US20140358346A1 - Optimized Power Supply Architecture - Google Patents

Optimized Power Supply Architecture Download PDF

Info

Publication number
US20140358346A1
US20140358346A1 US14/296,434 US201414296434A US2014358346A1 US 20140358346 A1 US20140358346 A1 US 20140358346A1 US 201414296434 A US201414296434 A US 201414296434A US 2014358346 A1 US2014358346 A1 US 2014358346A1
Authority
US
United States
Prior art keywords
processor
power supply
voltage
group
voltages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/296,434
Inventor
Kerfegar K. Katrak
Paul Yuska
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Active Safety and Electronics US LLC
Original Assignee
TRW Automotive US LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRW Automotive US LLC filed Critical TRW Automotive US LLC
Priority to US14/296,434 priority Critical patent/US20140358346A1/en
Assigned to TRW AUTOMOTIVE U.S. LLC reassignment TRW AUTOMOTIVE U.S. LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KATRAK, KERFEGAR K., YUSKA, PAUL
Priority to US14/447,595 priority patent/US10585772B2/en
Publication of US20140358346A1 publication Critical patent/US20140358346A1/en
Priority to US15/601,579 priority patent/US10739834B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3058Monitoring arrangements for monitoring environmental properties or parameters of the computing system or of the computing system component, e.g. monitoring of power, currents, temperature, humidity, position, vibrations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3089Monitoring arrangements determined by the means or processing involved in sensing the monitored data, e.g. interfaces, connectors, sensors, probes, agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies

Definitions

  • This invention relates in general to a power supply architecture that may be used in a control system comprising one or more microprocessors and, in particular, to a power supply architecture that provides for safety monitoring of the various supply voltages associated with the power supply and/or peripheral components.
  • ASIL Automotive Safety Integrity Level
  • ISO 26262 Functional Safety for Road Vehicles This classification helps define the safety requirements necessary to be in line with the ISO 26262 standard.
  • the ASIL is established by performing a risk analysis of a potential hazard by looking at the Severity, Exposure and Controllability of the vehicle operating scenario. The safety goal for that hazard in turn carries the ASIL requirements.
  • ASIL A, ASIL B, ASIL C, and ASIL D dictates the highest integrity requirements on the product and ASIL A the lowest.
  • ASIL D refers to the highest classification of initial hazard (injury risk) defined within ISO 26262 and to that standard's most stringent level of safety measures to apply for avoiding an unreasonable residual risk.
  • ASIL D is noteworthy, not only because of the elevated risk it represents and the exceptional rigor required in development, but because automotive electrical, electronic, and software suppliers make claims that their products have been certified or otherwise accredited to ASIL D.
  • This invention relates to a power supply architecture which incorporates various components and high integrity and diverse monitoring schemes that potentially enable one or more associated control processors to operate under ASIL D standards.
  • a circuit for providing redundant monitoring of an operating voltage V present at a predetermined point in an electrical system comprises a voltage divider, a first monitor, and a second monitor.
  • the voltage divider is connected between the predetermined point and a ground.
  • the voltage divider defines a first intermediate node at a potential V1, that is less than the operating voltage V.
  • the voltage divider further defines a second intermediate node at a potential V2 less than the potential V1.
  • the first monitor is coupled to the first node and is operable to detect a voltage fault or discrepancy in the level of the operating voltage V.
  • the second monitor is coupled to the second node and is operable to detect a voltage fault or discrepancy in the level of the operating voltage V.
  • a protection circuit may be connected between the first intermediate node and the ground for limiting the voltages at the first and second node within a predetermined safe operating range of the first and second monitors.
  • a third monitor may be coupled to one of the first and second nodes and operable to detect a voltage fault or discrepancy in the level of the operating voltage V.
  • each of the monitors is coupled to the respective first or second nodes via a low pass filter.
  • a power supply architecture comprises a first processor, a second processor, a first power supply, and a second power supply.
  • the first power supply is configured to supply a first group of operating voltages to the first processor. At least a portion of the first group of operating voltages is also coupled to monitoring inputs of both the first and second processors.
  • the second power supply is configured to supply a second group of operating voltages to the second processor. At least a portion of the second group of operating voltages is also coupled to monitoring inputs of both the first and second processors.
  • Each of the first and second processors operates to monitor and evaluate the statuses of the portion of the first group of operating voltages and also to determine whether any anomalies are present.
  • Each of the first and second processors operates to monitor and evaluate the statuses of the portion of the second group of operating voltages and also to a determine whether any anomalies are present.
  • the first processor discretely monitors and evaluates the statuses of the portion of the first group and the second processor discretely monitors and evaluates the statuses of the portion of the second group.
  • the power supply architecture may also include a third processor and a third power supply.
  • the third power supply is configured to supply a third group of operating voltages to the third processor. At least a portion of the third group of operating voltages is also coupled to monitoring inputs of the third processor.
  • the third processor operates to evaluate the statuses of the portion of the third group and to a determine whether any anomalies are present.
  • the third processor generates multiple core voltages that are connected to the monitoring inputs of one of the first and second processors.
  • One of the first and second processors may operate to evaluate the statuses of the multiple core voltages and to a determine whether any anomalies are present.
  • an over/under voltage circuit may be coupled to receive the multiple core voltages from the third processor.
  • the over/under circuit is operative to generate digital status signals which in turn are supplied to the monitoring inputs of one of the first and second processors. Additionally, one of the first and second processors is operative to evaluate the statuses of the portion of the digital status signals and to a determine whether any anomalies are present.
  • the first and second processors may be located on a first circuit board, and the third processor may be located on a second, separate circuit board, and the digital status signal are transmitted therebetween.
  • a power supply architecture comprises a first processor, a first power supply, and a first control section.
  • the first processor is partitioned into two MPU applications to define a first control section and first monitoring section.
  • the first power supply is configured to supply a first group of operating voltages to the first processor. At least a portion of the first group is coupled to monitoring inputs of the both the first control section and the first monitoring section.
  • the first control section and the first monitoring section are operative to evaluate the statuses of the portion of the first group and to determine whether any anomalies are present.
  • a second processor may be partitioned into two MPU applications to define into a second control section and second monitoring section.
  • a second power supply may be provided for supplying a second group of operating voltages to the second processor. At least a portion of the second group of operating voltages may also be connected to monitoring inputs of the second control section and the second monitoring section. The second control section and second monitoring section are operative to evaluate the statuses of the portion of the second group and to a determine whether any anomalies are present.
  • a power supply architecture comprises a processor, a power management controller (PMC), and first and second voltage regulators.
  • the PMC is operable to supply a group of different operating voltages to the processor.
  • the first voltage regulator connected to supply a voltage V1 to a first input of the PMC.
  • the second voltage regulator is connected to supply a voltage V2 to a second input of the PMC and to a memory associated with the processor.
  • the PMC is operable to generate a delayed enable signal to an enable input of the second voltage regulator such that the memory of the processor is activated with a delay relative to its core voltages.
  • a power supply architecture comprises a processor; a power management controller (PMC), and a voltage regulator.
  • the PMC is operable to supply a group of different operating voltages to the processor.
  • the voltage regulator is connected to supply a voltage V1 signal to an input of the PMC.
  • the processor is operative to monitor and evaluate the status of the voltage V1 signal to determine whether an anomaly is present.
  • the regulator may be a first regulator and may include a second voltage regulator connected to supply a voltage V2 signal to a second input of the PMC.
  • the processor is also operative to monitor and evaluate the status of the voltage V2 to determine whether an anomaly is present.
  • the V1 and V2 voltage signals may be discretely monitored by the processor.
  • the at least a portion of the group of operating voltages supplied to the processor may also be coupled to monitoring inputs of the processor.
  • the processor may be operative to evaluate the at least a portion of the group of operating voltages to determine whether an anomaly is present.
  • the at least a portion of the group of operating voltages may be discretely monitored by the processor.
  • a third voltage regulator for supplying an operating voltage V3 signal to a memory may be associated with the processor.
  • the processor may also monitor the status of the V3 voltage signal to determine whether an anomaly is present.
  • the processor may be a first processor that generates an output reference source signal and the power supply architecture may include a second processor that is operative to monitor and evaluate the output reference source signal to determine whether an anomaly is present. Additionally, the output reference source signal of this embodiment may be discretely monitored by the second processor.
  • a power supply architecture comprises a processor, a power management controller (PMC), and a voltage regulator.
  • the PMC is operable to supply a group of different operating voltages to the processor.
  • the voltage regulator is connected to supply an operating voltage to the PMC.
  • the processor is operative to monitor and evaluate at least a portion of the group of operating voltages to determine whether an anomaly is present.
  • the at least a portion of the group of operating voltages may be discretely monitored by the processor.
  • the processor is a first processor that generates an output reference source signal and a second processor is provided that is operative to monitor and evaluate the output reference source signal to determine whether an anomaly is present.
  • the output reference source signal may be discretely monitored by the second processor.
  • a power supply architecture for a vehicle comprises a processor, a first communication bus connected between the processor and a vehicle control system, and a first power supply for supplying a first operating voltage to the first communication bus.
  • a second communication bus is connected between the processor and the vehicle control system.
  • a second power supply separate from the first power supply, is configured to supply a second operating voltage to the second communication bus.
  • FIG. 1 is a block diagram showing one example of an operating environment for a power supply architecture embodying the principles of the invention, wherein the invention is utilized as a power supply with multiple vehicle control system.
  • FIG. 2 is a block diagram showing one example of the arrangement of components which comprise the power supply architecture of FIG. 1 .
  • FIG. 3 is a typical prior art circuit for providing redundant monitoring of an operating voltage in an electrical system.
  • FIG. 4 is a simplified circuit for providing redundant monitoring of an operating voltage in an electrical system, and embodying the principles of the invention.
