US20140374299A1 - Micro-vials - Google Patents

Micro-vials Download PDF

Info

Publication number
US20140374299A1
US20140374299A1 US14/314,025 US201414314025A US2014374299A1 US 20140374299 A1 US20140374299 A1 US 20140374299A1 US 201414314025 A US201414314025 A US 201414314025A US 2014374299 A1 US2014374299 A1 US 2014374299A1
Authority
US
United States
Prior art keywords
section
vial
micro
sample
capillary tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/314,025
Inventor
Shou-Kuan TSAI
Varouj D. Amirkhanian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bioptic Inc
Original Assignee
Bioptic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bioptic Inc filed Critical Bioptic Inc
Priority to US14/314,025 priority Critical patent/US20140374299A1/en
Publication of US20140374299A1 publication Critical patent/US20140374299A1/en
Priority to US16/261,481 priority patent/US10981169B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5082Test tubes per se
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50855Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates using modular assemblies of strips or of individual wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/025Align devices or objects to ensure defined positions relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0673Handling of plugs of fluid surrounded by immiscible fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/142Preventing evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped
    • B01L2300/0838Capillaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • B01L2300/0851Bottom walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/18Injection using a septum or microsyringe

Definitions

  • the present invention is directed to receptacles for holding fluid for bio-analysis, and more particularly to vials for holding small volumes of fluids.
  • DNA sequencing is a type of bio-analysis, involving the process of determining the precise order of nucleotides within a DNA molecule. It includes any method or technology that is used to determine the order of the four bases—adenine, guanine, cytosine, and thymine—in a strand of DNA. The advent of rapid DNA sequencing methods has greatly accelerated biological and medical research and discovery.
  • DNA sequences have become indispensable for basic biological research, and in numerous applied fields such as diagnostic, biotechnology, forensic biology, and biological systematics.
  • the rapid speed of sequencing attained with modern DNA sequencing technology has been instrumental in the sequencing of complete DNA sequences, or genomes of numerous types and species of life, including the human genome and other complete DNA sequences of many animal, plant, and microbial species.
  • NGS Next-generation sequencing
  • a small volume of PCR product is sampled for screening quickly (e.g., through gel-electrophoresis or capillary electrophoresis) to make sure there is enough PCR product present (detected) in the PCR products before proceeding with the full sequencing process (DNA analysis).
  • the present invention provides a simple, low cost, efficient and stable micro-vial configuration for handling micro-volume of sample fluids, which overcomes the drawbacks of the prior art.
  • the internal wall geometry of the inventive vial is designed to include several axial sections of various interior diameters to provide a range of functionalities to address various design considerations.
  • the interior wall defined in the vial has a cylindrical sample section, a wider cylindrical alignment section, a tapered or conical guide section, and a relatively large cylindrical body section, arranged in sequence in that order along the center axis of the vial.
  • the sample section has the smallest diameter of all the sections, designed to hold a small volume of a sample fluid (e.g., in the order of less than 5 micro-liters, preferably 1 to 2 micro liters), and to receive the tip end of a capillary tube.
  • the alignment section has a larger diameter than the sample section, designed to receive a cylindrical support that coaxially supports the relatively fragile capillary tube.
  • the support may be a metal tube, which extends from a capillary cartridge and functions as a tube-shaped electrode for such cartridge.
  • the capillary tube is threaded through the bore of the support tube, and the tip of the capillary tube extends beyond and is exposed from the end of the support tube.
  • the tip of the capillary tube dips into the micro-volume of sample fluid held in the sample section.
  • the conical section functions to guide the capillary tube and the support tube into the alignment section and the tip of the capillary tube into the sample section.
  • the body section has the largest diameter. The vial thus has the capacity to hold a relatively large volume of fluid, which can fill the body section.
  • FIG. 1 is a perspective view of a strip of micro-vials in accordance with one embodiment of the present invention
  • FIG. 2 is a front view thereof (the rear view is a mirror image of the front view);
  • FIG. 3 is a right side view thereof (the left side view is a mirror image of the right side view);
  • FIG. 4 is a top plan view thereof
  • FIG. 5 is a bottom plan view thereof.
  • FIG. 6 is a sectional view of a micro-vial taken along line 6 - 6 in FIG. 4 , showing interior structure, wherein each micro-vial has a similar interior structure.
  • FIG. 7 is a perspective view of a strip of micro-vials with broken lines depicting a strip of micro-vials of indefinite number of vials, in accordance with one embodiment of the present invention (i.e., the inventive concept is not limited to the specific number of micro-vials link together).
  • FIG. 8 is a front view thereof (the rear view is a mirror image of the front view);
  • FIG. 9 is a right side view thereof (the left side view is a mirror image of the right side view);
  • FIG. 10 is a top plan view thereof
  • FIG. 11 is a bottom plan view thereof.
  • FIG. 12 is a sectional view of a micro-vial taken along line 12 - 12 in FIG. 10 , showing interior structure, wherein each micro-vial has a similar interior structure.
  • FIG. 13 schematically illustrates access of the micro-vials by an external device.
  • FIG. 14 is an enlarged view of the access of sample solution in a micro-vial.
  • FIG. 15 is a pictorial view showing access of sample solution in a single micro-vial.
  • FIG. 16 is a top view of a strip of micro-vials, providing dimensions in accordance with one embodiment of the present invention.
  • FIG. 17 is a side view of the strip of FIG. 16 , providing additional dimensions, in accordance with one embodiment of the present invention.
  • FIG. 18 is a sectional view taken along line A-A in FIG. 17 , providing additional dimensions, in accordance with one embodiment of the present invention.
  • FIG. 19 is another sectional view taken along line A-A in FIG. 17 , providing additional dimensions, in accordance with one embodiment of the present invention.
  • the inventive micro-vial is described in connection with the embodiment of sample injection and detection technique in bio-analysis, particularly micro-volume sample injection, separation and detection through a micro-capillary channel, and more particularly a capillary tube supported in a gel capillary cartridge (e.g., developed by BiOptic, Inc.).
  • the inventive micro-vial is especially useful for pre-screening of PCR DNA products prior to Next Generation Sequencing applications.
  • the inventive micro-vial can be adapted for use with other bio-analysis tools, instruments and systems, in connection with other bio-analysis processes, which is well within the scope and spirit of the present invention.
  • the present invention provides a simple, low cost, efficient and stable micro-vial configuration for handling micro-volume of sample fluids, e.g., for injection into a capillary column for bio-separation (e.g., capillary electrophoresis for detection of PCR products (i.e., DNA sample)).
  • sample fluids e.g., for injection into a capillary column for bio-separation (e.g., capillary electrophoresis for detection of PCR products (i.e., DNA sample)).
  • the micro volume vials 10 can be configured in a strip 12 of N vials (wherein N is at least 1, but can be 8, 12, or any desired number).
  • N is at least 1, but can be 8, 12, or any desired number.
  • FIGS. 7-12 an alternate embodiment is shown with broken lines to depict a strip 12 ′ having at least two vials 10 , but the number of vials may be indefinite, or of any number.
  • it is well within the present invention to configure separate single vials 10 see, e.g., FIG. 15 , depicting a single vial 10 ).
  • the vials 10 may be defined as wells in a block or plate (i.e., a 96-well micro-titer plate having wells defined with the interior wall geometry of the vial 10 disclosed here).
  • the center spacing between vials may be configured to correspond to the format of an industry standard 96-well (8 ⁇ 12) micro-titer plate.
  • Several strips 12 of vials may be assembled to form a tray of wells, e.g., resembling a 96-well titer plate, by using an appropriate holder or bracket (not shown).
  • the vial 10 has an external geometry which is not critical to the function of micro-volume fluid handling.
  • the vial 10 may be configured with a relatively large external body (e.g., a block having interior walls defining the interior wall geometry of the vial) for easier handling by a user.
  • the internal wall geometry of each vial 10 is designed to include several axial sections of various interior diameters to provide a range of functionalities to address various design considerations. Referring also to the pictorial FIG.
  • the interior wall defined in the vial 10 has a cylindrical sample section 20 , a cylindrical alignment section 22 , a tapered or conical section 24 , and a cylindrical body section 26 , arranged in sequence in that order along the center axis 18 of the vial.
  • the section 20 has a cylindrical section with a bottom, and has the smallest diameter of all the sections, designed to hold a small volume of a sample fluid 30 (e.g., in the order of less than 5 micro-liters, preferably 1 to 2 micro liters), and to receive the tip end of a capillary tube 32 (e.g., about 0.350-400 mm overall external diameter, including cladding or protective coating on the silica capillary tube 32 ).
  • a sample fluid 30 e.g., in the order of less than 5 micro-liters, preferably 1 to 2 micro liters
  • a capillary tube 32 e.g., about 0.350-400 mm overall external diameter, including cladding or protective coating on the silica capillary tube 32 .
  • the alignment section 22 has a larger diameter than section 20 , designed to receive a cylindrical support 34 that coaxially supports the relatively fragile capillary tube 32 .
  • the support may be a metal tube (e.g., about 1 mm outside diameter, with a bore having an inner diameter of about 0.5 mm internal diameter to receive the capillary tube 32 ), which extends from a capillary cartridge 38 and functions as a tube-shaped cathode 34 for such cartridge 28 , as shown in FIG. 15 (see BiOptic's capillary cartridge and analysis system discussed in U.S. Patent Application Publication Nos. US2011/0253540A1 and 2012/0168312A1).
  • the capillary tube 32 is threaded through the support tube 34 , and the tip of the capillary tube 32 extends beyond and is exposed from the end of the support tube 34 . As shown in FIG. 15 , the tip of the capillary tube 32 dips into the sample fluid in section 20 .
  • the conical section 24 provides a tapered wall surface to guide the capillary tube 32 and the support tube 34 into the alignment section 22 and the tip of the capillary tube 32 into the section 20 .
  • the body section 26 has an opening, and the largest diameter of the wall sections.
  • the vial 10 thus has the capacity to hold a relatively large volume of fluid, which can fill the body section 26 .
  • a mineral oil 36 may be provided to fill the space above the sample fluid in the section 20 , to prevent evaporation of the small volume of sample fluid.
  • the mineral oil 36 may fill the alignment section 22 and/or the conical section 24 and/or the body section 26 .
  • FIGS. 16-19 exemplary dimensions of a strip 12 of vials 10 are provided, in accordance with one embodiment of the present invention. All dimensions shown in FIGS. 16-19 are in mm unit, unless otherwise stated.
  • the above described micro-vials 10 and strips 12 may be made of materials including glass, metal, plastic, rubber, silicon, etc., preferably of a chemically inert material that is inert to reacting with the fluid intended to be held in the vials 10 .
  • the vials 10 and/or strips 12 may be formed by etching (e.g., of a semiconductor material such as a silicon substrate), stamping (e.g., of a metal or plastic), or molding (e.g., plastic or rubber injection molding). Further, the vials 10 and strip 12 may be made of different materials, which may be fused together to form the strip 12 .
  • the wall structure of the vials may be made of a certain material and the interior wall of the vials 10 may be lined with a chemically inert material.
  • an injection-molded vial 10 can accommodate a small volume of 1 to 2 micro-liters (e.g., of PCR DNA Sample to be injected electro-kinetically using Capillary Gel Electrophoresis (CGE) for pre-screening and quality control (qualitative and quantitative).
  • CGE Capillary Gel Electrophoresis
  • the micro-vials are injection molded in strips of 8-vials or 12-vials and can be directly inserted inside the BiOptic's CGE system (Qsep100) Sample Tray to interface the Pen-Shaped Gel-Cartridge for sample intake through the automated sample tray.
  • BiOptic's capillary cartridge and analysis system discussed in U.S. Patent Application Publication Nos. US2011/0253540A1 and 2012/0168312A1).
  • micro-vial design geometry of the present invention facilitates sample injection in micro-liter volume of 1 to 2 micro-liters.
  • the alignment section 22 of the vial 10 allows the gel-cartridge electrode (cathode tube 34 in FIG. 15 ) with supported capillary tube 32 to be inserted and aligned accurately for sample intake at the sample holding section 20 .
  • FIGS. 13 , 14 and 15 The access of sample held in the vial 10 by a cartridge 38 is schematically shown in FIGS. 13 , 14 and 15 .
  • the cartridge 38 is supported on a stand 50 (schematically shown in FIG. 13 ), and a robotic mechanism 52 (schematically shown in FIG. 13 ) moves the sample tray supporting the vials 10 relative to the tip of the capillary tube 32 supported in the cartridge 38 .
  • the cathode tube 34 (which coaxially supports the capillary tube 32 ) in the cartridge 38 may be aligned automatically by the sample tray mechanism, with the conical tapered section 24 of the vial 10 guiding entry of cathode tube 34 inside the alignment section 22 , which has an internal diameter (e.g., 1.75 mm) that is close to the outside diameter of the cathode tube 34 (1 mm).
  • the tip of the capillary tube 32 is guided and aligned to ensure contact with the test or sample solution 30 (e.g., DNA sample).
  • test solution can be placed in the sample section 20 inside the vial 10 by using, for example, a standard handheld pipette. Since small air-bubbles could be introduced during sample deposition by the pipette, it is recommended to spin (centrifuge) the vial 10 (e.g., the entire strips 12 before further processing (in much the same way a standard 96-well microtiter plate is centrifuged). It is also recommended to apply a small amount of mineral oil to prevent sample evaporation and facilitate multiple consecutive sample injections.
  • the vials 10 are designed to be single unit, or in 8 and/or 12-strips, or could be molded to be 96-vial or 384-vial format.
  • the vials 10 can be used with other capillary electrophoresis, HPLC or micro-fluidic type products (from different manufacturers) that have capillary based cartridge, in which the capillary is supported by a metal, plastic, ceramic or other outside jacket/electrode.
  • the inventive micro-vial achieve one or more of the following advantages:
  • the inventive micro-vial allows handling of 1 to 2 micro-liter volume of sample (e.g., PCR DNA sample) to be allocated inside the vial to be interfaced with a capillary based cartridge for automated sample injection.
  • sample e.g., PCR DNA sample
  • o ne By applying a drop of mineral oil over the 1 to 2 micro-liters of sample inside the micro-vial, o ne can do multiple sample injections (electro-kinetically) into the pen-shaped gel-cartridge.
  • the mineral oil prevents sample evaporation, and due to conductive properties, it also facilitates multiple injections.
  • inventive strips of vials may be either in a strips of 8 or 12 vials, conforming to industry standard formats, which allows the strips to be expanded to 96-vial and/or 384-vial formats, if desired.
  • the inventive micro-vial design allows small consumption of DNA products (gDNA) to be sample for quality control prior to qPCR or Sanger Sequencing analysis, or for post-PCR sample analysis using capillary electrophoresis-based DNA fragment analyzers.
  • the inventive micro-vial design provides flexibility for automated sample injection in CGE based instruments.
  • the inventive micro-vial design provides robust and reproducible sample injections, resulting in accurate analysis results with better integrity.

Abstract

A simple, low cost, efficient and stable micro-vial configuration for handling micro-volume of sample fluids. The interior wall geometry of the inventive vial is designed to include several axial sections of various interior diameters to provide a range of functionalities to address various design considerations. The interior wall defined in the vial has a cylindrical sample section, a wider cylindrical alignment section, a tapered or conical guide section, and a relatively large cylindrical body section, arranged in sequence in that order along the center axis of the vial. The sample section is designed to hold a small volume of a sample fluid, and to receive the tip end of a capillary tube. The alignment section has a larger diameter than the sample section, designed to receive a cylindrical support that coaxially supports the relatively fragile capillary tube. The tip of the capillary tube dips into the micro-volume of sample fluid held in the sample section. The conical section functions to guide the capillary tube and the support tube into the alignment section and the tip of the capillary tube into the sample section. The body section has the largest diameter, for holding additional fluid if desired.

Description

    PRIORITY CLAIM
  • This application claims the priority of U.S. Provisional Patent Application No. 61/838,791 filed on Jun. 24, 2013; this application is also a continuation of U.S. Patent Application No. 29/458,922 filed on Jun. 24, 2013, which are fully incorporated by reference as if fully set forth herein. All publications noted below are fully incorporated by reference as if fully set forth herein.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention is directed to receptacles for holding fluid for bio-analysis, and more particularly to vials for holding small volumes of fluids.
  • 2. Description of Related Art
  • DNA sequencing is a type of bio-analysis, involving the process of determining the precise order of nucleotides within a DNA molecule. It includes any method or technology that is used to determine the order of the four bases—adenine, guanine, cytosine, and thymine—in a strand of DNA. The advent of rapid DNA sequencing methods has greatly accelerated biological and medical research and discovery.
  • Knowledge of DNA sequences has become indispensable for basic biological research, and in numerous applied fields such as diagnostic, biotechnology, forensic biology, and biological systematics. The rapid speed of sequencing attained with modern DNA sequencing technology has been instrumental in the sequencing of complete DNA sequences, or genomes of numerous types and species of life, including the human genome and other complete DNA sequences of many animal, plant, and microbial species.
  • Next-generation sequencing (NGS) has revolutionized the genetic landscape, It is a lengthy, labor-intensive process that yields results never before achieved, As a result, it is imperative that the quality of the sample be evaluated from the start, as most NGS sample preparation protocols require PCR amplification to generate DNA libraries prior to sequencing.
  • The likelihood of artifact generation could contribute to bias, affecting the potential results. High sensitivity DNA analysis has been optimized with the improved capillary gel electrophoresis detection systems developed by the assignee of the present invention, &Optic, Inc. (see, U.S. Patent Application Publication Nos. US2011/0253540A1 and 2012/0168312A1; and, for example, the Qsep100 instrument developed by BiOptic, Inc.). Improved sensitivity allows the numbers of library PCR cycles to be reduced, removing amplification bias and significantly improving the quality of NGS data with increased accuracy.
  • Since relatively large volumes (e.g., in the order of 20 to 40 micro-liters) of PCR products are necessary/needed to be used in sequencing type instruments, and the sequencing sample preparation process is costly, preferably a small volume of PCR product is sampled for screening quickly (e.g., through gel-electrophoresis or capillary electrophoresis) to make sure there is enough PCR product present (detected) in the PCR products before proceeding with the full sequencing process (DNA analysis). This involves injecting a small volume of sample PCR product into the tip of a capillary tube, to allow the sample to undergo electrophoresis through the capillary tube. It is desired to sample as small a volume of PCR product as possible, so as to leave more PCR products available for subsequent sequencing.
  • It has always been a challenge in the field to try to contain a small volume of fluid in micro volume in the order of several micro-liters in a receptacle, and in particular in a manner to provide access to sample by a capillary tube.
  • SUMMARY OF THE INVENTION
  • The present invention provides a simple, low cost, efficient and stable micro-vial configuration for handling micro-volume of sample fluids, which overcomes the drawbacks of the prior art. Accordingly to the present invention, the internal wall geometry of the inventive vial is designed to include several axial sections of various interior diameters to provide a range of functionalities to address various design considerations. The interior wall defined in the vial has a cylindrical sample section, a wider cylindrical alignment section, a tapered or conical guide section, and a relatively large cylindrical body section, arranged in sequence in that order along the center axis of the vial.
  • The sample section has the smallest diameter of all the sections, designed to hold a small volume of a sample fluid (e.g., in the order of less than 5 micro-liters, preferably 1 to 2 micro liters), and to receive the tip end of a capillary tube. The alignment section has a larger diameter than the sample section, designed to receive a cylindrical support that coaxially supports the relatively fragile capillary tube. The support may be a metal tube, which extends from a capillary cartridge and functions as a tube-shaped electrode for such cartridge. The capillary tube is threaded through the bore of the support tube, and the tip of the capillary tube extends beyond and is exposed from the end of the support tube. The tip of the capillary tube dips into the micro-volume of sample fluid held in the sample section. The conical section functions to guide the capillary tube and the support tube into the alignment section and the tip of the capillary tube into the sample section. The body section has the largest diameter. The vial thus has the capacity to hold a relatively large volume of fluid, which can fill the body section.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a fuller understanding of the nature and advantages of the invention, as well as the preferred mode of use, reference should be made to the following detailed description read in conjunction with the accompanying drawings. In the following drawings, like reference numerals designate like or similar parts throughout the drawings.
  • FIG. 1 is a perspective view of a strip of micro-vials in accordance with one embodiment of the present invention;
  • FIG. 2 is a front view thereof (the rear view is a mirror image of the front view);
  • FIG. 3 is a right side view thereof (the left side view is a mirror image of the right side view);
  • FIG. 4 is a top plan view thereof;
  • FIG. 5 is a bottom plan view thereof; and
  • FIG. 6 is a sectional view of a micro-vial taken along line 6-6 in FIG. 4, showing interior structure, wherein each micro-vial has a similar interior structure.
  • FIG. 7 is a perspective view of a strip of micro-vials with broken lines depicting a strip of micro-vials of indefinite number of vials, in accordance with one embodiment of the present invention (i.e., the inventive concept is not limited to the specific number of micro-vials link together).
  • FIG. 8 is a front view thereof (the rear view is a mirror image of the front view);
  • FIG. 9 is a right side view thereof (the left side view is a mirror image of the right side view);
  • FIG. 10 is a top plan view thereof;
  • FIG. 11 is a bottom plan view thereof; and
  • FIG. 12 is a sectional view of a micro-vial taken along line 12-12 in FIG. 10, showing interior structure, wherein each micro-vial has a similar interior structure.
  • FIG. 13 schematically illustrates access of the micro-vials by an external device.
  • FIG. 14 is an enlarged view of the access of sample solution in a micro-vial.
  • FIG. 15 is a pictorial view showing access of sample solution in a single micro-vial.
  • FIG. 16 is a top view of a strip of micro-vials, providing dimensions in accordance with one embodiment of the present invention.
  • FIG. 17 is a side view of the strip of FIG. 16, providing additional dimensions, in accordance with one embodiment of the present invention.
  • FIG. 18 is a sectional view taken along line A-A in FIG. 17, providing additional dimensions, in accordance with one embodiment of the present invention.
  • FIG. 19 is another sectional view taken along line A-A in FIG. 17, providing additional dimensions, in accordance with one embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • This invention is described below in reference to various embodiments with reference to the figures. While this invention is described in terms of the best mode for achieving this invention's objectives, it will be appreciated by those skilled in the art that variations may be accomplished in view of these teachings without deviating from the spirit or scope of the invention.
  • The inventive micro-vial is described in connection with the embodiment of sample injection and detection technique in bio-analysis, particularly micro-volume sample injection, separation and detection through a micro-capillary channel, and more particularly a capillary tube supported in a gel capillary cartridge (e.g., developed by BiOptic, Inc.). The inventive micro-vial is especially useful for pre-screening of PCR DNA products prior to Next Generation Sequencing applications. The inventive micro-vial can be adapted for use with other bio-analysis tools, instruments and systems, in connection with other bio-analysis processes, which is well within the scope and spirit of the present invention.
  • The present invention provides a simple, low cost, efficient and stable micro-vial configuration for handling micro-volume of sample fluids, e.g., for injection into a capillary column for bio-separation (e.g., capillary electrophoresis for detection of PCR products (i.e., DNA sample)).
  • Referring to the embodiment shown in FIGS. 1-6, the micro volume vials 10 can be configured in a strip 12 of N vials (wherein N is at least 1, but can be 8, 12, or any desired number). Referring to FIGS. 7-12, an alternate embodiment is shown with broken lines to depict a strip 12′ having at least two vials 10, but the number of vials may be indefinite, or of any number. Further, instead of a strip of a plurality of vials 10, it is well within the present invention to configure separate single vials 10 (see, e.g., FIG. 15, depicting a single vial 10). Further, instead of strips, the vials 10 may be defined as wells in a block or plate (i.e., a 96-well micro-titer plate having wells defined with the interior wall geometry of the vial 10 disclosed here).
  • Specifically, adjacent vials are connected at the opening area by a tap 14. A handle 19 is provided at each end of the strip 12. In one embodiment, the center spacing between vials may be configured to correspond to the format of an industry standard 96-well (8×12) micro-titer plate. Several strips 12 of vials may be assembled to form a tray of wells, e.g., resembling a 96-well titer plate, by using an appropriate holder or bracket (not shown).
  • Referring to the sectional views in FIGS. 6 and 12, the vial 10 has an external geometry which is not critical to the function of micro-volume fluid handling. In this regards, the vial 10 may be configured with a relatively large external body (e.g., a block having interior walls defining the interior wall geometry of the vial) for easier handling by a user. Accordingly to the present invention, the internal wall geometry of each vial 10 is designed to include several axial sections of various interior diameters to provide a range of functionalities to address various design considerations. Referring also to the pictorial FIG. 15, the interior wall defined in the vial 10 has a cylindrical sample section 20, a cylindrical alignment section 22, a tapered or conical section 24, and a cylindrical body section 26, arranged in sequence in that order along the center axis 18 of the vial.
  • The section 20 has a cylindrical section with a bottom, and has the smallest diameter of all the sections, designed to hold a small volume of a sample fluid 30 (e.g., in the order of less than 5 micro-liters, preferably 1 to 2 micro liters), and to receive the tip end of a capillary tube 32 (e.g., about 0.350-400 mm overall external diameter, including cladding or protective coating on the silica capillary tube 32).
  • The alignment section 22 has a larger diameter than section 20, designed to receive a cylindrical support 34 that coaxially supports the relatively fragile capillary tube 32. The support may be a metal tube (e.g., about 1 mm outside diameter, with a bore having an inner diameter of about 0.5 mm internal diameter to receive the capillary tube 32), which extends from a capillary cartridge 38 and functions as a tube-shaped cathode 34 for such cartridge 28, as shown in FIG. 15 (see BiOptic's capillary cartridge and analysis system discussed in U.S. Patent Application Publication Nos. US2011/0253540A1 and 2012/0168312A1). The capillary tube 32 is threaded through the support tube 34, and the tip of the capillary tube 32 extends beyond and is exposed from the end of the support tube 34. As shown in FIG. 15, the tip of the capillary tube 32 dips into the sample fluid in section 20.
  • The conical section 24 provides a tapered wall surface to guide the capillary tube 32 and the support tube 34 into the alignment section 22 and the tip of the capillary tube 32 into the section 20.
  • The body section 26 has an opening, and the largest diameter of the wall sections. The vial 10 thus has the capacity to hold a relatively large volume of fluid, which can fill the body section 26.
  • A mineral oil 36 may be provided to fill the space above the sample fluid in the section 20, to prevent evaporation of the small volume of sample fluid. The mineral oil 36 may fill the alignment section 22 and/or the conical section 24 and/or the body section 26.
  • Referring to FIGS. 16-19, exemplary dimensions of a strip 12 of vials 10 are provided, in accordance with one embodiment of the present invention. All dimensions shown in FIGS. 16-19 are in mm unit, unless otherwise stated.
  • The above described micro-vials 10 and strips 12 may be made of materials including glass, metal, plastic, rubber, silicon, etc., preferably of a chemically inert material that is inert to reacting with the fluid intended to be held in the vials 10. The vials 10 and/or strips 12 may be formed by etching (e.g., of a semiconductor material such as a silicon substrate), stamping (e.g., of a metal or plastic), or molding (e.g., plastic or rubber injection molding). Further, the vials 10 and strip 12 may be made of different materials, which may be fused together to form the strip 12. The wall structure of the vials may be made of a certain material and the interior wall of the vials 10 may be lined with a chemically inert material.
  • Using the inventive vial for handling a micro volume of sample fluid, it is possible to develop bio-analysis systems that are significantly small in overall size (see, e.g., BiOptic's Qsep 100 instrument). Miniaturization of analytical instrumentation has many advantages over conventional systems and techniques. These advantages include improved data precision and reproducibility, short analysis times, minimal sample consumption, improved automation and integration of complex workflows.
  • In one embodiment, an injection-molded vial 10 can accommodate a small volume of 1 to 2 micro-liters (e.g., of PCR DNA Sample to be injected electro-kinetically using Capillary Gel Electrophoresis (CGE) for pre-screening and quality control (qualitative and quantitative). The micro-vials are injection molded in strips of 8-vials or 12-vials and can be directly inserted inside the BiOptic's CGE system (Qsep100) Sample Tray to interface the Pen-Shaped Gel-Cartridge for sample intake through the automated sample tray. Reference is made to BiOptic's capillary cartridge and analysis system discussed in U.S. Patent Application Publication Nos. US2011/0253540A1 and 2012/0168312A1).
  • According to the micro-vial design geometry of the present invention, it facilitates sample injection in micro-liter volume of 1 to 2 micro-liters. The alignment section 22 of the vial 10 allows the gel-cartridge electrode (cathode tube 34 in FIG. 15) with supported capillary tube 32 to be inserted and aligned accurately for sample intake at the sample holding section 20.
  • The access of sample held in the vial 10 by a cartridge 38 is schematically shown in FIGS. 13, 14 and 15. Referring to BiOptic's Qsep100 DNA analyzer, the cartridge 38 is supported on a stand 50 (schematically shown in FIG. 13), and a robotic mechanism 52 (schematically shown in FIG. 13) moves the sample tray supporting the vials 10 relative to the tip of the capillary tube 32 supported in the cartridge 38. The cathode tube 34 (which coaxially supports the capillary tube 32) in the cartridge 38 may be aligned automatically by the sample tray mechanism, with the conical tapered section 24 of the vial 10 guiding entry of cathode tube 34 inside the alignment section 22, which has an internal diameter (e.g., 1.75 mm) that is close to the outside diameter of the cathode tube 34 (1 mm). Referring to FIGS. 14 and 15, as the cathode tube 34 is further inserted inside the vial 10, the tip of the capillary tube 32 is guided and aligned to ensure contact with the test or sample solution 30 (e.g., DNA sample).
  • One micro-liter of test solution can be placed in the sample section 20 inside the vial 10 by using, for example, a standard handheld pipette. Since small air-bubbles could be introduced during sample deposition by the pipette, it is recommended to spin (centrifuge) the vial 10 (e.g., the entire strips 12 before further processing (in much the same way a standard 96-well microtiter plate is centrifuged). It is also recommended to apply a small amount of mineral oil to prevent sample evaporation and facilitate multiple consecutive sample injections.
  • The vials 10 are designed to be single unit, or in 8 and/or 12-strips, or could be molded to be 96-vial or 384-vial format. The vials 10 can be used with other capillary electrophoresis, HPLC or micro-fluidic type products (from different manufacturers) that have capillary based cartridge, in which the capillary is supported by a metal, plastic, ceramic or other outside jacket/electrode.
  • In Summary, the inventive micro-vial achieve one or more of the following advantages:
  • The inventive micro-vial allows handling of 1 to 2 micro-liter volume of sample (e.g., PCR DNA sample) to be allocated inside the vial to be interfaced with a capillary based cartridge for automated sample injection.
  • By applying a drop of mineral oil over the 1 to 2 micro-liters of sample inside the micro-vial, o ne can do multiple sample injections (electro-kinetically) into the pen-shaped gel-cartridge. The mineral oil prevents sample evaporation, and due to conductive properties, it also facilitates multiple injections.
  • The inventive strips of vials (e.g., injection molded strips) may be either in a strips of 8 or 12 vials, conforming to industry standard formats, which allows the strips to be expanded to 96-vial and/or 384-vial formats, if desired.
  • The inventive micro-vial design allows small consumption of DNA products (gDNA) to be sample for quality control prior to qPCR or Sanger Sequencing analysis, or for post-PCR sample analysis using capillary electrophoresis-based DNA fragment analyzers.
  • The inventive micro-vial design provides flexibility for automated sample injection in CGE based instruments.
  • The inventive micro-vial design provides robust and reproducible sample injections, resulting in accurate analysis results with better integrity.
  • While the invention has been particularly shown and described with reference to the preferred embodiments, it will be understood by those skilled in the art that various changes in form and detail may be made without departing from the spirit, scope, and teaching of the invention. Accordingly, the disclosed invention is to be considered merely as illustrative and limited in scope only as specified in the appended claims.

Claims (12)

We claim:
1. A vial for holding a micro-volume of fluid, comprising:
a body defining an interior wall, the wall comprising a cylindrical sample section having a bottom, a wider cylindrical alignment section, a conical guide section, and a relatively large cylindrical body section having an opening, arranged in sequence in that order along a center axis of the body.
2. The vial as in claim 1, wherein the sample section has a cylindrical section that is sized to receive a tip of a capillary tube and to hold a micro-volume of fluid.
3. The vial as in claim 2, wherein the cylindrical section of the sample section has an internal diameter of about 0.5 mm, receiving the tip of the capillary tube having an outside diameter of similar size.
4. The vial as in claim 1, wherein the micro-volume is in the order of less than 5 micro-liters.
5. The vial as in claim 4, wherein the micro-volume is in the order of 1 to 2 micro liters.
6. The vial as in claim 2, wherein the alignment section has a larger diameter than the sample section, sized to receive a cylindrical support that coaxially supports the capillary tube.
7. The vial as in claim 6, wherein the cylindrical support is a tube, through which the capillary tube extends with the tip beyond an end of the tube to dip into the micro-volume of fluid held in the sample section.
8. The vial as in claim 7, wherein the conical guide section provides a tapered wall surface to guide the capillary tube and the support tube into the alignment section and the tip of the capillary tube into the sample section.
9. The vial as in claim 8, wherein the body section has the largest diameter compared to the other sections of the body, for containing a relatively large volume of fluid.
10. The vial as in claim 9, wherein the body is injection molded plastic.
11. A strip of vials for holding micro-volumes of fluid, comprising a plurality of N (N>0) vials in which adjacent vials are connected by a tab, each vial having a structure as in claim 1.
12. The strip of vials as in claim 11, wherein N is equal to 8 or 12.
US14/314,025 2013-06-24 2014-06-24 Micro-vials Abandoned US20140374299A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/314,025 US20140374299A1 (en) 2013-06-24 2014-06-24 Micro-vials
US16/261,481 US10981169B2 (en) 2013-06-24 2019-01-29 Micro-vials

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361838791P 2013-06-24 2013-06-24
US29/458,922 USD717468S1 (en) 2013-06-24 2013-06-24 Microwell strip
US14/314,025 US20140374299A1 (en) 2013-06-24 2014-06-24 Micro-vials

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US29/458,922 Continuation USD717468S1 (en) 2013-06-24 2013-06-24 Microwell strip

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/261,481 Continuation US10981169B2 (en) 2013-06-24 2019-01-29 Micro-vials

Publications (1)

Publication Number Publication Date
US20140374299A1 true US20140374299A1 (en) 2014-12-25

Family

ID=51846361

Family Applications (3)

Application Number Title Priority Date Filing Date
US29/458,922 Active USD717468S1 (en) 2013-06-24 2013-06-24 Microwell strip
US14/314,025 Abandoned US20140374299A1 (en) 2013-06-24 2014-06-24 Micro-vials
US16/261,481 Active 2033-10-23 US10981169B2 (en) 2013-06-24 2019-01-29 Micro-vials

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US29/458,922 Active USD717468S1 (en) 2013-06-24 2013-06-24 Microwell strip

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/261,481 Active 2033-10-23 US10981169B2 (en) 2013-06-24 2019-01-29 Micro-vials

Country Status (2)

Country Link
US (3) USD717468S1 (en)
TW (1) TWD163564S (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150260745A1 (en) * 2014-03-12 2015-09-17 Dna Medicine Institute, Inc. Sample consumable and loader
US20150359708A1 (en) * 2014-06-17 2015-12-17 Tokitae Llc Affixed groups of pharmaceutical vials including frangible connectors
WO2017046783A1 (en) * 2015-09-20 2017-03-23 Dh Technologies Development Pte. Ltd. Small sample injection vial
WO2019241399A1 (en) * 2018-06-12 2019-12-19 Gmj Technologies, Llc Liquid handling devices and methods in capillary electrophoresis

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11865544B2 (en) 2013-03-15 2024-01-09 Becton, Dickinson And Company Process tube and carrier tray
US10220392B2 (en) 2013-03-15 2019-03-05 Becton, Dickinson And Company Process tube and carrier tray
EP2969211B1 (en) 2013-03-15 2019-06-26 Becton, Dickinson and Company Process tube and carrier tray
USD759835S1 (en) * 2013-03-15 2016-06-21 Becton, Dickinson And Company Process tube strip
JP1541226S (en) * 2015-03-25 2016-01-12
JP1541227S (en) * 2015-03-25 2016-01-12
USD783855S1 (en) * 2015-06-22 2017-04-11 Erin Ferguson Specimen tube bracelet
USD862724S1 (en) 2016-05-20 2019-10-08 Abgene UK Ltd. Tube strip with caps
CN112916068A (en) * 2020-06-19 2021-06-08 上海快灵生物科技有限公司 Biochemical test paper tube
USD987852S1 (en) * 2021-05-26 2023-05-30 Michael Thomas Hendrikx Laboratory instrument for executing molecular biology and diagnostic applications
USD1017067S1 (en) * 2021-12-23 2024-03-05 Tecan Genomics, Inc. Reagent blister

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039435A (en) * 1975-12-11 1977-08-02 Sydney Paul Narva Unitary compartmentalized container
US4160803A (en) * 1978-03-23 1979-07-10 Corning Glass Works Self packaged test kit
US4214993A (en) * 1978-04-03 1980-07-29 E. I. Du Pont De Nemours And Company Apparatus for separating fluids
US4243534A (en) * 1979-01-25 1981-01-06 Becton, Dickinson And Company Blood separation
US4341635A (en) * 1980-12-16 1982-07-27 Helena Laboratories Corporation Microchromatographic column and method
USD282208S (en) * 1983-02-07 1986-01-14 Data Packaging Corporation Pipetter tip cartridge
US4787971A (en) * 1987-01-23 1988-11-29 Alan Donald Miniaturized column chromatography separation apparatus and method of assaying biomolecules employing the same
EP0616638A1 (en) * 1991-12-02 1994-09-28 Qiagen Gmbh Method and device for the isolation of cell components, such as nucleic acids, from natural sources.
USD373633S (en) * 1994-12-23 1996-09-10 Pharmacia Biotech Ab Manifold device for chemical solid phase reactions
US5650068A (en) * 1993-02-26 1997-07-22 Ortho Diagnostic Systems Inc. Column agglutination assay and device using biphasic centrifugation
US5683659A (en) * 1995-02-22 1997-11-04 Hovatter; Kenneth R. Integral assembly of microcentrifuge strip tubes and strip caps
US6027694A (en) * 1996-10-17 2000-02-22 Texperts, Inc. Spillproof microplate assembly
US6117394A (en) * 1996-04-10 2000-09-12 Smith; James C. Membrane filtered pipette tip
US6177009B1 (en) * 1998-04-03 2001-01-23 Macherey, Nagel Gmbh & Co. Apparatus for treating biomolecules
US6221655B1 (en) * 1998-08-01 2001-04-24 Cytosignal Spin filter assembly for isolation and analysis
US6254834B1 (en) * 1998-03-10 2001-07-03 Large Scale Proteomics Corp. Detection and characterization of microorganisms
US6761855B1 (en) * 2001-11-05 2004-07-13 Biosearch Technologies, Inc. Column for solid phase processing
US20070140919A1 (en) * 2002-12-17 2007-06-21 Clarkson John M Sample vessel
USD608013S1 (en) * 2009-01-29 2010-01-12 ABgene Limited PCR multi-well plate
US20130029343A1 (en) * 2010-02-22 2013-01-31 4Titude Ltd. Multiwell strips
USD709625S1 (en) * 2013-03-15 2014-07-22 Becton, Dickinson And Company Process tube strip
USD759835S1 (en) * 2013-03-15 2016-06-21 Becton, Dickinson And Company Process tube strip

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1166352C (en) * 1998-05-15 2004-09-15 村松慶穗 Therapeutic pressing device
USD445907S1 (en) 1998-09-19 2001-07-31 Advanced Biotechnologies, Limited PCR multiwell strip
US6402950B1 (en) 1999-09-20 2002-06-11 Princeton Separations Device for multiple sample processing
US6601725B2 (en) * 2001-05-15 2003-08-05 3088081 Canada, Inc. Integral assembly of reagent tubes and seal caps
US7592185B2 (en) * 2004-02-17 2009-09-22 Molecular Bioproducts, Inc. Metering doses of sample liquids
USD679830S1 (en) 2011-09-07 2013-04-09 ABgene Limited PCR multiwell plate
USD687567S1 (en) 2012-10-22 2013-08-06 Qiagen Gaithersburg, Inc. Tube strip for automated processing systems

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039435A (en) * 1975-12-11 1977-08-02 Sydney Paul Narva Unitary compartmentalized container
US4160803A (en) * 1978-03-23 1979-07-10 Corning Glass Works Self packaged test kit
US4214993A (en) * 1978-04-03 1980-07-29 E. I. Du Pont De Nemours And Company Apparatus for separating fluids
US4243534A (en) * 1979-01-25 1981-01-06 Becton, Dickinson And Company Blood separation
US4341635A (en) * 1980-12-16 1982-07-27 Helena Laboratories Corporation Microchromatographic column and method
USD282208S (en) * 1983-02-07 1986-01-14 Data Packaging Corporation Pipetter tip cartridge
US4787971A (en) * 1987-01-23 1988-11-29 Alan Donald Miniaturized column chromatography separation apparatus and method of assaying biomolecules employing the same
EP0616638A1 (en) * 1991-12-02 1994-09-28 Qiagen Gmbh Method and device for the isolation of cell components, such as nucleic acids, from natural sources.
EP0616638B1 (en) * 1991-12-02 1996-04-10 QIAGEN GmbH Method and device for the isolation of cell components, such as nucleic acids, from natural sources
US20010047966A1 (en) * 1991-12-02 2001-12-06 Qiagen Gmbh Process and a device for the isolation of cell components such as nucleic acids from natural sources
US5650068A (en) * 1993-02-26 1997-07-22 Ortho Diagnostic Systems Inc. Column agglutination assay and device using biphasic centrifugation
USD373633S (en) * 1994-12-23 1996-09-10 Pharmacia Biotech Ab Manifold device for chemical solid phase reactions
US5683659A (en) * 1995-02-22 1997-11-04 Hovatter; Kenneth R. Integral assembly of microcentrifuge strip tubes and strip caps
US6117394A (en) * 1996-04-10 2000-09-12 Smith; James C. Membrane filtered pipette tip
US6027694A (en) * 1996-10-17 2000-02-22 Texperts, Inc. Spillproof microplate assembly
US6254834B1 (en) * 1998-03-10 2001-07-03 Large Scale Proteomics Corp. Detection and characterization of microorganisms
US6177009B1 (en) * 1998-04-03 2001-01-23 Macherey, Nagel Gmbh & Co. Apparatus for treating biomolecules
US6221655B1 (en) * 1998-08-01 2001-04-24 Cytosignal Spin filter assembly for isolation and analysis
US6761855B1 (en) * 2001-11-05 2004-07-13 Biosearch Technologies, Inc. Column for solid phase processing
US20070140919A1 (en) * 2002-12-17 2007-06-21 Clarkson John M Sample vessel
USD608013S1 (en) * 2009-01-29 2010-01-12 ABgene Limited PCR multi-well plate
US20130029343A1 (en) * 2010-02-22 2013-01-31 4Titude Ltd. Multiwell strips
USD709625S1 (en) * 2013-03-15 2014-07-22 Becton, Dickinson And Company Process tube strip
USD759835S1 (en) * 2013-03-15 2016-06-21 Becton, Dickinson And Company Process tube strip

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150260745A1 (en) * 2014-03-12 2015-09-17 Dna Medicine Institute, Inc. Sample consumable and loader
US10180442B2 (en) * 2014-03-12 2019-01-15 Dna Medicine Institute, Inc. Sample consumable and loader
US11268972B2 (en) 2014-03-12 2022-03-08 Dna Medicine Institute, Inc. Sample consumable and loader
US20150359708A1 (en) * 2014-06-17 2015-12-17 Tokitae Llc Affixed groups of pharmaceutical vials including frangible connectors
WO2017046783A1 (en) * 2015-09-20 2017-03-23 Dh Technologies Development Pte. Ltd. Small sample injection vial
CN108027305A (en) * 2015-09-20 2018-05-11 Dh科技发展私人贸易有限公司 Small sample injection bottle pipe
US20180259481A1 (en) * 2015-09-20 2018-09-13 Dh Technologies Development Pte. Ltd. Small Sample Injection Vial
WO2019241399A1 (en) * 2018-06-12 2019-12-19 Gmj Technologies, Llc Liquid handling devices and methods in capillary electrophoresis
US20210262979A1 (en) * 2018-06-12 2021-08-26 GMJ Technologies, Inc. Liquid handling devices and methods in capillary electrophoresis
EP3807006A4 (en) * 2018-06-12 2022-03-23 GMJ Technologies, LLC Liquid handling devices and methods in capillary electrophoresis

Also Published As

Publication number Publication date
US10981169B2 (en) 2021-04-20
TWD163564S (en) 2014-10-11
USD717468S1 (en) 2014-11-11
US20190224669A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
US10981169B2 (en) Micro-vials
US10252261B2 (en) Handling liquid samples
US6620625B2 (en) Ultra high throughput sampling and analysis systems and methods
AU2009201529B2 (en) Apparatus For Polynucleotide Detection and Quantitation
JPH11502618A (en) Capillary electrophoresis apparatus and method
WO2007081000A1 (en) Distortive dispensing chip, distortive dispensing apparatus and method of distortive dispensing processing
US20090301232A1 (en) Apparatus and methods for liquid sample handling based on capillary action
US20150132748A1 (en) Integrated microfluidic and solid state pyrosequencing systems
US9242244B2 (en) Method and apparatus for pipette tip columns
US6200781B1 (en) Apparatus, system and method for automated execution and analysis of biological and chemical reactions
US9816136B1 (en) Two-stage nucleic acid reaction and detection tube
US11857981B2 (en) Magnetic separator for an automated single cell sequencing system
US11666914B2 (en) Cartridge, electrowetting sample processing system and bead manipulation method
US20010055801A1 (en) Liquid arrays
US11781953B2 (en) Solid phase microextraction device, repository, and manipulator
JP2005525797A (en) Method and apparatus for performing submicroliter reaction using nucleic acid or protein
JP6221206B2 (en) Liquid filling device and method for filling liquid into capillary using the liquid filling device
JP2018534549A (en) Small sample injection vial
Gómez et al. ANDeS: An automated nanoliter droplet selection and collection device
WO2022235612A1 (en) Taylor cone emitter device respository, taylor cone emitter device respository system, and method for analyzing a population of samples
US20040003998A1 (en) Electrophoresis separation apparatus
Chow DNA separations
Jetha et al. Electrostatic device for active transfer of submicroliter samples from syringe pipettors
GlycoSystems Supersensitive Quantikine kits from British Bio-technology
GB2368640A (en) Liquid sample handling or transferring device

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION