyrazines or piperazines ortho- and peri-condensed with carbocyclic ring systems, e.g. quinoxaline, phenazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/137Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/4174Arylalkylimidazoles, e.g. oxymetazolin, naphazoline, miconazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents

Definitions

  • Embodiments of the present invention are directed to the use of an ⁇ adrenergic agonist for the treatment of vascular extravasation into the skin and particularly for the sequelae manifesting as cutaneous petechiae, purpura or ecchymoses.
  • the ⁇ adrenergic agonist may be selected from a selective ⁇ 1 adrenergic receptor agonist, selective ⁇ 2 adrenergic receptor agonist, non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist, agents with ⁇ 2 adrenergic receptor agonist activity and combinations thereof.
  • the ⁇ adrenergic agonist may be administered to a patient in need thereof in a composition comprising a therapeutically effective amount of the ⁇ adrenergic agonist, such as a composition for topical administration.
  • ⁇ adrenergic agonist may be selected from a selective ⁇ 1 adrenergic receptor agonist, selective ⁇ 2 adrenergic receptor agonist, non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist, agents with ⁇ 2 adrenergic receptor agonist activity and combinations thereof.
  • the ⁇ adrenergic agonist may be administered to a patient in need thereof in a composition comprising a therapeutically effective amount of the ⁇ adrenergic agonist.
  • the composition may be suitable for topical administration or local administration.
  • ⁇ adrenergic agonist may be selected from a selective ⁇ 1 adrenergic receptor agonist, selective ⁇ 2 adrenergic receptor agonist, non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist, agents with ⁇ 2 adrenergic receptor agonist activity and combinations thereof.
  • the ⁇ adrenergic agonist may be administered to a patient in a composition comprising a therapeutically effective amount of the ⁇ adrenergic agonist.
  • the composition may be suitable for topical administration or local administration.
  • Optical Isomers-Diastereomers-Geometric Isomers-Tautomers Compounds described herein may contain an asymmetric center and may thus exist as enantiomers. Where the compounds according to the invention possess two or more asymmetric centers, they may additionally exist as diastereomers.
  • the present invention includes all such possible stereoisomers as substantially pure resolved enantiomers, racemic mixtures thereof, as well as mixtures of diastereomers.
  • the formulas are shown without a definitive stereochemistry at certain positions.
  • the present invention includes all stereoisomers of such formulas and pharmaceutically acceptable salts thereof.
  • Diastereoisomeric pairs of enantiomers may be separated by, for example, fractional crystallization from a suitable solvent, and the pair of enantiomers thus obtained may be separated into individual stereoisomers by conventional means, for example by the use of an optically active acid or base as a resolving agent or on a chiral HPLC column. Further, any enantiomer or diastereomer of a compound of the general formula may be obtained by stereospecific synthesis using optically pure starting materials or reagents of known configuration.
  • the term “about” means plus or minus 10% of the numerical value of the number with which it is being used. Therefore, about 50% means in the range of 45%-55%.
  • administering when used in conjunction with a therapeutic means to administer a therapeutic directly into or onto a target tissue or to administer a therapeutic to a patient whereby the therapeutic positively impacts the tissue to which it is targeted.
  • administering when used in conjunction with an ⁇ 1 or ⁇ 2 adrenergic receptor agonist or composition thereof, can include, but is not limited to, providing an ⁇ 1 or ⁇ 2 adrenergic receptor agonist or composition thereof into or onto the target tissue; or providing an ⁇ 1 or ⁇ 2 adrenergic receptor agonist or composition thereof systemically to a patient by, e.g., intravenous injection whereby the therapeutic reaches the target tissue.
  • Administering an ⁇ 1 or ⁇ 2 adrenergic receptor agonist or composition thereof may be accomplished by local administration, such as injection directly into or around the site of purpura, topical administration, or by either method in combination with other known techniques.
  • the term “improves” is used to convey that the present invention changes either the appearance, form, characteristics and/or the physical attributes of the tissue to which it is being provided, applied or administered.
  • the change in form may be demonstrated by any of the following alone or in combination: enhanced appearance of the skin; decrease in vascular extravasation into the skin; decrease in cutaneous petechiae, purpura or ecchymoses; decrease in pigmentation; and hastening the resolution of the purpuric/hemorrhagic skin lesions.
  • inhibitor includes the administration of a compound of the present invention to prevent the onset of the symptoms, alleviating the symptoms, or eliminating the disease, condition or disorder.
  • patient and “subject” are interchangeable and may be taken to mean any living organism which may be treated with compounds of the present invention. As such, the terms may include, but are not limited to, any animal, mammal, primate or human, and preferably human.
  • composition shall mean a composition comprising at least one active ingredient, whereby the composition is amenable to investigation for a specified, efficacious outcome in a mammal (for example, without limitation, a human).
  • a mammal for example, without limitation, a human.
  • pharmaceutically acceptable it is meant the carrier, diluent or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
  • “Pharmaceutically acceptable salt” is meant to indicate those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio.
  • Pharmaceutically acceptable salts are well known in the art. For example, Berge et al. (1977) J. Pharm. Sciences, Vol 6. 1-19, describes pharmaceutically acceptable salts in detail.
  • a “salt” as used herein is any acid addition salt, preferably a pharmaceutically acceptable acid addition salt, including but not limited to, halogenic acid salts such as, for example, hydrobromic, hydrochloric, hydrofluoric and hydroiodic acid salt; an inorganic acid salt such as, for example, nitric, perchloric, sulfuric and phosphoric acid salt; an organic acid salt such as, for example, sulfonic acid salts (methanesulfonic, trifluoromethane sulfonic, ethanesulfonic, benzenesulfonic or p-toluenesulfonic), acetic, malic, fumaric, succinic, citric, benzoic, gluconic, lactic, mandelic, mucic, pamoic, pantothenic, oxalic and maleic acid salts; and an amino acid salt such as aspartic or glutamic acid salt.
  • the acid addition salt may be
  • skin means that outer integument or covering of the body, consisting of the dermis and the epidermis and resting upon subcutaneous tissue.
  • terapéutica means an agent utilized to treat, combat, ameliorate, prevent or improve an unwanted condition or disease of a patient.
  • embodiments of the present invention are directed to the treatment of purpura or the decrease in vascular extravasation.
  • a “therapeutically effective amount” or “effective amount” of a composition is a predetermined amount calculated to achieve the desired effect, i.e., to decrease, block, or reverse purpura.
  • the activity contemplated by the present methods includes both medical therapeutic and/or prophylactic treatment, as appropriate.
  • terapéuticaally effective amount refers to the amount of active compound or pharmaceutical agent that elicits a biological or medicinal response in a tissue, system, animal, individual or human that is being sought by a researcher, veterinarian, medical doctor or other clinician, which includes one or more of the following as specified in the particular methodology: (1) preventing the disease; for example, preventing a disease, condition or disorder in an individual that may be predisposed to the disease, condition or disorder but does not yet experience or display the pathology or symptomatology of the disease, (2) inhibiting the disease; for example, inhibiting a disease, condition or disorder in an individual that is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder (i.e., arresting further development of the pathology and/or symptomatology), and (3) ameliorating the disease; for example, ameliorating a disease, condition or disorder in an individual that is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder (i.e., reducing the severity of the pathology and/or symptom
  • the specific dose of a compound administered according to this invention to obtain therapeutic and/or prophylactic effects will, of course, be determined by the particular circumstances surrounding the case, including, for example, the compound administered, the route of administration, and the condition being treated.
  • the compounds are effective over a wide dosage range and, for example, dosages will normally fall within the range of from about 0.0025% to about 5%, more usually in the range of from about 0.005% to about 2%, more usually in the range of from about 0.05% to about 1%, and more usually in the range of form about 0.1% to about 0.5% by weight.
  • a therapeutically effective amount of compound of this invention is typically an amount such that when it is administered in a physiologically tolerable excipient composition, it is sufficient to achieve an effective systemic concentration or local concentration in the tissue.
  • beneficial or desired clinical results include, but are not limited to, alleviation of symptoms; diminishment of the extent of the condition, disorder or disease; stabilization (i.e., not worsening) of the state of the condition, disorder or disease; delay in onset or slowing of the progression of the condition, disorder or disease; amelioration of the condition, disorder or disease state; and remission (whether partial or total), whether detectable or undetectable, or enhancement or improvement of the condition, disorder or disease.
  • Treatment includes eliciting a clinically significant response without excessive levels of side effects.
  • tissue refers to any aggregation of similarly specialized cells which are united in the performance of a particular function.
  • ⁇ adrenergic agonist refers to an ⁇ adrenergic agonist, a prodrug, congener or pharmaceutically acceptable salt thereof and may be selected from a selective ⁇ 1 adrenergic receptor agonist, selective ⁇ 2 adrenergic receptor agonist, non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist, agents with ⁇ 2 adrenergic receptor agonist activity and combinations thereof.
  • An ⁇ adrenergic agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, ⁇ -methyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepine
  • Selective ⁇ 1 adrenergic receptor agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine.
  • Selective ⁇ 2 adrenergic receptor agonist may be selected from brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and ⁇ -methyldopa.
  • Non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist may be selected from epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, and mephentermine.
  • Agents with ⁇ 2 adrenergic receptor agonist activity may be selected from phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, ⁇ -methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine.
  • Embodiments of the present invention are directed to the use of an ⁇ adrenergic agonist, or pharmaceutically acceptable salt thereof, for the treatment of vascular extravasation into the skin and particularly for the sequelae manifesting as cutaneous petechiae, purpura or ecchymoses.
  • the ⁇ adrenergic agonist may be selected from a selective ⁇ 1 adrenergic receptor agonist, selective ⁇ 2 adrenergic receptor agonist, non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist, agents with ⁇ 2 adrenergic receptor agonist activity and a combination thereof.
  • the ⁇ adrenergic agonist is administered to a patient in a composition, preferably for topical or local administration to a patient in need thereof.
  • the ⁇ adrenergic agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, ⁇ -methyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexa
  • Selective ⁇ 1 adrenergic receptor agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine.
  • ⁇ 1 -adrenergic receptor agonist is preferably oxymetazoline, naphazoline, tetrahydrozoline, and phenylephrine hydrochloride.
  • Selective ⁇ 2 adrenergic receptor agonist may be selected from brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and ⁇ -methyldopa.
  • ⁇ 2 -adrenergic receptor agonist is preferably brimonidine.
  • Non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist may be selected from epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, and mephentermine.
  • Agents with ⁇ 2 adrenergic receptor agonist activity may be selected from phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, ⁇ -methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine.
  • Embodiments of the present invention are directed toward the use of composition comprised of an ⁇ adrenergic agonist, which may be selected from a selective ⁇ 1 adrenergic receptor agonist, selective ⁇ 2 adrenergic receptor agonist, non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist, agents with ⁇ 2 adrenergic receptor agonist activity and a combination thereof in a pharmaceutically acceptable carrier in order to treat and improve the cosmetic appearance of these hemorrhagic lesions.
  • an ⁇ adrenergic agonist which may be selected from a selective ⁇ 1 adrenergic receptor agonist, selective ⁇ 2 adrenergic receptor agonist, non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist, agents with ⁇ 2 adrenergic receptor agonist activity and a combination thereof in a pharmaceutically acceptable carrier in order to treat and improve the cosmetic appearance of these hemorrhagic lesions.
  • the ⁇ adrenergic agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, ⁇ -methyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), eth
  • Selective ⁇ 1 adrenergic receptor agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine.
  • ⁇ 1 -adrenergic receptor agonist is preferably oxymetazoline, naphazoline, tetrahydrozoline, and phenylephrine hydrochloride.
  • Selective ⁇ 2 adrenergic receptor agonist may be selected from brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and ⁇ -methyldopa.
  • ⁇ 2 -adrenergic receptor agonist is preferably brimonidine.
  • Non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist may be selected from epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, and mephentermine.
  • Agents with ⁇ 2 adrenergic receptor agonist activity may be selected from phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, ⁇ -methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine.
  • purpura refers to any accumulation of blood in the skin due to vascular extravasation, irrespective of size or cause.
  • purpura refers to medical conditions commonly referred to as “petechiae” (pinpoint spots), “ecchymoses” (larger macular (flat) patches) and “purpura” (larger spots).
  • Purpura in general, is hemorrhage of blood out of the vascular spaces and into the surrounding tissues of the skin or mucous membranes. This hemorrhage results in a collection of blood in the dermis of the skin that is visible initially as a dark purple/red discoloration that changes color as it breaks down and is resorbed.
  • purpura can be characterized as flat (macular or non-palpable) or raised (palpable or papular).
  • macular purpuric subtypes include: Petechiae-defined as small purpura (less than 4 millimeters (mm) in diameter, purpura-defined as greater than 4 mm and less than 1 cm (centimeter) in diameter, and ecchymoses-defined as greater than 1 cm in diameter.
  • the size divisions are not absolute but are useful rules of thumb and there is often a range in size of clinical purpuras in any one specific condition.
  • a bruise also called a contusion or ecchymosis, is an injury to biological tissue in which the capillaries are damaged, allowing blood to seep into the surrounding tissue.
  • Bruising is usually caused by a blunt impact and its likelihood and its severity increases as one ages due to thinning and loss of elasticity of the skin.
  • the current model is that of a complex family of structurally related receptors consisting of at least six a receptor subtypes ( ⁇ 1A ( ⁇ 1a/c ), ⁇ 1B , ⁇ 1D , ⁇ 2A ( ⁇ 2A/D ), ⁇ 2B , ⁇ 2C ) and at least three 0 receptor subtypes ( ⁇ 1 , ⁇ 2 , ⁇ 3 ), with additional conformational variants such as ⁇ 1L and ⁇ 4 bringing the total number of functional adrenergic receptor conformations to at least 11.
  • adrenergic receptors are all members of the G-protein-coupled receptor (GPCR) superfamily of proteins and modulate their effects through a classic 7-transmembrane protein second-messenger system. Their final local and systemic effects however are myriad, as noted above, including vasoactive properties ranging from vasoconstriction to vasodilatation and occur through a wide variety of intracellular mechanisms, that are governed by local receptor subtype concentration, relative receptor subtype distribution throughout the body, ligand binding characteristics and other factors (e.g. local temperature, hypoxia).
  • GPCR G-protein-coupled receptor
  • oxymetazoline and xylometazoline have been shown to inhibit neutrophilic phagocytosis and oxidative burst, resulting in a decrease in microbial killing, decreased generation of pro-inflammatory cytokines, and decreased inflammation.
  • Oxymetazoline has also recently been shown to have significant effects on the arachidonic acid cascade, strongly inhibiting 5-lipoxygenase activity thus decreasing the synthesis of the highly proinflammatory leukotriene B 4 .
  • a potential clinical role for oxymetazoline, or other agents of this class, as inhibitors of inflammation and oxidative-stress dependent reactions in inflammatory and/or infectious skin conditions is intriguing, but has yet to be investigated.
  • ⁇ adrenergic receptor agonist may be selected from a selective ⁇ 1 adrenergic receptor agonist, selective ⁇ 2 adrenergic receptor agonist, non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist, agents with ⁇ 2 adrenergic receptor agonist activity and combinations thereof.
  • a therapeutically effective amount of selective ⁇ 1 adrenergic receptor agonist, selective ⁇ 2 adrenergic receptor agonist, non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist, agents with ⁇ 2 adrenergic receptor agonist activity and combinations thereof is administered.
  • the ⁇ adrenergic receptor agonist is administered topically or locally to the patient.
  • the a adrenergic agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, ⁇ -methyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), eth
  • Selective ⁇ 1 adrenergic receptor agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine.
  • ⁇ 1 -adrenergic receptor agonist is preferably oxymetazoline, naphazoline, tetrahydrozoline, and phenylephrine hydrochloride.
  • Selective ⁇ 2 adrenergic receptor agonist may be selected from brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and ⁇ -methyldopa.
  • ⁇ 2 -adrenergic receptor agonist is preferably brimonidine.
  • Non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist may be selected from epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, and mephentermine.
  • Agents with ⁇ 2 adrenergic receptor agonist activity may be selected from phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, ⁇ -methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine.
  • Another embodiment of the present invention provides methods and compositions for treating other conditions of the skin characterized by intradermal hemorrhage and skin discoloration due to the resorption of the intracutaneous blood accumulation comprising administering an ⁇ adrenergic receptor agonist to a patient in need thereof.
  • the ⁇ adrenergic agonist may be selected from a selective ⁇ 1 adrenergic receptor agonist, selective ⁇ 2 adrenergic receptor agonist, non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist, agents with ⁇ 2 adrenergic receptor agonist activity and combinations thereof.
  • a therapeutically effective amount of the ⁇ adrenergic receptor agonist is administered.
  • the ⁇ adrenergic receptor agonist is administered topically or locally to the patient.
  • the ⁇ adrenergic agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, ⁇ -methyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphe
  • Selective ⁇ 1 adrenergic receptor agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine.
  • ⁇ 1 -adrenergic receptor agonist is preferably oxymetazoline, naphazoline, tetrahydrozoline, and phenylephrine hydrochloride.
  • Selective ⁇ 2 adrenergic receptor agonist may be selected from brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and ⁇ -methyldopa.
  • ⁇ 2 -adrenergic receptor agonist is preferably brimonidine.
  • Non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist may be selected from epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, and mephentermine.
  • Agents with ⁇ 2 adrenergic receptor agonist activity may be selected from phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, ⁇ -methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine.
  • Another embodiment of the present invention provides methods and compositions for improvement of bruising comprising administering an ⁇ adrenergic receptor agonist to a patient in need thereof.
  • the ⁇ adrenergic agonist may be selected from a selective ⁇ 1 adrenergic receptor agonist, selective ⁇ 2 adrenergic receptor agonist, non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist, agents with ⁇ 2 adrenergic receptor agonist activity and combinations thereof.
  • a therapeutically effective amount of the ⁇ adrenergic receptor agonist is administered.
  • the ⁇ adrenergic receptor agonist is administered topically or locally to the patient.
  • the ⁇ adrenergic agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, ⁇ -methyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), eth
  • Selective ⁇ 1 adrenergic receptor agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine.
  • ⁇ 1 -adrenergic receptor agonist is preferably oxymetazoline, naphazoline, tetrahydrozoline, and phenylephrine hydrochloride.
  • Selective ⁇ 2 adrenergic receptor agonist may be selected from brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and ⁇ -methyldopa.
  • ⁇ 2 -adrenergic receptor agonist is preferably brimonidine.
  • Non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist may be selected from epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, and mephentermine.
  • Agents with ⁇ 2 adrenergic receptor agonist activity may be selected from phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, ⁇ -methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine.
  • inventions of the present invention are methods and compositions for treating the cutaneous manifestations of intrinsic (chronological) and extrinsic (e.g. caused by sun exposure, smoking, etc) aging of the skin including, but not limited to, purpura (or “bruising”), skin wrinkling, sallow-yellow skin discoloration, dark circles under the eyes, bruising, bruising caused by laser administration, and hyperpigmentation comprising administering an ⁇ adrenergic receptor agonist to a patient in need thereof.
  • purpura or “bruising”
  • skin wrinkling sallow-yellow skin discoloration
  • dark circles under the eyes bruising
  • bruising caused by laser administration
  • hyperpigmentation comprising administering an ⁇ adrenergic receptor agonist to a patient in need thereof.
  • the ⁇ adrenergic agonist may be selected from a selective ⁇ 1 adrenergic receptor agonist, selective ⁇ 2 adrenergic receptor agonist, non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist, agents with ⁇ 2 adrenergic receptor agonist activity and combinations thereof.
  • a therapeutically effective amount of the ⁇ adrenergic receptor agonist is administered.
  • the ⁇ adrenergic receptor agonist is administered topically or locally to the patient.
  • the ⁇ adrenergic agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, ⁇ -methyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), eth
  • Selective ⁇ 1 adrenergic receptor agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine.
  • ⁇ 1 -adrenergic receptor agonist is preferably oxymetazoline, naphazoline, tetrahydrozoline, and phenylephrine hydrochloride.
  • Selective ⁇ 2 adrenergic receptor agonist may be selected from brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and ⁇ -methyldopa.
  • ⁇ 2 -adrenergic receptor agonist is preferably brimonidine.
  • Non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist may be selected from epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, and mephentermine.
  • Agents with ⁇ 2 adrenergic receptor agonist activity may be selected from phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, ⁇ -methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine.
  • the present invention provides methods and compositions for decreasing bruising caused by laser by administering an ⁇ adrenergic receptor agonist to a patient in need thereof prior to or soon after laser treatment.
  • the ⁇ adrenergic agonist may be selected from a selective ⁇ 1 adrenergic receptor agonist, selective ⁇ 2 adrenergic receptor agonist, non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist, agents with ⁇ 2 adrenergic receptor agonist activity and combinations thereof.
  • a therapeutically effective amount of the ⁇ adrenergic receptor agonist is administered.
  • the ⁇ adrenergic receptor agonist is administered topically or locally to the patient.
  • the ⁇ adrenergic agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, ⁇ -methyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphe
  • Selective ⁇ 1 adrenergic receptor agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine.
  • ⁇ 1 -adrenergic receptor agonist is preferably oxymetazoline, naphazoline, tetrahydrozoline, and phenylephrine hydrochloride.
  • Selective ⁇ 2 adrenergic receptor agonist may be selected from brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and ⁇ -methyldopa.
  • ⁇ 2 -adrenergic receptor agonist is preferably brimonidine.
  • Non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist may be selected from epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, and mephentermine.
  • Agents with ⁇ 2 adrenergic receptor agonist activity may be selected from phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, ⁇ -methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine.
  • ⁇ adrenergic agonist may be selected from a selective ⁇ 1 adrenergic receptor agonist, selective ⁇ 2 adrenergic receptor agonist, non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist, agents with ⁇ 2 adrenergic receptor agonist activity and combinations thereof.
  • a therapeutically effective amount of the ⁇ adrenergic receptor agonist is administered.
  • the ⁇ adrenergic receptor agonist is administered topically or locally to the patient.
  • the ⁇ adrenergic agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, ⁇ -methyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenyl
  • Selective ⁇ 1 adrenergic receptor agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine.
  • ⁇ 1 -adrenergic receptor agonist is preferably oxymetazoline, naphazoline, tetrahydrozoline, and phenylephrine hydrochloride.
  • Selective ⁇ 2 adrenergic receptor agonist may be selected from brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and ⁇ -methyldopa.
  • ⁇ 2 -adrenergic receptor agonist is preferably brimonidine.
  • Non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist may be selected from epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, and mephentermine.
  • Agents with ⁇ 2 adrenergic receptor agonist activity may be selected from phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, ⁇ -methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine.
  • Such interventions include, but are not limited to needle-sticks (e.g. for phlebotomy or infusion), injection of therapeutic agents (e.g. vaccines or sclerotherapy, injection of neurotoxins or fillers for soft-tissue augmentation, cold-steel surgery (e.g.
  • a therapeutically effective amount of the a adrenergic receptor agonist is administered to a patient prior to, during and/or after said surgical procedure, such that the formation of purpura (extent, duration, amount, size) is inhibited or decreased.
  • the ⁇ adrenergic agonist may be selected from a selective ⁇ 1 adrenergic receptor agonist, selective ⁇ 2 adrenergic receptor agonist, non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist, agents with ⁇ 2 adrenergic receptor agonist activity and combinations thereof.
  • a therapeutically effective amount of the ⁇ adrenergic receptor agonist is administered.
  • the ⁇ adrenergic receptor agonist is administered topically or locally to the patient.
  • the ⁇ adrenergic agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, ⁇ -methyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), eth
  • Selective ⁇ 1 adrenergic receptor agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine.
  • ⁇ 1 -adrenergic receptor agonist is preferably oxymetazoline, naphazoline, tetrahydrozoline, and phenylephrine hydrochloride.
  • Selective ⁇ 2 adrenergic receptor agonist may be selected from brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and ⁇ -methyldopa.
  • ⁇ 2 -adrenergic receptor agonist is preferably brimonidine.
  • Non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist may be selected from epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, and mephentermine.
  • Agents with ⁇ 2 adrenergic receptor agonist activity may be selected from phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, ⁇ -methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine.
  • FIG. 1 For embodiments of the present invention, a surgical procedure involving physical trauma to the skin and/or cutaneous vasculature, such as, for example, external blunt-force trauma, internal blunt-force trauma (e.g. liposuction trauma or surgical undermining trauma), “sharp” trauma (e.g. skin incision, skin puncture, needle stick), laceration, dermabrasion, chemical burn, thermal burn, and electrical burn.
  • a therapeutically effective amount of the ⁇ adrenergic receptor agonist is administered to a patient prior to, during and/or after said surgical procedure, such that the formation of purpura (extent, duration, amount, size) is prevented.
  • the ⁇ adrenergic agonist may be selected from a selective ⁇ 1 adrenergic receptor agonist, selective ⁇ 2 adrenergic receptor agonist, non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist, agents with ⁇ 2 adrenergic receptor agonist activity and combinations thereof.
  • a therapeutically effective amount of the ⁇ adrenergic receptor agonist is administered.
  • the ⁇ adrenergic receptor agonist is administered topically or locally to the patient.
  • the ⁇ adrenergic agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, ⁇ -methyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), eth
  • Selective ⁇ 1 adrenergic receptor agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine.
  • ⁇ 1 -adrenergic receptor agonist is preferably oxymetazoline, naphazoline, tetrahydrozoline, and phenylephrine hydrochloride.
  • Selective ⁇ 2 adrenergic receptor agonist may be selected from brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and ⁇ -methyldopa.
  • ⁇ 2 -adrenergic receptor agonist is preferably brimonidine.
  • Non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist may be selected from epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, and mephentermine.
  • Agents with ⁇ 2 adrenergic receptor agonist activity may be selected from phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, ⁇ -methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine.
  • compositions comprising at least one ⁇ 1 adrenergic receptor agonist and/or at least one ⁇ 2 adrenergic receptor agonist, alone or in combination, into a cosmetic, pharmaceutical or dermatological composition for decreasing and/or preventing purpura and other conditions of the skin characterized by intradermal cutaneous hemorrhages and to administer said compositions to a mammal, notably a human, in order to treat or prevent the disease states indicated above.
  • compositions comprising at an ⁇ adrenergic receptor agonist in a cosmetic, pharmaceutical or dermatological composition for decreasing and/or preventing purpura and other conditions of the skin characterized by intradermal cutaneous hemorrhages.
  • the ⁇ adrenergic receptor agonist may be selected from a selective ⁇ 1 adrenergic receptor agonist, selective ⁇ 2 adrenergic receptor agonist, non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist, agents with ⁇ 2 adrenergic receptor agonist activity and combinations thereof.
  • the composition may further comprise other agents known to be effective in treating purpura.
  • Embodiments of the present invention are directed to methods for treating purpura and other conditions of the skin characterized by intradermal cutaneous hemorrhages in a patient in need of such treatment, comprising the administration, preferably topical or local, of a therapeutically effective amount of a composition comprising an ⁇ -adrenergic receptor agonist.
  • the ⁇ adrenergic agonist may be selected from a selective ⁇ 1 adrenergic receptor agonist, selective ⁇ 2 adrenergic receptor agonist, non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist, agents with ⁇ 2 adrenergic receptor agonist activity and combinations thereof.
  • the ⁇ adrenergic agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, ⁇ -methyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), eth
  • Selective ⁇ 1 adrenergic receptor agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine.
  • ⁇ 1 -adrenergic receptor agonist is preferably oxymetazoline, naphazoline, tetrahydrozoline, and phenylephrine hydrochloride.
  • Selective ⁇ 2 adrenergic receptor agonist may be selected from brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and ⁇ -methyldopa.
  • ⁇ 2 -adrenergic receptor agonist is preferably brimonidine.
  • Non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist may be selected from epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, and mephentermine.
  • Agents with ⁇ 2 adrenergic receptor agonist activity may be selected from phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, ⁇ -methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine.
  • the composition comprises at least one selective ⁇ 1 adrenergic receptor agonist, selective ⁇ 2 adrenergic receptor agonist, non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist, and agents with ⁇ 2 adrenergic receptor agonist activity formulated in a pharmaceutically acceptable medium.
  • a gel, cream, lotion or solution which may be administered by spreading the gel, cream, lotion or solution onto or surrounding the affected area.
  • Other embodiments may also include combinations of therapeutically effective amounts of combinations of a selective ⁇ 1 adrenergic receptor agonist, a selective ⁇ 2 adrenergic receptor agonist, a non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist, and agents with ⁇ 2 adrenergic receptor agonist activity.
  • the therapeutically effective amount of each agent may be significantly decreased when used in combination with other ⁇ -adrenergic receptor agonist than when used as the sole active agent.
  • Preferred embodiments may also include enhancers of cutaneous penetration or inhibitors or regulators of cutaneous penetration as required to increase therapeutic efficacy and/or decrease systemic absorption and any potential undesirable systemic effects of the active agent(s).
  • antirosacea agents such as metronidazole, precipitated sulfur, sodium sulfacetamide, or azelaic acid
  • antibacterial agents such as clindamycin phosphate, erythromycin, or antibiotics from the tetracycline family
  • antimycobacterial agents such as dapsone
  • antiacne agents such as retinoids, or benzoyl peroxide
  • antiparasitic agents such as metronidazole, permethrin, crotamiton or pyrethroids
  • antifungal agents such as compounds of the imidazole family such as miconazole, clotrimazole, econazole, ketoconazole, or salts thereof, polyene compounds such as amphotericin B, compound of the allylamine family such as terbinafine
  • steroidal anti-inflammatory agents such as hydrocortisone
  • the invention is directed to a pharmaceutical composition
  • a pharmaceutical composition comprising a selective ⁇ 1 adrenergic receptor agonist, a selective ⁇ 2 adrenergic receptor agonist, a non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist, agents with ⁇ 2 adrenergic receptor agonist activity and combinations thereof and a pharmaceutically acceptable carrier or diluent, or an effective amount of a pharmaceutical composition comprising a compound as defined above.
  • compositions may be formulated to be administered orally, ophthalmically, intravenously, intramuscularly, intra-arterially, intramedullary, intrathecally, intraventricularly, transdermally, subcutaneously, intraperitoneally, intravascularly, intranasally, eternally, topically, sublingually, or rectally, preferably topically or locally.
  • Embodiments of the invention include compositions comprising an ⁇ adrenergic receptor agonist, preferably a selective ⁇ 1 adrenergic receptor agonist, a selective ⁇ 2 adrenergic receptor agonist, a non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist, agents with ⁇ 2 adrenergic receptor agonist activity and combinations thereof.
  • an ⁇ adrenergic receptor agonist preferably a selective ⁇ 1 adrenergic receptor agonist, a selective ⁇ 2 adrenergic receptor agonist, a non-selective ⁇ 1 / ⁇ 2 adrenergic receptor agonist, agents with ⁇ 2 adrenergic receptor agonist activity and combinations thereof.
  • the compositions may be administered topically or locally.
  • the compounds of the present invention can be administered in the conventional manner by any route where they are active. Administration can be systemic, topical, or oral.
  • administration can be, but is not limited to, parenteral, subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal, oral, buccal, or ocular routes, or intravaginally, intravascularly, by inhalation, by depot injections, or by implants.
  • modes of administration for the compounds of the present invention can be, but are not limited to, sublingual, injectable (including short-acting, depot, implant and pellet forms injected subcutaneously or intramuscularly), or by use of vaginal creams, suppositories, pessaries, vaginal rings, rectal suppositories, intrauterine devices, and transdermal forms such as patches and creams.
  • the doses and duration of treatment may vary, and may be based on assessment by one of ordinary skill in the art based on monitoring and measuring improvements in skin tissues. This assessment may be made based on outward physical signs of improvement, such as decreased redness, or other physiological signs or markers.
  • the doses may also depend on the condition or disease being treated, the degree of the condition or disease being treated and further on the age and weight of the patient.
  • Specific modes of administration will depend on the indication.
  • the selection of the specific route of administration and the dose regimen may be adjusted or titrated by the clinician according to methods known to the clinician in order to obtain the optimal clinical response.
  • the amount of compound to be administered may be that amount which is therapeutically effective.
  • the dosage to be administered may depend on the characteristics of the subject being treated, e.g., the particular animal or human subject treated, age, weight, health, types of concurrent treatment, if any, and frequency of treatments, and can be easily determined by one of skill in the art (e.g., by the clinician).
  • a preferable route of administration of the compositions of the present invention may be topical or local.
  • Aqueous suspensions contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions.
  • excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxy-propylmethylcellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monoo
  • the aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl, p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose or saccharin.
  • preservatives for example ethyl, or n-propyl, p-hydroxybenzoate
  • coloring agents for example ethyl, or n-propyl, p-hydroxybenzoate
  • coloring agents for example ethyl, or n-propyl, p-hydroxybenzoate
  • flavoring agents for example ethyl, or n-propyl, p-hydroxybenzoate
  • sweetening agents such as sucrose or saccharin.
  • Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin.
  • the oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or acetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.
  • Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives.
  • a dispersing or wetting agent e.g., glycerol, glycerol, glycerol, glycerol, glycerol, glycerol, glycerin, glycerin, glycerin, glycerin, glycerin, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, glycerol, glycerol, glycerol, glycerol, glycerol, glycerol, glycerol, glycerol, glycerol
  • the pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions.
  • the oily phase may be a vegetable oil, for example olive oil or arachis oil, or a mineral oil, for example liquid paraffin or mixtures of these.
  • Suitable emulsifying agents may be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally-occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol anhydrides, for example sorbitan monooleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate.
  • the emulsions may also contain sweetening and flavoring agents.
  • compositions comprising the compounds of the present invention and a suitable carrier may also be any number of solid dosage forms which include, but are not limited to, tablets, capsules, cachets, pellets, pills, powders and granules; topical dosage forms which include, but are not limited to, solutions, powders, fluid emulsions, fluid suspensions, semi-solids, ointments, pastes, creams, gels and jellies, and foams; and parenteral dosage forms which include, but are not limited to, solutions, suspensions, emulsions, and dry powder; comprising an effective amount of a polymer or copolymer of the present invention.
  • the active ingredients can be contained in such formulations with pharmaceutically acceptable diluents, fillers, disintegrants, binders, lubricants, surfactants, hydrophobic vehicles, water soluble vehicles, emulsifiers, buffers, humectants, moisturizers, solubilizers, preservatives and the like.
  • pharmaceutically acceptable diluents fillers, disintegrants, binders, lubricants, surfactants, hydrophobic vehicles, water soluble vehicles, emulsifiers, buffers, humectants, moisturizers, solubilizers, preservatives and the like.
  • the means and methods for administration are known in the art and an artisan can refer to various pharmacologic references for guidance. For example, Modern Pharmaceutics , Banker & Rhodes, Marcel Dekker, Inc. (1979); and Goodman & Gilman's The Pharmaceutical Basis of Therapeutics, 6th Edition, MacMillan Publishing Co., New York (1980) can be
  • the compounds of the present invention can be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion.
  • the compounds can be administered by continuous infusion over a period of about 15 minutes to about 24 hours.
  • Formulations for injection can be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative.
  • the compositions can take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and can contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
  • the compounds can be formulated readily by combining these compounds with pharmaceutically acceptable carriers well known in the art.
  • pharmaceutically acceptable carrier means a non-toxic, inert solid, semi-solid liquid filler, diluent, encapsulating material, formulation auxiliary of any type, or simply a sterile aqueous medium, such as saline.
  • sugars such as lactose, glucose and sucrose, starches such as corn starch and potato starch, cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt, gelatin, talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols, such as propylene glycol, polyols such as glycerin, sorbitol, mannitol and polyethylene glycol; esters such as ethyl oleate and ethyl laurate, agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline, Ringer's solution; ethyl
  • Suitable excipients include, but are not limited to, fillers such as sugars, including, but not limited to, lactose, sucrose, mannitol, and sorbitol; cellulose preparations such as, but not limited to, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and polyvinylpyrrolidone (PVP).
  • disintegrating agents can be added, such as, but not limited to, the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.
  • Dragee cores can be provided with suitable coatings.
  • suitable coatings can be used, which can optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.
  • Dyestuffs or pigments can be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.
  • compositions which can be used orally include, but are not limited to, push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol.
  • the push-fit capsules can contain the active ingredients in admixture with filler such as, e.g., lactose, binders such as, e.g., starches, and/or lubricants such as, e.g., talc or magnesium stearate and, optionally, stabilizers.
  • the active compounds can be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols.
  • stabilizers can be added. All formulations for oral administration should be in dosages suitable for such administration.
  • Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin, or olive oil.
  • an inert solid diluent for example, calcium carbonate, calcium phosphate or kaolin
  • water or an oil medium for example peanut oil, liquid paraffin, or olive oil.
  • Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative and flavoring and coloring agents.
  • sweetening agents for example glycerol, propylene glycol, sorbitol or sucrose.
  • Such formulations may also contain a demulcent, a preservative and flavoring and coloring agents.
  • compositions can take the form of tablets, flash melts or lozenges formulated in any conventional manner.
  • the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or
  • the compounds of the present invention can also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
  • the compounds of the present invention can also be formulated as a depot preparation.
  • Such long acting formulations can be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection.
  • the compounds can be formulated with suitable polymeric or hydrophobic materials (for example, as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
  • the compounds of the present invention for example, can be applied to a plaster, or can be applied by transdermal, therapeutic systems that are consequently supplied to the organism.
  • compositions of the compounds also can comprise suitable solid or gel phase carriers or excipients.
  • suitable solid or gel phase carriers or excipients include, but are not limited to, calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as, e.g., polyethylene glycols.
  • ⁇ 1 and ⁇ 2 adrenergic agonists were experimentally created on the trunk of a volunteer. Seven sites were marked, and utilizing a pulsed-dye laser (585 nm) and laser light parameters known to be purpurogenic, purpuric macules/patches were successfully induced at each site. Immediately after the laser energy was delivered, the topical application of commercially available ⁇ 1 and/or ⁇ 2 adrenergic agonist preparations was begun. The preparations were applied to the skin and gently rubbed on the skin over and immediately surrounding the laser treatment sites every 6-8 hours (3-4 times/day). The applied solution was allowed to air-dry without any dressing. The areas were followed clinically and photographically. The evaluated compounds were:
  • Oxymetazoline hydrochloride (0.05%): A solution of oxymetazoline hydrochloride 0.05% (Afrin® Original 12 Hour Nasal Spray (Schering-Plough Healthcare Products) containing: oxymetazoline hydrochloride 0.05%, benzalkonium chloride solution, edetate disodium, polyethylene glycol, povidone, propylene glycol, purified water, sodium phosphate dibasic, sodium phosphate monobasic.
  • Naphazoline hydrochloride (0.03%): A solution of naphazoline hydrochloride 0.03% (Clear Eyes® Maximum Redness Relief (Prestige Brands Inc.) containing: naphazoline hydrochloride 0.03%, glycerin 0.5%, benzalkonium chloride, boric acid, edetate disodium, purified water, sodium borate).
  • Tetrahydrozoline hydrochloride (0.05%): A solution of tetrahydrozoline hydrochloride 0.05% (Visine® Original (Pfizer Consumer Healthcare) containing: tetrahydrozoline hydrochloride 0.05%, benzalkonium chloride, boric acid, edetate disodium, purified water, sodium borate, sodium chloride).
  • Phenylephrine hydrochloride (1.0%): A solution of phenylephrine hydrochloride 1.0% (Neo-Synephrine® Extra Strength Spray (Bayer HealthCare) containing: phenylephrine hydrochloride 1.0%, anhydrous citric acid, benzalkonium chloride, sodium chloride, sodium citrate, water).
  • Brimonidine tartrate (0.2%): A solution of brimonidine tartrate 0.2% (Bausch & Lomb Inc.) containing: brimonidine tartrate 0.02%, citric acid, polyvinyl alcohol, sodium chloride, sodium citrate, purified water, benzalkonium chloride (0.005%).
  • Oxymetazoline hydrochloride 0.05% and brimonidine tartrate 0.2% The solution of oxymetazoline hydrochloride 0.05% (Afrin® Original 12 Hour Nasal Spray (Schering-Plough Healthcare Products) containing: oxymetazoline hydrochloride 0.05%, benzalkonium chloride solution, edetate disodium, polyethylene glycol, povidone, propylene glycol, purified water, sodium phosphate dibasic, sodium phosphate monobasic was applied first, then was followed by the application of the solution of brimonidine tartrate 0.2% (Bausch & Lomb Inc.) containing: brimonidine tartrate 0.02%, citric acid, polyvinyl alcohol, sodium chloride, sodium citrate, purified water, benzalkonium chloride (0.005%).
  • the sites were followed clinically and photographically 1, 3, 4, 6, 11 and 13 days after the creation of the purpura.
  • the resolution of the purpura was more rapid than in the non-treated control site. This effect was most pronounced on site 2 (naphazoline 0.03%), site 4 (phenylephrine 1.0%), site 1 (oxymetazoline 0.05%), and site 6 (oxymetazoline hydrochloride 0.05%+brimonidine tartrate 0.2%).
  • site 2 naphazoline 0.03%
  • site 4 phenylephrine 1.0%)
  • site 1 oxymetazoline 0.05%)
  • site 6 oxymetazoline hydrochloride 0.05%+brimonidine tartrate 0.2%).
  • No local or systemic side effects were noted, and in particular, there was no rebound erythema or edema noted.
  • ⁇ 1 and ⁇ 2 adrenergic agonists were marked and treated with the topical application of a commercially available ⁇ 1 and/or ⁇ 2 agonist preparation.
  • Six (of the seven) marked sites were pretreated with the topical application of at least one of the testing preparations.
  • the preparations were applied to the skin and gently rubbed on the skin over and immediately surrounding the laser treatment sites 3 hours prior to and 1 hour prior to the delivery of the laser energy.
  • the applied solution was allowed to air-dry without any dressing.
  • Oxymetazoline hydrochloride (0.05%): A solution of oxymetazoline hydrochloride 0.05% (Afrin® Original 12 Hour Nasal Spray (Schering-Plough Healthcare Products) containing: oxymetazoline hydrochloride 0.05%, benzalkonium chloride solution, edetate disodium, polyethylene glycol, povidone, propylene glycol, purified water, sodium phosphate dibasic, sodium phosphate monobasic.
  • Naphazoline hydrochloride (0.03%): A solution of naphazoline hydrochloride 0.03% (Clear Eyes® Maximum Redness Relief (Prestige Brands Inc.) containing: naphazoline hydrochloride 0.03%, glycerin 0.5%, benzalkonium chloride, boric acid, edetate disodium, purified water, sodium borate).
  • Tetrahydrozoline hydrochloride (0.05%): A solution of tetrahydrozoline hydrochloride 0.05% (Visine® Original (Pfizer Consumer Healthcare) containing: tetrahydrozoline hydrochloride 0.05%, benzalkonium chloride, boric acid, edetate disodium, purified water, sodium borate, sodium chloride).
  • Phenylephrine hydrochloride (1.0%): A solution of phenylephrine hydrochloride 1.0% (Neo-Synephrine® Extra Strength Spray (Bayer HealthCare) containing: phenylephrine hydrochloride 1.0%, anhydrous citric acid, benzalkonium chloride, sodium chloride, sodium citrate, water).
  • Brimonidine tartrate (0.2%): A solution of brimonidine tartrate 0.2% (Bausch & Lomb Inc.) containing: brimonidine tartrate 0.02%, citric acid, polyvinyl alcohol, sodium chloride, sodium citrate, purified water, benzalkonium chloride (0.005%).
  • Site 13 oxymetazoline hydrochloride 0.05% and brimonidine tartrate 0.2%: The solution of oxymetazoline hydrochloride 0.05% (Afrin® Original 12 Hour Nasal Spray (Schering-Plough Healthcare Products) containing: oxymetazoline hydrochloride 0.05%, benzalkonium chloride solution, edetate disodium, polyethylene glycol, povidone, propylene glycol, purified water, sodium phosphate dibasic, sodium phosphate monobasic was applied first, then was followed by the application of the solution of brimonidine tartrate 0.2% (Bausch & Lomb Inc.) containing: brimonidine tartrate 0.02%, citric acid, polyvinyl alcohol, sodium chloride, sodium citrate, purified water, benzalkonium chloride (0.005%).
  • oxymetazoline hydrochloride 0.05% Afrin® Original 12 Hour Nasal Spray (Schering-Plough Healthcare Products) containing: oxymetazoline hydroch
  • the purpuric macule/patch created was smaller than in the non pre-treated site.
  • the time course of the resolution of the purpura was shortened as well. This effect was more pronounced on the sites pretreated with oxymetazoline hydrochloride 0.05%, naphazoline hydrochloride 0.03%, tetrahydrozoline hydrochloride 0.05%, and phenylephrine hydrochloride 1.0%, and was observed, though less pronounced, on the site pretreated with brimonidine tartrate 0.2% alone, and the site pretreated with oxymetazoline hydrochloride 0.05%+brimonidine tartrate 0.2%). No local or systemic side effects were noted, and in particular, there was no rebound erythema or edema noted.
  • topically applied ⁇ 2 adrenergic agonist for the treatment and prevention of solar purpura
  • actinic purpura “Bateman's purpura”
  • ⁇ 1 and ⁇ 2 adrenergic agonists used in order to evaluate the effect of topically applied ⁇ 1 and ⁇ 2 adrenergic agonists on the prevention and treatment of solar purpura.
  • a 78 year old male volunteer with a diagnosis of solar purpura of the forearms treated with a topically applied ⁇ 2 adrenergic agonist containing solution.
  • the test area comprised the right extensor forearm from the wrist to the elbow.
  • brimonidine tartrate 0.2% (Bausch & Lomb Inc.) containing: brimonidine tartrate 0.02%, citric acid, polyvinyl alcohol, sodium chloride, sodium citrate, purified water, and benzalkonium chloride (0.005%) was applied by the patient to the right dorsal forearm twice daily (morning and evening). The solution was applied with a cotton ball to the skin of the entire right extensor forearm from the wrist to the elbow. The sites were followed clinically and photographically.
  • topically applied ⁇ 1 adrenergic agonist for the treatment and prevention of solar purpura:
  • ⁇ 1 adrenergic agonists used for the treatment and prevention of solar purpura:
  • Subject 1 is a 78 year old man with a long-standing history of solar purpura on his forearms.
  • the test area comprised the left dorsal (extensor) forearm from the wrist to the elbow.
  • Pretreatment photos were taken and baseline measurements of the solar purpura on the left extensor forearm from the wrist to the elbow were measured. Two measurements were taken to approximate the area of each purpuric patch. The total area of purpura was 8.94 cm 2 .
  • a solution of oxymetazoline hydrochloride 0.05% (Afrin® Original 12 Hour Nasal Spray (Schering-Plough Healthcare Products) containing: oxymetazoline hydrochloride 0.05%, benzalkonium chloride solution, edetate disodium, polyethylene glycol, povidone, propylene glycol, purified water, sodium phosphate dibasic, sodium phosphate monobasic (0.005%)) was applied by the patient to the left dorsal forearm twice daily (morning and evening). The solution was applied with a cotton ball to the skin of the entire extensor forearm from the wrist to the elbow. The sites were followed clinically and photographically.
  • the patient returned for evaluation.
  • the total area of purpura on the left extensor forearm were measured and equaled 5.73 cm 2 (a decrease of 36% compared to baseline).
  • the patient continued to apply oxymetazoline solution 0.05% to the left dorsal forearm twice daily (morning and evening).
  • the patient returned for evaluation.
  • the total area of purpura on the left extensor forearm were measured and equaled 5.6 cm 2 (a decrease of 37% compared to baseline).
  • the patient continued to apply oxymetazoline solution 0.05% to the left dorsal forearm twice daily (morning and evening).
  • the patient returned for evaluation.
  • the total area of purpura on the left extensor forearm were measured and equaled 1.44 cm 2 (a decrease of 84% compared to baseline).
  • the patient continued to apply oxymetazoline solution 0.05% to the left dorsal forearm twice daily (morning and evening).
  • Subject 2 is an 87 year old woman with a long history of cosmetically disturbing solar purpura on her forearms who wanted to improve the appearance solar (decrease the purpura).
  • the test area comprised the left dorsal (extensor) forearm from the wrist to the elbow.
  • Pretreatment photos were taken and baseline measurements of the solar purpura on the left extensor forearm from the wrist to the elbow were measured. Two measurements were taken to approximate the area of each purpuric patch. The total area of purpura was 1.72 cm 2 . (SEE TABLE 3)
  • a solution of oxymetazoline hydrochloride 0.05% (Afrin® Original 12 Hour Nasal Spray (Schering-Plough Healthcare Products) containing: oxymetazoline hydrochloride 0.05%, benzalkonium chloride solution, edetate disodium, polyethylene glycol, povidone, propylene glycol, purified water, sodium phosphate dibasic, sodium phosphate monobasic (0.005%)) was applied by the patient to the left dorsal forearm once daily (morning). The solution was applied with a cotton ball to the skin of the entire extensor forearm from the wrist to the elbow. The sites were followed clinically and photographically.
  • the patient was reevaluated.
  • the total area of purpura on the left dorsal forearm measured 0 cm 2 (a decrease of 100% compared to baseline).
  • the patient continued to apply oxymetazoline solution 0.05% to the left extensor forearm once daily (morning).
  • the patient was reevaluated.
  • the total area of purpura on the left dorsal forearm measured 0 cm 2 (a decrease of 100% compared to baseline).
  • the patient continued to apply oxymetazoline solution 0.05% to the left extensor forearm once daily (morning).
  • the total area of purpura on the left extensor forearm measured 0.36 cm 2 (a decrease of 79% compared to baseline).

Abstract

Embodiments of the present invention are directed to compositions and methods for the treatment of purpura. Preferred compositions comprise an α adrenergic receptor agonist selected from selective α1 adrenergic receptor agonist, selective α2 adrenergic receptor agonist, non-selective α12 adrenergic receptor agonist, agents with α2 adrenergic receptor agonist activity and combinations thereof, in a pharmaceutically acceptable carrier in order to treat and improve the cosmetic appearance of hemorrhagic (purpuric) lesions in the skin.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 14/181,706, filed Feb. 16, 2014, which is a continuation of U.S. patent application Ser. No. 13/345,472, filed Jan. 6, 2012, now U.S. Pat. No. 8,673,953, issued Mar. 18, 2014, which is a continuation of U.S. patent application Ser. No. 12/272,253, filed Nov. 17, 2008, now U.S. Pat. No. 8,114,898, issued Feb. 14, 2012, which claims priority to U.S. Provisional Application No. 60/988,564 filed on Nov. 16, 2007, each of these documents being incorporated herein, in its entirety, by this specific reference.
  • BRIEF SUMMARY OF THE INVENTION
  • Embodiments of the present invention are directed to the use of an α adrenergic agonist for the treatment of vascular extravasation into the skin and particularly for the sequelae manifesting as cutaneous petechiae, purpura or ecchymoses. The α adrenergic agonist may be selected from a selective α1 adrenergic receptor agonist, selective α2 adrenergic receptor agonist, non-selective α12 adrenergic receptor agonist, agents with α2 adrenergic receptor agonist activity and combinations thereof. The α adrenergic agonist may be administered to a patient in need thereof in a composition comprising a therapeutically effective amount of the α adrenergic agonist, such as a composition for topical administration.
  • Further embodiments of the present invention are directed to the treatment of purpura in a subject comprising administering a therapeutically effective amount of an α adrenergic agonist to said subject, wherein the purpura is treated. In certain embodiments, the α adrenergic agonist may be selected from a selective α1 adrenergic receptor agonist, selective α2 adrenergic receptor agonist, non-selective α12 adrenergic receptor agonist, agents with α2 adrenergic receptor agonist activity and combinations thereof. In certain embodiments, the α adrenergic agonist may be administered to a patient in need thereof in a composition comprising a therapeutically effective amount of the α adrenergic agonist. In certain embodiments, the composition may be suitable for topical administration or local administration.
  • Further embodiments of the present invention are directed to the inhibition of purpura in a subject undergoing a surgical procedure comprising administering a therapeutically effective amount of an α adrenergic agonist to said subject prior to, during or following the surgical procedure, wherein the extent or amount of purpura generated following the surgical procedure is inhibited or decreased. In certain embodiments, the α adrenergic agonist may be selected from a selective α1 adrenergic receptor agonist, selective α2 adrenergic receptor agonist, non-selective α12 adrenergic receptor agonist, agents with α2 adrenergic receptor agonist activity and combinations thereof. In certain embodiments, the α adrenergic agonist may be administered to a patient in a composition comprising a therapeutically effective amount of the α adrenergic agonist. In certain embodiments, the composition may be suitable for topical administration or local administration.
  • DETAILED DESCRIPTION
  • Before the present compositions and methods are described, it is to be understood that this invention is not limited to the particular processes, compositions, or methodologies described, as these may vary. It is also to be understood that the terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the present invention, the preferred methods, devices, and materials are now described. All publications mentioned herein are incorporated by reference in their entirety. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.
  • Optical Isomers-Diastereomers-Geometric Isomers-Tautomers. Compounds described herein may contain an asymmetric center and may thus exist as enantiomers. Where the compounds according to the invention possess two or more asymmetric centers, they may additionally exist as diastereomers. The present invention includes all such possible stereoisomers as substantially pure resolved enantiomers, racemic mixtures thereof, as well as mixtures of diastereomers. The formulas are shown without a definitive stereochemistry at certain positions. The present invention includes all stereoisomers of such formulas and pharmaceutically acceptable salts thereof. Diastereoisomeric pairs of enantiomers may be separated by, for example, fractional crystallization from a suitable solvent, and the pair of enantiomers thus obtained may be separated into individual stereoisomers by conventional means, for example by the use of an optically active acid or base as a resolving agent or on a chiral HPLC column. Further, any enantiomer or diastereomer of a compound of the general formula may be obtained by stereospecific synthesis using optically pure starting materials or reagents of known configuration.
  • It must also be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, reference to a “cell” is a reference to one or more cells and equivalents thereof known to those skilled in the art, and so forth.
  • As used herein, the term “about” means plus or minus 10% of the numerical value of the number with which it is being used. Therefore, about 50% means in the range of 45%-55%.
  • “Administering” when used in conjunction with a therapeutic means to administer a therapeutic directly into or onto a target tissue or to administer a therapeutic to a patient whereby the therapeutic positively impacts the tissue to which it is targeted. Thus, as used herein, the term “administering”, when used in conjunction with an α1 or α2 adrenergic receptor agonist or composition thereof, can include, but is not limited to, providing an α1 or α2 adrenergic receptor agonist or composition thereof into or onto the target tissue; or providing an α1 or α2 adrenergic receptor agonist or composition thereof systemically to a patient by, e.g., intravenous injection whereby the therapeutic reaches the target tissue. Administering an α1 or α2 adrenergic receptor agonist or composition thereof may be accomplished by local administration, such as injection directly into or around the site of purpura, topical administration, or by either method in combination with other known techniques.
  • The term “improves” is used to convey that the present invention changes either the appearance, form, characteristics and/or the physical attributes of the tissue to which it is being provided, applied or administered. The change in form may be demonstrated by any of the following alone or in combination: enhanced appearance of the skin; decrease in vascular extravasation into the skin; decrease in cutaneous petechiae, purpura or ecchymoses; decrease in pigmentation; and hastening the resolution of the purpuric/hemorrhagic skin lesions.
  • The term “inhibiting” includes the administration of a compound of the present invention to prevent the onset of the symptoms, alleviating the symptoms, or eliminating the disease, condition or disorder.
  • The term “patient” and “subject” are interchangeable and may be taken to mean any living organism which may be treated with compounds of the present invention. As such, the terms may include, but are not limited to, any animal, mammal, primate or human, and preferably human.
  • The term “pharmaceutical composition” shall mean a composition comprising at least one active ingredient, whereby the composition is amenable to investigation for a specified, efficacious outcome in a mammal (for example, without limitation, a human). Those of ordinary skill in the art will understand and appreciate the techniques appropriate for determining whether an active ingredient has a desired efficacious outcome based upon the needs of the artisan.
  • By “pharmaceutically acceptable”, it is meant the carrier, diluent or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
  • “Pharmaceutically acceptable salt” is meant to indicate those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art. For example, Berge et al. (1977) J. Pharm. Sciences, Vol 6. 1-19, describes pharmaceutically acceptable salts in detail.
  • For the purposes of this invention, a “salt” as used herein is any acid addition salt, preferably a pharmaceutically acceptable acid addition salt, including but not limited to, halogenic acid salts such as, for example, hydrobromic, hydrochloric, hydrofluoric and hydroiodic acid salt; an inorganic acid salt such as, for example, nitric, perchloric, sulfuric and phosphoric acid salt; an organic acid salt such as, for example, sulfonic acid salts (methanesulfonic, trifluoromethane sulfonic, ethanesulfonic, benzenesulfonic or p-toluenesulfonic), acetic, malic, fumaric, succinic, citric, benzoic, gluconic, lactic, mandelic, mucic, pamoic, pantothenic, oxalic and maleic acid salts; and an amino acid salt such as aspartic or glutamic acid salt. The acid addition salt may be a mono- or di-acid addition salt, such as a di-hydrohalogenic, di-sulfuric, di-phosphoric or di-organic acid salt.
  • Unless otherwise indicated, the term “skin” means that outer integument or covering of the body, consisting of the dermis and the epidermis and resting upon subcutaneous tissue.
  • As used herein, the term “therapeutic” means an agent utilized to treat, combat, ameliorate, prevent or improve an unwanted condition or disease of a patient. In part, embodiments of the present invention are directed to the treatment of purpura or the decrease in vascular extravasation.
  • A “therapeutically effective amount” or “effective amount” of a composition is a predetermined amount calculated to achieve the desired effect, i.e., to decrease, block, or reverse purpura. The activity contemplated by the present methods includes both medical therapeutic and/or prophylactic treatment, as appropriate. As used herein, “therapeutically effective amount” refers to the amount of active compound or pharmaceutical agent that elicits a biological or medicinal response in a tissue, system, animal, individual or human that is being sought by a researcher, veterinarian, medical doctor or other clinician, which includes one or more of the following as specified in the particular methodology: (1) preventing the disease; for example, preventing a disease, condition or disorder in an individual that may be predisposed to the disease, condition or disorder but does not yet experience or display the pathology or symptomatology of the disease, (2) inhibiting the disease; for example, inhibiting a disease, condition or disorder in an individual that is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder (i.e., arresting further development of the pathology and/or symptomatology), and (3) ameliorating the disease; for example, ameliorating a disease, condition or disorder in an individual that is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder (i.e., reducing the severity of the pathology and/or symptomatology). The specific dose of a compound administered according to this invention to obtain therapeutic and/or prophylactic effects will, of course, be determined by the particular circumstances surrounding the case, including, for example, the compound administered, the route of administration, and the condition being treated. The compounds are effective over a wide dosage range and, for example, dosages will normally fall within the range of from about 0.0025% to about 5%, more usually in the range of from about 0.005% to about 2%, more usually in the range of from about 0.05% to about 1%, and more usually in the range of form about 0.1% to about 0.5% by weight. However, it will be understood that the effective amount administered will be determined by the physician in the light of the relevant circumstances including the condition to be treated, the choice of compound to be administered, and the chosen route of administration, and therefore the above dosage ranges are not intended to limit the scope of the invention in any way. A therapeutically effective amount of compound of this invention is typically an amount such that when it is administered in a physiologically tolerable excipient composition, it is sufficient to achieve an effective systemic concentration or local concentration in the tissue.
  • The terms “treat,” “treated,” or “treating” as used herein refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) an undesired physiological condition, disorder or disease, or to obtain beneficial or desired clinical results. For the purposes of this invention, beneficial or desired clinical results include, but are not limited to, alleviation of symptoms; diminishment of the extent of the condition, disorder or disease; stabilization (i.e., not worsening) of the state of the condition, disorder or disease; delay in onset or slowing of the progression of the condition, disorder or disease; amelioration of the condition, disorder or disease state; and remission (whether partial or total), whether detectable or undetectable, or enhancement or improvement of the condition, disorder or disease. Treatment includes eliciting a clinically significant response without excessive levels of side effects.
  • Generally speaking, the term “tissue” refers to any aggregation of similarly specialized cells which are united in the performance of a particular function.
  • As used herein, “α adrenergic agonist” refers to an α adrenergic agonist, a prodrug, congener or pharmaceutically acceptable salt thereof and may be selected from a selective α1 adrenergic receptor agonist, selective α2 adrenergic receptor agonist, non-selective α12 adrenergic receptor agonist, agents with α2 adrenergic receptor agonist activity and combinations thereof. An α adrenergic agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, α-methyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine. Selective α1 adrenergic receptor agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine. Selective α2 adrenergic receptor agonist may be selected from brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and α-methyldopa. Non-selective α12 adrenergic receptor agonist may be selected from epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, and mephentermine. Agents with α2 adrenergic receptor agonist activity may be selected from phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine.
  • Embodiments of the present invention are directed to the use of an α adrenergic agonist, or pharmaceutically acceptable salt thereof, for the treatment of vascular extravasation into the skin and particularly for the sequelae manifesting as cutaneous petechiae, purpura or ecchymoses. In certain embodiments, the α adrenergic agonist may be selected from a selective α1 adrenergic receptor agonist, selective α2 adrenergic receptor agonist, non-selective α12 adrenergic receptor agonist, agents with α2 adrenergic receptor agonist activity and a combination thereof. Preferably, the α adrenergic agonist is administered to a patient in a composition, preferably for topical or local administration to a patient in need thereof. In embodiments of the present invention, the α adrenergic agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, α-methyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, tizanidine and combinations thereof. Selective α1 adrenergic receptor agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine. In further embodiments, α1-adrenergic receptor agonist is preferably oxymetazoline, naphazoline, tetrahydrozoline, and phenylephrine hydrochloride. Selective α2 adrenergic receptor agonist may be selected from brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and α-methyldopa. In further embodiments, α2-adrenergic receptor agonist is preferably brimonidine. Non-selective α12 adrenergic receptor agonist may be selected from epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, and mephentermine. Agents with α2 adrenergic receptor agonist activity may be selected from phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine.
  • Embodiments of the present invention are directed toward the use of composition comprised of an α adrenergic agonist, which may be selected from a selective α1 adrenergic receptor agonist, selective α2 adrenergic receptor agonist, non-selective α12 adrenergic receptor agonist, agents with α2 adrenergic receptor agonist activity and a combination thereof in a pharmaceutically acceptable carrier in order to treat and improve the cosmetic appearance of these hemorrhagic lesions. In embodiments of the present invention, the α adrenergic agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, α-methyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, tizanidine and combinations thereof. Selective α1 adrenergic receptor agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine. In further embodiments, α1-adrenergic receptor agonist is preferably oxymetazoline, naphazoline, tetrahydrozoline, and phenylephrine hydrochloride. Selective α2 adrenergic receptor agonist may be selected from brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and α-methyldopa. In further embodiments, α2-adrenergic receptor agonist is preferably brimonidine. Non-selective α12 adrenergic receptor agonist may be selected from epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, and mephentermine. Agents with α2 adrenergic receptor agonist activity may be selected from phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine.
  • As used herein, the term “purpura” refers to any accumulation of blood in the skin due to vascular extravasation, irrespective of size or cause. As used herein, “purpura” refers to medical conditions commonly referred to as “petechiae” (pinpoint spots), “ecchymoses” (larger macular (flat) patches) and “purpura” (larger spots).
  • Purpura, in general, is hemorrhage of blood out of the vascular spaces and into the surrounding tissues of the skin or mucous membranes. This hemorrhage results in a collection of blood in the dermis of the skin that is visible initially as a dark purple/red discoloration that changes color as it breaks down and is resorbed.
  • In particular, purpura can be characterized as flat (macular or non-palpable) or raised (palpable or papular). The definition of macular purpuric subtypes include: Petechiae-defined as small purpura (less than 4 millimeters (mm) in diameter, purpura-defined as greater than 4 mm and less than 1 cm (centimeter) in diameter, and ecchymoses-defined as greater than 1 cm in diameter. The size divisions are not absolute but are useful rules of thumb and there is often a range in size of clinical purpuras in any one specific condition.
  • A bruise, also called a contusion or ecchymosis, is an injury to biological tissue in which the capillaries are damaged, allowing blood to seep into the surrounding tissue. Bruising is usually caused by a blunt impact and its likelihood and its severity increases as one ages due to thinning and loss of elasticity of the skin.
  • While not wishing to be bound by theory, we believe that by virtue of the fact that these compounds cause local vasoconstriction and a shunting of the blood back to deeper vessels due to their activity at the vascular α adrenergic receptors, their use may decrease the accumulation of blood (and hemosiderin, which is responsible for a long-lasting deep brown color) in the skin, resulting in a cosmetic improvement in these conditions.
  • Initially classified as either α or β subtype receptors based on anatomical location and functional considerations, in recent years, and with newer molecular genetic techniques, the simple model of two adrenergic receptors (adrenergic receptors) that mediate the vascular response to catecholamines has been replaced. The concept of “generic” a receptors, responsible mostly for “excitatory” functions such as vasoconstriction, uterine and urethral contraction and “generic” 0 receptors, responsible mostly for “inhibitory” functions such as vasodilatation, bronchodilation, uterine and urethral relaxation (though notably inotropic for the heart) has been further refined and specific receptor subtypes, localizations and functions have been elucidated. The current model is that of a complex family of structurally related receptors consisting of at least six a receptor subtypes (α1A 1a/c), α1B, α1D, α2A 2A/D), α2B, α2C) and at least three 0 receptor subtypes (β1, β2, β3), with additional conformational variants such as α1L and β4 bringing the total number of functional adrenergic receptor conformations to at least 11.
  • These adrenergic receptors are all members of the G-protein-coupled receptor (GPCR) superfamily of proteins and modulate their effects through a classic 7-transmembrane protein second-messenger system. Their final local and systemic effects however are myriad, as noted above, including vasoactive properties ranging from vasoconstriction to vasodilatation and occur through a wide variety of intracellular mechanisms, that are governed by local receptor subtype concentration, relative receptor subtype distribution throughout the body, ligand binding characteristics and other factors (e.g. local temperature, hypoxia). Elegant in vitro, in vivo and ex vivo studies in a variety of vascular tissues and species reveal that the contraction of peripheral vascular smooth muscle is primarily mediated by α1A and α1D receptor subtypes, though does vary somewhat in different vascular regions. α2 receptor studies suggest that α2A/D and α2B effects are also of importance, particularly on the arterial side, and that the α2A/D and α2C effects are of importance on the venular side, though variations based on the experimental model employed are well reported. The actual physiologic and clinical responses to stimulating or inhibiting these receptors selectively is, however, difficult to predict.
  • Though initially felt to modulate their effects purely through their vasoconstrictive properties, in recent years it has been demonstrated that several of the α vasoconstrictors also exhibit significant anti-inflammatory properties. In upper respiratory tract infections, oxymetazoline and xylometazoline have been shown to inhibit neutrophilic phagocytosis and oxidative burst, resulting in a decrease in microbial killing, decreased generation of pro-inflammatory cytokines, and decreased inflammation. Oxymetazoline has also recently been shown to have significant effects on the arachidonic acid cascade, strongly inhibiting 5-lipoxygenase activity thus decreasing the synthesis of the highly proinflammatory leukotriene B4. A potential clinical role for oxymetazoline, or other agents of this class, as inhibitors of inflammation and oxidative-stress dependent reactions in inflammatory and/or infectious skin conditions is intriguing, but has yet to be investigated.
  • Further embodiments of the present invention provide methods and compositions for treating purpura and other conditions of the skin characterized by intradermal cutaneous hemorrhages (e.g., petechiae, purpura, ecchymoses) by administering an α adrenergic receptor agonist to a patient in need thereof. In certain embodiments, the α adrenergic agonist may be selected from a selective α1 adrenergic receptor agonist, selective α2 adrenergic receptor agonist, non-selective α12 adrenergic receptor agonist, agents with α2 adrenergic receptor agonist activity and combinations thereof. In certain embodiments, a therapeutically effective amount of selective α1 adrenergic receptor agonist, selective α2 adrenergic receptor agonist, non-selective α12 adrenergic receptor agonist, agents with α2 adrenergic receptor agonist activity and combinations thereof is administered. In certain embodiments, the α adrenergic receptor agonist is administered topically or locally to the patient. In embodiments of the present invention, the a adrenergic agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, α-methyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, tizanidine and combinations thereof. Selective α1 adrenergic receptor agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine. In further embodiments, α1-adrenergic receptor agonist is preferably oxymetazoline, naphazoline, tetrahydrozoline, and phenylephrine hydrochloride. Selective α2 adrenergic receptor agonist may be selected from brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and α-methyldopa. In further embodiments, α2-adrenergic receptor agonist is preferably brimonidine. Non-selective α12 adrenergic receptor agonist may be selected from epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, and mephentermine. Agents with α2 adrenergic receptor agonist activity may be selected from phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine.
  • Another embodiment of the present invention provides methods and compositions for treating other conditions of the skin characterized by intradermal hemorrhage and skin discoloration due to the resorption of the intracutaneous blood accumulation comprising administering an α adrenergic receptor agonist to a patient in need thereof. In certain embodiments, the α adrenergic agonist may be selected from a selective α1 adrenergic receptor agonist, selective α2 adrenergic receptor agonist, non-selective α12 adrenergic receptor agonist, agents with α2 adrenergic receptor agonist activity and combinations thereof. In certain embodiments, a therapeutically effective amount of the α adrenergic receptor agonist is administered. In certain embodiments, the α adrenergic receptor agonist is administered topically or locally to the patient. In embodiments of the present invention, the α adrenergic agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, α-methyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, tizanidine and combinations thereof. Selective α1 adrenergic receptor agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine. In further embodiments, α1-adrenergic receptor agonist is preferably oxymetazoline, naphazoline, tetrahydrozoline, and phenylephrine hydrochloride. Selective α2 adrenergic receptor agonist may be selected from brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and α-methyldopa. In further embodiments, α2-adrenergic receptor agonist is preferably brimonidine. Non-selective α12 adrenergic receptor agonist may be selected from epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, and mephentermine. Agents with α2 adrenergic receptor agonist activity may be selected from phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine.
  • Another embodiment of the present invention provides methods and compositions for improvement of bruising comprising administering an α adrenergic receptor agonist to a patient in need thereof. In certain embodiments, the α adrenergic agonist may be selected from a selective α1 adrenergic receptor agonist, selective α2 adrenergic receptor agonist, non-selective α12 adrenergic receptor agonist, agents with α2 adrenergic receptor agonist activity and combinations thereof. In certain embodiments, a therapeutically effective amount of the α adrenergic receptor agonist is administered. In certain embodiments, the α adrenergic receptor agonist is administered topically or locally to the patient. In embodiments of the present invention, the α adrenergic agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, α-methyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, tizanidine and combinations thereof. Selective α1 adrenergic receptor agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine. In further embodiments, α1-adrenergic receptor agonist is preferably oxymetazoline, naphazoline, tetrahydrozoline, and phenylephrine hydrochloride. Selective α2 adrenergic receptor agonist may be selected from brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and α-methyldopa. In further embodiments, α2-adrenergic receptor agonist is preferably brimonidine. Non-selective α12 adrenergic receptor agonist may be selected from epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, and mephentermine. Agents with α2 adrenergic receptor agonist activity may be selected from phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine.
  • Other embodiments of the present invention are methods and compositions for treating the cutaneous manifestations of intrinsic (chronological) and extrinsic (e.g. caused by sun exposure, smoking, etc) aging of the skin including, but not limited to, purpura (or “bruising”), skin wrinkling, sallow-yellow skin discoloration, dark circles under the eyes, bruising, bruising caused by laser administration, and hyperpigmentation comprising administering an α adrenergic receptor agonist to a patient in need thereof. In certain embodiments, the α adrenergic agonist may be selected from a selective α1 adrenergic receptor agonist, selective α2 adrenergic receptor agonist, non-selective α12 adrenergic receptor agonist, agents with α2 adrenergic receptor agonist activity and combinations thereof. In certain embodiments, a therapeutically effective amount of the α adrenergic receptor agonist is administered. In certain embodiments, the α adrenergic receptor agonist is administered topically or locally to the patient. In embodiments of the present invention, the α adrenergic agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, α-methyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, tizanidine and combinations thereof. Selective α1 adrenergic receptor agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine. In further embodiments, α1-adrenergic receptor agonist is preferably oxymetazoline, naphazoline, tetrahydrozoline, and phenylephrine hydrochloride. Selective α2 adrenergic receptor agonist may be selected from brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and α-methyldopa. In further embodiments, α2-adrenergic receptor agonist is preferably brimonidine. Non-selective α12 adrenergic receptor agonist may be selected from epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, and mephentermine. Agents with α2 adrenergic receptor agonist activity may be selected from phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine.
  • Further embodiment of the present invention provides methods and compositions for decreasing bruising caused by laser by administering an α adrenergic receptor agonist to a patient in need thereof prior to or soon after laser treatment. In certain embodiments, the α adrenergic agonist may be selected from a selective α1 adrenergic receptor agonist, selective α2 adrenergic receptor agonist, non-selective α12 adrenergic receptor agonist, agents with α2 adrenergic receptor agonist activity and combinations thereof. In certain embodiments, a therapeutically effective amount of the α adrenergic receptor agonist is administered. In certain embodiments, the α adrenergic receptor agonist is administered topically or locally to the patient. In embodiments of the present invention, the α adrenergic agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, α-methyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, tizanidine and combinations thereof. Selective α1 adrenergic receptor agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine. In further embodiments, α1-adrenergic receptor agonist is preferably oxymetazoline, naphazoline, tetrahydrozoline, and phenylephrine hydrochloride. Selective α2 adrenergic receptor agonist may be selected from brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and α-methyldopa. In further embodiments, α2-adrenergic receptor agonist is preferably brimonidine. Non-selective α12 adrenergic receptor agonist may be selected from epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, and mephentermine. Agents with α2 adrenergic receptor agonist activity may be selected from phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine.
  • Further embodiments of the present invention provide methods and compositions for resolving purpura using such a laser or a non-laser light source in combination with an α1 adrenergic receptor agonist, an α2 adrenergic receptor agonist or a combination thereof to a patient in need thereof prior to, during or following the use of such a laser. In certain embodiments, the α adrenergic agonist may be selected from a selective α1 adrenergic receptor agonist, selective α2 adrenergic receptor agonist, non-selective α12 adrenergic receptor agonist, agents with α2 adrenergic receptor agonist activity and combinations thereof. In certain embodiments, a therapeutically effective amount of the α adrenergic receptor agonist is administered. In certain embodiments, the α adrenergic receptor agonist is administered topically or locally to the patient. In embodiments of the present invention, the α adrenergic agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, α-methyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, tizanidine and combinations thereof. Selective α1 adrenergic receptor agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine. In further embodiments, α1-adrenergic receptor agonist is preferably oxymetazoline, naphazoline, tetrahydrozoline, and phenylephrine hydrochloride. Selective α2 adrenergic receptor agonist may be selected from brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and α-methyldopa. In further embodiments, α2-adrenergic receptor agonist is preferably brimonidine. Non-selective α12 adrenergic receptor agonist may be selected from epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, and mephentermine. Agents with α2 adrenergic receptor agonist activity may be selected from phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine.
  • Further embodiments of the present invention provide methods and compositions for treatment of purpura conditions caused by a surgical procedure involving physical trauma to the skin and/or cutaneous vasculature. As used herein, the term surgical procedure refers to any intervention that may result in an injury to biological tissue in which the skin, cutaneous and subcutaneous vascular and surrounding tissues might sustain injury that would allow blood to seep into the surrounding tissue. Such interventions include, but are not limited to needle-sticks (e.g. for phlebotomy or infusion), injection of therapeutic agents (e.g. vaccines or sclerotherapy, injection of neurotoxins or fillers for soft-tissue augmentation, cold-steel surgery (e.g. “incisional” or “excisional” surgery), “minimally-invasive” procedures (e.g. laparoscopic, arthroscopic procedures, liposuction), laser, thermal, intense pulsed light (IPL), other electromagnetic radiation-based procedures, radiofrequency, chemical, electro-surgical and ultrasonic procedures. In such embodiments, a therapeutically effective amount of the a adrenergic receptor agonist, is administered to a patient prior to, during and/or after said surgical procedure, such that the formation of purpura (extent, duration, amount, size) is inhibited or decreased. In certain embodiments, the α adrenergic agonist may be selected from a selective α1 adrenergic receptor agonist, selective α2 adrenergic receptor agonist, non-selective α12 adrenergic receptor agonist, agents with α2 adrenergic receptor agonist activity and combinations thereof. In certain embodiments, a therapeutically effective amount of the α adrenergic receptor agonist is administered. In certain embodiments, the α adrenergic receptor agonist is administered topically or locally to the patient. In embodiments of the present invention, the α adrenergic agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, α-methyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, tizanidine and combinations thereof. Selective α1 adrenergic receptor agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine. In further embodiments, α1-adrenergic receptor agonist is preferably oxymetazoline, naphazoline, tetrahydrozoline, and phenylephrine hydrochloride. Selective α2 adrenergic receptor agonist may be selected from brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and α-methyldopa. In further embodiments, α2-adrenergic receptor agonist is preferably brimonidine. Non-selective α12 adrenergic receptor agonist may be selected from epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, and mephentermine. Agents with α2 adrenergic receptor agonist activity may be selected from phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine.
  • Further embodiments of the present invention provide methods and compositions for preventing purpura caused by a surgical procedure involving physical trauma to the skin and/or cutaneous vasculature, such as, for example, external blunt-force trauma, internal blunt-force trauma (e.g. liposuction trauma or surgical undermining trauma), “sharp” trauma (e.g. skin incision, skin puncture, needle stick), laceration, dermabrasion, chemical burn, thermal burn, and electrical burn. In such embodiments, a therapeutically effective amount of the α adrenergic receptor agonist, is administered to a patient prior to, during and/or after said surgical procedure, such that the formation of purpura (extent, duration, amount, size) is prevented. In certain embodiments, the α adrenergic agonist may be selected from a selective α1 adrenergic receptor agonist, selective α2 adrenergic receptor agonist, non-selective α12 adrenergic receptor agonist, agents with α2 adrenergic receptor agonist activity and combinations thereof. In certain embodiments, a therapeutically effective amount of the α adrenergic receptor agonist is administered. In certain embodiments, the α adrenergic receptor agonist is administered topically or locally to the patient. In embodiments of the present invention, the α adrenergic agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, α-methyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, tizanidine and combinations thereof. Selective α1 adrenergic receptor agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine. In further embodiments, α1-adrenergic receptor agonist is preferably oxymetazoline, naphazoline, tetrahydrozoline, and phenylephrine hydrochloride. Selective α2 adrenergic receptor agonist may be selected from brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and α-methyldopa. In further embodiments, α2-adrenergic receptor agonist is preferably brimonidine. Non-selective α12 adrenergic receptor agonist may be selected from epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, and mephentermine. Agents with α2 adrenergic receptor agonist activity may be selected from phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine.
  • Further embodiments of the present invention provide compositions comprising at least one α1 adrenergic receptor agonist and/or at least one α2 adrenergic receptor agonist, alone or in combination, into a cosmetic, pharmaceutical or dermatological composition for decreasing and/or preventing purpura and other conditions of the skin characterized by intradermal cutaneous hemorrhages and to administer said compositions to a mammal, notably a human, in order to treat or prevent the disease states indicated above.
  • Further embodiments of the present invention provide compositions comprising at an α adrenergic receptor agonist in a cosmetic, pharmaceutical or dermatological composition for decreasing and/or preventing purpura and other conditions of the skin characterized by intradermal cutaneous hemorrhages. In certain embodiments, the α adrenergic receptor agonist may be selected from a selective α1 adrenergic receptor agonist, selective α2 adrenergic receptor agonist, non-selective α12 adrenergic receptor agonist, agents with α2 adrenergic receptor agonist activity and combinations thereof. In some embodiments, the composition may further comprise other agents known to be effective in treating purpura.
  • Embodiments of the present invention are directed to methods for treating purpura and other conditions of the skin characterized by intradermal cutaneous hemorrhages in a patient in need of such treatment, comprising the administration, preferably topical or local, of a therapeutically effective amount of a composition comprising an α-adrenergic receptor agonist. In certain embodiments, the α adrenergic agonist may be selected from a selective α1 adrenergic receptor agonist, selective α2 adrenergic receptor agonist, non-selective α12 adrenergic receptor agonist, agents with α2 adrenergic receptor agonist activity and combinations thereof.
  • In embodiments of the present invention, the α adrenergic agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, α-methyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, tizanidine and combinations thereof.
  • Selective α1 adrenergic receptor agonist may be selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine. In further embodiments, α1-adrenergic receptor agonist is preferably oxymetazoline, naphazoline, tetrahydrozoline, and phenylephrine hydrochloride.
  • Selective α2 adrenergic receptor agonist may be selected from brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and α-methyldopa. In further embodiments, α2-adrenergic receptor agonist is preferably brimonidine.
  • Non-selective α12 adrenergic receptor agonist may be selected from epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, and mephentermine.
  • Agents with α2 adrenergic receptor agonist activity may be selected from phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine (deoxyepinephrine), ethylnorepinephrine, levarterenol (L-Norepinephrine), lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, and tizanidine.
  • Preferably, the composition comprises at least one selective α1 adrenergic receptor agonist, selective α2 adrenergic receptor agonist, non-selective α12 adrenergic receptor agonist, and agents with α2 adrenergic receptor agonist activity formulated in a pharmaceutically acceptable medium. For example, a gel, cream, lotion or solution which may be administered by spreading the gel, cream, lotion or solution onto or surrounding the affected area.
  • Other embodiments may also include combinations of therapeutically effective amounts of combinations of a selective α1 adrenergic receptor agonist, a selective α2 adrenergic receptor agonist, a non-selective α12 adrenergic receptor agonist, and agents with α2 adrenergic receptor agonist activity. The therapeutically effective amount of each agent may be significantly decreased when used in combination with other α-adrenergic receptor agonist than when used as the sole active agent.
  • Preferred embodiments may also include enhancers of cutaneous penetration or inhibitors or regulators of cutaneous penetration as required to increase therapeutic efficacy and/or decrease systemic absorption and any potential undesirable systemic effects of the active agent(s).
  • Further embodiments of the present invention provide methods of treating such conditions by administering one or more α1-adrenergic receptor agonists alone or in combination with one or more and α2-adrenergic receptor agonists (alone or in combination) with active agents for preventing and/or treating other skin complaints, conditions and afflictions. Examples of these agents include: (i) antirosacea agents such as metronidazole, precipitated sulfur, sodium sulfacetamide, or azelaic acid; (ii) antibacterial agents (antibiotics) such as clindamycin phosphate, erythromycin, or antibiotics from the tetracycline family; (iii) antimycobacterial agents such as dapsone; (iv) antiacne agents such as retinoids, or benzoyl peroxide; (v) antiparasitic agents such as metronidazole, permethrin, crotamiton or pyrethroids; (vi) antifungal agents such as compounds of the imidazole family such as miconazole, clotrimazole, econazole, ketoconazole, or salts thereof, polyene compounds such as amphotericin B, compound of the allylamine family such as terbinafine; (vii) steroidal anti-inflammatory agents such as hydrocortisone triamcinolone, fluocinonide, betamethasone valerate or clobetasol propionate, or non-steroidal anti-inflammatory agents such as ibuprofen and salts thereof, naproxen and salts thereof, or acetaminophen; (viii) anesthetic agents such as lidocaine, prilocalne, tetracaine, hydrochloride and derivatives thereof; (ix) antipruriginous agents such as thenaldine, trimeprazine, or pramoxine; (x) antiviral agents such as acyclovir; (xi) keratolytic agents such as alpha- and beta-hydroxy acids such as glycolic acid or salicylic acid, or urea; (xii) anti-free radical agents (antioxidants) such as vitamin E (alpha tocopherol) and its derivatives, vitamin C (ascorbic acid), vitamin A (retinol) and its derivatives, vitamin K, superoxide dismutase and derivatives of plants, particularly of the genus Arnica, such as sesquiterpene lactones (xiii) antiseborrheic agents such as zinc pyrithione and selenium sulfide; (xiv) antihistamines such as cyproheptadine or hydroxyzine; (xv) tricyclic antidepressants such as doxepin hydrochloride and (xvi) combinations thereof.
  • For example, in some aspects, the invention is directed to a pharmaceutical composition comprising a selective α1 adrenergic receptor agonist, a selective α2 adrenergic receptor agonist, a non-selective α12 adrenergic receptor agonist, agents with α2 adrenergic receptor agonist activity and combinations thereof and a pharmaceutically acceptable carrier or diluent, or an effective amount of a pharmaceutical composition comprising a compound as defined above.
  • The compositions may be formulated to be administered orally, ophthalmically, intravenously, intramuscularly, intra-arterially, intramedullary, intrathecally, intraventricularly, transdermally, subcutaneously, intraperitoneally, intravascularly, intranasally, eternally, topically, sublingually, or rectally, preferably topically or locally.
  • Embodiments of the invention include compositions comprising an α adrenergic receptor agonist, preferably a selective α1 adrenergic receptor agonist, a selective α2 adrenergic receptor agonist, a non-selective α12 adrenergic receptor agonist, agents with α2 adrenergic receptor agonist activity and combinations thereof. Preferably the compositions may be administered topically or locally. The compounds of the present invention can be administered in the conventional manner by any route where they are active. Administration can be systemic, topical, or oral. For example, administration can be, but is not limited to, parenteral, subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal, oral, buccal, or ocular routes, or intravaginally, intravascularly, by inhalation, by depot injections, or by implants. Thus, modes of administration for the compounds of the present invention (either alone or in combination with other pharmaceuticals) can be, but are not limited to, sublingual, injectable (including short-acting, depot, implant and pellet forms injected subcutaneously or intramuscularly), or by use of vaginal creams, suppositories, pessaries, vaginal rings, rectal suppositories, intrauterine devices, and transdermal forms such as patches and creams.
  • One of ordinary skill in the art will understand and appreciate the dosages and timing of said dosages to be administered to a patient in need thereof. The doses and duration of treatment may vary, and may be based on assessment by one of ordinary skill in the art based on monitoring and measuring improvements in skin tissues. This assessment may be made based on outward physical signs of improvement, such as decreased redness, or other physiological signs or markers. The doses may also depend on the condition or disease being treated, the degree of the condition or disease being treated and further on the age and weight of the patient.
  • Specific modes of administration will depend on the indication. The selection of the specific route of administration and the dose regimen may be adjusted or titrated by the clinician according to methods known to the clinician in order to obtain the optimal clinical response. The amount of compound to be administered may be that amount which is therapeutically effective. The dosage to be administered may depend on the characteristics of the subject being treated, e.g., the particular animal or human subject treated, age, weight, health, types of concurrent treatment, if any, and frequency of treatments, and can be easily determined by one of skill in the art (e.g., by the clinician).
  • A preferable route of administration of the compositions of the present invention may be topical or local.
  • Aqueous suspensions contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxy-propylmethylcellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl, p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose or saccharin.
  • Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or acetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.
  • Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example sweetening, flavoring and coloring agents, may also be present.
  • The pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, for example olive oil or arachis oil, or a mineral oil, for example liquid paraffin or mixtures of these. Suitable emulsifying agents may be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally-occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol anhydrides, for example sorbitan monooleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening and flavoring agents.
  • Pharmaceutical formulations comprising the compounds of the present invention and a suitable carrier may also be any number of solid dosage forms which include, but are not limited to, tablets, capsules, cachets, pellets, pills, powders and granules; topical dosage forms which include, but are not limited to, solutions, powders, fluid emulsions, fluid suspensions, semi-solids, ointments, pastes, creams, gels and jellies, and foams; and parenteral dosage forms which include, but are not limited to, solutions, suspensions, emulsions, and dry powder; comprising an effective amount of a polymer or copolymer of the present invention. It is also known in the art that the active ingredients can be contained in such formulations with pharmaceutically acceptable diluents, fillers, disintegrants, binders, lubricants, surfactants, hydrophobic vehicles, water soluble vehicles, emulsifiers, buffers, humectants, moisturizers, solubilizers, preservatives and the like. The means and methods for administration are known in the art and an artisan can refer to various pharmacologic references for guidance. For example, Modern Pharmaceutics, Banker & Rhodes, Marcel Dekker, Inc. (1979); and Goodman & Gilman's The Pharmaceutical Basis of Therapeutics, 6th Edition, MacMillan Publishing Co., New York (1980) can be consulted.
  • The compounds of the present invention can be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. The compounds can be administered by continuous infusion over a period of about 15 minutes to about 24 hours. Formulations for injection can be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions can take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and can contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
  • For oral administration, the compounds can be formulated readily by combining these compounds with pharmaceutically acceptable carriers well known in the art. As used herein, the term “pharmaceutically acceptable carrier” means a non-toxic, inert solid, semi-solid liquid filler, diluent, encapsulating material, formulation auxiliary of any type, or simply a sterile aqueous medium, such as saline. Some examples of the materials that can serve as pharmaceutically acceptable carriers are sugars, such as lactose, glucose and sucrose, starches such as corn starch and potato starch, cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt, gelatin, talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols, such as propylene glycol, polyols such as glycerin, sorbitol, mannitol and polyethylene glycol; esters such as ethyl oleate and ethyl laurate, agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline, Ringer's solution; ethyl alcohol and phosphate buffer solutions, as well as other non-toxic compatible substances used in pharmaceutical formulations. Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained by adding a solid excipient, optionally grinding the resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients include, but are not limited to, fillers such as sugars, including, but not limited to, lactose, sucrose, mannitol, and sorbitol; cellulose preparations such as, but not limited to, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and polyvinylpyrrolidone (PVP). If desired, disintegrating agents can be added, such as, but not limited to, the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.
  • Dragee cores can be provided with suitable coatings. For this purpose, concentrated sugar solutions can be used, which can optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments can be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.
  • Pharmaceutical preparations which can be used orally include, but are not limited to, push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as, e.g., lactose, binders such as, e.g., starches, and/or lubricants such as, e.g., talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds can be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers can be added. All formulations for oral administration should be in dosages suitable for such administration.
  • Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin, or olive oil.
  • Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative and flavoring and coloring agents.
  • For buccal or sublingual administration, the compositions can take the form of tablets, flash melts or lozenges formulated in any conventional manner.
  • For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit can be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator can be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.
  • The compounds of the present invention can also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
  • In addition to the formulations described previously, the compounds of the present invention can also be formulated as a depot preparation. Such long acting formulations can be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection.
  • Depot injections can be administered at about 1 to about 6 months or longer intervals. Thus, for example, the compounds can be formulated with suitable polymeric or hydrophobic materials (for example, as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
  • In transdermal administration, the compounds of the present invention, for example, can be applied to a plaster, or can be applied by transdermal, therapeutic systems that are consequently supplied to the organism.
  • Pharmaceutical and therapeutic compositions of the compounds also can comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include, but are not limited to, calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as, e.g., polyethylene glycols.
  • Although the present invention has been described in considerable detail with reference to certain preferred embodiments thereof, other versions are possible. Therefore the spirit and scope of the appended claims should not be limited to the description and the preferred versions contained within this specification.
  • While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts which can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not limit the scope of the invention. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description.
  • Example 1
  • In order to evaluate the effect of topically applied α1 and α2 adrenergic agonists on the resolution of purpura, purpuric macules/patches were experimentally created on the trunk of a volunteer. Seven sites were marked, and utilizing a pulsed-dye laser (585 nm) and laser light parameters known to be purpurogenic, purpuric macules/patches were successfully induced at each site. Immediately after the laser energy was delivered, the topical application of commercially available α1 and/or α2 adrenergic agonist preparations was begun. The preparations were applied to the skin and gently rubbed on the skin over and immediately surrounding the laser treatment sites every 6-8 hours (3-4 times/day). The applied solution was allowed to air-dry without any dressing. The areas were followed clinically and photographically. The evaluated compounds were:
  • Site 1: Oxymetazoline hydrochloride (0.05%): A solution of oxymetazoline hydrochloride 0.05% (Afrin® Original 12 Hour Nasal Spray (Schering-Plough Healthcare Products) containing: oxymetazoline hydrochloride 0.05%, benzalkonium chloride solution, edetate disodium, polyethylene glycol, povidone, propylene glycol, purified water, sodium phosphate dibasic, sodium phosphate monobasic.
  • Site 2: Naphazoline hydrochloride (0.03%): A solution of naphazoline hydrochloride 0.03% (Clear Eyes® Maximum Redness Relief (Prestige Brands Inc.) containing: naphazoline hydrochloride 0.03%, glycerin 0.5%, benzalkonium chloride, boric acid, edetate disodium, purified water, sodium borate).
  • Site 3: Tetrahydrozoline hydrochloride (0.05%): A solution of tetrahydrozoline hydrochloride 0.05% (Visine® Original (Pfizer Consumer Healthcare) containing: tetrahydrozoline hydrochloride 0.05%, benzalkonium chloride, boric acid, edetate disodium, purified water, sodium borate, sodium chloride).
  • Site 4: Phenylephrine hydrochloride (1.0%): A solution of phenylephrine hydrochloride 1.0% (Neo-Synephrine® Extra Strength Spray (Bayer HealthCare) containing: phenylephrine hydrochloride 1.0%, anhydrous citric acid, benzalkonium chloride, sodium chloride, sodium citrate, water).
  • Site 5: Brimonidine tartrate (0.2%): A solution of brimonidine tartrate 0.2% (Bausch & Lomb Inc.) containing: brimonidine tartrate 0.02%, citric acid, polyvinyl alcohol, sodium chloride, sodium citrate, purified water, benzalkonium chloride (0.005%).
  • Site 6: Oxymetazoline hydrochloride 0.05% and brimonidine tartrate 0.2%: The solution of oxymetazoline hydrochloride 0.05% (Afrin® Original 12 Hour Nasal Spray (Schering-Plough Healthcare Products) containing: oxymetazoline hydrochloride 0.05%, benzalkonium chloride solution, edetate disodium, polyethylene glycol, povidone, propylene glycol, purified water, sodium phosphate dibasic, sodium phosphate monobasic was applied first, then was followed by the application of the solution of brimonidine tartrate 0.2% (Bausch & Lomb Inc.) containing: brimonidine tartrate 0.02%, citric acid, polyvinyl alcohol, sodium chloride, sodium citrate, purified water, benzalkonium chloride (0.005%).
  • Site 7: No treatment after laser light delivered. (“Control”)
  • The sites were followed clinically and photographically 1, 3, 4, 6, 11 and 13 days after the creation of the purpura. In each of the sites treated with at least one of the α agonist preparations, the resolution of the purpura was more rapid than in the non-treated control site. This effect was most pronounced on site 2 (naphazoline 0.03%), site 4 (phenylephrine 1.0%), site 1 (oxymetazoline 0.05%), and site 6 (oxymetazoline hydrochloride 0.05%+brimonidine tartrate 0.2%). No local or systemic side effects were noted, and in particular, there was no rebound erythema or edema noted.
  • These trials demonstrate that selective α1 adrenergic receptor agonists and selective α2 adrenergic receptor agonists, used separately or in combination, when topically applied to and around a treatment site after a procedure that can/will induce purpura, will reduce the size and appearance of the purpuric macules/patches and is an effective treatment to hasten their resolution.
  • Example 2
  • In order to evaluate the effect of topically applied α1 and α2 adrenergic agonists on the prevention of laser-induced purpura on normal non-actinically damaged skin, seven sites on the trunk of a volunteer were marked and treated with the topical application of a commercially available α1 and/or α2 agonist preparation. Six (of the seven) marked sites were pretreated with the topical application of at least one of the testing preparations. The preparations were applied to the skin and gently rubbed on the skin over and immediately surrounding the laser treatment sites 3 hours prior to and 1 hour prior to the delivery of the laser energy. The applied solution was allowed to air-dry without any dressing. Utilizing a pulsed-dye laser (585 nm) and laser light parameters known to be purpurogenic, purpuric macules/patches were successfully induced at each site. After the delivery of the laser energy, each spot received only topical petrolatum jelly 3-4 times/day and no additional application of any testing compound. The sites were followed clinically and photographically 1, 3, 4, 6, 11 and 13 days after the creation of the purpura. The evaluated compounds were:
  • Site 8: Oxymetazoline hydrochloride (0.05%): A solution of oxymetazoline hydrochloride 0.05% (Afrin® Original 12 Hour Nasal Spray (Schering-Plough Healthcare Products) containing: oxymetazoline hydrochloride 0.05%, benzalkonium chloride solution, edetate disodium, polyethylene glycol, povidone, propylene glycol, purified water, sodium phosphate dibasic, sodium phosphate monobasic.
  • Site 9: Naphazoline hydrochloride (0.03%): A solution of naphazoline hydrochloride 0.03% (Clear Eyes® Maximum Redness Relief (Prestige Brands Inc.) containing: naphazoline hydrochloride 0.03%, glycerin 0.5%, benzalkonium chloride, boric acid, edetate disodium, purified water, sodium borate).
  • Site 10: Tetrahydrozoline hydrochloride (0.05%): A solution of tetrahydrozoline hydrochloride 0.05% (Visine® Original (Pfizer Consumer Healthcare) containing: tetrahydrozoline hydrochloride 0.05%, benzalkonium chloride, boric acid, edetate disodium, purified water, sodium borate, sodium chloride).
  • Site 11: Phenylephrine hydrochloride (1.0%): A solution of phenylephrine hydrochloride 1.0% (Neo-Synephrine® Extra Strength Spray (Bayer HealthCare) containing: phenylephrine hydrochloride 1.0%, anhydrous citric acid, benzalkonium chloride, sodium chloride, sodium citrate, water).
  • Site 12: Brimonidine tartrate (0.2%): A solution of brimonidine tartrate 0.2% (Bausch & Lomb Inc.) containing: brimonidine tartrate 0.02%, citric acid, polyvinyl alcohol, sodium chloride, sodium citrate, purified water, benzalkonium chloride (0.005%).
  • Site 13: oxymetazoline hydrochloride 0.05% and brimonidine tartrate 0.2%: The solution of oxymetazoline hydrochloride 0.05% (Afrin® Original 12 Hour Nasal Spray (Schering-Plough Healthcare Products) containing: oxymetazoline hydrochloride 0.05%, benzalkonium chloride solution, edetate disodium, polyethylene glycol, povidone, propylene glycol, purified water, sodium phosphate dibasic, sodium phosphate monobasic was applied first, then was followed by the application of the solution of brimonidine tartrate 0.2% (Bausch & Lomb Inc.) containing: brimonidine tartrate 0.02%, citric acid, polyvinyl alcohol, sodium chloride, sodium citrate, purified water, benzalkonium chloride (0.005%).
  • Site 14: No treatment after laser light delivered. (“Control”)
  • In each of the sites treated with at least one of the α agonist preparations prior to the delivery of the laser energy, the purpuric macule/patch created was smaller than in the non pre-treated site. The time course of the resolution of the purpura was shortened as well. This effect was more pronounced on the sites pretreated with oxymetazoline hydrochloride 0.05%, naphazoline hydrochloride 0.03%, tetrahydrozoline hydrochloride 0.05%, and phenylephrine hydrochloride 1.0%, and was observed, though less pronounced, on the site pretreated with brimonidine tartrate 0.2% alone, and the site pretreated with oxymetazoline hydrochloride 0.05%+brimonidine tartrate 0.2%). No local or systemic side effects were noted, and in particular, there was no rebound erythema or edema noted.
  • These trials demonstrate that selective α1 adrenergic receptor agonists and selective α2 adrenergic receptor agonists, used separately or in combination, when topically applied prior to a procedure that can/will induce purpura, will reduce the size and appearance of the purpuric macules/patches and is an effective treatment to hasten their resolution.
  • Example 3
  • The use of a topically applied α2 adrenergic agonist for the treatment and prevention of solar purpura (“actinic purpura”, “Bateman's purpura”): In order to evaluate the effect of topically applied α1 and α2 adrenergic agonists on the prevention and treatment of solar purpura, a 78 year old male volunteer with a diagnosis of solar purpura of the forearms treated with a topically applied α2 adrenergic agonist containing solution. The test area comprised the right extensor forearm from the wrist to the elbow. Photos were taken and baseline scores for the solar purpura on his right dorsal forearm from the wrist to the elbow were measured 6 times over a 91 day period before initiating treatment. Two measurements were taken to approximate the area of each purpuric patch. The measurements ranged from 0 cm2 to 9.98 cm2 and the mean over 6 measurements was 3.67 cm2. (See Table 1)
  • A solution of brimonidine tartrate 0.2% (Bausch & Lomb Inc.) containing: brimonidine tartrate 0.02%, citric acid, polyvinyl alcohol, sodium chloride, sodium citrate, purified water, and benzalkonium chloride (0.005%) was applied by the patient to the right dorsal forearm twice daily (morning and evening). The solution was applied with a cotton ball to the skin of the entire right extensor forearm from the wrist to the elbow. The sites were followed clinically and photographically.
  • Seven days after starting, the patient returned for evaluation. The total area of purpura on the right dorsal forearm were measured and equaled 1.48 cm2 (a decrease of 60% compared to mean baseline). The patient continued to apply brimonidine 0.2% solution to the right dorsal forearm twice daily (morning and evening).
  • Fourteen days after starting, the patient returned for evaluation. The total area of purpura on the right dorsal forearm were measured and equaled 0.35 cm2 (a decrease of 90% compared to mean baseline). The patient continued to apply brimonidine 0.2% solution to the right dorsal forearm twice daily (morning and evening).
  • Twenty four days after starting, the patient returned for evaluation. The total area of purpura on the right dorsal forearm were measured and equaled 5.72 cm2 (an increase of 34% compared to mean baseline). The patient reported that he had recently been gardening and had noted significant increase in the purpura after this activity despite continuing the topical medication. The patient continued to apply brimonidine 0.2% solution to the right dorsal forearm twice daily (morning and evening).
  • Thirty six days after starting, the patient returned for evaluation. The total area of purpura on the right dorsal forearm were measured and equaled 2.52 cm2 (a decrease of 31% compared to mean baseline).
  • TABLE 1
    Day Purpura Area (cm2) Effect Notes
    0 3.67 Baseline
    7 1.48 ↓ 60% from Baseline
    14 0.35 ↓ 90% from Baseline
    24 5.72 ↑ 34% from Baseline ↑ in purpura noted after
    gardening
    36 2.52 ↓ 31% from Baseline
  • This trial demonstrates that the selective α2 adrenergic receptor agonist 0.2% brimonidine tartrate when topically applied twice daily to areas effected by solar (“actinic” or “senile” or “Bateman's”) purpura reduces the size and appearance of purpuric macules/patches. Though significant intervening trauma to the region being treated (e.g. trauma to the arms from gardening) may still induce purpura, it is shown to be an effective treatment to hasten the resolution and decrease the appearance of purpura in actinically damaged or otherwise atrophic/damaged skin and cutaneous vessels.
  • Example 4
  • The use of a topically applied α1 adrenergic agonist for the treatment and prevention of solar purpura: In order to evaluate the effect of topically applied α1 adrenergic agonists on the prevention and treatment of solar purpura, two patient volunteers with the diagnosis of solar purpura of the forearms were treated with a topically applied selective α1 adrenergic agonist containing solution.
  • Subject 1 is a 78 year old man with a long-standing history of solar purpura on his forearms. The test area comprised the left dorsal (extensor) forearm from the wrist to the elbow. Pretreatment photos were taken and baseline measurements of the solar purpura on the left extensor forearm from the wrist to the elbow were measured. Two measurements were taken to approximate the area of each purpuric patch. The total area of purpura was 8.94 cm2. (SEE TABLE 2)
  • A solution of oxymetazoline hydrochloride 0.05% (Afrin® Original 12 Hour Nasal Spray (Schering-Plough Healthcare Products) containing: oxymetazoline hydrochloride 0.05%, benzalkonium chloride solution, edetate disodium, polyethylene glycol, povidone, propylene glycol, purified water, sodium phosphate dibasic, sodium phosphate monobasic (0.005%)) was applied by the patient to the left dorsal forearm twice daily (morning and evening). The solution was applied with a cotton ball to the skin of the entire extensor forearm from the wrist to the elbow. The sites were followed clinically and photographically.
  • Seventeen days later, the patient returned for evaluation. The total area of purpura on the left extensor forearm were measured and equaled 9.95 cm2 (an increase of 11% compared to baseline). The patient continued to apply oxymetazoline solution 0.05% to the left dorsal forearm twice daily (morning and evening).
  • Twenty nine days after starting, the patient returned for evaluation. The total area of purpura on the left extensor forearm were measured and equaled 5.73 cm2 (a decrease of 36% compared to baseline). The patient continued to apply oxymetazoline solution 0.05% to the left dorsal forearm twice daily (morning and evening).
  • Forty four days after starting, the patient returned for evaluation. The total area of purpura on the left extensor forearm were measured and equaled 5.6 cm2 (a decrease of 37% compared to baseline). The patient continued to apply oxymetazoline solution 0.05% to the left dorsal forearm twice daily (morning and evening).
  • Eighty one days after starting, the patient returned for evaluation. The total area of purpura on the left extensor forearm were measured and equaled 1.44 cm2 (a decrease of 84% compared to baseline). The patient continued to apply oxymetazoline solution 0.05% to the left dorsal forearm twice daily (morning and evening).
  • Ninety one days after starting, the patient returned for evaluation. The total area of purpura on the left extensor forearm were measured and equaled 0.42 cm2 (a decrease of 95% compared to baseline). The patient stopped applying the oxymetazoline containing solution on study day 91.
  • Seven days after stopping the oxymetazoline, the total area of purpura on the left extensor forearm was measured and equaled 1.96 cm2. (an increase of 366% from the point of stopping medication (day 91 measurement)).
  • Fourteen days after stopping the oxymetazoline, the total area of purpura on the left extensor forearm was measured and equaled 0.46 cm2. (an increase of 10% from the point of stopping medication (day 91 measurement)).
  • Twenty four days after stopping the oxymetazoline, the total area of purpura on the left extensor forearm was measured and equaled 2.22 cm2. (an increase of 428% from the point of stopping medication (day 91 measurement)).
  • TABLE 2
    Day Purpura Area (cm2) Effect Notes
    0 8.94 Baseline
    17 9.95 ↑ 11% from Baseline
    29 5.73 ↓ 36% from Baseline
    44 5.6 ↓ 37% from Baseline
    81 1.44 ↓ 84% from Baseline
    91 0.42 ↓ 95% from Baseline Medication
    Discontinued Day
    91
    98 1.96 ↑ 366% from Baseline 7 Days off
    Medication
    112 0.46 ↑ 10% from Baseline 14 Days off
    Medication
    122 2.22 ↑ 428% from Baseline 24 Days off
    Medication
  • The patient stated that he felt that there were fewer new purpuric macules/patches while he was using the medication, and he felt that when purpura occurred they seemed to resolve more quickly. The patient had no side effects, either local or systemic, during the treatment.
  • Subject 2 is an 87 year old woman with a long history of cosmetically disturbing solar purpura on her forearms who wanted to improve the appearance solar (decrease the purpura). The test area comprised the left dorsal (extensor) forearm from the wrist to the elbow. Pretreatment photos were taken and baseline measurements of the solar purpura on the left extensor forearm from the wrist to the elbow were measured. Two measurements were taken to approximate the area of each purpuric patch. The total area of purpura was 1.72 cm2. (SEE TABLE 3)
  • A solution of oxymetazoline hydrochloride 0.05% (Afrin® Original 12 Hour Nasal Spray (Schering-Plough Healthcare Products) containing: oxymetazoline hydrochloride 0.05%, benzalkonium chloride solution, edetate disodium, polyethylene glycol, povidone, propylene glycol, purified water, sodium phosphate dibasic, sodium phosphate monobasic (0.005%)) was applied by the patient to the left dorsal forearm once daily (morning). The solution was applied with a cotton ball to the skin of the entire extensor forearm from the wrist to the elbow. The sites were followed clinically and photographically.
  • 7 days later, the patient was reevaluated. The total area of purpura on the left dorsal forearm measured 0 cm2 (a decrease of 100% compared to baseline). The patient continued to apply oxymetazoline solution 0.05% to the left extensor forearm once daily (morning).
  • 31 days after starting, the patient was reevaluated. The total area of purpura on the left dorsal forearm measured 0 cm2 (a decrease of 100% compared to baseline). The patient continued to apply oxymetazoline solution 0.05% to the left extensor forearm once daily (morning).
  • 36 days after starting, the patient was reevaluated. The total area of purpura on the left extensor forearm measured 0.36 cm2 (a decrease of 79% compared to baseline).
  • TABLE 3
    Day Purpura Area (cm2) Effect Notes
    0 1.72 Baseline
    7 0.00 ↓ 100% from Baseline
    31 0.00 ↓ 100% from Baseline
    36 0.36 ↓ 79% from Baseline
  • The patient stated that she felt that there were fewer new purpuric patches while she was using the medication, and in her estimation the purpura that did occur seemed to resolve more quickly. The patient had no side effects, either local or systemic, during the treatment.
  • These trials demonstrate that the selective α1 adrenergic receptor agonist oxymetazoline hydrochloride when topically applied once or twice daily to areas effected by solar purpura dramatically reduces the size and appearance of purpuric macules/patches and may eliminate them. Though continuing trauma to the region being treated (e.g. trauma to the arms from gardening) may still induce purpura, this treatment is shown to be an effective treatment to hasten the resolution and decrease the appearance of purpura in actinically damaged or otherwise atrophic/damaged skin and cutaneous vessels.

Claims (44)

1. A method for treating or preventing non-thrombocytopenic purpura in a subject undergoing a procedure, the method comprising:
administering to the subject a therapeutically effective amount of an α adrenergic receptor agonist selected from a selective α1 adrenergic receptor agonist, a selective α2 adrenergic receptor agonist and combinations thereof;
wherein the procedure is a procedure involving physical trauma to the skin and/or cutaneous vasculature.
2. The method of claim 1, wherein the procedure comprises the injection of a neurotoxin or filler for soft-tissue augmentation.
3. The method of claim 1, wherein the procedure comprises the injection of a filler for soft-tissue augmentation.
4. The method of claim 1, wherein the α adrenergic receptor agonist is administered before, during or after the procedure.
5. The method of claim 4, wherein the α adrenergic receptor agonist is administered during the procedure.
6. The method of claim 1, wherein the α adrenergic receptor agonist is administered by injection.
7. The method of claim 6, wherein the α adrenergic receptor agonist is administered before, during or after the procedure.
8. The method of claim 7, wherein the α adrenergic receptor agonist is administered during the procedure.
9. The method of claim 1, wherein the purpura comprises petechiae or ecchymoses.
10. The method of claim 1, wherein the α adrenergic receptor agonist is selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, amethyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine, ethylnorepinephrine, levarterenol, lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, tizanidine and combinations thereof.
11. The method of claim 1, wherein the α adrenergic receptor agonist is α1 adrenergic receptor agonist.
12. The method of claim 11, wherein the α1 adrenergic receptor agonist is selected from the group of α1 adrenergic receptor agonists consisting of oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine.
13. The method of claim 12, wherein the α1 adrenergic receptor agonist is phenylephrine.
14. The method of claim 1, wherein the α adrenergic receptor agonist is α2 adrenergic receptor agonist.
15. The method of claim 14, wherein the α2 adrenergic receptor agonist is selected from the group of α2 adrenergic receptor agonists consisting of brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and α-methyldopa.
16. The method of claim 15, wherein the α2 adrenergic receptor agonist is brimonidine.
17. The method of claim 1, wherein the administering is performed by injection of a formulation comprising the α adrenergic receptor agonist and a polymeric material.
18. The method of claim 1, wherein the administering is performed by injection of a formulation comprising the α adrenergic receptor agonist and a gel phase carrier.
19. The method of claim 18, wherein the gel phase carrier comprises a material selected from the group of materials comprising calcium carbonate, calcium phosphate, a sugar, a starch, a cellulose derivative, a gelatin, and a polymer.
20. The method of claim 19, wherein the gel phase carrier comprises a sugar.
21. A method for preventing non-thrombocytopenic purpura in a subject undergoing injection of a filler for soft tissue augmentation, the method comprising:
administering to the subject a therapeutically effective amount of an α adrenergic receptor agonist selected from a selective α1 adrenergic receptor agonist, a selective α2 adrenergic receptor agonist and combinations thereof.
22. The method of claim 21, wherein the α adrenergic receptor agonist is administered before, during or after the injection of the filler.
23. The method of claim 21, wherein the α adrenergic receptor agonist is administered during the injection of the filler.
24. The method of claim 21, wherein the α adrenergic receptor agonist is administered by injection during injection of the filler.
25. The method of claim 21, wherein the purpura comprises petechiae or ecchymoses.
26. The method of claim 21, wherein the α adrenergic receptor agonist is selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, amethyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine, ethylnorepinephrine, levarterenol, lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, tizanidine and combinations thereof.
27. The method of claim 21, wherein the α adrenergic receptor agonist is α1 adrenergic receptor agonist.
28. The method of claim 27, wherein the α1 adrenergic receptor agonist is selected from the group of α1 adrenergic receptor agonists consisting of oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine.
29. The method of claim 28, wherein the α1 adrenergic receptor agonist is phenylephrine.
30. The method of claim 21, wherein the α adrenergic receptor agonist is α2 adrenergic receptor agonist.
31. The method of claim 30, wherein the α2 adrenergic receptor agonist is selected from the group of α2 adrenergic receptor agonists consisting of brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and α-methyldopa.
32. The method of claim 31, wherein the α2 adrenergic receptor agonist is brimonidine.
33. The method of claim 21, wherein the administering is performed by injection of a formulation comprising the α adrenergic receptor agonist and a polymeric material.
34. The method of claim 21, wherein the administering is performed by injection of a formulation comprising the α adrenergic receptor agonist and a gel phase carrier.
35. The method of claim 34, wherein the gel phase carrier comprises a material selected from the group of materials comprising calcium carbonate, calcium phosphate, a sugar, a starch, a cellulose derivative, a gelatin, and a polymer.
36. The method of claim 35, wherein the gel phase carrier comprises a sugar.
37. A composition for treating or preventing non-thrombocytopenic purpura in a subject undergoing injection of a filler for soft tissue augmentation, the composition comprising:
a gel phase carrier; and
a therapeutically effective amount of an α adrenergic receptor agonist selected from a selective α1 adrenergic receptor agonist, a selective α2 adrenergic receptor agonist and combinations thereof.
38. The composition of claim 37, wherein the α adrenergic receptor agonist is selected from oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, amidephrine, brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, amethyldopa, epinephrine, norepinephrine, isoproterenol, dipivefrin, pseudoephedrine, mephentermine, phenylpropanolamine, propylhexadrine, amphetamine, dextroamphetamine, ephedrine, epinine, ethylnorepinephrine, levarterenol, lofexidine, methamphetamine, α-methylnorepinephrine, methylphenidate, mivazerol, moxonidine, norepinephrine, norphenylephrine, pemoline, tizanidine and combinations thereof.
39. The composition of claim 37, wherein the α adrenergic receptor agonist is α1 adrenergic receptor agonist.
40. The composition of claim 37, wherein the α1 adrenergic receptor agonist is selected from the group of α1 adrenergic receptor agonists consisting of oxymetazoline, naphazoline, tetrahydrozoline, phenylephrine, xylometazoline, methoxamine, metaraminol, midodrine, desglymidodrine, cirazoline, and amidephrine.
41. The composition of claim 40, wherein the α1 adrenergic receptor agonist is phenylephrine.
42. The composition of claim 37, wherein the α adrenergic receptor agonist is α2 adrenergic receptor agonist.
43. The composition of claim 42, wherein the α2 adrenergic receptor agonist is selected from the group of α2 adrenergic receptor agonists consisting of brimonidine, clonidine, guanfacine, guanabenz, apraclonidine, xylazine, medetomidine, dexmedetomidine, and α-methyldopa.
44. The composition of claim 43, wherein the α2 adrenergic receptor agonist is brimonidine.
US14/505,100 2007-11-16 2014-10-02 Compositions and methods for treating purpura Abandoned US20150018358A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/505,100 US20150018358A1 (en) 2007-11-16 2014-10-02 Compositions and methods for treating purpura

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US98856407P 2007-11-16 2007-11-16
US12/272,253 US8114898B2 (en) 2007-11-16 2008-11-17 Compositions and methods for treating purpura
US13/345,472 US8673953B2 (en) 2007-11-16 2012-01-06 Compositions and methods for treating purpura
US14/181,706 US9265761B2 (en) 2007-11-16 2014-02-16 Compositions and methods for treating purpura
US14/505,100 US20150018358A1 (en) 2007-11-16 2014-10-02 Compositions and methods for treating purpura

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/181,706 Continuation US9265761B2 (en) 2007-11-16 2014-02-16 Compositions and methods for treating purpura

Publications (1)

Publication Number Publication Date
US20150018358A1 true US20150018358A1 (en) 2015-01-15

Family

ID=40639204

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/272,253 Active 2029-10-13 US8114898B2 (en) 2007-11-16 2008-11-17 Compositions and methods for treating purpura
US13/345,472 Active US8673953B2 (en) 2007-11-16 2012-01-06 Compositions and methods for treating purpura
US14/181,706 Active 2029-02-02 US9265761B2 (en) 2007-11-16 2014-02-16 Compositions and methods for treating purpura
US14/505,100 Abandoned US20150018358A1 (en) 2007-11-16 2014-10-02 Compositions and methods for treating purpura

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US12/272,253 Active 2029-10-13 US8114898B2 (en) 2007-11-16 2008-11-17 Compositions and methods for treating purpura
US13/345,472 Active US8673953B2 (en) 2007-11-16 2012-01-06 Compositions and methods for treating purpura
US14/181,706 Active 2029-02-02 US9265761B2 (en) 2007-11-16 2014-02-16 Compositions and methods for treating purpura

Country Status (19)

Country Link
US (4) US8114898B2 (en)
EP (3) EP2207424B1 (en)
JP (2) JP5670196B2 (en)
KR (1) KR101577471B1 (en)
CN (1) CN101896204B (en)
AU (1) AU2008322411C1 (en)
BR (1) BRPI0819075A2 (en)
CA (1) CA2703109C (en)
DK (1) DK2818184T3 (en)
ES (1) ES2709120T3 (en)
HR (1) HRP20190214T1 (en)
HU (1) HUE042931T2 (en)
IL (1) IL205704A (en)
MX (1) MX2010005331A (en)
PL (1) PL2818184T3 (en)
PT (1) PT2818184T (en)
SI (1) SI2818184T1 (en)
TR (1) TR201901431T4 (en)
WO (1) WO2009065116A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180327187A1 (en) * 2015-12-16 2018-11-15 Laitram, L.L.C. Modular conveyor belt with attached plates
WO2019094390A1 (en) * 2017-11-10 2019-05-16 The Regents Of The University Of Colorado, A Body Corporate Methods for inducing pupil dilation

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8410102B2 (en) * 2003-05-27 2013-04-02 Galderma Laboratories Inc. Methods and compositions for treating or preventing erythema
US7812049B2 (en) * 2004-01-22 2010-10-12 Vicept Therapeutics, Inc. Method and therapeutic/cosmetic topical compositions for the treatment of rosacea and skin erythema using α1-adrenoceptor agonists
WO2009065116A1 (en) 2007-11-16 2009-05-22 Aspect Pharmaceuticals Llc Compositions and methods for treating purpura
AU2008341112B2 (en) * 2007-12-21 2014-02-06 Galderma S.A. Pre-surgical treatment
EP2435045A2 (en) * 2009-05-29 2012-04-04 Symatese Injectable combination of adrenergic receptor agonists with fillers, for decreasing skin reactions due to injection
FR2953410B1 (en) 2009-12-09 2012-02-24 Univ Claude Bernard Lyon PHARMACEUTICAL OR VETERINARY ANTIVIRAL COMPOSITIONS
US20110172180A1 (en) 2010-01-13 2011-07-14 Allergan Industrie. Sas Heat stable hyaluronic acid compositions for dermatological use
US9114188B2 (en) 2010-01-13 2015-08-25 Allergan, Industrie, S.A.S. Stable hydrogel compositions including additives
JP2013521300A (en) 2010-03-03 2013-06-10 ネオキュティス エスアー Compositions and methods for the treatment of skin diseases and disorders using antimicrobial peptide sequestering compounds
JP5747391B2 (en) 2010-03-26 2015-07-15 ガルデルマ・リサーチ・アンド・デヴェロップメント Improved methods and compositions for safe and effective treatment of erythema
US8916562B2 (en) 2010-03-26 2014-12-23 Galderma Research & Development Snc Methods and compositions for safe and effective treatment of telangiectasia
EP2575456B1 (en) * 2010-05-28 2016-05-04 Galderma S.A. Compositions and methods for treating bruises
WO2012027695A1 (en) * 2010-08-26 2012-03-01 Northeastern University Methods and compositions for preventing or treating obesity
US20120082625A1 (en) * 2010-09-28 2012-04-05 Michael Graeber Combination treatment for rosacea
US20120076738A1 (en) * 2010-09-28 2012-03-29 Michael Graeber Combination treatment for dermatological conditions
EP2629757A2 (en) 2010-10-21 2013-08-28 Galderma S.A. Brimonidine gel compositions and methods of use
US8053427B1 (en) 2010-10-21 2011-11-08 Galderma R&D SNC Brimonidine gel composition
BR112013009577A2 (en) 2010-10-21 2016-07-12 Galderma Sa topical gel composition and method
AU2011336449B2 (en) 2010-12-03 2016-07-07 Epi Health, Llc Pharmaceutical cream compositions comprising oxymetazoline
WO2012083397A1 (en) 2010-12-22 2012-06-28 Silvestre Labs Químia E Farmaceutica Ltda. Guanabenz-containing compound for the treatment of primary cutaneous amyloidosis
WO2012112566A1 (en) 2011-02-15 2012-08-23 Allergan, Inc. Pharmaceutical cream compositions of oxymetazoline for treating symptoms of rosacea
KR102058979B1 (en) * 2011-03-07 2019-12-24 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Microneedle devices and methods
FR2977493B1 (en) * 2011-07-05 2014-02-14 Galderma Res & Dev NOVEL STABLE ANESTHETIC COMPOSITION FOR REDUCING SKIN REACTIONS
WO2013052770A1 (en) 2011-10-05 2013-04-11 Sanders Jennifer L Methods and compositions for treating foot or hand pain
US9283217B2 (en) 2011-11-10 2016-03-15 Allergan, Inc. Pharmaceutical compositions comprising 7-(1 H-imidazol-4-ylmethyl)-5,6,7,8-tetrahydro-quinoline for treating skin diseases and conditions
CA2887330C (en) * 2012-10-03 2021-03-09 Bioprojet A combination of adrenalin with an antidepressant for use in the treatment of shocks
TWI629067B (en) 2013-10-07 2018-07-11 美商帝國製藥美國股份有限公司 Methods and compositions for transdermal delivery of a non-sedative amount of dexmedetomidine
WO2015054059A2 (en) 2013-10-07 2015-04-16 Teikoku Pharma Usa, Inc. Methods and compositions for treating attention deficit hyperactivity disorder, anxiety and insomnia using dexmedetomidine transdermal compositions
CA2924231C (en) 2013-10-07 2018-04-03 Teikoku Pharma Usa, Inc. Dexmedetomidine transdermal delivery devices and methods for using the same
WO2015191917A1 (en) 2014-06-11 2015-12-17 Allergan, Inc. Stabilized oxymetazoline formulations and their uses
CN107427479B (en) * 2014-11-14 2021-03-30 芙丽雅国际公司 System and method for preventing hair loss
EP3307280B1 (en) 2015-06-11 2021-10-27 Rejoy Treatment of sexual dysfunction
EP3551698A1 (en) 2016-12-08 2019-10-16 DSM IP Assets B.V. Thermoplastic composition, molded part made thereof and use thereof in automotive and e&e applications
EA202090637A1 (en) 2017-09-08 2020-06-29 Инсайгнис Терапьютикс, Инк. WAYS OF USING DIPIVEFRIN
WO2020222188A1 (en) 2019-05-01 2020-11-05 Clexio Biosciences Ltd. Methods of treating pruritus
CN113876764B (en) * 2021-10-29 2023-04-14 山东良福制药有限公司 Application of pharmaceutical composition containing tretinoin in preparation of medicine for treating idiopathic thrombocytopenic purpura

Family Cites Families (259)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2128827A (en) 1938-03-09 1938-08-30 Frank B Killian Method and apparatus for manufacturing thin rubber articles
CA807629A (en) 1966-06-30 1969-03-04 Eigen Edward Lotion and detergent compositions
JPS4838158B1 (en) 1970-10-05 1973-11-15
CA949965A (en) 1971-12-03 1974-06-25 Robert H. Marchessault Method of preparing cross-linked starch and starch derivatives
US3949073A (en) 1974-11-18 1976-04-06 The Board Of Trustees Of Leland Stanford Junior University Process for augmenting connective mammalian tissue with in situ polymerizable native collagen solution
US4060081A (en) 1975-07-15 1977-11-29 Massachusetts Institute Of Technology Multilayer membrane useful as synthetic skin
CA1073360A (en) 1975-10-22 1980-03-11 John R. Daniels Non-antigenic collagen and articles of manufacture
US4233360A (en) 1975-10-22 1980-11-11 Collagen Corporation Non-antigenic collagen and articles of manufacture
JPS581933Y2 (en) 1979-04-23 1983-01-13 株式会社日本製鋼所 Cable clamp device
US4279812A (en) 1979-09-12 1981-07-21 Seton Company Process for preparing macromolecular biologically active collagen
JPS6052129B2 (en) 1979-10-04 1985-11-18 呉羽化学工業株式会社 Manufacturing method of medical collagen fiber
US4424208A (en) 1982-01-11 1984-01-03 Collagen Corporation Collagen implant material and method for augmenting soft tissue
US4582640A (en) 1982-03-08 1986-04-15 Collagen Corporation Injectable cross-linked collagen implant material
IT1229075B (en) 1985-04-05 1991-07-17 Fidia Farmaceutici Topical compsn. contg. hyaluronic acid deriv. as vehicle
US4501306A (en) 1982-11-09 1985-02-26 Collagen Corporation Automatic syringe filling system
SE442820B (en) 1984-06-08 1986-02-03 Pharmacia Ab GEL OF THE CROSS-BOND HYALURONIC ACID FOR USE AS A GLASS BODY SUBSTITUTE
SE456346B (en) 1984-07-23 1988-09-26 Pharmacia Ab GEL TO PREVENT ADHESION BETWEEN BODY TISSUE AND SET FOR ITS PREPARATION
US4605691A (en) 1984-12-06 1986-08-12 Biomatrix, Inc. Cross-linked gels of hyaluronic acid and products containing such gels
US4582865A (en) 1984-12-06 1986-04-15 Biomatrix, Inc. Cross-linked gels of hyaluronic acid and products containing such gels
US4636524A (en) 1984-12-06 1987-01-13 Biomatrix, Inc. Cross-linked gels of hyaluronic acid and products containing such gels
SE8501022L (en) 1985-03-01 1986-09-02 Pharmacia Ab FORMAT CREATES AND PROCEDURES FOR ITS PREPARATION
US4713448A (en) 1985-03-12 1987-12-15 Biomatrix, Inc. Chemically modified hyaluronic acid preparation and method of recovery thereof from animal tissues
US4642117A (en) 1985-03-22 1987-02-10 Collagen Corporation Mechanically sheared collagen implant material and method
US4803075A (en) 1986-06-25 1989-02-07 Collagen Corporation Injectable implant composition having improved intrudability
FR2608456B1 (en) 1986-12-18 1993-06-18 Mero Rousselot Satia MICROCAPSULES BASED ON GELATIN AND POLYSACCHARIDES AND PROCESS FOR OBTAINING THEM
US5091171B2 (en) 1986-12-23 1997-07-15 Tristrata Inc Amphoteric compositions and polymeric forms of alpha hydroxyacids and their therapeutic use
US5385938B1 (en) 1986-12-23 1997-07-15 Tristrata Inc Method of using glycolic acid for treating wrinkles
US4853216A (en) 1987-04-02 1989-08-01 Bristol-Myers Company Process and composition for the topical application of alpha1 adrenergic agonist for pilomotor effects
FR2623167B2 (en) 1987-08-14 1992-08-07 Genus Int IMPROVEMENT IN ARTICLES WITH ELASTIC ARTICULATIONS RIGIDIFYING ON THEIR TENSIONING
US5017229A (en) 1990-06-25 1991-05-21 Genzyme Corporation Water insoluble derivatives of hyaluronic acid
US6174999B1 (en) 1987-09-18 2001-01-16 Genzyme Corporation Water insoluble derivatives of polyanionic polysaccharides
IT1219587B (en) 1988-05-13 1990-05-18 Fidia Farmaceutici SELF-CROSS-LINKED CARBOXYLY POLYSACCHARIDES
US5162430A (en) 1988-11-21 1992-11-10 Collagen Corporation Collagen-polymer conjugates
US5565519A (en) 1988-11-21 1996-10-15 Collagen Corporation Clear, chemically modified collagen-synthetic polymer conjugates for ophthalmic applications
US5643464A (en) 1988-11-21 1997-07-01 Collagen Corporation Process for preparing a sterile, dry crosslinking agent
US5614587A (en) 1988-11-21 1997-03-25 Collagen Corporation Collagen-based bioadhesive compositions
SE462587B (en) 1988-11-30 1990-07-23 Wiklund Henry & Co DEVICE FOR MARKING THE WORK PAPER WITH WRITTEN OR OTHER SIGNS
JPH02215707A (en) 1989-02-15 1990-08-28 Chisso Corp Skin cosmetic
ATE123306T1 (en) 1989-05-19 1995-06-15 Hayashibara Biochem Lab ALPHA-GLYCOSYL-L-ASCORBIC ACID AND THEREOF PREPARATION AND USES.
US5356883A (en) 1989-08-01 1994-10-18 Research Foundation Of State University Of N.Y. Water-insoluble derivatives of hyaluronic acid and their methods of preparation and use
EP0416250A3 (en) 1989-08-01 1991-08-28 The Research Foundation Of State University Of New York N-acylurea and o-acylisourea derivatives of hyaluronic acid
CA2023922A1 (en) 1989-09-05 1991-03-06 James M. Curtis Method of manufacturing an implantable article provided with a micropillared surface
JP2832848B2 (en) 1989-10-21 1998-12-09 株式会社林原生物化学研究所 Crystal 2-O-α-D-glucopyranosyl-L-ascorbic acid, its production method and use
US5246698A (en) 1990-07-09 1993-09-21 Biomatrix, Inc. Biocompatible viscoelastic gel slurries, their preparation and use
US5143724A (en) 1990-07-09 1992-09-01 Biomatrix, Inc. Biocompatible viscoelastic gel slurries, their preparation and use
JP3115625B2 (en) 1991-03-30 2000-12-11 帝國製薬株式会社 Topical patch containing lidocaine
US5314874A (en) 1991-04-19 1994-05-24 Koken Co., Ltd. Intracorporeally injectable composition for implanting highly concentrated cross-linked atelocollagen
DK0632820T3 (en) 1992-02-28 2000-10-02 Collagen Corp Highly concentrated, homogenized collagen compositions
IT1260154B (en) 1992-07-03 1996-03-28 Lanfranco Callegaro HYALURONIC ACID AND ITS DERIVATIVES IN INTERPENETRATING POLYMERS (IPN)
US5980930A (en) 1993-01-20 1999-11-09 Bristol-Myers Squibb Company Fibres
CA2158638C (en) 1993-03-19 1999-11-30 Bengt Agerup A composition and a method for tissue augmentation
US5531716A (en) 1993-09-29 1996-07-02 Hercules Incorporated Medical devices subject to triggered disintegration
US5616568A (en) 1993-11-30 1997-04-01 The Research Foundation Of State University Of New York Functionalized derivatives of hyaluronic acid
CA2146090C (en) 1994-05-10 1998-11-24 Mark E. Mitchell Apparatus and method of mixing materials in a sterile environment
US5616689A (en) 1994-07-13 1997-04-01 Collagen Corporation Method of controlling structure stability of collagen fibers produced form solutions or dispersions treated with sodium hydroxide for infectious agent deactivation
AU706434B2 (en) 1994-10-18 1999-06-17 Ethicon Inc. Injectable liquid copolymers for soft tissue repair and augmentation
US20050186673A1 (en) 1995-02-22 2005-08-25 Ed. Geistlich Soehne Ag Fuer Chemistrie Industrie Collagen carrier of therapeutic genetic material, and method
US5972326A (en) 1995-04-18 1999-10-26 Galin; Miles A. Controlled release of pharmaceuticals in the anterior chamber of the eye
FR2733426B1 (en) 1995-04-25 1997-07-18 Debacker Yves MEDICAL DEVICE FOR FILLING SKIN VOLUME DEFORMATIONS SUCH AS WRINKLES AND SCARS BY INJECTION OF 2 DIFFERENT PHYSICO-CHEMICAL FORMS OF A BIOLOGICAL POLYMER
FR2733427B1 (en) 1995-04-25 2001-05-25 W K Et Associes INJECTABLE BIPHASIC COMPOSITIONS CONTAINING HYALURONIC ACID, ESPECIALLY USEFUL IN REPAIRING AND AESTHETIC SURGERIES
US5643586A (en) * 1995-04-27 1997-07-01 Perricone; Nicholas V. Topical compositions and methods for treatment of skin damage and aging using catecholamines and related compounds
US6214331B1 (en) 1995-06-06 2001-04-10 C. R. Bard, Inc. Process for the preparation of aqueous dispersions of particles of water-soluble polymers and the particles obtained
US5827937A (en) 1995-07-17 1998-10-27 Q Med Ab Polysaccharide gel composition
US5571503A (en) 1995-08-01 1996-11-05 Mausner; Jack Anti-pollution cosmetic composition
US6063405A (en) 1995-09-29 2000-05-16 L.A.M. Pharmaceuticals, Llc Sustained release delivery system
US6833408B2 (en) 1995-12-18 2004-12-21 Cohesion Technologies, Inc. Methods for tissue repair using adhesive materials
IT1277707B1 (en) 1995-12-22 1997-11-11 Chemedica Sa OPHTHALMIC FORMULATION BASED ON SODIUM HYALURONATE FOR USE IN OCULAR SURGERY
US5980948A (en) 1996-08-16 1999-11-09 Osteotech, Inc. Polyetherester copolymers as drug delivery matrices
US6066325A (en) 1996-08-27 2000-05-23 Fusion Medical Technologies, Inc. Fragmented polymeric compositions and methods for their use
IT1287967B1 (en) 1996-10-17 1998-09-10 Fidia Spa In Amministrazione S PHARMACEUTICAL PREPARATIONS FOR LOCAL ANESTHETIC USE
FR2759577B1 (en) 1997-02-17 1999-08-06 Corneal Ind DEEP SCLERECTOMY IMPLANT
FR2759576B1 (en) 1997-02-17 1999-08-06 Corneal Ind PRE-DESCEMETIC SCLERO-KERATECTOMY IMPLANT
US5935164A (en) 1997-02-25 1999-08-10 Pmt Corporaton Laminated prosthesis and method of manufacture
FR2764514B1 (en) 1997-06-13 1999-09-03 Biopharmex Holding Sa IMPLANT INJECTED IN SUBCUTANEOUS OR INTRADERMAL WITH CONTROLLED BIORESORBABILITY FOR REPAIR OR PLASTIC SURGERY AND AESTHETIC DERMATOLOGY
US7192984B2 (en) 1997-06-17 2007-03-20 Fziomed, Inc. Compositions of polyacids and polyethers and methods for their use as dermal fillers
US6391336B1 (en) 1997-09-22 2002-05-21 Royer Biomedical, Inc. Inorganic-polymer complexes for the controlled release of compounds including medicinals
FR2780730B1 (en) 1998-07-01 2000-10-13 Corneal Ind INJECTABLE BIPHASIC COMPOSITIONS, ESPECIALLY USEFUL IN RESTORATIVE AND AESTHETIC SURGERIES
ITPD980169A1 (en) 1998-07-06 2000-01-06 Fidia Advanced Biopolymers Srl AMIDES OF HYALURONIC ACID AND ITS DERIVATIVES AND PROCESS FOR THEIR PREPARATION.
US6630457B1 (en) 1998-09-18 2003-10-07 Orthogene Llc Functionalized derivatives of hyaluronic acid, formation of hydrogels in situ using same, and methods for making and using same
IT1303738B1 (en) 1998-11-11 2001-02-23 Aquisitio S P A CARBOXYLATE POLYSACCHARIDE CROSS-LINKING PROCESS.
DK172900B1 (en) 1998-12-18 1999-09-27 Per Julius Nielsen Preparation and kit for use in intraocular surgery
GB9902652D0 (en) 1999-02-05 1999-03-31 Fermentech Med Ltd Process
US6767928B1 (en) 1999-03-19 2004-07-27 The Regents Of The University Of Michigan Mineralization and biological modification of biomaterial surfaces
US6444647B1 (en) 1999-04-19 2002-09-03 The Procter & Gamble Company Skin care compositions containing combination of skin care actives
US6372494B1 (en) 1999-05-14 2002-04-16 Advanced Tissue Sciences, Inc. Methods of making conditioned cell culture medium compositions
US6335023B1 (en) 1999-06-30 2002-01-01 Ruey J. Yu Oligosaccharide aldonic acids and their topical use
US6521223B1 (en) 2000-02-14 2003-02-18 Genzyme Corporation Single phase gels for the prevention of adhesions
US6682760B2 (en) 2000-04-18 2004-01-27 Colbar R&D Ltd. Cross-linked collagen matrices and methods for their preparation
KR20010096388A (en) 2000-04-19 2001-11-07 진세훈 Human glans enhancing materials and glans enhancing method
FR2811671B1 (en) 2000-07-17 2003-02-28 Corneal Ind POLYMER (S) HYDROGEL, BIODEGRATION RESISTANT, PREPARATION AND USE AS TISSUE REGENERATION SUPPORT
FR2811996B1 (en) 2000-07-19 2003-08-08 Corneal Ind CROSS-LINKING OF POLYSACCHARIDE (S), PREPARATION OF HYDROGEL (S); POLYSACCHARIDE (S) AND HYDROGEL (S) OBTAINED, THEIR USES
ATE392907T1 (en) 2000-07-28 2008-05-15 Anika Therapeutics Inc BIOABSORBABLE COMPOSITE MATERIALS MADE OF DERIVATIZED HYALURONIC ACID
JP2004507503A (en) * 2000-08-28 2004-03-11 センション,インコーポレイテッド Use of threo-methylphenidate to enhance memory
US6773723B1 (en) 2000-08-30 2004-08-10 Depuy Acromed, Inc. Collagen/polysaccharide bilayer matrix
US6620196B1 (en) 2000-08-30 2003-09-16 Sdgi Holdings, Inc. Intervertebral disc nucleus implants and methods
JP4187917B2 (en) 2000-09-08 2008-11-26 独立行政法人科学技術振興機構 Method for producing glycosaminoglycan-collagen complex for tissue regeneration matrix
US6924273B2 (en) 2000-10-03 2005-08-02 Scott W. Pierce Chondroprotective/restorative compositions and methods of use thereof
AU2001294459A1 (en) 2000-10-06 2002-04-15 Jagotec Ag A controlled-release, parenterally administrable microparticle preparation
KR100375299B1 (en) 2000-10-10 2003-03-10 주식회사 엘지생명과학 Crosslinked derivatives of hyaluronic acid by amide formation and their preparation methods
US6599627B2 (en) 2000-12-13 2003-07-29 Purdue Research Foundation Microencapsulation of drugs by solvent exchange
US6979440B2 (en) 2001-01-29 2005-12-27 Salvona, Llc Compositions and method for targeted controlled delivery of active ingredients and sensory markers onto hair, skin, and fabric
US7119062B1 (en) 2001-02-23 2006-10-10 Neucoll, Inc. Methods and compositions for improved articular surgery using collagen
TW574301B (en) 2001-05-02 2004-02-01 Ind Tech Res Inst Manufacturing method of epoxide crosslinked polysaccharides matrix
EP1411861B1 (en) 2001-06-29 2012-04-04 Medgraft Microtech, Inc. Biodegradable injectable implants and related methods of manufacture and use
US6749841B2 (en) 2001-07-26 2004-06-15 Revlon Consumer Products Corporation Stabilized aqueous acidic antiperspirant compositions and related methods
JP4230135B2 (en) 2001-08-21 2009-02-25 独立行政法人科学技術振興機構 Method for producing glycosaminoglycan-collagen complex cross-linked by multifunctional cross-linking agent
US6824786B2 (en) 2001-11-27 2004-11-30 Ruey J. Yu Compositions comprising phenyl-glycine derivatives
US20060189516A1 (en) 2002-02-19 2006-08-24 Industrial Technology Research Institute Method for producing cross-linked hyaluronic acid-protein bio-composites
JP3916516B2 (en) 2002-06-10 2007-05-16 独立行政法人科学技術振興機構 Scaffolding material for hard tissue-soft tissue interface regeneration
US6780366B2 (en) 2002-08-15 2004-08-24 Mentor Corporation Drip retainer
KR100523953B1 (en) 2002-08-27 2005-10-25 주식회사 엘지생명과학 Microbeads of natural polysaccharide and hyaluronic acid and processes for preparing the same
KR100507545B1 (en) 2002-09-03 2005-08-09 주식회사 엘지생명과학 Hyaluronic acid derivatives and processes for preparing them
US20040127932A1 (en) 2002-09-12 2004-07-01 Shah Tilak M. Dip-molded polymeric medical devices with reverse thickness gradient, and method of making same
DE10246340A1 (en) 2002-10-04 2004-04-29 Wohlrab, David, Dr. Combination preparation of hyaluronic acid and at least one local anesthetic and its use
WO2004032713A2 (en) * 2002-10-04 2004-04-22 Nanomatrix, Inc. Sealants for skin and other tissues
US20050271596A1 (en) 2002-10-25 2005-12-08 Foamix Ltd. Vasoactive kit and composition and uses thereof
US20040101959A1 (en) 2002-11-21 2004-05-27 Olga Marko Treatment of tissue with undifferentiated mesenchymal cells
AU2003300022A1 (en) 2002-12-30 2004-07-29 Angiotech International Ag Silk-containing stent graft
TWI251596B (en) 2002-12-31 2006-03-21 Ind Tech Res Inst Method for producing a double-crosslinked hyaluronate material
EP1587424A4 (en) * 2002-12-31 2012-01-25 Marinepolymer Tech Inc Hemostatic compositions and uses therefor
AU2003206922A1 (en) 2003-02-19 2004-09-09 Aventis Pharmaceuticals Holdings Inc. Composition and method for intradermal soft tissue augmentation
WO2004087007A2 (en) 2003-03-25 2004-10-14 Biocure, Inc. Hydrogel string medical device
US20040220259A1 (en) 2003-04-04 2004-11-04 Yu Ruey J. Topical treatment of dermatological disorders associated with reactive or dilated blood vessels
FR2861734B1 (en) 2003-04-10 2006-04-14 Corneal Ind CROSSLINKING OF LOW AND HIGH MOLECULAR MASS POLYSACCHARIDES; PREPARATION OF INJECTABLE SINGLE PHASE HYDROGELS; POLYSACCHARIDES AND HYDROGELS OBTAINED
AU2003901834A0 (en) 2003-04-17 2003-05-01 Clearcoll Pty Ltd Cross-linked polysaccharide compositions
JP2004323453A (en) 2003-04-25 2004-11-18 Chisso Corp Decomposable gel and method for producing the same
JP4208843B2 (en) 2003-05-13 2009-01-14 三益半導体工業株式会社 Wafer isolation method, wafer isolation apparatus, and wafer isolation transfer machine
US7439241B2 (en) 2003-05-27 2008-10-21 Galderma Laboratories, Inc. Compounds, formulations, and methods for treating or preventing rosacea
US20050020600A1 (en) 2003-07-23 2005-01-27 Scherer Warren J. Methods of treating cutaneous flushing using selective alpha-2-adrenergic receptor agonists
WO2005012364A2 (en) 2003-07-30 2005-02-10 Anteis S.A. Complex matrix for biomedical use
WO2005040224A1 (en) 2003-10-29 2005-05-06 Teijin Limited Hyaluronic acid compound, hydrogel thereof and material for treating joint
CA2536041A1 (en) 2003-11-10 2005-05-26 Angiotech International Ag Medical implants and fibrosis-inducing agents
US20090148527A1 (en) 2007-12-07 2009-06-11 Robinson Michael R Intraocular formulation
US20060141049A1 (en) 2003-11-12 2006-06-29 Allergan, Inc. Triamcinolone compositions for intravitreal administration to treat ocular conditions
US20050101582A1 (en) 2003-11-12 2005-05-12 Allergan, Inc. Compositions and methods for treating a posterior segment of an eye
US20070224278A1 (en) 2003-11-12 2007-09-27 Lyons Robert T Low immunogenicity corticosteroid compositions
AU2004293463A1 (en) 2003-11-20 2005-06-09 Angiotech International Ag Implantable sensors and implantable pumps and anti-scarring agents
US8124120B2 (en) 2003-12-22 2012-02-28 Anika Therapeutics, Inc. Crosslinked hyaluronic acid compositions for tissue augmentation
MXPA06007556A (en) 2003-12-30 2006-08-31 Genzyme Corp Cohesive gels form cross-linked hyaluronan and/or hylan, their preparation and use.
US8524213B2 (en) 2003-12-30 2013-09-03 Genzyme Corporation Polymeric materials, their preparation and use
DE102004002001A1 (en) 2004-01-14 2005-08-11 Reinmüller, Johannes, Dr.med. Agent for the treatment of inflammatory diseases
US7812049B2 (en) 2004-01-22 2010-10-12 Vicept Therapeutics, Inc. Method and therapeutic/cosmetic topical compositions for the treatment of rosacea and skin erythema using α1-adrenoceptor agonists
AU2005210668A1 (en) 2004-01-30 2005-08-18 Angiotech International Ag Compositions and methods for treating contracture
FR2865737B1 (en) 2004-02-03 2006-03-31 Anteis Sa BIOCOMPATIBLE RETICLE GEL
US20050222101A1 (en) 2004-03-30 2005-10-06 Jeffrey Hutterer Method and composition for treatment of skin conditions
US20050226936A1 (en) 2004-04-08 2005-10-13 Q-Med Ab Method of soft tissue augmentation
US8288362B2 (en) 2004-05-07 2012-10-16 S.K. Pharmaceuticals, Inc. Stabilized glycosaminoglycan preparations and related methods
US20050256204A1 (en) 2004-05-11 2005-11-17 Bitter Patrick H Sr Topical phenyl-epinephrine Rosacea treatment
EP1750769B1 (en) 2004-05-20 2013-01-23 Mentor Worldwide LLC Methods for making injectable polymer hydrogels
ES2609105T3 (en) 2004-05-20 2017-04-18 Mentor Worldwide Llc Covalent linking method of hyaluronic acid and chitosan
JP2008502690A (en) 2004-06-15 2008-01-31 アンドリュー シァン チェン, Phospholipid composition and methods for its preparation and use
CN101005828B (en) * 2004-06-17 2012-01-11 维尔恩公司 Compositions comprising a mucoadhesive protein and an active principle for mucosal delivery of said agents
AU2005272578A1 (en) 2004-08-13 2006-02-23 Angiotech International Ag Compositions and methods using hyaluronic acid and hyluronidase inhibitors
US20060040895A1 (en) 2004-08-19 2006-02-23 Kipling Thacker Aesthetic use of hyaluronan
US7288263B2 (en) 2004-09-13 2007-10-30 Evera Laboratories, Llc Compositions and methods for treatment of skin discoloration
US7414021B2 (en) 2004-10-01 2008-08-19 Vincent Carmine Giampapa Method and composition for restoration of age related tissue loss in the face or selected areas of the body
KR100762928B1 (en) 2004-10-29 2007-10-04 재단법인서울대학교산학협력재단 Nonwoven Nanofibrous Membranes of Silk Fibroin for Guided Bone Tissue Regeneration and Their Preparation Method
US20060105022A1 (en) 2004-11-15 2006-05-18 Shiseido Co., Ltd. Process for preparing crosslinked hyaluronic acid gel
WO2006056204A1 (en) 2004-11-24 2006-06-01 Novozymes Biopolymer A/S Method of cross-linking hyaluronic acid with divinylsulfone
FR2878444B1 (en) 2004-11-30 2008-04-25 Corneal Ind Soc Par Actions Si VISCOELASTIC SOLUTIONS COMPRISING SODIUM HYALURONATE AND HYDROXYPROPYLMETHYLCELLULOSE, PREPARATION AND USES
WO2006067608A1 (en) 2004-12-22 2006-06-29 Laboratoire Medidom S.A. Aqueous formulations based on sodium hyaluronate for parenteral use
BRPI0608951A2 (en) 2005-03-30 2010-02-17 Revance Therapeutics Inc Compositions and Method for Acne Treatment
WO2006122183A2 (en) 2005-05-10 2006-11-16 Cytophil, Inc. Injectable hydrogels and methods of making and using same
EP1726299A3 (en) 2005-05-27 2007-04-18 StratoSphere Pharma AB Cores and microcapsules suitable for parenteral administration as well as process for their manufacture
US7491709B2 (en) 2005-07-01 2009-02-17 Wayne Carey Treatment with hyaluronic acid
EP1932530A4 (en) 2005-08-11 2009-04-29 Hayashibara Biochem Lab Agent for enhancing collagen production and utilization of the same
JP4982718B2 (en) 2005-08-31 2012-07-25 株式会社林原 Composition for oral intake for beautiful skin
JP2009510168A (en) 2005-10-03 2009-03-12 マーク エー. ピンスカイ Compositions and methods for improved skin care
US20070082070A1 (en) 2005-10-11 2007-04-12 Stookey Evangeline L Treating skin disorders
NZ568694A (en) * 2005-11-09 2011-09-30 Zalicus Inc Method, compositions, and kits for the treatment of medical conditions
EP1968499A1 (en) 2005-12-14 2008-09-17 Anika Therapeutics Inc. Bioabsorbable implant of hyaluronic acid derivative for treatment of osteochondral and chondral defects
US20070203095A1 (en) 2005-12-14 2007-08-30 Anika Therapeutics, Inc. Treatment of arthritis and other musculoskeletal disorders with crosslinked hyaluronic acid
FR2894827B1 (en) 2005-12-21 2010-10-29 Galderma Res & Dev PHARMACEUTICAL OR COSMETIC PREPARATIONS FOR TOPICAL AND / OR PARENTERAL APPLICATION, PROCESSES FOR THEIR PREPARATION, AND USES THEREOF
FR2895907B1 (en) 2006-01-06 2012-06-01 Anteis Sa VISCOELASTIC GEL FOR DERMATOLOGICAL USE
US20070184087A1 (en) 2006-02-06 2007-08-09 Bioform Medical, Inc. Polysaccharide compositions for use in tissue augmentation
US20070212385A1 (en) 2006-03-13 2007-09-13 David Nathaniel E Fluidic Tissue Augmentation Compositions and Methods
CA2645324A1 (en) 2006-03-15 2007-09-27 Surmodics, Inc. Hydrophobic derivatives of natural biodegradable polysaccharides and uses thereof
FR2900575B1 (en) 2006-05-05 2008-10-17 Anteis Sa BIOCOMPATIBLE CONTROLLED RELEASE GEL, PREPARATION METHOD AND USE THEREOF
EP2543340A1 (en) 2006-05-19 2013-01-09 Trustees Of Boston University Novel hydrophilic polymers as medical lubricants and gels
US20070298005A1 (en) 2006-06-22 2007-12-27 Marie-Josee Thibault Injectable composition for treatment of skin defects or deformations
WO2008003321A2 (en) 2006-07-07 2008-01-10 Novozymes Biopolymer A/S Compositions with several hyaluronic acid fractions for cosmetic use
EP2070518A2 (en) 2006-07-25 2009-06-17 Osmotica Corp. Ophthalmic solutions
WO2008034176A1 (en) 2006-09-19 2008-03-27 Ultraceuticals R & D Pty Ltd Cross-linked polysaccharide gels
FR2908415B1 (en) 2006-11-10 2009-01-23 Abr Dev Sarl RETICULATED HYALURONIC ACID AND PROCESS FOR PREPARING THE SAME
FR2909560B1 (en) 2006-12-06 2012-12-28 Fabre Pierre Dermo Cosmetique HYALURONIC ACID GEL FOR INTRADERMAL INJECTION
JP5539727B2 (en) 2006-12-11 2014-07-02 チット2ジェル リミテッド A novel injectable chitosan mixture forming a hydrogel
KR100759091B1 (en) 2006-12-13 2007-09-17 조강선 Dermal filler composition
WO2008077172A2 (en) 2006-12-22 2008-07-03 Croma-Pharma Gesellschaft M.B.H. Use of polymers
CN101677957A (en) 2007-02-05 2010-03-24 卡比兰生物外科公司 The polymer formulations that is used for delivery of bioactive agents
WO2008098007A1 (en) 2007-02-05 2008-08-14 Freedom-2, Inc. Tissue fillers and methods of using the same
US7776840B2 (en) 2007-02-21 2010-08-17 Cutanea Life Sciences, Inc. Methods of use of biomaterial and injectable implant containing biomaterial
US7939578B2 (en) 2007-02-23 2011-05-10 3M Innovative Properties Company Polymeric fibers and methods of making
US8642067B2 (en) 2007-04-02 2014-02-04 Allergen, Inc. Methods and compositions for intraocular administration to treat ocular conditions
US11078262B2 (en) 2007-04-30 2021-08-03 Allergan, Inc. High viscosity macromolecular compositions for treating ocular conditions
EP2155212A2 (en) 2007-05-11 2010-02-24 Galderma Research & Development Pharmaceutical or cosmetic preparations for topical and/or parenteral application, preparation methods thereof and use of same
WO2008148967A2 (en) 2007-05-11 2008-12-11 Galderma Research & Development Pharmaceutical or cosmetic preparations for topical and/or parenteral application, preparation methods thereof and use of same
US20080293637A1 (en) 2007-05-23 2008-11-27 Allergan, Inc. Cross-linked collagen and uses thereof
EP2162158A2 (en) 2007-05-23 2010-03-17 Allergan, Inc. Coated hyaluronic acid particles
WO2008157608A1 (en) 2007-06-18 2008-12-24 Cartlix, Inc. Composite scaffolds for tissue regeneration
US9011894B2 (en) 2007-06-29 2015-04-21 Carbylan Therapeutics, Inc. Sterile hyaluronic acid polymer compositions and related methods
AU2008282922B2 (en) 2007-07-27 2014-01-16 Humacyte, Inc. Compositions comprising human collagen and human elastin and methods for soft tissue augmentation
PL2182960T3 (en) 2007-07-27 2014-08-29 Galderma Laboratories Inc Compounds, formulations, and methods for reducing skin wrinkles, creasing and sagging
US20110077737A1 (en) 2007-07-30 2011-03-31 Allergan, Inc. Tunably Crosslinked Polysaccharide Compositions
US8318695B2 (en) 2007-07-30 2012-11-27 Allergan, Inc. Tunably crosslinked polysaccharide compositions
US20120071437A1 (en) 2007-07-30 2012-03-22 Allergan, Inc. Tunable crosslinked polysaccharide compositions
FR2920000B1 (en) 2007-08-13 2010-01-29 Oreal COSMETIC OR PHARMACEUTICAL COMPOSITION CONTAINING HYALURONIC ACID, AND COSMETIC PROCESS FOR DECREASING SIGNS OF AGING
EP2187972B1 (en) 2007-08-16 2013-07-17 Carnegie Mellon University Inflammation-regulating compositions and methods
KR100813224B1 (en) 2007-08-24 2008-03-13 한양대학교 산학협력단 Thermo-reversible coacervate combination gels for protein delivery
FR2920968B1 (en) 2007-09-14 2009-11-13 Oreal COSMETIC PROCESS FOR AESTHETIC TREATMENT AND / OR REPAIR OF SKIN
US8697044B2 (en) 2007-10-09 2014-04-15 Allergan, Inc. Crossed-linked hyaluronic acid and collagen and uses thereof
US7910134B2 (en) 2007-10-29 2011-03-22 Ayman Boutros Alloplastic injectable dermal filler and methods of use thereof
WO2009065116A1 (en) 2007-11-16 2009-05-22 Aspect Pharmaceuticals Llc Compositions and methods for treating purpura
US8394782B2 (en) 2007-11-30 2013-03-12 Allergan, Inc. Polysaccharide gel formulation having increased longevity
US8394784B2 (en) 2007-11-30 2013-03-12 Allergan, Inc. Polysaccharide gel formulation having multi-stage bioactive agent delivery
US20090143348A1 (en) 2007-11-30 2009-06-04 Ahmet Tezel Polysaccharide gel compositions and methods for sustained delivery of drugs
FR2924615B1 (en) 2007-12-07 2010-01-22 Vivacy Lab HYDROGEL COHESIVE BIODEGRADABLE.
US9161970B2 (en) 2007-12-12 2015-10-20 Allergan, Inc. Dermal filler
AU2008341112B2 (en) 2007-12-21 2014-02-06 Galderma S.A. Pre-surgical treatment
EP2222270B1 (en) 2007-12-26 2018-11-14 Mark A. Pinsky Collagen formulations for improved skin care
US20090291986A1 (en) 2008-05-22 2009-11-26 Apostolos Pappas Composition and method of treating facial skin defect
US20090297632A1 (en) 2008-06-02 2009-12-03 Waugh Jacob M Device, Methods and Compositions to Alter Light Interplay with Skin
WO2010003797A1 (en) 2008-07-09 2010-01-14 Novozymes Biopharma Dk A/S Hyaluronic acid for corneal wound healing
US8357795B2 (en) 2008-08-04 2013-01-22 Allergan, Inc. Hyaluronic acid-based gels including lidocaine
EP2324064B1 (en) 2008-09-02 2017-11-08 Tautona Group LP Threads of hyaluronic acid and/or derivatives thereof, methods of making thereof and uses thereof
EP2341953B1 (en) 2008-09-04 2018-11-21 The General Hospital Corporation Hydrogels for vocal cord and soft tissue augmentation and repair
GB0816496D0 (en) 2008-09-10 2008-10-15 Zhao Xiaobin Hyaluronic acid cryogel
US9072791B2 (en) 2008-09-30 2015-07-07 Denki Kagaku Kogyo Kabushiki Kaisha Photostabilized pharmaceutical compositions
US20100098794A1 (en) 2008-10-17 2010-04-22 Armand Gerard Topical anti-wrinkle and anti-aging moisturizing cream
US20100111919A1 (en) 2008-10-31 2010-05-06 Tyco Healthcare Group Lp Delayed gelation compositions and methods of use
WO2010053918A1 (en) 2008-11-05 2010-05-14 Hancock Jaffe Laboratories, Inc. Composite containing collagen and elastin as a dermal expander and tissue filler
FR2938187B1 (en) 2008-11-07 2012-08-17 Anteis Sa INJECTABLE COMPOSITION BASED ON HYALURONIC ACID OR ONE OF ITS HEAT-STERILIZED SALTS, POLYOLS AND LIDOCAINE
SI2365829T1 (en) 2008-11-07 2017-10-30 Klox Technologies, Inc. Combination of an oxidant and a photoactivator for the healing of wounds
ITRM20080636A1 (en) 2008-11-28 2010-05-29 Univ Palermo PROCEDURE FOR THE PRODUCTION OF FUNCTIONAL DERIVATIVES OF HYALURONIC ACID AND RELATIVE HYDROGELS.
WO2010065784A2 (en) 2008-12-03 2010-06-10 Jakk Group, Inc. Methods, devices, and compositions for dermal filling
EP2236523B1 (en) 2009-03-30 2018-02-21 Scivision Biotech Inc. Method for producing cross-linked hyaluronic acid
DK2413894T3 (en) 2009-04-02 2017-04-03 Allergan Inc HIGHLY FORMED HYDROGLES FOR SOFTWARE STRENGTH
US9371402B2 (en) 2009-04-09 2016-06-21 Scivision Biotech Inc. Method for producing cross-linked hyaluronic acid
IT1395392B1 (en) 2009-08-27 2012-09-14 Fidia Farmaceutici VISCOELASTIC FROSTS LIKE NEW FILLERS
US20110171311A1 (en) 2010-01-13 2011-07-14 Allergan Industrie, Sas Stable hydrogel compositions including additives
US9114188B2 (en) 2010-01-13 2015-08-25 Allergan, Industrie, S.A.S. Stable hydrogel compositions including additives
US20110172180A1 (en) 2010-01-13 2011-07-14 Allergan Industrie. Sas Heat stable hyaluronic acid compositions for dermatological use
US20110171286A1 (en) 2010-01-13 2011-07-14 Allergan, Inc. Hyaluronic acid compositions for dermatological use
AU2010348090B2 (en) 2010-03-12 2015-09-03 Allergan Industrie Sas A fluid composition comprising a hyaluronan polymer and mannitol for improving skin condition
ES2729994T3 (en) 2010-03-22 2019-11-07 Allergan Inc Crosslinked polysaccharide and protein polysaccharide hydrogels for soft tissue augmentation
US8697057B2 (en) 2010-08-19 2014-04-15 Allergan, Inc. Compositions and soft tissue replacement methods
US8883139B2 (en) 2010-08-19 2014-11-11 Allergan Inc. Compositions and soft tissue replacement methods
US9005605B2 (en) 2010-08-19 2015-04-14 Allergan, Inc. Compositions and soft tissue replacement methods
WO2012054311A1 (en) 2010-10-20 2012-04-26 Tautona Group Lp Threads of cross-linked hyaluronic acid and methods of preparation and use thereof
US9299476B2 (en) 2010-10-22 2016-03-29 Newsouth Innovations Pty Limited Polymeric material
FR2968306B1 (en) 2010-12-06 2014-02-28 Teoxane PROCESS FOR PREPARING RETICULATED GEL
FR2968305B1 (en) 2010-12-06 2014-02-28 Teoxane PROCESS FOR PREPARING RETICULATED GEL
US9408797B2 (en) 2011-06-03 2016-08-09 Allergan, Inc. Dermal filler compositions for fine line treatment
US20130096081A1 (en) 2011-06-03 2013-04-18 Allergan, Inc. Dermal filler compositions
US9393263B2 (en) 2011-06-03 2016-07-19 Allergan, Inc. Dermal filler compositions including antioxidants
CN103702659B (en) 2011-06-03 2016-12-21 阿勒根公司 Dermal filler composition including antioxidant
US20130116190A1 (en) 2011-09-06 2013-05-09 Allergan, Inc. Hyaluronic acid-collagen matrices for tissue engineering
US20130244943A1 (en) 2011-09-06 2013-09-19 Allergan, Inc. Hyaluronic acid-collagen matrices for dermal filling and volumizing applications
US20130116411A1 (en) 2011-09-06 2013-05-09 Allergan, Inc. Methods of making hyaluronic acid/collagen compositions
US20140011980A1 (en) 2012-07-03 2014-01-09 Allergan, Inc. Methods for sterilizing compositions and resulting compositions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180327187A1 (en) * 2015-12-16 2018-11-15 Laitram, L.L.C. Modular conveyor belt with attached plates
WO2019094390A1 (en) * 2017-11-10 2019-05-16 The Regents Of The University Of Colorado, A Body Corporate Methods for inducing pupil dilation
US11738022B2 (en) 2017-11-10 2023-08-29 The University Of Colorado, A Body Corporate Methods for inducing pupil dilation

Also Published As

Publication number Publication date
JP2015071601A (en) 2015-04-16
AU2008322411C1 (en) 2015-03-12
JP2011503209A (en) 2011-01-27
HRP20190214T1 (en) 2019-03-22
CN101896204A (en) 2010-11-24
WO2009065116A1 (en) 2009-05-22
CA2703109C (en) 2017-07-18
JP5938082B2 (en) 2016-06-22
US8673953B2 (en) 2014-03-18
AU2008322411B2 (en) 2014-04-03
CN101896204B (en) 2015-05-20
ES2709120T3 (en) 2019-04-15
US20140161749A1 (en) 2014-06-12
MX2010005331A (en) 2010-08-11
KR20100098633A (en) 2010-09-08
TR201901431T4 (en) 2019-02-21
PT2818184T (en) 2019-01-28
BRPI0819075A2 (en) 2014-10-07
JP5670196B2 (en) 2015-02-18
PL2818184T3 (en) 2019-06-28
IL205704A0 (en) 2010-11-30
SI2818184T1 (en) 2019-03-29
AU2008322411A1 (en) 2009-05-22
EP2818184B1 (en) 2018-10-31
EP2207424A4 (en) 2011-11-30
EP2207424B1 (en) 2014-06-04
CA2703109A1 (en) 2009-05-22
EP2818184A1 (en) 2014-12-31
US20120177585A1 (en) 2012-07-12
EP3498299A1 (en) 2019-06-19
KR101577471B1 (en) 2015-12-14
US9265761B2 (en) 2016-02-23
IL205704A (en) 2015-06-30
HUE042931T2 (en) 2019-07-29
US8114898B2 (en) 2012-02-14
US20090130027A1 (en) 2009-05-21
DK2818184T3 (en) 2019-02-25
EP2207424A1 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
US9265761B2 (en) Compositions and methods for treating purpura
DK2663727T3 (en) Centering Device
CN110753698A (en) Methods for treating fungal infections
TWI464147B (en) Use of indolyl and indolinyl hydroxamates for treating heart failure or neuronal injury
US20140329874A1 (en) Alpha adrenergic agonists for the treatment of tissue trauma
Janssen et al. Use of topical ketanserin in the treatment of skin ulcers: a double-blind study
WO2019093359A1 (en) Agent for increasing blood flow volume in peripheral capillary
CN116983415A (en) Composition for preventing and treating subcutaneous telangiectasis, telangiectasis and related secondary diseases and application thereof
EP3727366A1 (en) Method of treatment of diabetic foot ulcers
US20170027922A1 (en) Use of naratriptan in the treatment of rosacea
Wankhede et al. Tinea Capitis: Causal Organisms, Prognosis and Therapy

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALLERGAN, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VICEPT THERAPEUTICS, INC.;REEL/FRAME:035244/0255

Effective date: 20111129

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ACLARIS THERAPEUTICS, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALLERGAN, INC.;REEL/FRAME:047681/0466

Effective date: 20181130

AS Assignment

Owner name: EPI HEALTH, LLC, SOUTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ACLARIS THERAPEUTICS, INC.;REEL/FRAME:050905/0290

Effective date: 20191010