  • FIGS. 5 a and 5 b show circuits using the principles of FIG. 4 for monitoring the switched battery and ignition voltages across three processors, 1 A, 1 B, and 2 A, and representing one example of section A of FIG. 2 .
  • FIG. 6 a represents one example of section B of FIG. 2 , wherein multiple supply voltages from two independent power supplies are cross-monitored through diverse analog and digital (discrete) methods.
  • FIG. 6 b is similar to FIG. 6 a , but showing additional details of the monitoring of a 1.2V core voltage, and wherein the 1.2V core voltage has opposite analog/digital routing than the rest of the outputs from the respective power supply.
  • FIG. 7 a represents an alternate embodiment of FIG. 6 a (Section B of FIG. 2 ), wherein the analog and digital routing is switched.
  • FIG. 7 b represents an alternate embodiment of FIG. 6 b , wherein the analog and digital routing is switched.
  • FIGS. 8 a and 8 b represent alternate embodiments of FIG. 6 a (Section B of FIG. 2 ), wherein each microprocessor 1 A and 2 A is partitioned into two MPU applications, which enables each microprocessor to check itself (including its own 1.2V core voltage), without memory corruption.
  • FIG. 9 a represents one example of section C of FIG. 2 .
  • FIG. 9 b represents an alternate embodiment of FIG. 9 a.
  • This invention concerns various embodiments directed to the efficient distribution and failsafe monitoring of power in a microcontroller system. While the various embodiments are particularly suitable for use in vehicular applications (including both automotive and truck), it will be readily appreciated that the invention and its various embodiments can be used, either singly or collectively, in other control applications having similar operating requirements.
  • the inventions are used in a Multiple ASIL Optimized Power Supply Architecture for an electronic control module used for supervisory input processing (radar, camera, etc.) and output commands (engine torque, transmission torque, steering angle or torque, brake commands or torque, suspension commands, etc.) for driver assistance systems.
  • the various inventions provide an integrated method or apparatus for an electronic module safety architecture which includes diversity, time and space independence for power supplies for the varied ASIL microprocessors and vehicle communication buses.
  • FIG. 1 a block diagram showing one example of an operating environment for a power supply architecture embodying the principles of the invention, wherein the invention is utilized as a power supply in a vehicle control system.
  • the functional aspects of the Multiple ASIL Optimized Power Supply Architecture of the electronic module may be characterized as follows:
  • FIG. 2 is a block diagram showing one example of the arrangement of components which comprise the power supply architecture of FIG. 1 , including Section A (switched battery and ignition voltage monitoring), Section B (independent power supplies and cross-monitoring between processors 1 A and 1 B) and Section C (power management controller and processor 2 A).
  • Section A switched battery and ignition voltage monitoring
  • Section B independent power supplies and cross-monitoring between processors 1 A and 1 B
  • Section C power management controller and processor 2 A
  • FIG. 3 shows a typical prior art circuit for monitoring the switched battery and ignition voltages across two processors, A and B, embodying the principles of the invention, and which represents Section A of FIG. 2 .
  • Switched battery voltage which in one embodiment may be on the order of 26.5V in an automobile, can be divided down to an acceptable input level for a microprocessor. There may also be protection components in place to protect the processor in the case of over/under voltage transients. Typically, there exists a divider and a protection circuit for every processor that is monitoring the switched battery input.
  • FIG. 4 represents an embodiment of a circuit for monitoring battery voltages across two or more microprocessors having improved economy and reliability.
  • the processors instead of having two separate voltage dividers, the processors share three dividing resistors. This configuration still divides the voltage to a safe level for the processors, but it also sets up a diverse configuration where the battery voltage translates to different operational voltage ranges for each processor. For example, processor A may read a full battery at 4.5+V, while processor B may read the full battery at 2.5V, invoking algorithmic diversity. Another benefit of this topology is the ability to use one protection circuit, even while using two or more processors. Because the protection circuit is placed at the first intermediate node of the dividing resistors (near Processor A), it will protect any other processors from voltage transients whether they are at that node or below that node.
  • FIG. 5 a is the switched battery monitoring topology used by the invention. Similar to FIG. 4 , it uses one set of protection components. In addition to FIG. 4 , there is a third processor, and two of the processors share an operational voltage range at the first intermediate node on the divider. The resistors leading to each processor isolate the processors from each other, and they can also be incorporated in low-pass filters to reduce noise.
  • FIG. 5 b is an ignition voltage monitoring circuit, using the same topology as FIG. 5 a . Certain embodiment of the invention described herein can make use of this cost effective circuit for both the battery and ignition voltages.
  • the reference points of processor 1 A and 1 B may be switched between FIG. 5 a and FIG. 5 b . This allows each processor to have algorithmic diversity within itself, reading battery voltage on one operational range while reading ignition voltage on another. This results in improved failure mode detection.
  • FIG. 6 a represents section B of FIG. 2 , wherein multiple supply voltages from two independent power supplies are cross-monitored through diverse analog and discrete methods across two processors.
  • the physical power supply inputs to the processors which provide operational voltages rather than monitored voltages, are not shown in FIGS. 6 a - 9 b.
  • the illustrated lines represent the monitored reference voltages of these supply voltages, and no significant power is consumed through these illustrated reference lines.
  • a group of reference voltages for processor 1 A are monitored through analog-to-digital (A/D) inputs on a second processor 1 B.
  • A/D analog-to-digital
  • OV/UV overvoltage/undervoltage
  • Processor 1 A reads these outputs using digital (I/O) pins.
  • Processor 1 B uses precisely the same method, monitoring its own supply through OV/UV monitor(s) and monitoring 1 A's supply through its A/D inputs.
  • This embodiment incorporates time and space diversity, where the independent power supplies are monitored by two processors, both using analog (A/D) and discrete (I/O) methods.
  • FIG. 6 b is similar to FIG. 6 a but shows additional details of the circuit.
  • a 1.2V core reference voltage is separated from the rest of the referenced voltage in order to show that it is monitored in an opposite fashion.
  • the processor monitors its own 1.2V core with a direct analog connection to respond quickly to a failure, thus minimizing or eliminating a delay that could come from the inter-processor bus.
  • Another additional detail in FIG. 6 b is the specified supply and pull-up voltages for the OV/UV monitors. This applies to all OV/UV blocks in FIGS.
  • the discrete monitors used by 1 A uses voltages from power supply 2
  • the discrete monitors used by 1 B uses voltages from power supply 1 . This allows the cross monitoring system to operate in a situation where one of the power supplies fails completely.
  • FIG. 7 a is very similar to FIG. 6 a , except that all assignments of analog and digital paths have been swapped between the supplies. Each processor now monitors its own reference voltages using analog means and the other processor's voltages through discrete means.
  • FIG. 7 b is very similar to FIG. 7 a , but includes an inverted method of monitoring the 1.2V core voltages. A similar embodiment was previously described in FIG. 6 b . However, the embodiment of FIG. 6 b may represent certain advantages over the embodiment of FIG. 7 b.
  • FIG. 8 a represents an alternate embodiment of the invention.
  • Some processors have the ability to run memory partition units, where partitions of the memory are separated, or otherwise segregated, in such a way that they cannot corrupt other partitions. This opens up the possibility of using one microprocessor to represent two microprocessors.
  • FIG. 8 a is a simplified memory partition unit application. Power supply voltages do not cross from one processor to the other. However, they are diversely monitored by two distinct partitions in each processor, which are represented by the shaded portions of the processor blocks (grey and white).
  • FIG. 8 b represents an alternate embodiment of FIG. 8 a , where the 1.2V core voltage is cross-monitored between processors, while the rest of the voltages are cross-monitored between partitions in their respected processor.
  • FIG. 8 a may be a preferred arrangement because the same level of diversity can be accomplished as FIG. 8 b without transferring delayed monitor signals on an inter-processor bus.
  • FIG. 9 a represents section C of FIG. 2 and includes the function and monitoring of microprocessor 2 A.
  • a power management controller PMC
  • PMC power management controller
  • Two switching regulators provide power to the PMC.
  • Regulator 1 turns on with a signal from V_BATT_SW, and the essential supplies are provided to 2 A.
  • Some peripherals, such as DDR memory may require that their power supplies be turned on after the processor's core power supplies. To accomplish this, a naturally delayed output from the PMC enables Regulator 2 , which powers up a dedicated regulator for the high-current DDR memory.
  • the power supply voltages for processor 2 A are monitored only with a discrete method, and 2 A does not include A/D converters.
  • 2 A is located on a separate printed circuit board (PCB) than 1 A and 1 B, discrete signals are preferred for their immunity to noise, which could affect analog signals. It is also preferred to limit the number of signals that must be passed from one PCB to the other. For this reason, voltages that are not generated in 2 A are monitored by individual OV/UV monitors and read by 2 A. Examples include core input voltages and memory DDR memory voltages. Processor 2 A generates operational voltages for its cores, as well as several peripheral voltages. These voltages are monitored by individual OV/UV processors and read by processor 1 B, located on a separate PCB.
  • PCB printed circuit board
  • FIG. 9 b is very similar to FIG. 9 a , except that the OV/UV monitors no longer exist as individual modules for each supply voltage. Instead, they are grouped into collective monitors, which generate one or more discrete outputs based on the status of several input voltages. Collective as well as individual voltage monitors should be considered for the embodiment of section C. If packaging requirements allow for additional signals to be transferred between PCBs, processor 1 B could discretely monitor all the supply voltages in section C, which is another embodiment to consider.

Abstract

A power supply architecture provides for the efficient distribution and failsafe monitoring of power in a microcontroller system. The power supply architecture incorporates various components with high integrity and diverse monitoring schemes that allow the associated control processors to operate with high safety standards. The various embodiments provide an integrated method or apparatus for an electronic module safety architecture which includes diversity, time and space independence for power supplies for the various microprocessors and control communication buses.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Application No. 61/830,934; filed Jun. 4, 2013; the disclosure of which is incorporated herein by reference in its entirety.
  • BACKGROUND OF THE INVENTION
  • This invention relates in general to a power supply architecture that may be used in a control system comprising one or more microprocessors and, in particular, to a power supply architecture that provides for safety monitoring of the various supply voltages associated with the power supply and/or peripheral components.
  • In automotive applications, the particular safety standards to which a component or system must adhere are determined by a risk classification scheme known as Automotive Safety Integrity Level (ASIL) and defined by the ISO 26262 Functional Safety for Road Vehicles standard. This classification helps define the safety requirements necessary to be in line with the ISO 26262 standard. The ASIL is established by performing a risk analysis of a potential hazard by looking at the Severity, Exposure and Controllability of the vehicle operating scenario. The safety goal for that hazard in turn carries the ASIL requirements. There are four ASILs identified by the standard: ASIL A, ASIL B, ASIL C, and ASIL D. ASIL D dictates the highest integrity requirements on the product and ASIL A the lowest.
  • ASIL D refers to the highest classification of initial hazard (injury risk) defined within ISO 26262 and to that standard's most stringent level of safety measures to apply for avoiding an unreasonable residual risk. ASIL D is noteworthy, not only because of the elevated risk it represents and the exceptional rigor required in development, but because automotive electrical, electronic, and software suppliers make claims that their products have been certified or otherwise accredited to ASIL D.
  • SUMMARY OF THE INVENTION
  • This invention relates to a power supply architecture which incorporates various components and high integrity and diverse monitoring schemes that potentially enable one or more associated control processors to operate under ASIL D standards.
  • According to one aspect of the invention, a circuit for providing redundant monitoring of an operating voltage V present at a predetermined point in an electrical system comprises a voltage divider, a first monitor, and a second monitor. The voltage divider is connected between the predetermined point and a ground. The voltage divider defines a first intermediate node at a potential V1, that is less than the operating voltage V. The voltage divider further defines a second intermediate node at a potential V2 less than the potential V1. The first monitor is coupled to the first node and is operable to detect a voltage fault or discrepancy in the level of the operating voltage V. The second monitor is coupled to the second node and is operable to detect a voltage fault or discrepancy in the level of the operating voltage V. A protection circuit may be connected between the first intermediate node and the ground for limiting the voltages at the first and second node within a predetermined safe operating range of the first and second monitors. In addition, a third monitor may be coupled to one of the first and second nodes and operable to detect a voltage fault or discrepancy in the level of the operating voltage V. In certain embodiments, each of the monitors is coupled to the respective first or second nodes via a low pass filter.
  • According to another aspect of the invention, a power supply architecture comprises a first processor, a second processor, a first power supply, and a second power supply. The first power supply is configured to supply a first group of operating voltages to the first processor. At least a portion of the first group of operating voltages is also coupled to monitoring inputs of both the first and second processors. The second power supply is configured to supply a second group of operating voltages to the second processor. At least a portion of the second group of operating voltages is also coupled to monitoring inputs of both the first and second processors. Each of the first and second processors operates to monitor and evaluate the statuses of the portion of the first group of operating voltages and also to determine whether any anomalies are present. Each of the first and second processors operates to monitor and evaluate the statuses of the portion of the second group of operating voltages and also to a determine whether any anomalies are present. In one embodiment, the first processor discretely monitors and evaluates the statuses of the portion of the first group and the second processor discretely monitors and evaluates the statuses of the portion of the second group.
  • The power supply architecture, above, may also include a third processor and a third power supply. The third power supply is configured to supply a third group of operating voltages to the third processor. At least a portion of the third group of operating voltages is also coupled to monitoring inputs of the third processor. The third processor operates to evaluate the statuses of the portion of the third group and to a determine whether any anomalies are present. In another embodiment, the third processor generates multiple core voltages that are connected to the monitoring inputs of one of the first and second processors. One of the first and second processors may operate to evaluate the statuses of the multiple core voltages and to a determine whether any anomalies are present. In yet another embodiment, an over/under voltage circuit may be coupled to receive the multiple core voltages from the third processor. The over/under circuit is operative to generate digital status signals which in turn are supplied to the monitoring inputs of one of the first and second processors. Additionally, one of the first and second processors is operative to evaluate the statuses of the portion of the digital status signals and to a determine whether any anomalies are present. In another embodiment, the first and second processors may be located on a first circuit board, and the third processor may be located on a second, separate circuit board, and the digital status signal are transmitted therebetween.
  • According to still another aspect of the invention, a power supply architecture comprises a first processor, a first power supply, and a first control section. The first processor is partitioned into two MPU applications to define a first control section and first monitoring section. The first power supply is configured to supply a first group of operating voltages to the first processor. At least a portion of the first group is coupled to monitoring inputs of the both the first control section and the first monitoring section. The first control section and the first monitoring section are operative to evaluate the statuses of the portion of the first group and to determine whether any anomalies are present. In one embodiment of this power supply architecture, a second processor may be partitioned into two MPU applications to define into a second control section and second monitoring section. A second power supply may be provided for supplying a second group of operating voltages to the second processor. At least a portion of the second group of operating voltages may also be connected to monitoring inputs of the second control section and the second monitoring section. The second control section and second monitoring section are operative to evaluate the statuses of the portion of the second group and to a determine whether any anomalies are present.
  • According to still yet another aspect of the invention, a power supply architecture comprises a processor, a power management controller (PMC), and first and second voltage regulators. The PMC is operable to supply a group of different operating voltages to the processor. The first voltage regulator connected to supply a voltage V1 to a first input of the PMC. The second voltage regulator is connected to supply a voltage V2 to a second input of the PMC and to a memory associated with the processor. The PMC is operable to generate a delayed enable signal to an enable input of the second voltage regulator such that the memory of the processor is activated with a delay relative to its core voltages.
  • According to yet another aspect of the invention, a power supply architecture comprises a processor; a power management controller (PMC), and a voltage regulator. The PMC is operable to supply a group of different operating voltages to the processor. The voltage regulator is connected to supply a voltage V1 signal to an input of the PMC. The processor is operative to monitor and evaluate the status of the voltage V1 signal to determine whether an anomaly is present. In one embodiment, the regulator may be a first regulator and may include a second voltage regulator connected to supply a voltage V2 signal to a second input of the PMC. The processor is also operative to monitor and evaluate the status of the voltage V2 to determine whether an anomaly is present. In one embodiment, the V1 and V2 voltage signals may be discretely monitored by the processor. In another embodiment, the at least a portion of the group of operating voltages supplied to the processor may also be coupled to monitoring inputs of the processor. The processor may be operative to evaluate the at least a portion of the group of operating voltages to determine whether an anomaly is present. In yet another embodiment, the at least a portion of the group of operating voltages may be discretely monitored by the processor. In addition, a third voltage regulator for supplying an operating voltage V3 signal to a memory may be associated with the processor. Here, the processor may also monitor the status of the V3 voltage signal to determine whether an anomaly is present.
  • In yet another embodiment of the power supply architecture, above, the processor may be a first processor that generates an output reference source signal and the power supply architecture may include a second processor that is operative to monitor and evaluate the output reference source signal to determine whether an anomaly is present. Additionally, the output reference source signal of this embodiment may be discretely monitored by the second processor.
  • According to another aspect of the invention, a power supply architecture comprises a processor, a power management controller (PMC), and a voltage regulator. The PMC is operable to supply a group of different operating voltages to the processor. The voltage regulator is connected to supply an operating voltage to the PMC. The processor is operative to monitor and evaluate at least a portion of the group of operating voltages to determine whether an anomaly is present. In one embodiment, the at least a portion of the group of operating voltages may be discretely monitored by the processor. In another embodiment, the processor is a first processor that generates an output reference source signal and a second processor is provided that is operative to monitor and evaluate the output reference source signal to determine whether an anomaly is present. Here, the output reference source signal may be discretely monitored by the second processor.
  • In yet another aspect of the invention, a power supply architecture for a vehicle comprises a processor, a first communication bus connected between the processor and a vehicle control system, and a first power supply for supplying a first operating voltage to the first communication bus. A second communication bus is connected between the processor and the vehicle control system. A second power supply, separate from the first power supply, is configured to supply a second operating voltage to the second communication bus.
  • Various aspects of this invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiment, when read in light of the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram showing one example of an operating environment for a power supply architecture embodying the principles of the invention, wherein the invention is utilized as a power supply with multiple vehicle control system.
  • FIG. 2 is a block diagram showing one example of the arrangement of components which comprise the power supply architecture of FIG. 1.
  • FIG. 3 is a typical prior art circuit for providing redundant monitoring of an operating voltage in an electrical system.
  • FIG. 4 is a simplified circuit for providing redundant monitoring of an operating voltage in an electrical system, and embodying the principles of the invention.
  • FIGS. 5 a and 5 b show circuits using the principles of FIG. 4 for monitoring the switched battery and ignition voltages across three processors, 1A, 1B, and 2A, and representing one example of section A of FIG. 2.
  • FIG. 6 a represents one example of section B of FIG. 2, wherein multiple supply voltages from two independent power supplies are cross-monitored through diverse analog and digital (discrete) methods.
  • FIG. 6 b is similar to FIG. 6 a, but showing additional details of the monitoring of a 1.2V core voltage, and wherein the 1.2V core voltage has opposite analog/digital routing than the rest of the outputs from the respective power supply.
  • FIG. 7 a represents an alternate embodiment of FIG. 6 a (Section B of FIG. 2), wherein the analog and digital routing is switched.
  • FIG. 7 b represents an alternate embodiment of FIG. 6 b, wherein the analog and digital routing is switched.
  • FIGS. 8 a and 8 b represent alternate embodiments of FIG. 6 a (Section B of FIG. 2), wherein each microprocessor 1A and 2A is partitioned into two MPU applications, which enables each microprocessor to check itself (including its own 1.2V core voltage), without memory corruption.
  • FIG. 9 a represents one example of section C of FIG. 2.
  • FIG. 9 b represents an alternate embodiment of FIG. 9 a.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • This invention concerns various embodiments directed to the efficient distribution and failsafe monitoring of power in a microcontroller system. While the various embodiments are particularly suitable for use in vehicular applications (including both automotive and truck), it will be readily appreciated that the invention and its various embodiments can be used, either singly or collectively, in other control applications having similar operating requirements. In one application, the inventions are used in a Multiple ASIL Optimized Power Supply Architecture for an electronic control module used for supervisory input processing (radar, camera, etc.) and output commands (engine torque, transmission torque, steering angle or torque, brake commands or torque, suspension commands, etc.) for driver assistance systems. The various inventions provide an integrated method or apparatus for an electronic module safety architecture which includes diversity, time and space independence for power supplies for the varied ASIL microprocessors and vehicle communication buses.
  • Referring now to the drawings, there is illustrated in FIG. 1 a block diagram showing one example of an operating environment for a power supply architecture embodying the principles of the invention, wherein the invention is utilized as a power supply in a vehicle control system. Generally, referring to FIG. 1, the functional aspects of the Multiple ASIL Optimized Power Supply Architecture of the electronic module may be characterized as follows:
      • a. includes two high integrity ASIL D compatible microprocessors (1A and 1B) for supervisory input processing and output commands for driver assistance systems.
      • b. receives the input processing and output command information from two or more pairs of automotive communication buses (CAN, Flexray, etc.). These communication buses transfer high integrity information. Each external bus type has a complementary role if one of them is severed. As shown in FIGS. 1 and 2, each communication bus receives power from a separate and independent power supply.
      • c. includes one other high throughput processing microprocessor (microprocessor 2A) with external memory. The microprocessor 2A may have a quality management (non-ASIL) hardware requirement. Alternatively, the microprocessor 2A may have a higher level designation, such as ASIL B.
      • d. microprocessors 1A and 2A may be used predominantly for control and microprocessor 1B may be used predominantly for checking microprocessor 1A and 2A.
      • e. in one alternative, a minimal set of functions microprocessor 1B is used for control and for these functions microprocessor 1A is used for checking.
      • f. providing independence between the 2 high integrity Automotive Safety Integrity Level (ASIL D) microprocessors (1A and 1B) and the high throughput processing quality management microprocessor (microprocessor 2A) with ASIL B monitoring for external microprocessor hardware.
  • The recently approved ISO 26262 safety standards have time and space independence to be achieved for power supplies and their monitoring for the microprocessors and varied vehicle communication buses—CAN, Flexray, etc.
  • FIG. 2 is a block diagram showing one example of the arrangement of components which comprise the power supply architecture of FIG. 1, including Section A (switched battery and ignition voltage monitoring), Section B (independent power supplies and cross-monitoring between processors 1A and 1B) and Section C (power management controller and processor 2A).
  • FIG. 3 shows a typical prior art circuit for monitoring the switched battery and ignition voltages across two processors, A and B, embodying the principles of the invention, and which represents Section A of FIG. 2. Switched battery voltage, which in one embodiment may be on the order of 26.5V in an automobile, can be divided down to an acceptable input level for a microprocessor. There may also be protection components in place to protect the processor in the case of over/under voltage transients. Typically, there exists a divider and a protection circuit for every processor that is monitoring the switched battery input.
  • FIG. 4 represents an embodiment of a circuit for monitoring battery voltages across two or more microprocessors having improved economy and reliability. In case of using two monitoring processors, instead of having two separate voltage dividers, the processors share three dividing resistors. This configuration still divides the voltage to a safe level for the processors, but it also sets up a diverse configuration where the battery voltage translates to different operational voltage ranges for each processor. For example, processor A may read a full battery at 4.5+V, while processor B may read the full battery at 2.5V, invoking algorithmic diversity. Another benefit of this topology is the ability to use one protection circuit, even while using two or more processors. Because the protection circuit is placed at the first intermediate node of the dividing resistors (near Processor A), it will protect any other processors from voltage transients whether they are at that node or below that node.
  • FIG. 5 a is the switched battery monitoring topology used by the invention. Similar to FIG. 4, it uses one set of protection components. In addition to FIG. 4, there is a third processor, and two of the processors share an operational voltage range at the first intermediate node on the divider. The resistors leading to each processor isolate the processors from each other, and they can also be incorporated in low-pass filters to reduce noise.
  • FIG. 5 b is an ignition voltage monitoring circuit, using the same topology as FIG. 5 a. Certain embodiment of the invention described herein can make use of this cost effective circuit for both the battery and ignition voltages. To add further diversity to the system, the reference points of processor 1A and 1B may be switched between FIG. 5 a and FIG. 5 b. This allows each processor to have algorithmic diversity within itself, reading battery voltage on one operational range while reading ignition voltage on another. This results in improved failure mode detection.
  • FIG. 6 a represents section B of FIG. 2, wherein multiple supply voltages from two independent power supplies are cross-monitored through diverse analog and discrete methods across two processors. For the sake of clarity, it should be noted that the physical power supply inputs to the processors, which provide operational voltages rather than monitored voltages, are not shown in FIGS. 6 a-9 b. The illustrated lines represent the monitored reference voltages of these supply voltages, and no significant power is consumed through these illustrated reference lines. In FIG. 6 a, a group of reference voltages for processor 1A are monitored through analog-to-digital (A/D) inputs on a second processor 1B. Simultaneously, the same voltages are sent to one or several overvoltage/undervoltage (OV/UV) monitor(s), which calculate discrete pass/fail outputs depending on the state of the power supplies. Processor 1A reads these outputs using digital (I/O) pins. Processor 1B uses precisely the same method, monitoring its own supply through OV/UV monitor(s) and monitoring 1A's supply through its A/D inputs. This embodiment incorporates time and space diversity, where the independent power supplies are monitored by two processors, both using analog (A/D) and discrete (I/O) methods.
  • FIG. 6 b is similar to FIG. 6 a but shows additional details of the circuit. In FIG. 6 b, a 1.2V core reference voltage is separated from the rest of the referenced voltage in order to show that it is monitored in an opposite fashion. The same time and space diversity exists for the 1.2V reference, but it is monitored as an analog signal by its own processor and by a digital(or discrete) signal for the other processor. In one embodiment, the processor monitors its own 1.2V core with a direct analog connection to respond quickly to a failure, thus minimizing or eliminating a delay that could come from the inter-processor bus. Another additional detail in FIG. 6 b is the specified supply and pull-up voltages for the OV/UV monitors. This applies to all OV/UV blocks in FIGS. 6 a,b; 7 a,b; and 8 a,b. The discrete monitors used by 1A uses voltages from power supply 2, and the discrete monitors used by 1B uses voltages from power supply 1. This allows the cross monitoring system to operate in a situation where one of the power supplies fails completely.
  • FIG. 7 a is very similar to FIG. 6 a, except that all assignments of analog and digital paths have been swapped between the supplies. Each processor now monitors its own reference voltages using analog means and the other processor's voltages through discrete means.
  • FIG. 7 b is very similar to FIG. 7 a, but includes an inverted method of monitoring the 1.2V core voltages. A similar embodiment was previously described in FIG. 6 b. However, the embodiment of FIG. 6 b may represent certain advantages over the embodiment of FIG. 7 b.
  • FIG. 8 a represents an alternate embodiment of the invention. Some processors have the ability to run memory partition units, where partitions of the memory are separated, or otherwise segregated, in such a way that they cannot corrupt other partitions. This opens up the possibility of using one microprocessor to represent two microprocessors. FIG. 8 a is a simplified memory partition unit application. Power supply voltages do not cross from one processor to the other. However, they are diversely monitored by two distinct partitions in each processor, which are represented by the shaded portions of the processor blocks (grey and white).
  • FIG. 8 b represents an alternate embodiment of FIG. 8 a, where the 1.2V core voltage is cross-monitored between processors, while the rest of the voltages are cross-monitored between partitions in their respected processor. In certain environments, FIG. 8 a may be a preferred arrangement because the same level of diversity can be accomplished as FIG. 8 b without transferring delayed monitor signals on an inter-processor bus.
  • FIG. 9 a represents section C of FIG. 2 and includes the function and monitoring of microprocessor 2A. A power management controller (PMC) provides the necessary core and peripheral voltages for 2A. Two switching regulators provide power to the PMC. Regulator 1 turns on with a signal from V_BATT_SW, and the essential supplies are provided to 2A. Some peripherals, such as DDR memory may require that their power supplies be turned on after the processor's core power supplies. To accomplish this, a naturally delayed output from the PMC enables Regulator 2, which powers up a dedicated regulator for the high-current DDR memory. The power supply voltages for processor 2A are monitored only with a discrete method, and 2A does not include A/D converters. Because 2A is located on a separate printed circuit board (PCB) than 1A and 1B, discrete signals are preferred for their immunity to noise, which could affect analog signals. It is also preferred to limit the number of signals that must be passed from one PCB to the other. For this reason, voltages that are not generated in 2A are monitored by individual OV/UV monitors and read by 2A. Examples include core input voltages and memory DDR memory voltages. Processor 2A generates operational voltages for its cores, as well as several peripheral voltages. These voltages are monitored by individual OV/UV processors and read by processor 1B, located on a separate PCB.
  • FIG. 9 b is very similar to FIG. 9 a, except that the OV/UV monitors no longer exist as individual modules for each supply voltage. Instead, they are grouped into collective monitors, which generate one or more discrete outputs based on the status of several input voltages. Collective as well as individual voltage monitors should be considered for the embodiment of section C. If packaging requirements allow for additional signals to be transferred between PCBs, processor 1B could discretely monitor all the supply voltages in section C, which is another embodiment to consider.
  • The principle and mode of operation of this invention have been explained and illustrated in its preferred embodiment. However, it must be understood that this invention may be practiced otherwise than as specifically explained and illustrated without departing from its spirit or scope.

Claims (26)

What is claimed is:
1. A circuit for providing redundant monitoring of an operating voltage V present at a predetermined point in an electrical system, the circuit comprising:
a voltage divider connected between the predetermined point and a ground, the voltage divider defining a first intermediate node at a potential V1 less than the operating voltage V and a second intermediate node at a potential V2 less than the potential V1;
a first monitor coupled to the first node and operable to detect a voltage fault or discrepancy in the level of the operating voltage V; and
a second monitor coupled to the second node and operable to detect a voltage fault or discrepancy in the level of the operating voltage V.
2. The circuit according to claim 1 and further including a protection circuit connected between the first intermediate node and the ground for limiting the voltages at the first and second node within a predetermined safe operating range of the first and second monitors.
3. The circuit according to claim 1 and further including a third monitor coupled to one of the first and second nodes and operable to detect a voltage fault or discrepancy in the level of the operating voltage V.
4. The circuit according to claim 1 wherein each of the monitors is coupled to the respective first or second nodes via a low pass filter.
5. A power supply architecture comprising:
a first processor;
a second processor;
a first power supply for supplying a first group of operating voltages to the first processor, at least a portion of the first group also coupled to monitoring inputs of both the first and second processors;
a second power supply for supplying a second group of operating voltages to the second processor, at least a portion of the second group also coupled to monitoring inputs of both the first and second processors;
each of the first and second processors operates to monitor and evaluate the statuses of the portion of the first group and to determine whether any anomalies are present; and
each of the first and second processors operates to monitor and evaluate the statuses of the portion of the second group and to a determine whether any anomalies are present.
6. The power supply architecture according to claim 5 wherein the first processor discretely monitors and evaluates the statuses of the portion of the first group and wherein the second processor discretely monitors and evaluates the statuses of the portion of the second group.
7. The power supply architecture according to claim 5 and further including:
a third processor;
a third power supply for supplying a third group of operating voltages to the third processor, at least a portion of the third group also coupled to monitoring inputs of the third processor; and
the third processor operates to evaluate the statuses of the portion of the third group and to a determine whether any anomalies are present.
8. The power supply architecture according to claim 7 wherein the third processor generates multiple core voltages that are connected to the monitoring inputs of one of the first and second processors, and wherein the one of the first and second processors operates to evaluate the statuses of the multiple core voltages and to a determine whether any anomalies are present.
9. The power supply architecture according to claim 8 and further including an over/under voltage circuit coupled to receive the multiple core voltages from the third processor, and operative to generate digital status signals which in turn are supplied to the monitoring inputs of one of the first and second processors, and wherein the one of the first and second processors is operative to evaluate the statuses of the portion of the digital status signals and to a determine whether any anomalies are present.
10. The power supply architecture according to claim 9 wherein the first and second processors are located on a first circuit board, and the third processor is located on a second, separate circuit board, and the digital status signal are transmitted therebetween.
11. A power supply architecture comprising:
a first processor partitioned into two MPU applications to define a first control section and first monitoring section;
a first power supply for supplying a first group of operating voltages to the first processor, at least a portion of the first group coupled to monitoring inputs of the both the first control section and the first monitoring section; and
the first control section and the first monitoring section operative to evaluate the statuses of the portion of the first group and to determine whether any anomalies are present.
12. A power supply architecture according to claim 11 comprising:
a second processor partitioned into two MPU applications to define a second control section and second monitoring section;
a second power supply for supplying a second group of operating voltages to the second processor, at least a portion of the second group also connected to monitoring inputs of the second control section and the second monitoring section; and
the second control section and second monitoring section operative to evaluate the statuses of the portion of the second group and to a determine whether any anomalies are present.
13. A power supply architecture comprising:
a processor;
a power management controller (PMC) operable to supply a group of different operating voltages to the processor;
a first voltage regulator connected to supply a voltage V1 to a first input of the PMC;
a second voltage regulator connected to supply a voltage V2 to a second input of the PMC and to a memory associated with the processor;
the PMC operable to generating a delayed enable signal to an enable input of the second voltage regulator such that the memory of the processor is activated with a delay relative to its core voltages.
14. A power supply architecture comprising:
a processor;
a power management controller (PMC) operable to supply a group of different operating voltages to the processor;
a voltage regulator connected to supply a voltage V1 signal to an input of the PMC; and
the processor is operative to monitor and evaluate the status of the voltage V1 signal to determine whether an anomaly is present.
15. The power supply architecture according to claim 14 wherein the regulator is a first regulator and including a second voltage regulator connected to supply a voltage V2 signal to a second input of the PMC, and wherein the processor is also operative to monitor and evaluate the status of the voltage V2 to determine whether an anomaly is present.
16. The power supply architecture according to claim 15 wherein the V1 and V2 voltage signals are discretely monitored by the processor.
17. The power supply architecture according to claim 14 wherein the at least a portion of the group of operating voltages supplied to the processor are also coupled to monitoring inputs of the processor, and wherein the processor is operative to evaluate the at least a portion of the group of operating voltages to determine whether an anomaly is present.
18. The power supply architecture according to claim 14 wherein the at least a portion of the group of operating voltages are discretely monitored by the processor.
19. The power supply architecture according to claim 15 and further including a third voltage regulator for supplying an operating voltage V3 signal to a memory associated with the processor, and wherein the processor monitors the status of the V3 voltage signal to determine whether an anomaly is present.
20. The power supply architecture according to claim 14 wherein the processor is a first processor that generates an output reference source signal and including a second processor, and wherein the second processor is operative to monitor and evaluate the output reference source signal to determine whether an anomaly is present.
21. The power supply architecture according to claim 19 wherein the output reference source signal is discretely monitored by the second processor.
22. A power supply architecture comprising:
a processor;
a power management controller (PMC) operable to supply a group of different operating voltages to the processor;
a voltage regulator connected to supply an operating voltage to the PMC; and
the processor is operative to monitor and evaluate at least a portion of the group of operating voltages to determine whether an anomaly is present.
23. The power supply architecture according to claim 22 wherein the at least a portion of the group of operating voltages is discretely monitored by the processor.
24. The power supply architecture according to claim 22 wherein the processor is a first processor that generates an output reference source signal and including a second processor, and wherein the second processor is operative to monitor and evaluate the output reference source signal to determine whether an anomaly is present.
25. The power supply architecture according to claim 24 wherein the output reference source signal is discretely monitored by the second processor.
26. A power supply architecture for a vehicle comprising:
a processor;
a first communication bus connected between the processor and a vehicle control system;
a first power supply for supplying a first operating voltage to the first communication bus;
a second communication bus connected between the processor and the vehicle control system; and
a second power supply separate from the first power supply for supplying a second operating voltage to the second communication bus.
US14/296,434 2013-06-04 2014-06-04 Optimized Power Supply Architecture Abandoned US20140358346A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/296,434 US20140358346A1 (en) 2013-06-04 2014-06-04 Optimized Power Supply Architecture
US14/447,595 US10585772B2 (en) 2013-06-04 2014-07-30 Power supply diagnostic strategy
US15/601,579 US10739834B2 (en) 2013-06-04 2017-05-22 Optimized power supply architecture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361830934P 2013-06-04 2013-06-04
US14/296,434 US20140358346A1 (en) 2013-06-04 2014-06-04 Optimized Power Supply Architecture

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/447,595 Continuation-In-Part US10585772B2 (en) 2013-06-04 2014-07-30 Power supply diagnostic strategy
US15/601,579 Continuation US10739834B2 (en) 2013-06-04 2017-05-22 Optimized power supply architecture

Publications (1)

Publication Number Publication Date
US20140358346A1 true US20140358346A1 (en) 2014-12-04

Family

ID=51986031

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/296,434 Abandoned US20140358346A1 (en) 2013-06-04 2014-06-04 Optimized Power Supply Architecture
US15/601,579 Active US10739834B2 (en) 2013-06-04 2017-05-22 Optimized power supply architecture

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/601,579 Active US10739834B2 (en) 2013-06-04 2017-05-22 Optimized power supply architecture

Country Status (4)

Country Link
US (2) US20140358346A1 (en)
CN (1) CN105378587B (en)
DE (1) DE112014002675T5 (en)
WO (1) WO2014197641A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150339133A1 (en) * 2014-05-20 2015-11-26 Robert Bosch Gmbh Device for the reliable integration of a software component into a motor vehicle
WO2016110352A1 (en) * 2015-01-08 2016-07-14 Robert Bosch Gmbh Method for monitoring a vehicle electrical system
CN106708685A (en) * 2017-02-24 2017-05-24 上海与德信息技术有限公司 Fault detection method and electronic equipment
CN108025685A (en) * 2015-09-30 2018-05-11 日立汽车系统株式会社 On-vehicle control apparatus
US10106049B2 (en) 2016-05-18 2018-10-23 Nxp Usa, Inc. Battery monitoring device
US20190109471A1 (en) * 2016-10-05 2019-04-11 Lg Chem, Ltd. Battery Protection System And Method
US10746610B2 (en) 2015-07-02 2020-08-18 Bitzer Electronics A/S Safety circuit, a safety circuit operation method and an electrically operated motor comprising a safety circuit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016218567A1 (en) * 2016-09-27 2018-03-29 Robert Bosch Gmbh Method for operating an energy on-board network
DE102017110152B4 (en) * 2017-05-10 2019-03-07 Elmos Semiconductor Aktiengesellschaft Method for the ISO 26262 compliant monitoring of the supply voltage VCC of an integrated sensor circuit within a sensor system with a microcomputer
DE102017110154B4 (en) * 2017-05-10 2021-01-21 Elmos Semiconductor Se Method for ISO 26262 compliant monitoring of the supply voltage VCC of an integrated sensor circuit of a pedestrian impact absorption device

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030225481A1 (en) * 2002-02-25 2003-12-04 General Electric Company Method and apparatus for optimizing redundant critical control systems
US20050140209A1 (en) * 2003-12-29 2005-06-30 Walton Fehr Power distribution web node and power management process
US20070097569A1 (en) * 2005-10-27 2007-05-03 Fengtai Huang System and method of over voltage control for a power system
US7392411B2 (en) * 2003-04-25 2008-06-24 Ati Technologies, Inc. Systems and methods for dynamic voltage scaling of communication bus to provide bandwidth based on whether an application is active
US20090249090A1 (en) * 2008-03-28 2009-10-01 Schmitz Michael J Method and apparatus for dynamic power management control using parallel bus management protocols
US20090249089A1 (en) * 2008-03-28 2009-10-01 Tremel Christopher J Method and apparatus for dynamic power management control using serial bus management protocols
US20100185336A1 (en) * 2006-07-19 2010-07-22 Rovnyak Steven M Integrated and optimized distributed generation and interconnect system controller
US20110131427A1 (en) * 2009-12-02 2011-06-02 Jorgenson Joel A Power management states
US20110316549A1 (en) * 2009-03-18 2011-12-29 Peter Coenen A power cell system with means for detecting a discontinuity
US20130294111A1 (en) * 2010-11-11 2013-11-07 Telefonaktiebolaget L M Ericsson (Publ) Overload detection in a switched mode power supply
US8704654B1 (en) * 2007-06-07 2014-04-22 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Circuit for communication over DC power line using high temperature electronics
US20140223205A1 (en) * 2013-02-04 2014-08-07 Ramnarayanan Muthukaruppan Multiple voltage identification (vid) power architecture, a digital synthesizable low dropout regulator, and apparatus for improving reliability of power gates
US20140330441A1 (en) * 2013-05-06 2014-11-06 Sas Institute Inc. Techniques to determine settings for an electrical distribution network
US20150241890A1 (en) * 2012-09-25 2015-08-27 Intel Corporation Digitally phase locked low dropout regulator

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444595A (en) * 1993-09-27 1995-08-22 Nippondenso Co., Ltd. Load drive apparatus including power transistor protection circuit from overcurrent
JP3122327B2 (en) * 1995-02-27 2001-01-09 浜松ホトニクス株式会社 How to use photoemission surface and how to use electron tube
US5794164A (en) * 1995-11-29 1998-08-11 Microsoft Corporation Vehicle computer system
JP3315851B2 (en) * 1995-12-19 2002-08-19 シャープ株式会社 High-speed communication device using broadband amplifier circuit
DE19947251A1 (en) * 1999-09-30 2001-05-31 Bosch Gmbh Robert Process and device for controlling processes in connection with a drive
DE10040092A1 (en) * 2000-08-16 2002-03-07 Infineon Technologies Ag Circuit arrangement for detecting an error state
DE10049994A1 (en) * 2000-10-10 2002-04-11 Endress Hauser Gmbh Co Supply voltage monitoring and/or regulating circuit compares at least one of two supply voltages with permissible range for controlling electronic shunt circuit
US20040145242A1 (en) * 2001-08-08 2004-07-29 Rodriguez Edward T Power supply with electrical attributes programmable by manufacturer
US6693412B2 (en) * 2002-06-24 2004-02-17 Intel Corporation Power savings in a voltage supply controlled according to a work capability operating mode of an integrated circuit
EP1596270A1 (en) * 2004-05-10 2005-11-16 Dialog Semiconductor GmbH Micro-controller controlled power management chip
US7242329B2 (en) 2005-02-02 2007-07-10 Gm Global Technology Operations, Inc. Method and system for prioritizing data values for robust data representation
US7526674B2 (en) 2005-12-22 2009-04-28 International Business Machines Corporation Methods and apparatuses for supplying power to processors in multiple processor systems
US7531915B2 (en) * 2006-05-23 2009-05-12 Continental Automotive Systems Us, Inc. System and method for controlling power flow in a power system
US7725782B2 (en) 2007-01-04 2010-05-25 Gm Global Technology Operations, Inc. Linked random access memory (RAM) interleaved pattern persistence strategy
US20080164759A1 (en) * 2007-01-04 2008-07-10 Viswa Sharma Redundant power supply architecture with voltage level range based load switching
US7987380B2 (en) 2007-03-27 2011-07-26 Atmel Rousset S.A.S. Methods and apparatus to detect voltage class of a circuit
CN101652670B (en) * 2007-04-03 2013-01-16 皇家飞利浦电子股份有限公司 Battery voltage monitoring system
US7908505B2 (en) 2007-09-28 2011-03-15 International Business Machines Corporation Apparatus, system, and method for event, time, and failure state recording mechanism in a power supply
TW200923633A (en) 2007-11-22 2009-06-01 Inventec Corp Method and computer device capable of dealing with power fail
JP4649489B2 (en) * 2008-03-27 2011-03-09 株式会社日立製作所 Total battery voltage detection circuit
CN102187737B (en) * 2008-10-22 2014-06-04 赤多尼科两合股份有限公司 Circuit for the operation of at least one LED
DE102008053702A1 (en) * 2008-10-29 2010-05-06 Phoenix Contact Gmbh & Co. Kg Circuit arrangement for the protection of electronic devices against faulty logic voltages
KR20100101959A (en) * 2009-03-10 2010-09-20 삼성전자주식회사 A storage device
US8442690B2 (en) * 2009-06-29 2013-05-14 Honeywell International Inc. Vehicle system monitoring and communications architecture
US8639862B2 (en) * 2009-07-21 2014-01-28 Applied Micro Circuits Corporation System-on-chip queue status power management
US20110082621A1 (en) * 2009-10-02 2011-04-07 Eric Berkobin Method and system for predicting battery life based on vehicle battery, usage, and environmental data
US20110265090A1 (en) * 2010-04-22 2011-10-27 Moyer William C Multiple core data processor with usage monitoring
US8872505B2 (en) * 2010-10-28 2014-10-28 Infineon Technologies Ag Accessory presence detection
ES2686429T3 (en) 2011-08-04 2018-10-17 Electronic Systems Protection, Inc. Power management and control device with remote access
US8606450B2 (en) * 2011-09-09 2013-12-10 GM Global Technology Operations LLC Hybrid powertrain with geared starter motor and belt alternator starter and method of restarting an engine
US9151818B2 (en) * 2011-11-08 2015-10-06 Analog Devices Global Voltage measurement
US20130300308A1 (en) * 2012-05-12 2013-11-14 Laurence P. Sadwick Current Limiting LED Driver
CN104380605B (en) * 2012-08-01 2017-12-08 瑞萨电子株式会社 Level shift circuit, semiconductor devices

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030225481A1 (en) * 2002-02-25 2003-12-04 General Electric Company Method and apparatus for optimizing redundant critical control systems
US7392411B2 (en) * 2003-04-25 2008-06-24 Ati Technologies, Inc. Systems and methods for dynamic voltage scaling of communication bus to provide bandwidth based on whether an application is active
US20050140209A1 (en) * 2003-12-29 2005-06-30 Walton Fehr Power distribution web node and power management process
US20070097569A1 (en) * 2005-10-27 2007-05-03 Fengtai Huang System and method of over voltage control for a power system
US20100185336A1 (en) * 2006-07-19 2010-07-22 Rovnyak Steven M Integrated and optimized distributed generation and interconnect system controller
US8704654B1 (en) * 2007-06-07 2014-04-22 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Circuit for communication over DC power line using high temperature electronics
US20090249089A1 (en) * 2008-03-28 2009-10-01 Tremel Christopher J Method and apparatus for dynamic power management control using serial bus management protocols
US20090249090A1 (en) * 2008-03-28 2009-10-01 Schmitz Michael J Method and apparatus for dynamic power management control using parallel bus management protocols
US20110316549A1 (en) * 2009-03-18 2011-12-29 Peter Coenen A power cell system with means for detecting a discontinuity
US20110131427A1 (en) * 2009-12-02 2011-06-02 Jorgenson Joel A Power management states
US20130294111A1 (en) * 2010-11-11 2013-11-07 Telefonaktiebolaget L M Ericsson (Publ) Overload detection in a switched mode power supply
US9214804B2 (en) * 2010-11-11 2015-12-15 Telefonaktiebolaget L M Ericsson (Publ) Overload detection in a switched mode power supply
US20150241890A1 (en) * 2012-09-25 2015-08-27 Intel Corporation Digitally phase locked low dropout regulator
US20140223205A1 (en) * 2013-02-04 2014-08-07 Ramnarayanan Muthukaruppan Multiple voltage identification (vid) power architecture, a digital synthesizable low dropout regulator, and apparatus for improving reliability of power gates
US20140330441A1 (en) * 2013-05-06 2014-11-06 Sas Institute Inc. Techniques to determine settings for an electrical distribution network

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150339133A1 (en) * 2014-05-20 2015-11-26 Robert Bosch Gmbh Device for the reliable integration of a software component into a motor vehicle
US9710290B2 (en) * 2014-05-20 2017-07-18 Robert Bosch Gmbh Device for the reliable integration of a software component into a motor vehicle
WO2016110352A1 (en) * 2015-01-08 2016-07-14 Robert Bosch Gmbh Method for monitoring a vehicle electrical system
US10746610B2 (en) 2015-07-02 2020-08-18 Bitzer Electronics A/S Safety circuit, a safety circuit operation method and an electrically operated motor comprising a safety circuit
CN108025685A (en) * 2015-09-30 2018-05-11 日立汽车系统株式会社 On-vehicle control apparatus
US10106049B2 (en) 2016-05-18 2018-10-23 Nxp Usa, Inc. Battery monitoring device
US20190109471A1 (en) * 2016-10-05 2019-04-11 Lg Chem, Ltd. Battery Protection System And Method
US10790686B2 (en) * 2016-10-05 2020-09-29 Lg Chem, Ltd. Battery protection system and method
CN106708685A (en) * 2017-02-24 2017-05-24 上海与德信息技术有限公司 Fault detection method and electronic equipment

Also Published As

Publication number Publication date
US10739834B2 (en) 2020-08-11
US20170255241A1 (en) 2017-09-07
DE112014002675T5 (en) 2016-02-18
CN105378587B (en) 2019-12-17
CN105378587A (en) 2016-03-02
WO2014197641A1 (en) 2014-12-11

Similar Documents

Publication Publication Date Title
US10739834B2 (en) Optimized power supply architecture
JP3965410B2 (en) Redundant vehicle control device
US9030047B2 (en) Controlling a fault-tolerant array of converters
AU2008282015A1 (en) Brake system for a vehicle and a method for the operation of a brake system for a vehicle
US11524693B2 (en) Vehicle control system
US20160009235A1 (en) Failure management in a vehicle
WO2019207917A1 (en) Gateway device
CN115279637A (en) Brake system with at least two energy sources
CN113015666A (en) Control architecture for a vehicle
US10585772B2 (en) Power supply diagnostic strategy
US20220306131A1 (en) Device and method for carrying out at least one vehicle function for a vehicle
US9002480B2 (en) Method for operation of a control network, and a control network
US11764995B2 (en) Transceiver device
US20220371565A1 (en) Switching device for a brake system for a vehicle, brake system with a switching device and method for operating a switching device
JP7239710B2 (en) Protection Circuits and Methods to Protect Vehicle Power
EP2771210B1 (en) Power safety circuit, integrated circuit device and safety critical system
CN112739578B (en) Auxiliary power supply and method for providing auxiliary power
KR20200110956A (en) Redundancy system of vehicle and, apparatus and method for supplying power thereof
CN111923849A (en) Vehicle-mounted control device and in-vehicle communication system
Gandhi et al. Techniques and measures for improving domain controller availability while maintaining functional safety in mixed criticality automotive safety systems
US20230403178A1 (en) Control device, communication control method, and storage medium
US20160217095A1 (en) Modular signal interface unit
CN117104156A (en) Vehicle control circuit, vehicle host and vehicle
JP2006021610A (en) Vehicle load control device

Legal Events

Date Code Title Description
AS Assignment

Owner name: TRW AUTOMOTIVE U.S. LLC, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KATRAK, KERFEGAR K.;YUSKA, PAUL;REEL/FRAME:033316/0379

Effective date: 20140701

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION