US20140339666A1 - Polarized light detecting device and fabrication methods of the same - Google Patents

Polarized light detecting device and fabrication methods of the same Download PDF

Info

Publication number
US20140339666A1
US20140339666A1 US14/450,812 US201414450812A US2014339666A1 US 20140339666 A1 US20140339666 A1 US 20140339666A1 US 201414450812 A US201414450812 A US 201414450812A US 2014339666 A1 US2014339666 A1 US 2014339666A1
Authority
US
United States
Prior art keywords
features
layer
subpixel
semiconductor layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/450,812
Inventor
Young-June Yu
Munib Wober
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zena Technologies Inc
Original Assignee
Zena Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US12/945,492 priority Critical patent/US9515218B2/en
Priority to US14/450,812 priority patent/US20140339666A1/en
Application filed by Zena Technologies Inc filed Critical Zena Technologies Inc
Assigned to Zena Technologies, Inc. reassignment Zena Technologies, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WOBER, MUNIB, YU, YOUNG-JUNE
Priority to US14/503,598 priority patent/US9410843B2/en
Publication of US20140339666A1 publication Critical patent/US20140339666A1/en
Priority to US14/632,739 priority patent/US9601529B2/en
Priority to US14/704,143 priority patent/US20150303333A1/en
Priority to US14/705,380 priority patent/US9337220B2/en
Priority to US15/057,153 priority patent/US20160178840A1/en
Priority to US15/082,514 priority patent/US20160211394A1/en
Priority to US15/090,155 priority patent/US20160216523A1/en
Priority to US15/093,928 priority patent/US20160225811A1/en
Priority to US15/149,252 priority patent/US20160254301A1/en
Priority to US15/225,264 priority patent/US20160344964A1/en
Assigned to WU, XIANHONG reassignment WU, XIANHONG SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Zena Technologies, Inc.
Assigned to HABBAL, FAWWAZ reassignment HABBAL, FAWWAZ SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Zena Technologies, Inc.
Assigned to PILLSBURY WINTHROP SHAW PITTMAN LLP reassignment PILLSBURY WINTHROP SHAW PITTMAN LLP SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Zena Technologies, Inc.
Assigned to PILLSBURY WINTHROP SHAW PITTMAN LLP reassignment PILLSBURY WINTHROP SHAW PITTMAN LLP SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Zena Technologies, Inc.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light
    • G01J4/04Polarimeters using electric detection means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • Polarization is a property of certain types of waves that describes the orientation of their oscillations. Electromagnetic waves including visible light can exhibit polarization. By convention, the polarization of light is described by specifying the orientation of the light's electric field at a point in space over one period of the oscillation. When light travels in free space, in most cases it propagates as a transverse wave, i.e. the polarization is perpendicular to the light's direction of travel. In this case, the electric field may be oriented in a single direction (linear polarization), or it may rotate as the wave travels (circular or elliptical polarization). In the latter cases, the oscillations can rotate either towards the right or towards the left in the direction of travel.
  • Polarization of fully polarized light can be represented by a Jones vector.
  • the x and y components of the complex amplitude of the electric field of light travel along z-direction, E x (t) and E y (t), are represented as
  • a device that can detect polarization of light, or even measure the light's Jones vector or Stokes parameters can be useful in many application.
  • a device operable to detect polarized light comprises: a substrate; a first subpixel; a second subpixel adjacent to the first subpixel; a first plurality of features in the first subpixel and a second plurality of features in the second subpixel, wherein the first plurality of features extend essentially perpendicularly from the substrate and extend essentially in parallel in a first direction parallel to the substrate and the second plurality of features extend essentially perpendicularly (i.e. at least 85°) from the substrate and extend essentially in parallel (i.e. at most 5°) in a second direction parallel to the substrate; wherein the first direction and the second direction are different; the first plurality of features and the second plurality of features react differently to the polarized light.
  • polarized light as used herein means light with polarization.
  • the polarized light has linear polarization, circular or elliptical polarization.
  • Linear polarization as used herein means the electric field of light is confined to a given plane along the direction of propagation of the light.
  • Circular polarization as used herein means the electric field of light does not change strength but only changes direction in a rotary type manner.
  • Elliptical polarization as used herein means electric field of light describes an ellipse in any fixed plane intersecting, and normal to, the direction of propagation of the light.
  • the first plurality of features is equally spaced from each other.
  • the first plurality of features comprises at least 2 features.
  • the first plurality of features has a pitch of about 0.5 micron to about 5 microns, a height of about 0.3 micron to 10 microns, an aspect ratio of at least 4:1, preferably at least 10:1, or a combination thereof.
  • space between features of the first plurality of features is filled with a transparent material.
  • each of the first plurality of features comprises a p-i-n diode or forms a p-i-n diode with the substrate, and wherein the p-i-n diode is functional to convert at least a portion of the polarized light to an electrical signal.
  • a p-i-n diode means a diode with a wide, lightly doped or intrinsic semiconductor region between a p-type semiconductor and an n-type semiconductor region.
  • An intrinsic semiconductor also called an undoped semiconductor or i-type semiconductor, is a substantially pure semiconductor without any significant dopant species present.
  • a heavily doped semiconductor is a semiconductor with such a high doping level that the semiconductor starts to behave electrically more like a metal than as a semiconductor.
  • a lightly doped semiconductor is a doped semiconductor but not have a doping level as high as a heavily doped semiconductor.
  • dopant atoms create individual doping levels that can often be considered as localized states that can donate electrons or holes by thermal promotion (or an optical transition) to the conduction or valence bands respectively.
  • the individual impurity atoms may become close enough neighbors that their doping levels merge into an impurity band and the behavior of such a system ceases to show the typical traits of a semiconductor, e.g. its increase in conductivity with temperature.
  • the substrate comprises electrical components configured to detect the electrical signal.
  • the device further comprises a first transparent electrode disposed on the first subpixel and electrically connected to each of the first plurality of features, and a second transparent electrode disposed on the second subpixel and electrically connected to each of the second plurality of features, wherein the first and second transparent electrodes are separate.
  • transparent as used herein means a transmittance of at least 70%.
  • the device further comprises a reflective material deposited on areas of the substrate between features of the first plurality of features.
  • a reflective material is a material with a reflectance of at least 50%.
  • each of the first plurality of features comprises an intrinsic semiconductor layer or a first lightly doped semiconductor layer, and a heavily doped semiconductor layer;
  • the substrate comprises a second lightly doped semiconductor layer; wherein the second lightly doped semiconductor layer is an opposite type from the heavily doped semiconductor layer; intrinsic semiconductor layer or a first lightly doped semiconductor layer is disposed on the second lightly doped semiconductor layer; and the heavily doped semiconductor layer is disposed on the intrinsic semiconductor layer or the first lightly doped semiconductor layer; wherein the heavily doped semiconductor layer, the intrinsic layer or the first lightly doped semiconductor layer, and the heavily doped semiconductor layer form a p-i-n diode.
  • One semiconductor having an opposite type from another semiconductor means the former is n type if the latter is p type or, the former is p type if the latter is n type.
  • each of the first plurality of features comprises a core of intrinsic semiconductor or lightly doped semiconductor, and a shell of heavily doped semiconductor;
  • the substrate comprises a lightly doped semiconductor layer; wherein the lightly doped semiconductor layer is an opposite type from the shell; the core is disposed on the lightly doped semiconductor layer; the shell is conformally disposed over the core; wherein the shell, the core and the lightly doped semiconductor layer form a p-i-n diode.
  • each of the first plurality of features comprises a core of lightly doped semiconductor, an intermediate shell of intrinsic semiconductor and an outer shell of doped semiconductor; wherein the intermediate shell is conformally disposed over the core; the outer shell is conformally disposed over the intermediate shell; the outer shell is of an opposite type from the core; wherein the outer shell, the intermediate shell and the core form the p-i-n diode.
  • each of the first plurality of features comprises a first heavily doped semiconductor layer, a lightly doped semiconductor layer or intrinsic semiconductor layer, a second heavily doped layer; wherein the first heavily doped semiconductor layer is disposed on the lightly doped semiconductor layer or intrinsic semiconductor layer; the lightly doped semiconductor layer or intrinsic semiconductor layer is disposed on the second heavily doped layer; the first heavily doped layer is of an opposite type from the second heavily doped layer; wherein the first heavily doped layer, the lightly doped semiconductor layer or intrinsic semiconductor layer and the second heavily doped layer form the p-i-n diode.
  • a polarization detector array comprises any of the device above, and electronic circuitry functional to detect the electrical signal.
  • the electronic circuitry is further functional to calculate an interpolation of subpixels of the device, adjust a gain and/or calculate Stoke's parameters.
  • the device comprises a first subpixel, a second subpixel, a third subpixel and a fourth subpixel, wherein features on the second, third and fourth subpixels extend in transverse directions at 45°, 90° and ⁇ 45° relative to a transverse direction in which features on the first subpixel extend.
  • a method of fabricating a device operable to detect polarized light comprising a substrate, a first subpixel, a second subpixel adjacent to the first subpixel, a first plurality of features in the first subpixel and a second plurality of features in the second subpixel, wherein the first plurality of features extend essentially perpendicularly from the substrate and extend essentially in parallel in a first direction parallel to the substrate and the second plurality of features extend essentially perpendicularly from the substrate and extend essentially in parallel in a second direction parallel to the substrate, wherein the first direction and the second direction are different and wherein the first plurality of features and the second plurality of features react differently to the polarized light; the method comprises: lithography, ion implantation, annealing, evaporation, atomic layer deposition, chemical vapor deposition, dry etch or a combination thereof.
  • FIG. 1 is a perspective view of the device according one embodiment.
  • FIG. 2 shows a schematic of the features in one subpixel when light with different polarization impinges thereon.
  • FIG. 3 shows a method of fabricating the device of FIG. 1 .
  • FIG. 4 is a perspective view of the device according one embodiment.
  • FIG. 5 shows a method of fabricating the device of FIG. 4 .
  • FIG. 6 is a perspective view of the device according one embodiment.
  • FIG. 7 shows a method of fabricating the device of FIG. 6 .
  • FIG. 8 is a perspective view of the device according one embodiment.
  • FIG. 9 shows a method of fabricating the device of FIG. 8 .
  • FIG. 10 shows a polarization detector array with the device of FIG. 1 , 4 , 6 or 8 integrated therein.
  • FIG. 11 shows a schematic of a light detector apparatus wherein the device of FIG. 1 , 4 , 6 or 8 is used as fore optics.
  • FIG. 12 shows a top view and a perspective view of a feature in the device of FIG. 1 , wherein the feature has metal layers on its sidewalls.
  • the device comprises a substrate having a plurality of regions defined thereon (hereafter referred to as “subpixels”; a group of related “subpixels” may be referred to as a “pixel”).
  • the device comprises a plurality of features extending essentially perpendicularly from the substrate, wherein the plurality of features also extend essentially in parallel in a direction parallel to the substrate (hereafter referred to as a “transverse direction”).
  • feature means a structure whose dimensions in a direction perpendicular to the substrate (hereafter referred to as the “normal direction”) and in the transverse direction are substantially greater than a dimension of the structure in a direction perpendicular to both the normal direction and the transverse direction (hereafter referred to as the “thickness direction”).
  • a feature can have any suitable shape in a cross-section parallel to the substrate, such as a rectangle, an ellipse, convex-convex (i.e. like a double-convex lens), concave-concave (i.e. like a double-concave lens), plano-convex (i.e.
  • plano-concave i.e. like a plano-concave lens
  • the plurality of features can be equally or unequally spaced from each other.
  • the plurality of features in different subpixels are functional to react differently to light with a same polarization.
  • the term “react” is meant to broadly encompass absorbing, reflecting, coupling to, detecting, interacting with, converting to electrical signals, etc.
  • the plurality of features in a first subpixel extends in a first transverse direction; the plurality of features in a second subpixel extends in a second transverse direction, wherein the first and second pixels are adjacent and the first transverse direction is different from the second transverse direction.
  • FIG. 1 shows a device 10 according to one embodiment.
  • the device 10 can comprise a plurality of pixels such as more than 100, more than 1000, more than 1000000.
  • the subpixels preferably have a pitch of about 1 micron to 100 microns (more preferably 5 microns).
  • the device 10 comprises a plurality of features 100 (e.g. at least 2 features), respectively.
  • the features 100 in the subpixel 10 a and the features 100 in the subpixel 10 b extend in different transverse directions.
  • the features 100 preferably have a pitch (i.e.
  • each of the features 100 forms a p-i-n diode with the substrate 110 , the p-i-n diode being functional to convert at least a portion of light impinged thereon to an electrical signal.
  • Each feature 100 comprises a heavily doped semiconductor layer 124 disposed on a lightly doped semiconductor layer or intrinsic semiconductor layer 121 .
  • the substrate 110 comprises another lightly doped semiconductor layer 122 of an opposite type from the heavily doped semiconductor layer 124 .
  • the lightly doped semiconductor layer or intrinsic semiconductor layer 121 of the feature 100 is disposed on the lightly doped semiconductor layer 122 .
  • the layers 121 , 122 and 124 form the p-i-n diode. Space between the features 100 can be filled with a transparent material.
  • the device 10 preferably further comprises electrical components configured to detect the electrical signal from the features 100 , for example, a transparent electrode disposed on each subpixel and electrically connected to all features 100 therein.
  • the transparent electrode on each subpixel preferably is separate from the transparent electrode on adjacent subpixels.
  • a reflective material can be deposited on areas of the substrate 110 between the features 100 .
  • the substrate 110 can have a thickness in the normal direction of about 5 to 700 microns (preferably 120 microns).
  • FIG. 2 shows a schematic of the features 100 in one subpixel when light with different polarization impinges thereon.
  • the absorptance of the features 100 is about 35%.
  • the absorptance of the features 100 is about 95%.
  • FIG. 3 shows an exemplary method of fabrication of the device 10 .
  • a silicon substrate 110 is provided, wherein the silicon substrate comprises an intrinsic layer or a lightly doped n type silicon epitaxial layer 121 , a heavily doped n type layer 123 and a lightly doped n type layer 122 sandwiched between the layers 121 and 123 .
  • a substrate of semiconductor material other than silicon e.g. III-V or II-VI group compound semiconductor can also be used.
  • a heavily doped p type layer 124 is fabricated on the layer 121 by a method such as ion implantation and subsequent annealing.
  • An exemplary dopant suitable for use in the ion implantation is boron or boron difluoride.
  • a resist layer 125 (e.g. a photoresist or an e-beam resist) is deposited on the heavily doped p type layer 124 , by a suitable method such as spin coating.
  • a pattern is formed in the resist layer 125 using a lithography technique (e.g. photolithograph or e-beam lithography) by removing portions 126 of the resist layer 125 .
  • the heavily doped p type layer 124 is exposed under the removed portions 126 .
  • the pattern corresponds to shapes and positions of the features 100 .
  • a metal layer 125 is deposited on the resist layer 125 and the exposed portions of the heavily doped p type layer 124 , using a suitable technique such as thermal evaporation, e-beam evaporation, and sputtering.
  • exemplary metal suitable for use in the metal layer 125 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof.
  • step 1005 remainder of the resist layer 125 and portions of the metal layer 125 thereon are lift-off by a suitable technique such as plasma ashing and dissolution in a suitable solvent.
  • step 1006 features 100 are formed by etching into the substrate 110 using a suitable technique, such as dry etching with remainder of the metal layer 125 as etch mask, until portions of the lightly doped n type layer 122 not directly below the remainder of the metal layer 125 are exposed.
  • the features 100 now comprise remainder of the layers 121 and 124 .
  • a layer of oxide 128 (e.g. HfO 2 , SiO 2 , Al 2 O 3 ) is deposited isotropically over the features 100 and exposed portions of the layer 122 , using suitable technique such as atomic layer deposition (ALD) and chemical vapor deposition (CVD).
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • the layer of oxide 128 is functional to passivate surfaces of the features 100 .
  • a metal layer 130 is deposited on the heavily doped n type layer 123 using a suitable technique such as thermal evaporation, e-beam evaporation, and sputtering.
  • exemplary metal suitable for use in the metal layer 130 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof.
  • a rapid thermal annealing can be conducted following the deposition of the metal layer 130 to form an Ohmic contact between the metal 130 and the heavily doped n type layer 123 .
  • a reflective layer 129 is deposited anisotropically on and between the features 100 such that sidewalls of the features 100 are preferably free of the reflective layer 129 .
  • the reflective layer 129 can be deposited by thermal evaporation or e-beam evaporation.
  • Exemplary metal suitable for use in the reflective layer 129 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof.
  • a sacrificial layer 131 preferably with a refractive index lower than that of the features 100 is deposited by spin coating or evaporation to fill space between the features 100 .
  • the sacrificial layer 131 can be a suitable material such as polyimide or oxide.
  • step 1011 the sacrificial layer 131 is planarized using a suitable technique such as chemical mechanical polishing (CMP) until the heavily doped p type layer 124 of the features 100 is exposed.
  • CMP chemical mechanical polishing
  • a transparent conductive oxide (TCO) layer 132 is deposited on the sacrificial layer 131 and the exposed heavily doped p type layer 124 of the features 100 , using a suitable method such as thermal evaporation, e-beam evaporation, and sputtering.
  • the TCO layer can comprise one or more suitable materials such as indium tin oxide, aluminum zinc oxide, zinc indium oxide, zinc oxide and graphene.
  • step 1013 another resist layer 133 is deposited on the TCO layer 132 using a technique such as spin-coating.
  • a pattern is formed in the resist layer 133 using a lithography technique (e.g. photolithograph or e-beam lithography) by removing portions 134 of the resist layer 133 .
  • the TCO layer 132 is exposed under the removed portions 134 .
  • the pattern corresponds to gaps to be made in the TCO layer 132 for electrically separating the TCO layer 132 into transparent electrodes for each subpixel.
  • step 1014 the TCO layer 132 is dry etched using the resist layer 133 as etch mask until portions of the sacrificial layer 131 is exposed in the removed portions 134 of the resist layer 133 .
  • step 1015 remainder of the resist layer 133 is removed by plasma ashing or dissolution in a suitable solvent.
  • the sacrificial layer 131 is optionally removed by a suitable method such as wet etching.
  • a suitable method such as wet etching.
  • polyimide can be removed by a suitable photoresist developer.
  • a thermal annealing e.g. at 450° C. for 30 minutes
  • FIG. 4 shows a device 20 according to one embodiment.
  • the device 20 can comprise a plurality of pixels such as more than 100, more than 1000, more than 1000000.
  • the subpixels preferably have a pitch of about 1 micron to 100 microns (more preferably 5 microns).
  • the device 20 comprises a plurality of features 200 (e.g. at least 2 features), respectively.
  • the features 200 in the subpixel 20 a and the features 200 in the subpixel 20 b extend in different transverse directions.
  • the features 200 preferably have a pitch (i.e.
  • each of the features 200 forms a p-i-n diode with the substrate 210 , the p-i-n diode being functional to convert at least a portion of light impinged thereon to an electrical signal.
  • Each feature 200 comprises a core 221 of lightly doped semiconductor or intrinsic semiconductor, and a shell 223 of heavily doped semiconductor, the shell 223 being conformally disposed over the core 221 .
  • the substrate 210 comprises a lightly doped semiconductor layer 222 of an opposite type from the shell 223 .
  • the core 221 is disposed on the lightly doped semiconductor layer 222 .
  • the shell 223 , core 221 and layer 222 form the the p-i-n diode. Space between the features 200 can be filled with a transparent material.
  • the device 20 preferably further comprises electrical components configured to detect the electrical signal from the features 200 , for example, an electrode disposed between and electrically connected to the features 200 on each subpixel.
  • the electrode disposed between the features 200 on each subpixel preferably is separate from the electrode disposed between the features 200 on adjacent subpixels.
  • the electrode can also function as a reflective layer.
  • the substrate 210 can have a thickness in the normal direction of about 5 to 700 microns (preferably 120 microns).
  • FIG. 5 shows an exemplary method of fabrication of the device 20 .
  • a silicon substrate 210 is provided, wherein the silicon substrate comprises an intrinsic layer or a lightly doped n type silicon epitaxial layer 221 , a heavily doped n type layer 223 and a lightly doped n type layer 222 sandwiched between the layers 221 and 223 .
  • a substrate of semiconductor material other than silicon e.g. III-V or II-VI group compound semiconductor can also be used.
  • a resist layer 225 (e.g. a photoresist or an e-beam resist) is deposited on the layer 221 , by a suitable method such as spin coating.
  • a pattern is formed in the resist layer 225 using a lithography technique (e.g. photolithograph or e-beam lithography) by removing portions 226 of the resist layer 225 .
  • the layer 221 is exposed under the removed portions 226 .
  • the pattern corresponds to shapes and positions of the features 200 .
  • a metal layer 227 is deposited on the resist layer 225 and the exposed portions of the layer 221 , using a suitable technique such as thermal evaporation, e-beam evaporation, and sputtering.
  • exemplary metal suitable for use in the metal layer 227 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof.
  • step 2004 remainder of the resist layer 225 and portions of the metal layer 227 thereon are lift-off by a suitable technique such as plasma ashing and dissolution in a suitable solvent.
  • features 200 are formed by etching into the substrate 210 using a suitable technique, such as dry etching with remainder of the metal layer 227 as etch mask, until portions of the lightly doped n type layer 222 not directly below the remainder of the metal layer 227 are exposed.
  • the features 200 now comprise remainder of the layer 221 .
  • step 2006 remainder of the metal layer 227 is removed by a suitable technique such as wet etching with a suitable metal etchant.
  • a resist layer 229 (e.g. a photoresist or an e-beam resist) is deposited on the layer 222 and the features 200 , by a suitable method such as spin coating.
  • the resist layer 229 is then patterned using a lithography technique to expose portions of the layer 222 at boundaries of the subpixels.
  • a silicon nitride or aluminum oxide layer 230 is deposited anisotropically over the exposed portions of the layer 222 and on the resist layer 229 using a suitable technique such as thermal evaporation, e-beam evaporation, and sputtering.
  • step 2009 remainder of the resist layer 229 and any portions of the layer 230 thereon are removed by plasma ashing or dissolution in a suitable solvent.
  • a p-type dopant layer 231 is deposited isotropically over the features 200 , remainder of on the layer 230 , and the layer 222 , using a suitable technique such as ALD or CVD.
  • ALD is preferred.
  • the p-type dopant layer 231 can comprise a suitable p-type dopant such as trimethyboron, triiospropylborane, triethoxyborane, triisopropoxyborane, and a combination thereof.
  • an oxide layer 232 is deposited isotropically over the p-type dopant layer 231 using a suitable technique such as ALD or CVD.
  • a heavily doped p type layer 233 is formed by annealing the device 20 to diffuse the p-type dopant layer 231 into the layer 222 .
  • the annealing can be done in a suitable atmosphere (e.g. argon) at about 850° C. for 10 to 30 minutes.
  • step 2013 the oxide layer 232 is removed by a suitable method such as etching with buffered HF followed by washing. Now the heavily doped p type layer 233 is exposed.
  • a layer of oxide 234 (e.g. HfO 2 , SiO 2 , Al 2 O 3 ) is deposited isotropically over the layer 233 and remainder of on the layer 230 , using suitable technique such as atomic layer deposition (ALD) and chemical vapor deposition (CVD).
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • the layer of oxide 234 is functional to passivate surfaces of the layer 233 .
  • a resist layer 235 (e.g. a photoresist or an e-beam resist) is deposited on the layer 234 , by a suitable method such as spin coating.
  • the resist layer 235 is then patterned using a lithography technique to expose portions of the layer 234 .
  • exposed portions of the layer 234 is removed by a suitable technique such as dry etching to expose portions of the layer 233 .
  • the resist layer 235 is then removed by ashing or dissolution in a suitable solvent.
  • a resist layer 237 (e.g. a photoresist or an e-beam resist) is deposited on the layers 233 and 234 , by a suitable method such as spin coating.
  • the resist layer 237 is then patterned using a lithography technique such that only the features 200 and the layer 230 remain under the resist layer 237 .
  • a metal layer 239 is deposited anisotropically on and between the features 200 such that sidewalls of the features 200 are preferably free of the metal layer 239 .
  • the metal layer 239 can be deposited by thermal evaporation or e-beam evaporation.
  • Exemplary metal suitable for use in the metal layer 239 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof.
  • the resist layer 237 is then removed by plasma ashing or dissolution in a suitable solvent.
  • step 2019 the device 20 is annealed under a suitable atmosphere (e.g. H 2 and N 2 ) at about 450° C. for about 30 minutes, such that the metal layer 239 and the exposed portions of the heavily doped p type layer 233 form an Ohmic contact.
  • a suitable atmosphere e.g. H 2 and N 2
  • a resist layer 238 (e.g. a photoresist or an e-beam resist) is deposited on the layers 239 and 234 , by a suitable method such as spin coating.
  • the resist layer 238 is then patterned using a lithography technique to expose the remainder of the layer 230 and any portion of the layer 234 thereon.
  • an oxide layer 240 is deposited anisotropically over any portion of the layer 234 on the remainder of the layer 230 , and over the resist layer 238 , using a suitable technique such as thermal evaporation or e-beam evaporation.
  • the oxide layer 240 is an electrical insulator.
  • a metal layer 241 is deposited anisotropically over the oxide layer 240 , using a suitable technique such as thermal evaporation or e-beam evaporation.
  • the metal layer 241 is optically opaque.
  • step 2023 the resist layer 238 and any portions of the oxide layer 240 and the metal layer 241 thereon are removed by a suitable technique such as plasma ashing and dissolution in a suitable solvent.
  • FIG. 6 shows a device 30 according to one embodiment.
  • the device 30 can comprise a plurality of pixels such as more than 100, more than 1000, more than 1000000.
  • the subpixels preferably have a pitch of about 1 micron to 100 microns (more preferably 5 microns).
  • the device 30 comprises a plurality of features 300 (e.g. at least 2 features), respectively.
  • the features 300 in the subpixel 30 a and the features 300 in the subpixel 30 b extend in different transverse directions.
  • the features 300 preferably have a pitch (i.e.
  • Each of the features 300 preferably comprises a p-i-n diode, the p-i-n diode being functional to convert at least a portion of light impinged thereon to an electrical signal.
  • Each feature 300 comprises a core 321 of lightly doped semiconductor, an intermediate shell 331 of intrinsic semiconductor and an outer shell 332 of doped semiconductor.
  • the intermediate shell 331 is conformally disposed over the core 321 .
  • the outer shell 332 is conformally disposed over the intermediate shell 331 .
  • the outer shell 332 is of an opposite type from the core 321 .
  • the outer shell 332 , the intermediate shell 331 and the core 321 form the p-i-n diode.
  • Space between the features 300 can be filled with a transparent material.
  • the device 20 preferably further comprises electrical components configured to detect the electrical signal from the features 300 , for example, an electrode disposed between and electrically connected to the features 300 on each subpixel.
  • the electrode disposed between the features 300 on each subpixel preferably is separate from the electrode disposed between the features 300 on adjacent subpixels.
  • the electrode can also function as a reflective layer.
  • the substrate 310 can have a thickness in the normal direction of about 5 to 700 microns (preferably 120 microns).
  • FIG. 7 shows an exemplary method of fabrication of the device 30 .
  • a silicon substrate 310 is provided, wherein the silicon substrate comprises a lightly doped n type silicon epitaxial layer 321 , a heavily doped n type layer 323 and a n type layer 322 sandwiched between the layers 321 and 323 .
  • a substrate of semiconductor material other than silicon e.g. III-V or II-VI group compound semiconductor can also be used.
  • a resist layer 325 (e.g. a photoresist or an e-beam resist) is deposited on the layer 321 , by a suitable method such as spin coating.
  • a pattern is formed in the resist layer 325 using a lithography technique (e.g. photolithograph or e-beam lithography) by removing portions 326 of the resist layer 325 .
  • the layer 321 is exposed under the removed portions 326 .
  • the pattern corresponds to shapes and positions of the features 300 .
  • a metal layer 327 is deposited on the resist layer 325 and the exposed portions of the layer 321 , using a suitable technique such as thermal evaporation, e-beam evaporation, and sputtering.
  • exemplary metal suitable for use in the metal layer 327 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof.
  • step 3004 remainder of the resist layer 325 and portions of the metal layer 327 thereon are lift-off by a suitable technique such as plasma ashing and dissolution in a suitable solvent.
  • features 300 are formed by etching into the substrate 310 using a suitable technique, such as dry etching with remainder of the metal layer 327 as etch mask, until portions of the lightly doped n type layer 322 not directly below the remainder of the metal layer 327 are exposed.
  • the features 300 now comprise remainder of the layer 321 .
  • step 3006 remainder of the metal layer 327 is removed by a suitable technique such as wet etching with a suitable metal etchant.
  • a resist layer 329 (e.g. a photoresist or an e-beam resist) is deposited on the layer 322 and the features 300 , by a suitable method such as spin coating.
  • the resist layer 329 is then patterned using a lithography technique to expose portions of the layer 322 at boundaries of the subpixels.
  • a silicon nitride or aluminum oxide layer 330 is deposited anisotropically over the exposed portions of the layer 322 and on the resist layer 329 using a suitable technique such as thermal evaporation, e-beam evaporation, and sputtering.
  • step 3009 remainder of the resist layer 329 and any portions of the layer 330 thereon are removed by plasma ashing or dissolution in a suitable solvent.
  • an intrinsic amorphous silicon (a-Si) layer 331 is deposited isotropically over the features 300 , remainder of on the layer 330 , and the layer 322 , using a suitable technique such as ALD or CVD.
  • ALD is preferred.
  • a p type doped a-Si layer 332 is deposited isotropically over the layer 331 using a suitable technique such as ALD or CVD.
  • the device 30 is then annealed in a suitable atmosphere (e.g. forming gas) at about 450° C. for about 30 minutes.
  • a resist layer 333 (e.g. a photoresist or an e-beam resist) is deposited on the layer 332 , by a suitable method such as spin coating.
  • the resist layer 333 is then patterned using a lithography technique to expose any portion of the layer 332 on the remainder of the layer 330 .
  • step 3013 exposed portions of the layer 332 and any portion of the layer 331 thereunder are removed by a suitable method such as dry etch, until the layer 330 is exposed.
  • step 3014 the resist layer 333 is removed by plasma ashing or dissolution in a suitable solvent.
  • a resist layer 334 (e.g. a photoresist or an e-beam resist) is deposited by a suitable method such as spin coating.
  • the resist layer 334 is then patterned using a lithography technique such that only the features 300 and the layer 330 remain under the resist layer 334 .
  • a metal layer 335 is deposited anisotropically on and between the features 300 such that sidewalls of the features 300 are preferably free of the metal layer 335 .
  • a metal layer 336 is deposited on the layer 323 .
  • the metal layers 335 and 336 can be deposited by thermal evaporation or e-beam evaporation.
  • Exemplary metal suitable for use in the metal layer 335 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof.
  • step 3017 the resist layer 334 and any portion of the metal layer 335 thereon are removed by plasma ashing or dissolution in a suitable solvent.
  • the device 30 is then annealed under a suitable atmosphere (e.g. H 2 and N 2 ) at about 450° C. for about 30 minutes, such that the metal layers 335 and 336 form Ohmic contacts with the layer 332 and 323 , respectively.
  • a suitable atmosphere e.g. H 2 and N 2
  • a resist layer 337 (e.g. a photoresist or an e-beam resist) is deposited on the layers 332 and 335 , by a suitable method such as spin coating.
  • the resist layer 337 is then patterned using a lithography technique to expose the remainder of the layer 330 .
  • an oxide layer 338 and a metal layer 339 are sequentially deposited anisotropically, using a suitable technique such as thermal evaporation or e-beam evaporation.
  • the oxide layer 338 is an electrical insulator.
  • the metal layer 241 is optically opaque.
  • step 3020 the resist layer 337 and any portions of the oxide layer 338 and the metal layer 339 thereon are removed by a suitable technique such as plasma ashing and dissolution in a suitable solvent.
  • FIG. 8 shows a device 40 according to one embodiment.
  • the device 40 can comprise a plurality of pixels such as more than 100, more than 1000, more than 1000000.
  • the subpixels preferably have a pitch of about 1 micron to 100 microns (more preferably 5 microns).
  • the device 40 comprises a plurality of features 400 (e.g. at least 2 features), respectively.
  • the features 400 in the subpixel 40 a and the features 400 in the subpixel 40 b extend in different transverse directions.
  • the features 400 preferably have a pitch (i.e.
  • each of the features 400 preferably comprises a p-i-n diode therein, the p-i-n diode being functional to convert at least a portion of light impinged thereon to an electrical signal, wherein the p-i-n diode is formed along the normal direction.
  • each feature 400 comprises a first heavily doped semiconductor layer 435 , a lightly doped semiconductor layer or intrinsic semiconductor layer 421 , a second heavily doped layer 424 .
  • the first heavily doped semiconductor layer 435 is disposed on the lightly doped semiconductor layer or intrinsic semiconductor layer 421 .
  • the lightly doped semiconductor layer or intrinsic semiconductor layer 421 is disposed on the second heavily doped layer 424 .
  • the first heavily doped layer 435 is of an opposite type from the second heavily doped layer 424 .
  • the first heavily doped layer 435 , the lightly doped semiconductor layer or intrinsic semiconductor layer 421 and the second heavily doped layer 424 form the p-i-n diode. Space between the features 300 can be filled with a transparent material.
  • the features 400 preferably are bonded to the substrate 410 .
  • the device 40 preferably further comprises electrical components configured to detect the electrical signal from the features 400 , for example, Readout Integrated Circuits (ROIC) in the substrate 410 .
  • the ROIC can be electrically connected to the second heavily doped layer 424 .
  • the substrate 410 can have a thickness in the normal direction of about 5 to 700 microns (preferably 120 microns).
  • FIG. 9 shows an exemplary method of fabrication of the device 40 .
  • a silicon substrate 423 is provided, wherein the silicon substrate 423 comprises an silicon oxide layer 422 thereon and an intrinsic layer or a lightly doped p type silicon layer 421 on the silicon oxide layer 422 .
  • a substrate of semiconductor material other than silicon e.g. III-V or II-VI group compound semiconductor can also be used.
  • a heavily doped n type layer 424 is fabricated on the layer 421 by a method such as ion implantation and subsequent annealing.
  • An exemplary dopant suitable for use in the ion implantation is phosphorous or arsenic.
  • a resist layer 425 (e.g. a photoresist or an e-beam resist) is deposited on the heavily doped n type layer 424 , by a suitable method such as spin coating.
  • a pattern is formed in the resist layer 425 using a lithography technique (e.g. photolithograph or e-beam lithography) by removing portions 426 of the resist layer 425 .
  • the heavily doped n type layer 424 is exposed under the removed portions 426 .
  • the pattern corresponds to shapes and positions of the features 400 .
  • a metal layer 427 is deposited on the resist layer 425 and the exposed portions of the heavily doped n type layer 424 , using a suitable technique such as thermal evaporation, e-beam evaporation, and sputtering.
  • exemplary metal suitable for use in the metal layer 427 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof.
  • step 4005 remainder of the resist layer 425 and portions of the metal layer 427 thereon are lift-off by a suitable technique such as plasma ashing and dissolution in a suitable solvent.
  • step 4006 features 400 are formed by etching into the layer 421 using a suitable technique, such as dry etching with remainder of the metal layer 125 as etch mask, until portions of the silicon oxide layer 422 not directly below the remainder of the metal layer 427 are exposed.
  • the features 400 now comprise remainder of the layers 421 and 424 .
  • step 4007 remainder of the metal layer 427 is removed by a suitable method such as etching with a suitable metal etchant.
  • a metal layer 429 is deposited anisotropically on the heavily doped n type layer 424 and exposed portions of the silicon oxide layer 422 , using a suitable technique such as thermal evaporation, e-beam evaporation, and sputtering.
  • exemplary metal suitable for use in the metal layer 429 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof.
  • an oxide layer 428 (e.g. HfO 2 , SiO 2 , Al 2 O 3 ) is deposited isotropically over the features 400 and the metal layer 429 , using suitable technique such as atomic layer deposition (ALD) and chemical vapor deposition (CVD).
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • step 4010 portions of the oxide layer 428 above the metal layer 429 are removed by a suitable technique such as anisotropic dry etch. Now the metal layer 429 is exposed.
  • a silicide layer 430 is formed from the heavily doped n type layer 424 and portions of the metal layer 429 thereon by annealing the device 40 . Remainder of the metal layer 429 is removed by a suitable technique such as etching with a suitable metal etchant.
  • a sacrificial layer 431 is deposited by pouring , spin coating or evaporation to fill space between the features 400 .
  • the sacrificial layer 431 can be a suitable material such as polydimethylsiloxane, polyimide or oxide.
  • step 4013 the substrate using a suitable technique such as etching with potassium hydroxide, until the silicon oxide layer 422 is exposed.
  • a glass substrate 432 is bonded to the exposed silicon oxide layer 422 , using a suitable technique such as using a UV removable glue.
  • the glass substrate 432 can provide mechanical support.
  • the sacrificial layer is removed by a suitable method such as wet etching.
  • a suitable method such as wet etching.
  • polyimide can be removed by a suitable photoresist developer.
  • the features 40 are bonded to ROIC in the substrate 410 using a tin-silver alloy layer between the substrate 410 and the features 40 and annealing at about 220° C.
  • step 4017 the glass substrate 432 is released from the silicon oxide layer 422 by illumination with UV light.
  • a heavily doped p type layer 435 is formed on the layer 421 of the features 400 by a suitable technique such as ion implantation through the silicon oxide layer 422 .
  • the heavily doped p type layer 435 can be annealed by laser to activate implanted dopant.
  • step 4019 the silicon oxide layer 422 is removed by a suitable technique such as etching with HF.
  • an insulating material 433 is deposited by spin coating, evaporation or CVD to fill space between the features 400 .
  • the insulating material 433 preferably has a lower refractive index than the features 400 .
  • the insulating material 433 can be any suitable material such as silicon oxide and polyimide.
  • the insulating material 433 is planarized using a suitable technique such as chemical mechanical polishing (CMP) until the heavily doped p type layer 432 of the features 400 is exposed.
  • CMP chemical mechanical polishing
  • a transparent conductive oxide (TCO) layer 434 is deposited on the insulating material 433 , using a suitable method such as thermal evaporation, e-beam evaporation, and sputtering.
  • the TCO layer can comprise one or more suitable materials such as indium tin oxide, aluminum zinc oxide, zinc oxide, zinc indium oxide and graphene.
  • the insulating material 433 is optionally removed by a suitable method such as wet etching.
  • the device 10 , 20 , 30 or 40 can be integrated with electronic circuitry into a polarization detector array.
  • the electronic circuitry can include address decoders in both directions of the detector array, a correlated double sampling circuit (CDS), a signal processor, a multiplexor.
  • CDS correlated double sampling circuit
  • the electronic circuitry is functional to detect the electrical signal converted by the features 100 , 200 , 300 or 400 from at least a portion of light impinged thereon.
  • the electric circuitry can be further functional to calculate an interpolation of electrical signals from several subpixels, the features on which extend in the same transverse direction.
  • Other function of the electronic circuitry can include a gain adjustment, a calculation of Stoke's parameters.
  • the subpixels can be arranged into a group (i.e. pixel).
  • a subpixel A and subpixels B, C and D can be arranged adjacent to each other and referred to as a pixel, wherein features on the subpixels B, C and D extend in transverse directions at 45°, 90° and ⁇ 45° relative to a transverse direction in which features on the subpixel A extend.
  • the device 10 , 20 , 30 or 40 can also be used as fore optics in a light detector apparatus as shown in the schematic in FIG. 11 .
  • the features 100 , 200 , 300 and 400 can each comprise a metal layer on each sidewall (i.e. surface extending in the transverse direction and the normal direction).
  • the metal layer preferably has a thickness of about 5 nm to about 100 nm, more preferably about 50 nm.
  • the metal layer substantially covers the entire sidewall and the metal layer does not extend to either end of the features in the normal direction.

Abstract

Described herein is a device operable to detect polarized light comprising: a substrate; a first subpixel; a second subpixel adjacent to the first subpixel; a first plurality of features in the first subpixel and a second plurality of features in the second subpixel, wherein the first plurality of features extend essentially perpendicularly from the substrate and extend essentially in parallel in a first direction parallel to the substrate and the second plurality of features extend essentially perpendicularly from the substrate and extend essentially in parallel in a second direction parallel to the substrate; wherein the first direction and the second direction are different; the first plurality of features and the second plurality of features react differently to the polarized light.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 13/047,392, filed Mar. 14, 2011, and is related to U.S. patent application Ser. No. 12/204,686, filed Sep. 4, 2008 (now U.S. Pat. No. 7,646,943), Ser. No. 12/648,942, filed Dec. 29, 2009 (now U.S. Pat. No. 8,229,255), Ser. No. 13/556,041, filed Jul. 23, 2012, Ser. No. 12/270,233, filed Nov. 13, 2008 (now U.S. Pat. No. 8,274,039), Ser. No. 13/925,429, filed Jun. 24, 2013, Ser. No. 13/570,027, filed Aug. 8, 2012 (now U.S. Pat. No. 8,471,190), Ser. No. 12/472,264, filed May 26, 2009 (now U.S. Pat. No. 8,269,985, Ser. No. 13/621,607, filed Sep. 17, 2012 (now U.S. Pat. No. 8,514,411), Ser. No. 13/971,523, filed Aug. 20, 2013 (now allowed), Ser. No. 12/472,271, filed May 26, 2009 (now abandoned), Ser. No. 12/478,598, filed Jun. 4, 2009 (now U.S. Pat. No. 8,546,742), Ser. No. 14/021,672, filed Sep. 9, 2013, Ser. No. 12/573,582, filed Oct. 5, 2009 (now allowed), Ser. No. 14/274,448, filed May 9, 2014, Ser. No. 12/575,221, filed Oct. 7, 2009 (now U.S. Pat. No. 8,384,007), Ser. No. 12/633,323, filed Dec. 8, 2009 (now U.S. Pat. No. 8,735,797), Ser. No. 14/068,864, filed Oct. 31, 2013, Ser. No. 14/281,108, filed May 19, 2014, Ser. No. 13/494,661, filed Jun. 12, 2012 (now U.S. Pat. No. 8,754,359), Ser. No. 12/633,318, filed Dec. 8, 2009 (now U.S. Pat. No. 8,519,379), Ser. No. 13/975,553, filed Aug. 26, 2013 (now U.S. Pat. No. 8,710,488), U.S. Ser. No. 12/633,313, filed Dec. 8, 2009, Ser. No. 12/633,305, filed Dec. 8, 2009 (now U.S. Pat. No. 8,299,472), Ser. No. 13/543,556, filed Jul. 6, 2012 (now allowed), Ser. No. 12/621,497, filed Nov. 19, 2009 (now abandoned), Ser. No. 12/633,297, filed Dec. 8, 2009, Ser. No. 12/982,269, filed Dec. 30, 2010, Ser. No. 12/966,573, filed Dec. 13, 2010, Ser. No. 12/967,880, filed Dec. 14, 2010 (now U.S. Pat. No. 8,748,799), Ser. No. 12/966,514, filed Dec. 13, 2010, Ser. No. 12/974,499, filed Dec. 21, 2010 (now U.S. Pat. No. 8,507,840), Ser. No. 12/966,535, filed Dec. 13, 2010, Ser. No. 12/910,664, filed Oct. 22, 2010, Ser. No. 12/945,492, filed Nov. 12, 2010, Ser. No. 13/048,635, filed Mar. 15, 2011 (now allowed), Ser. No. 13/106,851, filed May 12, 2011, Ser. No. 13/288,131, filed Nov. 3, 2011, Ser. No. 14/032,166, filed Sep. 19, 2013, Ser. No. 13/543,307, filed Jul. 6, 2012, Ser. No. 13/963,847, filed Aug. 9, 2013, Ser. No. 13/693,207, filed Dec. 4, 2012, and Ser. No. 61/869,727, filed Aug. 25, 2013, are each hereby incorporated by reference in their entirety.
  • BACKGROUND
  • Polarization is a property of certain types of waves that describes the orientation of their oscillations. Electromagnetic waves including visible light can exhibit polarization. By convention, the polarization of light is described by specifying the orientation of the light's electric field at a point in space over one period of the oscillation. When light travels in free space, in most cases it propagates as a transverse wave, i.e. the polarization is perpendicular to the light's direction of travel. In this case, the electric field may be oriented in a single direction (linear polarization), or it may rotate as the wave travels (circular or elliptical polarization). In the latter cases, the oscillations can rotate either towards the right or towards the left in the direction of travel. Depending on which rotation is present in a given wave it is called the wave's chirality or handedness. Polarization of fully polarized light can be represented by a Jones vector. The x and y components of the complex amplitude of the electric field of light travel along z-direction, Ex(t) and Ey(t), are represented as
  • ( E x ( t ) E y ( t ) ) = E 0 ( E 0 x ( kz - ω t + φ x ) E 0 y ( kz - ω t + φ x ) ) = E 0 ( kz - ω t ) ( E 0 x φ x E 0 y φ y ) · ( E 0 x φ x E 0 y φ y )
  • is the Jones vector. Polarization of light with any polarization, including unpolarized, partially polarized, and fully polarized light, can be described by the Stokes parameters, which are four mutually independent parameters.
  • A device that can detect polarization of light, or even measure the light's Jones vector or Stokes parameters can be useful in many application.
  • SUMMARY
  • According to an embodiment, a device operable to detect polarized light comprises: a substrate; a first subpixel; a second subpixel adjacent to the first subpixel; a first plurality of features in the first subpixel and a second plurality of features in the second subpixel, wherein the first plurality of features extend essentially perpendicularly from the substrate and extend essentially in parallel in a first direction parallel to the substrate and the second plurality of features extend essentially perpendicularly (i.e. at least 85°) from the substrate and extend essentially in parallel (i.e. at most 5°) in a second direction parallel to the substrate; wherein the first direction and the second direction are different; the first plurality of features and the second plurality of features react differently to the polarized light. The term “polarized light” as used herein means light with polarization.
  • According to an embodiment, the polarized light has linear polarization, circular or elliptical polarization. “Linear polarization” as used herein means the electric field of light is confined to a given plane along the direction of propagation of the light. “Circular polarization” as used herein means the electric field of light does not change strength but only changes direction in a rotary type manner. “Elliptical polarization” as used herein means electric field of light describes an ellipse in any fixed plane intersecting, and normal to, the direction of propagation of the light.
  • According to an embodiment, the first plurality of features is equally spaced from each other.
  • According to an embodiment, the first plurality of features comprises at least 2 features.
  • According to an embodiment, the first plurality of features has a pitch of about 0.5 micron to about 5 microns, a height of about 0.3 micron to 10 microns, an aspect ratio of at least 4:1, preferably at least 10:1, or a combination thereof.
  • According to an embodiment, space between features of the first plurality of features is filled with a transparent material.
  • According to an embodiment, each of the first plurality of features comprises a p-i-n diode or forms a p-i-n diode with the substrate, and wherein the p-i-n diode is functional to convert at least a portion of the polarized light to an electrical signal. A p-i-n diode means a diode with a wide, lightly doped or intrinsic semiconductor region between a p-type semiconductor and an n-type semiconductor region. An intrinsic semiconductor, also called an undoped semiconductor or i-type semiconductor, is a substantially pure semiconductor without any significant dopant species present. A heavily doped semiconductor is a semiconductor with such a high doping level that the semiconductor starts to behave electrically more like a metal than as a semiconductor. A lightly doped semiconductor is a doped semiconductor but not have a doping level as high as a heavily doped semiconductor. In a lightly doped semiconductor, dopant atoms create individual doping levels that can often be considered as localized states that can donate electrons or holes by thermal promotion (or an optical transition) to the conduction or valence bands respectively. At high enough impurity concentrations (i.e. heavily doped) the individual impurity atoms may become close enough neighbors that their doping levels merge into an impurity band and the behavior of such a system ceases to show the typical traits of a semiconductor, e.g. its increase in conductivity with temperature.
  • According to an embodiment, the substrate comprises electrical components configured to detect the electrical signal.
  • According to an embodiment, the device further comprises a first transparent electrode disposed on the first subpixel and electrically connected to each of the first plurality of features, and a second transparent electrode disposed on the second subpixel and electrically connected to each of the second plurality of features, wherein the first and second transparent electrodes are separate. The term “transparent” as used herein means a transmittance of at least 70%.
  • According to an embodiment, the device further comprises a reflective material deposited on areas of the substrate between features of the first plurality of features. A reflective material is a material with a reflectance of at least 50%.
  • According to an embodiment, each of the first plurality of features comprises an intrinsic semiconductor layer or a first lightly doped semiconductor layer, and a heavily doped semiconductor layer; the substrate comprises a second lightly doped semiconductor layer; wherein the second lightly doped semiconductor layer is an opposite type from the heavily doped semiconductor layer; intrinsic semiconductor layer or a first lightly doped semiconductor layer is disposed on the second lightly doped semiconductor layer; and the heavily doped semiconductor layer is disposed on the intrinsic semiconductor layer or the first lightly doped semiconductor layer; wherein the heavily doped semiconductor layer, the intrinsic layer or the first lightly doped semiconductor layer, and the heavily doped semiconductor layer form a p-i-n diode. One semiconductor having an opposite type from another semiconductor means the former is n type if the latter is p type or, the former is p type if the latter is n type.
  • According to an embodiment, each of the first plurality of features comprises a core of intrinsic semiconductor or lightly doped semiconductor, and a shell of heavily doped semiconductor; the substrate comprises a lightly doped semiconductor layer; wherein the lightly doped semiconductor layer is an opposite type from the shell; the core is disposed on the lightly doped semiconductor layer; the shell is conformally disposed over the core; wherein the shell, the core and the lightly doped semiconductor layer form a p-i-n diode.
  • According to an embodiment, each of the first plurality of features comprises a core of lightly doped semiconductor, an intermediate shell of intrinsic semiconductor and an outer shell of doped semiconductor; wherein the intermediate shell is conformally disposed over the core; the outer shell is conformally disposed over the intermediate shell; the outer shell is of an opposite type from the core; wherein the outer shell, the intermediate shell and the core form the p-i-n diode.
  • According to an embodiment, each of the first plurality of features comprises a first heavily doped semiconductor layer, a lightly doped semiconductor layer or intrinsic semiconductor layer, a second heavily doped layer; wherein the first heavily doped semiconductor layer is disposed on the lightly doped semiconductor layer or intrinsic semiconductor layer; the lightly doped semiconductor layer or intrinsic semiconductor layer is disposed on the second heavily doped layer; the first heavily doped layer is of an opposite type from the second heavily doped layer; wherein the first heavily doped layer, the lightly doped semiconductor layer or intrinsic semiconductor layer and the second heavily doped layer form the p-i-n diode.
  • According to an embodiment, a polarization detector array comprises any of the device above, and electronic circuitry functional to detect the electrical signal.
  • According to an embodiment, the electronic circuitry is further functional to calculate an interpolation of subpixels of the device, adjust a gain and/or calculate Stoke's parameters.
  • According to an embodiment, the device comprises a first subpixel, a second subpixel, a third subpixel and a fourth subpixel, wherein features on the second, third and fourth subpixels extend in transverse directions at 45°, 90° and −45° relative to a transverse direction in which features on the first subpixel extend.
  • According to an embodiment, a method of fabricating a device operable to detect polarized light comprising a substrate, a first subpixel, a second subpixel adjacent to the first subpixel, a first plurality of features in the first subpixel and a second plurality of features in the second subpixel, wherein the first plurality of features extend essentially perpendicularly from the substrate and extend essentially in parallel in a first direction parallel to the substrate and the second plurality of features extend essentially perpendicularly from the substrate and extend essentially in parallel in a second direction parallel to the substrate, wherein the first direction and the second direction are different and wherein the first plurality of features and the second plurality of features react differently to the polarized light; the method comprises: lithography, ion implantation, annealing, evaporation, atomic layer deposition, chemical vapor deposition, dry etch or a combination thereof.
  • BRIEF DESCRIPTION OF FIGURES
  • FIG. 1 is a perspective view of the device according one embodiment.
  • FIG. 2 shows a schematic of the features in one subpixel when light with different polarization impinges thereon.
  • FIG. 3 shows a method of fabricating the device of FIG. 1.
  • FIG. 4 is a perspective view of the device according one embodiment.
  • FIG. 5 shows a method of fabricating the device of FIG. 4.
  • FIG. 6 is a perspective view of the device according one embodiment.
  • FIG. 7 shows a method of fabricating the device of FIG. 6.
  • FIG. 8 is a perspective view of the device according one embodiment.
  • FIG. 9 shows a method of fabricating the device of FIG. 8.
  • FIG. 10 shows a polarization detector array with the device of FIG. 1, 4, 6 or 8 integrated therein.
  • FIG. 11 shows a schematic of a light detector apparatus wherein the device of FIG. 1, 4, 6 or 8 is used as fore optics.
  • FIG. 12 shows a top view and a perspective view of a feature in the device of FIG. 1, wherein the feature has metal layers on its sidewalls.
  • DETAILED DESCRIPTION
  • In the following detailed description, reference is made to the accompanying drawings, which form a part thereof. In drawings, similar symbols typically identify similar components, unless the context dictates otherwise. The illustrate embodiments described in the detailed description, drawings, and Claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.
  • This disclosure is drawn to, among other things, methods of use, methods of fabrication, apparatuses, systems, and devices related to a device operable to detect and distinguish light of different polarization. According to an embodiment, the device comprises a substrate having a plurality of regions defined thereon (hereafter referred to as “subpixels”; a group of related “subpixels” may be referred to as a “pixel”). In each subpixel, the device comprises a plurality of features extending essentially perpendicularly from the substrate, wherein the plurality of features also extend essentially in parallel in a direction parallel to the substrate (hereafter referred to as a “transverse direction”). The term “feature” used herein means a structure whose dimensions in a direction perpendicular to the substrate (hereafter referred to as the “normal direction”) and in the transverse direction are substantially greater than a dimension of the structure in a direction perpendicular to both the normal direction and the transverse direction (hereafter referred to as the “thickness direction”). A feature can have any suitable shape in a cross-section parallel to the substrate, such as a rectangle, an ellipse, convex-convex (i.e. like a double-convex lens), concave-concave (i.e. like a double-concave lens), plano-convex (i.e. like a plano-convex lens), plano-concave (i.e. like a plano-concave lens). The plurality of features can be equally or unequally spaced from each other. The plurality of features in different subpixels are functional to react differently to light with a same polarization. Here, the term “react” is meant to broadly encompass absorbing, reflecting, coupling to, detecting, interacting with, converting to electrical signals, etc. The plurality of features in a first subpixel extends in a first transverse direction; the plurality of features in a second subpixel extends in a second transverse direction, wherein the first and second pixels are adjacent and the first transverse direction is different from the second transverse direction.
  • FIG. 1 shows a device 10 according to one embodiment. For brevity, two subpixels 10 a and 10 b of a substrate 110 are illustrated. The device 10, however, can comprise a plurality of pixels such as more than 100, more than 1000, more than 1000000. The subpixels preferably have a pitch of about 1 micron to 100 microns (more preferably 5 microns). In each of the subpixels 10 a and 10 b, the device 10 comprises a plurality of features 100 (e.g. at least 2 features), respectively. The features 100 in the subpixel 10 a and the features 100 in the subpixel 10 b extend in different transverse directions. The features 100 preferably have a pitch (i.e. spacing between adjacent features 100 in the thickness direction thereof) of about 0.5 to 5 microns (further preferably about 1 micron), a height (i.e. dimension in the normal direction) of about 0.3 to 10 microns (further preferably about 5 micron) and an aspect ratio (i.e. ratio of a dimension in the transverse direction to a dimension in the thickness direction) of at least 4:1, preferably at least 10:1. Each of the features 100 forms a p-i-n diode with the substrate 110, the p-i-n diode being functional to convert at least a portion of light impinged thereon to an electrical signal. Each feature 100 comprises a heavily doped semiconductor layer 124 disposed on a lightly doped semiconductor layer or intrinsic semiconductor layer 121. The substrate 110 comprises another lightly doped semiconductor layer 122 of an opposite type from the heavily doped semiconductor layer 124. The lightly doped semiconductor layer or intrinsic semiconductor layer 121 of the feature 100 is disposed on the lightly doped semiconductor layer 122. The layers 121, 122 and 124 form the p-i-n diode. Space between the features 100 can be filled with a transparent material. The device 10 preferably further comprises electrical components configured to detect the electrical signal from the features 100, for example, a transparent electrode disposed on each subpixel and electrically connected to all features 100 therein. The transparent electrode on each subpixel preferably is separate from the transparent electrode on adjacent subpixels. A reflective material can be deposited on areas of the substrate 110 between the features 100. The substrate 110 can have a thickness in the normal direction of about 5 to 700 microns (preferably 120 microns).
  • FIG. 2 shows a schematic of the features 100 in one subpixel when light with different polarization impinges thereon. For light 15 a with a wavelength of about 400 nm and a linear polarization essentially in the thickness direction of the features 100, the absorptance of the features 100 is about 35%. In contrast, for light 15 b with the same wavelength as light 15 a and a linear polarization essentially in the transverse direction of the features 100, the absorptance of the features 100 is about 95%.
  • FIG. 3 shows an exemplary method of fabrication of the device 10.
  • In step 1000, a silicon substrate 110 is provided, wherein the silicon substrate comprises an intrinsic layer or a lightly doped n type silicon epitaxial layer 121, a heavily doped n type layer 123 and a lightly doped n type layer 122 sandwiched between the layers 121 and 123. A substrate of semiconductor material other than silicon (e.g. III-V or II-VI group compound semiconductor) can also be used.
  • In step 1001, a heavily doped p type layer 124 is fabricated on the layer 121 by a method such as ion implantation and subsequent annealing. An exemplary dopant suitable for use in the ion implantation is boron or boron difluoride.
  • In step 1002, a resist layer 125 (e.g. a photoresist or an e-beam resist) is deposited on the heavily doped p type layer 124, by a suitable method such as spin coating.
  • In step 1003, a pattern is formed in the resist layer 125 using a lithography technique (e.g. photolithograph or e-beam lithography) by removing portions 126 of the resist layer 125. The heavily doped p type layer 124 is exposed under the removed portions 126. The pattern corresponds to shapes and positions of the features 100.
  • In step 1004, a metal layer 125 is deposited on the resist layer 125 and the exposed portions of the heavily doped p type layer 124, using a suitable technique such as thermal evaporation, e-beam evaporation, and sputtering. Exemplary metal suitable for use in the metal layer 125 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof.
  • In step 1005, remainder of the resist layer 125 and portions of the metal layer 125 thereon are lift-off by a suitable technique such as plasma ashing and dissolution in a suitable solvent.
  • In step 1006, features 100 are formed by etching into the substrate 110 using a suitable technique, such as dry etching with remainder of the metal layer 125 as etch mask, until portions of the lightly doped n type layer 122 not directly below the remainder of the metal layer 125 are exposed. The features 100 now comprise remainder of the layers 121 and 124.
  • In step 1007, a layer of oxide 128 (e.g. HfO2, SiO2, Al2O3) is deposited isotropically over the features 100 and exposed portions of the layer 122, using suitable technique such as atomic layer deposition (ALD) and chemical vapor deposition (CVD). The layer of oxide 128 is functional to passivate surfaces of the features 100.
  • In step 1008, a metal layer 130 is deposited on the heavily doped n type layer 123 using a suitable technique such as thermal evaporation, e-beam evaporation, and sputtering. Exemplary metal suitable for use in the metal layer 130 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof. A rapid thermal annealing can be conducted following the deposition of the metal layer 130 to form an Ohmic contact between the metal 130 and the heavily doped n type layer 123.
  • In step 1009, a reflective layer 129 is deposited anisotropically on and between the features 100 such that sidewalls of the features 100 are preferably free of the reflective layer 129. The reflective layer 129 can be deposited by thermal evaporation or e-beam evaporation. Exemplary metal suitable for use in the reflective layer 129 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof.
  • In step 1010, a sacrificial layer 131 preferably with a refractive index lower than that of the features 100 is deposited by spin coating or evaporation to fill space between the features 100. The sacrificial layer 131 can be a suitable material such as polyimide or oxide.
  • In step 1011, the sacrificial layer 131 is planarized using a suitable technique such as chemical mechanical polishing (CMP) until the heavily doped p type layer 124 of the features 100 is exposed.
  • In step 1012, a transparent conductive oxide (TCO) layer 132 is deposited on the sacrificial layer 131 and the exposed heavily doped p type layer 124 of the features 100, using a suitable method such as thermal evaporation, e-beam evaporation, and sputtering. The TCO layer can comprise one or more suitable materials such as indium tin oxide, aluminum zinc oxide, zinc indium oxide, zinc oxide and graphene.
  • In step 1013, another resist layer 133 is deposited on the TCO layer 132 using a technique such as spin-coating. A pattern is formed in the resist layer 133 using a lithography technique (e.g. photolithograph or e-beam lithography) by removing portions 134 of the resist layer 133. The TCO layer 132 is exposed under the removed portions 134. The pattern corresponds to gaps to be made in the TCO layer 132 for electrically separating the TCO layer 132 into transparent electrodes for each subpixel.
  • In step 1014, the TCO layer 132 is dry etched using the resist layer 133 as etch mask until portions of the sacrificial layer 131 is exposed in the removed portions 134 of the resist layer 133.
  • In step 1015, remainder of the resist layer 133 is removed by plasma ashing or dissolution in a suitable solvent.
  • In step 1016, the sacrificial layer 131 is optionally removed by a suitable method such as wet etching. For example, polyimide can be removed by a suitable photoresist developer. A thermal annealing (e.g. at 450° C. for 30 minutes) can be applied to form an Ohmic contact between the TCO layer 132 and the features 100.
  • FIG. 4 shows a device 20 according to one embodiment. For brevity, two subpixels 20 a and 20 b of a substrate 210 are illustrated. The device 20, however, can comprise a plurality of pixels such as more than 100, more than 1000, more than 1000000. The subpixels preferably have a pitch of about 1 micron to 100 microns (more preferably 5 microns). In each of the subpixels 20 a and 20 b, the device 20 comprises a plurality of features 200 (e.g. at least 2 features), respectively. The features 200 in the subpixel 20 a and the features 200 in the subpixel 20 b extend in different transverse directions. The features 200 preferably have a pitch (i.e. spacing between adjacent features 100 in the thickness direction thereof) of about 0.5 to 5 microns (further preferably about 1 micron), a height (i.e. dimension in the normal direction) of about 0.3 to 10 microns (further preferably about 5 micron) and an aspect ratio (i.e. ratio of a dimension in the transverse direction to a dimension in the thickness direction) of at least 4:1, preferably at least 10:1. Each of the features 200 forms a p-i-n diode with the substrate 210, the p-i-n diode being functional to convert at least a portion of light impinged thereon to an electrical signal. Each feature 200 comprises a core 221 of lightly doped semiconductor or intrinsic semiconductor, and a shell 223 of heavily doped semiconductor, the shell 223 being conformally disposed over the core 221. The substrate 210 comprises a lightly doped semiconductor layer 222 of an opposite type from the shell 223. The core 221 is disposed on the lightly doped semiconductor layer 222. The shell 223, core 221 and layer 222 form the the p-i-n diode. Space between the features 200 can be filled with a transparent material. The device 20 preferably further comprises electrical components configured to detect the electrical signal from the features 200, for example, an electrode disposed between and electrically connected to the features 200 on each subpixel. The electrode disposed between the features 200 on each subpixel preferably is separate from the electrode disposed between the features 200 on adjacent subpixels. The electrode can also function as a reflective layer. The substrate 210 can have a thickness in the normal direction of about 5 to 700 microns (preferably 120 microns).
  • FIG. 5 shows an exemplary method of fabrication of the device 20.
  • In step 2000, a silicon substrate 210 is provided, wherein the silicon substrate comprises an intrinsic layer or a lightly doped n type silicon epitaxial layer 221, a heavily doped n type layer 223 and a lightly doped n type layer 222 sandwiched between the layers 221 and 223. A substrate of semiconductor material other than silicon (e.g. III-V or II-VI group compound semiconductor) can also be used.
  • In step 2001, a resist layer 225 (e.g. a photoresist or an e-beam resist) is deposited on the layer 221, by a suitable method such as spin coating.
  • In step 2002, a pattern is formed in the resist layer 225 using a lithography technique (e.g. photolithograph or e-beam lithography) by removing portions 226 of the resist layer 225. The layer 221 is exposed under the removed portions 226. The pattern corresponds to shapes and positions of the features 200.
  • In step 2003, a metal layer 227 is deposited on the resist layer 225 and the exposed portions of the layer 221, using a suitable technique such as thermal evaporation, e-beam evaporation, and sputtering. Exemplary metal suitable for use in the metal layer 227 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof.
  • In step 2004, remainder of the resist layer 225 and portions of the metal layer 227 thereon are lift-off by a suitable technique such as plasma ashing and dissolution in a suitable solvent.
  • In step 2005, features 200 are formed by etching into the substrate 210 using a suitable technique, such as dry etching with remainder of the metal layer 227 as etch mask, until portions of the lightly doped n type layer 222 not directly below the remainder of the metal layer 227 are exposed. The features 200 now comprise remainder of the layer 221.
  • In step 2006, remainder of the metal layer 227 is removed by a suitable technique such as wet etching with a suitable metal etchant.
  • In step 2007, a resist layer 229 (e.g. a photoresist or an e-beam resist) is deposited on the layer 222 and the features 200, by a suitable method such as spin coating. The resist layer 229 is then patterned using a lithography technique to expose portions of the layer 222 at boundaries of the subpixels.
  • In step 2008, a silicon nitride or aluminum oxide layer 230 is deposited anisotropically over the exposed portions of the layer 222 and on the resist layer 229 using a suitable technique such as thermal evaporation, e-beam evaporation, and sputtering.
  • In step 2009, remainder of the resist layer 229 and any portions of the layer 230 thereon are removed by plasma ashing or dissolution in a suitable solvent.
  • In step 2010, a p-type dopant layer 231 is deposited isotropically over the features 200, remainder of on the layer 230, and the layer 222, using a suitable technique such as ALD or CVD. ALD is preferred. The p-type dopant layer 231 can comprise a suitable p-type dopant such as trimethyboron, triiospropylborane, triethoxyborane, triisopropoxyborane, and a combination thereof.
  • In step 2011, an oxide layer 232 is deposited isotropically over the p-type dopant layer 231 using a suitable technique such as ALD or CVD.
  • In step 2012, a heavily doped p type layer 233 is formed by annealing the device 20 to diffuse the p-type dopant layer 231 into the layer 222. The annealing can be done in a suitable atmosphere (e.g. argon) at about 850° C. for 10 to 30 minutes.
  • In step 2013, the oxide layer 232 is removed by a suitable method such as etching with buffered HF followed by washing. Now the heavily doped p type layer 233 is exposed.
  • In step 2014, a layer of oxide 234 (e.g. HfO2, SiO2, Al2O3) is deposited isotropically over the layer 233 and remainder of on the layer 230, using suitable technique such as atomic layer deposition (ALD) and chemical vapor deposition (CVD). The layer of oxide 234 is functional to passivate surfaces of the layer 233.
  • In step 2015, a resist layer 235 (e.g. a photoresist or an e-beam resist) is deposited on the layer 234, by a suitable method such as spin coating. The resist layer 235 is then patterned using a lithography technique to expose portions of the layer 234.
  • In step 2016, exposed portions of the layer 234 is removed by a suitable technique such as dry etching to expose portions of the layer 233. The resist layer 235 is then removed by ashing or dissolution in a suitable solvent.
  • In step 2017, a resist layer 237 (e.g. a photoresist or an e-beam resist) is deposited on the layers 233 and 234, by a suitable method such as spin coating. The resist layer 237 is then patterned using a lithography technique such that only the features 200 and the layer 230 remain under the resist layer 237.
  • In step 2018, a metal layer 239 is deposited anisotropically on and between the features 200 such that sidewalls of the features 200 are preferably free of the metal layer 239. The metal layer 239 can be deposited by thermal evaporation or e-beam evaporation. Exemplary metal suitable for use in the metal layer 239 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof. The resist layer 237 is then removed by plasma ashing or dissolution in a suitable solvent.
  • In step 2019, the device 20 is annealed under a suitable atmosphere (e.g. H2 and N2) at about 450° C. for about 30 minutes, such that the metal layer 239 and the exposed portions of the heavily doped p type layer 233 form an Ohmic contact.
  • In step 2020, a resist layer 238 (e.g. a photoresist or an e-beam resist) is deposited on the layers 239 and 234, by a suitable method such as spin coating. The resist layer 238 is then patterned using a lithography technique to expose the remainder of the layer 230 and any portion of the layer 234 thereon.
  • In step 2021, an oxide layer 240 is deposited anisotropically over any portion of the layer 234 on the remainder of the layer 230, and over the resist layer 238, using a suitable technique such as thermal evaporation or e-beam evaporation. The oxide layer 240 is an electrical insulator.
  • In step 2022, a metal layer 241 is deposited anisotropically over the oxide layer 240, using a suitable technique such as thermal evaporation or e-beam evaporation. The metal layer 241 is optically opaque.
  • In step 2023, the resist layer 238 and any portions of the oxide layer 240 and the metal layer 241 thereon are removed by a suitable technique such as plasma ashing and dissolution in a suitable solvent.
  • FIG. 6 shows a device 30 according to one embodiment. For brevity, two subpixels 30 a and 30 b of a substrate 310 are illustrated. The device 30, however, can comprise a plurality of pixels such as more than 100, more than 1000, more than 1000000. The subpixels preferably have a pitch of about 1 micron to 100 microns (more preferably 5 microns). In each of the subpixels 30 a and 30 b, the device 30 comprises a plurality of features 300 (e.g. at least 2 features), respectively. The features 300 in the subpixel 30 a and the features 300 in the subpixel 30 b extend in different transverse directions. The features 300 preferably have a pitch (i.e. spacing between adjacent features 100 in the thickness direction thereof) of about 0.5 to 5 microns (further preferably about 1 micron), a height (i.e. dimension in the normal direction) of about 0.3 to 10 microns (further preferably about 5 micron) and an aspect ratio (i.e. ratio of a dimension in the transverse direction to a dimension in the thickness direction) of at least 4:1, preferably at least 10:1. Each of the features 300 preferably comprises a p-i-n diode, the p-i-n diode being functional to convert at least a portion of light impinged thereon to an electrical signal. Each feature 300 comprises a core 321 of lightly doped semiconductor, an intermediate shell 331 of intrinsic semiconductor and an outer shell 332 of doped semiconductor. The intermediate shell 331 is conformally disposed over the core 321. The outer shell 332 is conformally disposed over the intermediate shell 331. The outer shell 332 is of an opposite type from the core 321. The outer shell 332, the intermediate shell 331 and the core 321 form the p-i-n diode. Space between the features 300 can be filled with a transparent material. The device 20 preferably further comprises electrical components configured to detect the electrical signal from the features 300, for example, an electrode disposed between and electrically connected to the features 300 on each subpixel. The electrode disposed between the features 300 on each subpixel preferably is separate from the electrode disposed between the features 300 on adjacent subpixels. The electrode can also function as a reflective layer. The substrate 310 can have a thickness in the normal direction of about 5 to 700 microns (preferably 120 microns).
  • FIG. 7 shows an exemplary method of fabrication of the device 30.
  • In step 3000, a silicon substrate 310 is provided, wherein the silicon substrate comprises a lightly doped n type silicon epitaxial layer 321, a heavily doped n type layer 323 and a n type layer 322 sandwiched between the layers 321 and 323. A substrate of semiconductor material other than silicon (e.g. III-V or II-VI group compound semiconductor) can also be used.
  • In step 3001, a resist layer 325 (e.g. a photoresist or an e-beam resist) is deposited on the layer 321, by a suitable method such as spin coating.
  • In step 3002, a pattern is formed in the resist layer 325 using a lithography technique (e.g. photolithograph or e-beam lithography) by removing portions 326 of the resist layer 325. The layer 321 is exposed under the removed portions 326. The pattern corresponds to shapes and positions of the features 300.
  • In step 3003, a metal layer 327 is deposited on the resist layer 325 and the exposed portions of the layer 321, using a suitable technique such as thermal evaporation, e-beam evaporation, and sputtering. Exemplary metal suitable for use in the metal layer 327 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof.
  • In step 3004, remainder of the resist layer 325 and portions of the metal layer 327 thereon are lift-off by a suitable technique such as plasma ashing and dissolution in a suitable solvent.
  • In step 3005, features 300 are formed by etching into the substrate 310 using a suitable technique, such as dry etching with remainder of the metal layer 327 as etch mask, until portions of the lightly doped n type layer 322 not directly below the remainder of the metal layer 327 are exposed. The features 300 now comprise remainder of the layer 321.
  • In step 3006, remainder of the metal layer 327 is removed by a suitable technique such as wet etching with a suitable metal etchant.
  • In step 3007, a resist layer 329 (e.g. a photoresist or an e-beam resist) is deposited on the layer 322 and the features 300, by a suitable method such as spin coating. The resist layer 329 is then patterned using a lithography technique to expose portions of the layer 322 at boundaries of the subpixels.
  • In step 3008, a silicon nitride or aluminum oxide layer 330 is deposited anisotropically over the exposed portions of the layer 322 and on the resist layer 329 using a suitable technique such as thermal evaporation, e-beam evaporation, and sputtering.
  • In step 3009, remainder of the resist layer 329 and any portions of the layer 330 thereon are removed by plasma ashing or dissolution in a suitable solvent.
  • In step 3010, an intrinsic amorphous silicon (a-Si) layer 331 is deposited isotropically over the features 300, remainder of on the layer 330, and the layer 322, using a suitable technique such as ALD or CVD. ALD is preferred.
  • In step 3011, a p type doped a-Si layer 332 is deposited isotropically over the layer 331 using a suitable technique such as ALD or CVD. The device 30 is then annealed in a suitable atmosphere (e.g. forming gas) at about 450° C. for about 30 minutes.
  • In step 3012, a resist layer 333 (e.g. a photoresist or an e-beam resist) is deposited on the layer 332, by a suitable method such as spin coating. The resist layer 333 is then patterned using a lithography technique to expose any portion of the layer 332 on the remainder of the layer 330.
  • In step 3013, exposed portions of the layer 332 and any portion of the layer 331 thereunder are removed by a suitable method such as dry etch, until the layer 330 is exposed.
  • In step 3014, the resist layer 333 is removed by plasma ashing or dissolution in a suitable solvent.
  • In step 3015, a resist layer 334 (e.g. a photoresist or an e-beam resist) is deposited by a suitable method such as spin coating. The resist layer 334 is then patterned using a lithography technique such that only the features 300 and the layer 330 remain under the resist layer 334.
  • In step 3016, a metal layer 335 is deposited anisotropically on and between the features 300 such that sidewalls of the features 300 are preferably free of the metal layer 335. A metal layer 336 is deposited on the layer 323. The metal layers 335 and 336 can be deposited by thermal evaporation or e-beam evaporation. Exemplary metal suitable for use in the metal layer 335 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof.
  • In step 3017, the resist layer 334 and any portion of the metal layer 335 thereon are removed by plasma ashing or dissolution in a suitable solvent. The device 30 is then annealed under a suitable atmosphere (e.g. H2 and N2) at about 450° C. for about 30 minutes, such that the metal layers 335 and 336 form Ohmic contacts with the layer 332 and 323, respectively.
  • In step 3018, a resist layer 337 (e.g. a photoresist or an e-beam resist) is deposited on the layers 332 and 335, by a suitable method such as spin coating. The resist layer 337 is then patterned using a lithography technique to expose the remainder of the layer 330.
  • In step 3019, an oxide layer 338 and a metal layer 339 are sequentially deposited anisotropically, using a suitable technique such as thermal evaporation or e-beam evaporation. The oxide layer 338 is an electrical insulator. The metal layer 241 is optically opaque.
  • In step 3020, the resist layer 337 and any portions of the oxide layer 338 and the metal layer 339 thereon are removed by a suitable technique such as plasma ashing and dissolution in a suitable solvent.
  • FIG. 8 shows a device 40 according to one embodiment. For brevity, two subpixels 40 a and 40 b of a substrate 410 are illustrated. The device 40, however, can comprise a plurality of pixels such as more than 100, more than 1000, more than 1000000. The subpixels preferably have a pitch of about 1 micron to 100 microns (more preferably 5 microns). In each of the subpixels 40 a and 40 b, the device 40 comprises a plurality of features 400 (e.g. at least 2 features), respectively. The features 400 in the subpixel 40 a and the features 400 in the subpixel 40 b extend in different transverse directions. The features 400 preferably have a pitch (i.e. spacing between adjacent features 100 in the thickness direction thereof) of about 0.5 to 5 microns (further preferably about 1 micron), a height (i.e. dimension in the normal direction) of about 0.3 to 10 microns (further preferably about 5 micron) and an aspect ratio (i.e. ratio of a dimension in the transverse direction to a dimension in the thickness direction) of at least 4:1, preferably at least 10:1. Each of the features 400 preferably comprises a p-i-n diode therein, the p-i-n diode being functional to convert at least a portion of light impinged thereon to an electrical signal, wherein the p-i-n diode is formed along the normal direction. For example, each feature 400 comprises a first heavily doped semiconductor layer 435, a lightly doped semiconductor layer or intrinsic semiconductor layer 421, a second heavily doped layer 424. The first heavily doped semiconductor layer 435 is disposed on the lightly doped semiconductor layer or intrinsic semiconductor layer 421. The lightly doped semiconductor layer or intrinsic semiconductor layer 421 is disposed on the second heavily doped layer 424. The first heavily doped layer 435 is of an opposite type from the second heavily doped layer 424. The first heavily doped layer 435, the lightly doped semiconductor layer or intrinsic semiconductor layer 421 and the second heavily doped layer 424 form the p-i-n diode. Space between the features 300 can be filled with a transparent material. The features 400 preferably are bonded to the substrate 410. The device 40 preferably further comprises electrical components configured to detect the electrical signal from the features 400, for example, Readout Integrated Circuits (ROIC) in the substrate 410. The ROIC can be electrically connected to the second heavily doped layer 424. The substrate 410 can have a thickness in the normal direction of about 5 to 700 microns (preferably 120 microns).
  • FIG. 9 shows an exemplary method of fabrication of the device 40.
  • In step 4000, a silicon substrate 423 is provided, wherein the silicon substrate 423 comprises an silicon oxide layer 422 thereon and an intrinsic layer or a lightly doped p type silicon layer 421 on the silicon oxide layer 422. A substrate of semiconductor material other than silicon (e.g. III-V or II-VI group compound semiconductor) can also be used.
  • In step 4001, a heavily doped n type layer 424 is fabricated on the layer 421 by a method such as ion implantation and subsequent annealing. An exemplary dopant suitable for use in the ion implantation is phosphorous or arsenic.
  • In step 4002, a resist layer 425 (e.g. a photoresist or an e-beam resist) is deposited on the heavily doped n type layer 424, by a suitable method such as spin coating.
  • In step 4003, a pattern is formed in the resist layer 425 using a lithography technique (e.g. photolithograph or e-beam lithography) by removing portions 426 of the resist layer 425. The heavily doped n type layer 424 is exposed under the removed portions 426. The pattern corresponds to shapes and positions of the features 400.
  • In step 4004, a metal layer 427 is deposited on the resist layer 425 and the exposed portions of the heavily doped n type layer 424, using a suitable technique such as thermal evaporation, e-beam evaporation, and sputtering. Exemplary metal suitable for use in the metal layer 427 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof.
  • In step 4005, remainder of the resist layer 425 and portions of the metal layer 427 thereon are lift-off by a suitable technique such as plasma ashing and dissolution in a suitable solvent.
  • In step 4006, features 400 are formed by etching into the layer 421 using a suitable technique, such as dry etching with remainder of the metal layer 125 as etch mask, until portions of the silicon oxide layer 422 not directly below the remainder of the metal layer 427 are exposed. The features 400 now comprise remainder of the layers 421 and 424.
  • In step 4007, remainder of the metal layer 427 is removed by a suitable method such as etching with a suitable metal etchant.
  • In step 4008, a metal layer 429 is deposited anisotropically on the heavily doped n type layer 424 and exposed portions of the silicon oxide layer 422, using a suitable technique such as thermal evaporation, e-beam evaporation, and sputtering. Exemplary metal suitable for use in the metal layer 429 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof.
  • In step 4009, an oxide layer 428 (e.g. HfO2, SiO2, Al2O3) is deposited isotropically over the features 400 and the metal layer 429, using suitable technique such as atomic layer deposition (ALD) and chemical vapor deposition (CVD). The oxide layer 428 is functional to passivate surfaces of the features 400.
  • In step 4010, portions of the oxide layer 428 above the metal layer 429 are removed by a suitable technique such as anisotropic dry etch. Now the metal layer 429 is exposed.
  • In step 4011, a silicide layer 430 is formed from the heavily doped n type layer 424 and portions of the metal layer 429 thereon by annealing the device 40. Remainder of the metal layer 429 is removed by a suitable technique such as etching with a suitable metal etchant.
  • In step 4012, a sacrificial layer 431 is deposited by pouring , spin coating or evaporation to fill space between the features 400. The sacrificial layer 431 can be a suitable material such as polydimethylsiloxane, polyimide or oxide.
  • In step 4013, the substrate using a suitable technique such as etching with potassium hydroxide, until the silicon oxide layer 422 is exposed.
  • In step 4014, a glass substrate 432 is bonded to the exposed silicon oxide layer 422, using a suitable technique such as using a UV removable glue. The glass substrate 432 can provide mechanical support.
  • In step 4015, the sacrificial layer is removed by a suitable method such as wet etching. For example, polyimide can be removed by a suitable photoresist developer.
  • In step 4016, the features 40 are bonded to ROIC in the substrate 410 using a tin-silver alloy layer between the substrate 410 and the features 40 and annealing at about 220° C.
  • In step 4017, the glass substrate 432 is released from the silicon oxide layer 422 by illumination with UV light.
  • In step 4018, a heavily doped p type layer 435 is formed on the layer 421 of the features 400 by a suitable technique such as ion implantation through the silicon oxide layer 422. The heavily doped p type layer 435 can be annealed by laser to activate implanted dopant.
  • In step 4019, the silicon oxide layer 422 is removed by a suitable technique such as etching with HF.
  • In step 4020, an insulating material 433 is deposited by spin coating, evaporation or CVD to fill space between the features 400. The insulating material 433 preferably has a lower refractive index than the features 400. The insulating material 433 can be any suitable material such as silicon oxide and polyimide.
  • In step 4021, the insulating material 433 is planarized using a suitable technique such as chemical mechanical polishing (CMP) until the heavily doped p type layer 432 of the features 400 is exposed.
  • In step 4022, a transparent conductive oxide (TCO) layer 434 is deposited on the insulating material 433, using a suitable method such as thermal evaporation, e-beam evaporation, and sputtering. The TCO layer can comprise one or more suitable materials such as indium tin oxide, aluminum zinc oxide, zinc oxide, zinc indium oxide and graphene.
  • In step 4023, the insulating material 433 is optionally removed by a suitable method such as wet etching.
  • According to one embodiment as shown in FIG. 10, the device 10, 20, 30 or 40 can be integrated with electronic circuitry into a polarization detector array. The electronic circuitry can include address decoders in both directions of the detector array, a correlated double sampling circuit (CDS), a signal processor, a multiplexor. The electronic circuitry is functional to detect the electrical signal converted by the features 100, 200, 300 or 400 from at least a portion of light impinged thereon. The electric circuitry can be further functional to calculate an interpolation of electrical signals from several subpixels, the features on which extend in the same transverse direction. Other function of the electronic circuitry can include a gain adjustment, a calculation of Stoke's parameters. In particular, the subpixels can be arranged into a group (i.e. pixel). For example, in FIG. 10, a subpixel A and subpixels B, C and D can be arranged adjacent to each other and referred to as a pixel, wherein features on the subpixels B, C and D extend in transverse directions at 45°, 90° and −45° relative to a transverse direction in which features on the subpixel A extend.
  • The device 10, 20, 30 or 40 can also be used as fore optics in a light detector apparatus as shown in the schematic in FIG. 11.
  • According to an embodiment as shown in FIG. 12, the features 100, 200, 300 and 400 can each comprise a metal layer on each sidewall (i.e. surface extending in the transverse direction and the normal direction). The metal layer preferably has a thickness of about 5 nm to about 100 nm, more preferably about 50 nm. The metal layer substantially covers the entire sidewall and the metal layer does not extend to either end of the features in the normal direction.
  • The foregoing detailed description has set forth various embodiments of the devices and/or processes by the use of diagrams, flowcharts, and/or examples. Insofar as such diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof.
  • Those skilled in the art will recognize that it is common within the art to describe devices and/or processes in the fashion set forth herein, and thereafter use engineering practices to integrate such described devices and/or processes into data processing systems. That is, at least a portion of the devices and/or processes described herein can be integrated into a data processing system via a reasonable amount of experimentation.
  • The subject matter described herein sometimes illustrates different components contained within, or connected with, other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermediate components.
  • With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.
  • All references, including but not limited to patents, patent applications, and non-patent literature are hereby incorporated by reference herein in their entirety.
  • While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following Claims.

Claims (20)

What is claimed:
1. A device operable to detect polarized light comprising: a substrate; a first subpixel; a second subpixel; a first plurality of features in the first subpixel and a second plurality of features in the second subpixel, wherein the first plurality of features extend essentially in parallel in a first direction parallel to the substrate and the second plurality of features extend essentially in parallel in a second direction parallel to the substrate; wherein the first direction and the second direction are different; the first plurality of features and the second plurality of features react differently to the polarized light; wherein the first plurality of features comprises an electronic component, and wherein the electronic component is functional to convert at least a portion of the polarized light to an electrical signal.
2. The device of claim 1, wherein the polarized light has linear polarization, circular or elliptical polarization.
3. The device of claim 1, wherein the first plurality of features is equally spaced from each other.
4. The device of claim 1, wherein space between features of the first plurality of features is filled with a transparent material.
5. The device of claim 1, wherein the second subpixel is adjacent to the first subpixel.
6. The device of claim 1, wherein the p-i-n diode is functional to convert at least a portion of the polarized light to an electrical signal.
7. The device of claim 6, wherein the substrate comprises electrical components configured to detect the electrical signal.
8. The device of claim 1, further comprising a first transparent electrode disposed on the first subpixel and electrically connected to each of the first plurality of features, and a second transparent electrode disposed on the second subpixel and electrically connected to each of the second plurality of features, wherein the first and second transparent electrodes are separate.
9. The device of claim 1, further comprising a reflective material deposited on areas of the substrate between features of the first plurality of features.
10. The device of claim 1, wherein each of the first plurality of features comprises an intrinsic semiconductor layer or a first lightly doped semiconductor layer, and a heavily doped semiconductor layer; the substrate comprises a second lightly doped semiconductor layer; wherein the second lightly doped semiconductor layer is an opposite type from the heavily doped semiconductor layer; intrinsic semiconductor layer or a first lightly doped semiconductor layer is disposed on the second lightly doped semiconductor layer; and the heavily doped semiconductor layer is disposed on the intrinsic semiconductor layer or the first lightly doped semiconductor layer; wherein the heavily doped semiconductor layer, the intrinsic layer or the first lightly doped semiconductor layer, and the heavily doped semiconductor layer form a p-i-n diode.
11. A polarization detector array, comprising the device of claim 1 and electronic circuitry functional to detect an electrical signal.
12. The polarization detector array of claim 11, wherein the electronic circuitry is further functional to calculate an interpolation of subpixels of the device, adjust a gain and/or calculate Stoke's parameters.
13. The device of claim 1, wherein the first plurality of features or the second plurality of features have a shape in a cross-section parallel to the substrate selected from the group consisting of a rectangle, an ellipse, convex-convex, concave-concave, plano-convex, and plano-concave.
14. The device of claim 1, further comprising a metal layer on each sidewall of each of the first plurality of features and the second plurality of features wherein the metal layer substantially covers the entire sidewall and the metal layer does not extend to either end of the features in a direction perpendicular to the substrate.
15. A device operable to detect polarized light comprising: a substrate; a first subpixel; a second subpixel; a first plurality of features in the first subpixel and a second plurality of features in the second subpixel; wherein the first plurality of features and the second plurality of features react differently to the polarized light such that polarization of polarized light is determined; wherein each of the first plurality of features comprises a p-i-n diode or forms a p-i-n diode with the substrate.
16. The device of claim 15, wherein the first plurality of features are arranged in a different orientation than the second plurality of features.
17. The device of claim 15, wherein the features react to polarized light by converting at least a portion thereof to electrical signal.
18. The device of claim 15, wherein the first plurality of features and the second plurality of features are substantially shaped as blocks or prisms having a substantially rectangular shaped base, wherein the blocks or prisms protrude from a surface of the substantially rectangular shaped base.
19. A method of fabricating a device of claim 1; the method comprising: forming at least one of the first plurality of features and the second plurality of features by conducting lithography, ion implantation, annealing, evaporation, atomic layer deposition, chemical vapor deposition, dry etch or a combination thereof.
20. A method of fabricating a device of claim 15; the method comprising: conducting lithography, ion implantation, annealing, evaporation, atomic layer deposition, chemical vapor deposition, dry etch or a combination thereof.
US14/450,812 2008-09-04 2014-08-04 Polarized light detecting device and fabrication methods of the same Abandoned US20140339666A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US12/945,492 US9515218B2 (en) 2008-09-04 2010-11-12 Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US14/450,812 US20140339666A1 (en) 2010-06-22 2014-08-04 Polarized light detecting device and fabrication methods of the same
US14/503,598 US9410843B2 (en) 2008-09-04 2014-10-01 Nanowire arrays comprising fluorescent nanowires and substrate
US14/632,739 US9601529B2 (en) 2008-09-04 2015-02-26 Light absorption and filtering properties of vertically oriented semiconductor nano wires
US14/704,143 US20150303333A1 (en) 2008-09-04 2015-05-05 Passivated upstanding nanostructures and methods of making the same
US14/705,380 US9337220B2 (en) 2008-09-04 2015-05-06 Solar blind ultra violet (UV) detector and fabrication methods of the same
US15/057,153 US20160178840A1 (en) 2008-09-04 2016-03-01 Optical waveguides in image sensors
US15/082,514 US20160211394A1 (en) 2008-11-13 2016-03-28 Nano wire array based solar energy harvesting device
US15/090,155 US20160216523A1 (en) 2008-09-04 2016-04-04 Vertical waveguides with various functionality on integrated circuits
US15/093,928 US20160225811A1 (en) 2008-09-04 2016-04-08 Nanowire structured color filter arrays and fabrication method of the same
US15/149,252 US20160254301A1 (en) 2008-09-04 2016-05-09 Solar blind ultra violet (uv) detector and fabrication methods of the same
US15/225,264 US20160344964A1 (en) 2008-09-04 2016-08-01 Methods for fabricating and using nanowires

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US35742910P 2010-06-22 2010-06-22
US36042110P 2010-06-30 2010-06-30
US13/047,392 US8835831B2 (en) 2010-06-22 2011-03-14 Polarized light detecting device and fabrication methods of the same
US14/450,812 US20140339666A1 (en) 2010-06-22 2014-08-04 Polarized light detecting device and fabrication methods of the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/047,392 Continuation US8835831B2 (en) 2008-09-04 2011-03-14 Polarized light detecting device and fabrication methods of the same

Publications (1)

Publication Number Publication Date
US20140339666A1 true US20140339666A1 (en) 2014-11-20

Family

ID=45327814

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/047,392 Expired - Fee Related US8835831B2 (en) 2008-09-04 2011-03-14 Polarized light detecting device and fabrication methods of the same
US13/048,635 Expired - Fee Related US8835905B2 (en) 2008-09-04 2011-03-15 Solar blind ultra violet (UV) detector and fabrication methods of the same
US14/450,812 Abandoned US20140339666A1 (en) 2008-09-04 2014-08-04 Polarized light detecting device and fabrication methods of the same
US14/487,375 Expired - Fee Related US9054008B2 (en) 2008-09-04 2014-09-16 Solar blind ultra violet (UV) detector and fabrication methods of the same

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/047,392 Expired - Fee Related US8835831B2 (en) 2008-09-04 2011-03-14 Polarized light detecting device and fabrication methods of the same
US13/048,635 Expired - Fee Related US8835905B2 (en) 2008-09-04 2011-03-15 Solar blind ultra violet (UV) detector and fabrication methods of the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/487,375 Expired - Fee Related US9054008B2 (en) 2008-09-04 2014-09-16 Solar blind ultra violet (UV) detector and fabrication methods of the same

Country Status (1)

Country Link
US (4) US8835831B2 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9343490B2 (en) * 2013-08-09 2016-05-17 Zena Technologies, Inc. Nanowire structured color filter arrays and fabrication method of the same
US20160111562A1 (en) * 2008-09-04 2016-04-21 Zena Technologies, Inc. Multispectral and polarization-selective detector
US8748799B2 (en) 2010-12-14 2014-06-10 Zena Technologies, Inc. Full color single pixel including doublet or quadruplet si nanowires for image sensors
US8229255B2 (en) 2008-09-04 2012-07-24 Zena Technologies, Inc. Optical waveguides in image sensors
US8866065B2 (en) 2010-12-13 2014-10-21 Zena Technologies, Inc. Nanowire arrays comprising fluorescent nanowires
US8835831B2 (en) * 2010-06-22 2014-09-16 Zena Technologies, Inc. Polarized light detecting device and fabrication methods of the same
US9478685B2 (en) 2014-06-23 2016-10-25 Zena Technologies, Inc. Vertical pillar structured infrared detector and fabrication method for the same
US8274039B2 (en) 2008-11-13 2012-09-25 Zena Technologies, Inc. Vertical waveguides with various functionality on integrated circuits
US8546742B2 (en) 2009-06-04 2013-10-01 Zena Technologies, Inc. Array of nanowires in a single cavity with anti-reflective coating on substrate
US9000353B2 (en) 2010-06-22 2015-04-07 President And Fellows Of Harvard College Light absorption and filtering properties of vertically oriented semiconductor nano wires
US9515218B2 (en) 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US9406709B2 (en) 2010-06-22 2016-08-02 President And Fellows Of Harvard College Methods for fabricating and using nanowires
US9082673B2 (en) 2009-10-05 2015-07-14 Zena Technologies, Inc. Passivated upstanding nanostructures and methods of making the same
US9299866B2 (en) 2010-12-30 2016-03-29 Zena Technologies, Inc. Nanowire array based solar energy harvesting device
US8735797B2 (en) 2009-12-08 2014-05-27 Zena Technologies, Inc. Nanowire photo-detector grown on a back-side illuminated image sensor
US8299472B2 (en) 2009-12-08 2012-10-30 Young-June Yu Active pixel sensor with nanowire structured photodetectors
US8461571B2 (en) * 2011-06-29 2013-06-11 Nokia Corporation Method and apparatus for converting photon energy to electrical energy
ITTO20110649A1 (en) * 2011-07-19 2013-01-20 St Microelectronics Srl PHOTORELECTRIC DEVICE WITH PROTECTIVE AND ANTI-REFLECTIVE COVER, AND RELATIVE MANUFACTURING METHOD
US9593053B1 (en) * 2011-11-14 2017-03-14 Hypersolar, Inc. Photoelectrosynthetically active heterostructures
FR2992472B1 (en) * 2012-06-20 2014-08-08 Commissariat Energie Atomique SEMICONDUCTOR OPTICAL RECEIVER WITH PIN STRUCTURE
US9882075B2 (en) * 2013-03-15 2018-01-30 Maxim Integrated Products, Inc. Light sensor with vertical diode junctions
US11621360B2 (en) * 2013-05-22 2023-04-04 W&W Sens Devices, Inc. Microstructure enhanced absorption photosensitive devices
US11791432B2 (en) 2013-05-22 2023-10-17 W&Wsens Devices, Inc. Microstructure enhanced absorption photosensitive devices
CN105466437A (en) * 2014-09-12 2016-04-06 江苏南大五维电子科技有限公司 Path detection system based on solar blind ultraviolet light signal
KR102526997B1 (en) * 2015-07-31 2023-05-02 서울바이오시스 주식회사 Light detecting device and electric appartus using the same
KR102399941B1 (en) * 2015-06-01 2022-05-23 서울바이오시스 주식회사 Apparatus for measuring uv and portable terminal comprising the same
WO2016195253A1 (en) * 2015-06-01 2016-12-08 서울바이오시스 주식회사 Ultraviolet measuring device, photodetector element, ultraviolet detector, ultraviolet index calculation device, and electronic device including same
CN105043944B (en) * 2015-06-30 2017-09-22 西安理工大学 The device and its detection method of haze detection of particles are carried out based on solar blind UV
US9625379B2 (en) * 2015-07-15 2017-04-18 International Business Machines Corporation Gas sensor with integrated optics and reference cell
CN106057957B (en) * 2016-08-01 2017-07-28 中国科学技术大学 Avalanche photodide with periodic nano-structure
US11867891B2 (en) * 2016-12-22 2024-01-09 Advanced Optical Technologies, Inc. Polarimeter with multiple independent tunable channels and method for material orientation imaging
EP3658962A4 (en) * 2017-07-26 2021-02-17 Shenzhen Xpectvision Technology Co., Ltd. A radiation detector and a method of making it
US11385104B2 (en) * 2017-12-22 2022-07-12 Arizona Board Of Regents On Behalf Of Arizona State University On-chip polarization detection and polarimetric imaging
US11843350B2 (en) 2020-01-21 2023-12-12 Arizona Board Of Regents On Behalf Of Arizona State University Autonomous solar field and receiver inspections based on polarimetric-enhanced imaging
US11487051B2 (en) 2020-01-24 2022-11-01 Arizona Board Of Regents On Behalf Of Arizona State University Polarization filters having nanograting pattern and plasmonic structure oriented at nonzero angle
US11733552B2 (en) 2020-03-31 2023-08-22 Arizona Board Of Regents On Behalf Of Arizona State University Ultra-fast optical modulation and ultra-short pulse generation based on tunable graphene-plasmonic hybrid metasurfaces
CN112885922B (en) * 2021-01-18 2022-09-27 西安工业大学 Based on PtSe 2 Photoelectric detector with silicon nano-pillar array and preparation method thereof
CN113658971A (en) * 2021-07-12 2021-11-16 浙江大学 Radiation detector based on graphene charge-coupled device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090153961A1 (en) * 2005-07-22 2009-06-18 Zeon Corporation Grid Polarizer and Method for Manufacturing the Same
US20100110433A1 (en) * 2008-10-24 2010-05-06 Thales Polarimetric imaging device optimized for polarization contrast
US8835831B2 (en) * 2010-06-22 2014-09-16 Zena Technologies, Inc. Polarized light detecting device and fabrication methods of the same

Family Cites Families (428)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1918848A (en) 1929-04-26 1933-07-18 Norwich Res Inc Polarizing refracting bodies
US3903427A (en) 1973-12-28 1975-09-02 Hughes Aircraft Co Solar cell connections
US4017332A (en) 1975-02-27 1977-04-12 Varian Associates Solar cells employing stacked opposite conductivity layers
US4357415A (en) 1980-03-06 1982-11-02 Eastman Kodak Company Method of making a solid-state color imaging device having a color filter array using a photocrosslinkable barrier
FR2495412A1 (en) 1980-12-02 1982-06-04 Thomson Csf DIRECTLY MODULATED INFORMATION TRANSMISSION SYSTEM FOR OPTICALLY BANDWIDTH OPTICALLY LINKED LIGHT EXTENDED TO LOW FREQUENCIES AND CONTINUOUS
US4400221A (en) 1981-07-08 1983-08-23 The United States Of America As Represented By The Secretary Of The Air Force Fabrication of gallium arsenide-germanium heteroface junction device
US4387265A (en) 1981-07-17 1983-06-07 University Of Delaware Tandem junction amorphous semiconductor photovoltaic cell
US5696863A (en) 1982-08-06 1997-12-09 Kleinerman; Marcos Y. Distributed fiber optic temperature sensors and systems
US5247349A (en) 1982-11-16 1993-09-21 Stauffer Chemical Company Passivation and insulation of III-V devices with pnictides, particularly amorphous pnictides having a layer-like structure
US4678772A (en) 1983-02-28 1987-07-07 Yissum Research Development Company Of The Hebrew University Of Jerusalem Compositions containing glycyrrhizin
US4513168A (en) 1984-04-19 1985-04-23 Varian Associates, Inc. Three-terminal solar cell circuit
US4620237A (en) 1984-10-22 1986-10-28 Xerox Corporation Fast scan jitter measuring system for raster scanners
US4638484A (en) 1984-11-20 1987-01-20 Hughes Aircraft Company Solid state laser employing diamond having color centers as a laser active material
JPS61250605A (en) 1985-04-27 1986-11-07 Power Reactor & Nuclear Fuel Dev Corp Image fiber with optical waveguide
US4827335A (en) 1986-08-29 1989-05-02 Kabushiki Kaisha Toshiba Color image reading apparatus with two color separation filters each having two filter elements
EP0275063A3 (en) 1987-01-12 1992-05-27 Sumitomo Electric Industries Limited Light emitting element comprising diamond and method for producing the same
JPH0721562B2 (en) 1987-05-14 1995-03-08 凸版印刷株式会社 Color filter
US5071490A (en) 1988-03-18 1991-12-10 Sharp Kabushiki Kaisha Tandem stacked amorphous solar cell device
JPH0288498A (en) 1988-06-13 1990-03-28 Sumitomo Electric Ind Ltd Diamond laser crystal and its formation
FR2633101B1 (en) 1988-06-16 1992-02-07 Commissariat Energie Atomique PHOTODIODE AND MATRIX OF PHOTODIODES ON HGCDTE AND METHODS OF MAKING SAME
US5081049A (en) 1988-07-18 1992-01-14 Unisearch Limited Sculpted solar cell surfaces
US5311047A (en) 1988-11-16 1994-05-10 National Science Council Amorphous SI/SIC heterojunction color-sensitive phototransistor
US5124543A (en) 1989-08-09 1992-06-23 Ricoh Company, Ltd. Light emitting element, image sensor and light receiving element with linearly varying waveguide index
US5401968A (en) 1989-12-29 1995-03-28 Honeywell Inc. Binary optical microlens detector array
US4971928A (en) 1990-01-16 1990-11-20 General Motors Corporation Method of making a light emitting semiconductor having a rear reflecting surface
US5362972A (en) 1990-04-20 1994-11-08 Hitachi, Ltd. Semiconductor device using whiskers
US5096520A (en) 1990-08-01 1992-03-17 Faris Sades M Method for producing high efficiency polarizing filters
GB9025837D0 (en) 1990-11-28 1991-01-09 De Beers Ind Diamond Light emitting diamond device
US5272518A (en) 1990-12-17 1993-12-21 Hewlett-Packard Company Colorimeter and calibration system
US5374841A (en) 1991-12-18 1994-12-20 Texas Instruments Incorporated HgCdTe S-I-S two color infrared detector
US5356488A (en) 1991-12-27 1994-10-18 Rudolf Hezel Solar cell and method for its manufacture
US5391896A (en) 1992-09-02 1995-02-21 Midwest Research Institute Monolithic multi-color light emission/detection device
DE59403063D1 (en) 1993-02-17 1997-07-17 Hoffmann La Roche Optical component
US5468652A (en) 1993-07-14 1995-11-21 Sandia Corporation Method of making a back contacted solar cell
US5625210A (en) 1995-04-13 1997-04-29 Eastman Kodak Company Active pixel sensor integrated with a pinned photodiode
US5747796A (en) 1995-07-13 1998-05-05 Sharp Kabushiki Kaisha Waveguide type compact optical scanner and manufacturing method thereof
JP3079969B2 (en) 1995-09-14 2000-08-21 日本電気株式会社 Complete contact image sensor and method of manufacturing the same
US5767507A (en) 1996-07-15 1998-06-16 Trustees Of Boston University Polarization sensitive photodetectors and detector arrays
US5671914A (en) 1995-11-06 1997-09-30 Spire Corporation Multi-band spectroscopic photodetector array
US6033582A (en) 1996-01-22 2000-03-07 Etex Corporation Surface modification of medical implants
US5723945A (en) 1996-04-09 1998-03-03 Electro Plasma, Inc. Flat-panel display
US5853446A (en) 1996-04-16 1998-12-29 Corning Incorporated Method for forming glass rib structures
GB2312524A (en) 1996-04-24 1997-10-29 Northern Telecom Ltd Planar optical waveguide cladding by PECVD method
US6074892A (en) 1996-05-07 2000-06-13 Ciena Corporation Semiconductor hetero-interface photodetector
US5986297A (en) 1996-05-22 1999-11-16 Eastman Kodak Company Color active pixel sensor with electronic shuttering, anti-blooming and low cross-talk
US5612780A (en) 1996-06-05 1997-03-18 Harris Corporation Device for detecting light emission from optical fiber
GB2314478B (en) 1996-06-17 2000-11-01 Sharp Kk A color image sensor and a production method of an optical waveguide array for use therein
JP2917920B2 (en) 1996-06-27 1999-07-12 日本電気株式会社 Solid-state imaging device and method of manufacturing the same
AUPO281896A0 (en) 1996-10-04 1996-10-31 Unisearch Limited Reactive ion etching of silica structures for integrated optics applications
US6388648B1 (en) 1996-11-05 2002-05-14 Clarity Visual Systems, Inc. Color gamut and luminance matching techniques for image display systems
US5798535A (en) 1996-12-20 1998-08-25 Motorola, Inc. Monolithic integration of complementary transistors and an LED array
AU7062698A (en) 1997-04-17 1998-11-11 De Beers Industrial Diamond Division (Proprietary) Limited Sintering process for diamond and diamond growth
GB9710062D0 (en) 1997-05-16 1997-07-09 British Tech Group Optical devices and methods of fabrication thereof
US5968528A (en) 1997-05-23 1999-10-19 The Procter & Gamble Company Skin care compositions
US5857053A (en) 1997-06-17 1999-01-05 Lucent Technologies Inc. Optical fiber filter
US5900623A (en) 1997-08-11 1999-05-04 Chrontel, Inc. Active pixel sensor using CMOS technology with reverse biased photodiodes
US6046466A (en) 1997-09-12 2000-04-04 Nikon Corporation Solid-state imaging device
KR100250448B1 (en) 1997-11-06 2000-05-01 정선종 Fabrication of silicon nano-structures using silicon nitride
US5880495A (en) 1998-01-08 1999-03-09 Omnivision Technologies, Inc. Active pixel with a pinned photodiode
WO1999039372A2 (en) 1998-02-02 1999-08-05 Uniax Corporation Image sensors made from organic semiconductors
US6771314B1 (en) 1998-03-31 2004-08-03 Intel Corporation Orange-green-blue (OGB) color system for digital image sensor applications
US6301420B1 (en) 1998-05-01 2001-10-09 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Multicore optical fibre
TW417383B (en) 1998-07-01 2001-01-01 Cmos Sensor Inc Silicon butting contact image sensor chip with line transfer and pixel readout (LTPR) structure
US6463204B1 (en) 1998-12-18 2002-10-08 Fujitsu Network Communications, Inc. Modular lightpipe system
US6326649B1 (en) 1999-01-13 2001-12-04 Agere Systems, Inc. Pin photodiode having a wide bandwidth
AU3511400A (en) 1999-03-01 2000-09-21 Photobit Corporation Active pixel sensor with fully-depleted buried photoreceptor
GB2348399A (en) 1999-03-31 2000-10-04 Univ Glasgow Reactive ion etching with control of etch gas flow rate, pressure and rf power
JP4242510B2 (en) 1999-05-06 2009-03-25 オリンパス株式会社 Solid-state imaging device and driving method thereof
US20020071468A1 (en) * 1999-09-27 2002-06-13 Sandstrom Richard L. Injection seeded F2 laser with pre-injection filter
JP3706527B2 (en) 1999-06-30 2005-10-12 Hoya株式会社 Electron beam drawing mask blanks, electron beam drawing mask, and method of manufacturing electron beam drawing mask
US6124167A (en) 1999-08-06 2000-09-26 Micron Technology, Inc. Method for forming an etch mask during the manufacture of a semiconductor device
US6407439B1 (en) 1999-08-19 2002-06-18 Epitaxial Technologies, Llc Programmable multi-wavelength detector array
US6805139B1 (en) 1999-10-20 2004-10-19 Mattson Technology, Inc. Systems and methods for photoresist strip and residue treatment in integrated circuit manufacturing
US6465824B1 (en) 2000-03-09 2002-10-15 General Electric Company Imager structure
US6610351B2 (en) 2000-04-12 2003-08-26 Quantag Systems, Inc. Raman-active taggants and their recognition
US20020020846A1 (en) 2000-04-20 2002-02-21 Bo Pi Backside illuminated photodiode array
JP2002057359A (en) 2000-06-01 2002-02-22 Sharp Corp Laminated solar battery
US7555333B2 (en) 2000-06-19 2009-06-30 University Of Washington Integrated optical scanning image acquisition and display
WO2002001650A1 (en) * 2000-06-26 2002-01-03 University Of Maryland Mgzno based uv detectors
WO2002004999A2 (en) 2000-07-10 2002-01-17 Massachusetts Institute Of Technology Graded index waveguide
RU2279908C2 (en) 2000-08-11 2006-07-20 Даймонд Инновейшнз Инк. Production of diamonds under action of the high pressure and temperature
US7301199B2 (en) 2000-08-22 2007-11-27 President And Fellows Of Harvard College Nanoscale wires and related devices
US6542231B1 (en) 2000-08-22 2003-04-01 Thermo Finnegan Llc Fiber-coupled liquid sample analyzer with liquid flow cell
CN101798057A (en) 2000-08-22 2010-08-11 哈佛学院董事会 Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices
US20060175601A1 (en) 2000-08-22 2006-08-10 President And Fellows Of Harvard College Nanoscale wires and related devices
JP2002151715A (en) 2000-11-08 2002-05-24 Sharp Corp Thin-film solar cell
US6800870B2 (en) 2000-12-20 2004-10-05 Michel Sayag Light stimulating and collecting methods and apparatus for storage-phosphor image plates
WO2002051130A1 (en) 2000-12-21 2002-06-27 Stmicroelectronics Nv Image sensor device comprising central locking
JP2002220300A (en) * 2001-01-18 2002-08-09 Vision Arts Kk Nanofiber and method of producing the same
CN1274032C (en) 2001-01-31 2006-09-06 信越半导体株式会社 Solar cell and method for producing same
US6815736B2 (en) 2001-02-09 2004-11-09 Midwest Research Institute Isoelectronic co-doping
JP3809342B2 (en) 2001-02-13 2006-08-16 喜萬 中山 Light emitting / receiving probe and light emitting / receiving probe apparatus
US7171088B2 (en) 2001-02-28 2007-01-30 Sony Corporation Image input device
TW554388B (en) 2001-03-30 2003-09-21 Univ California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US6563995B2 (en) 2001-04-02 2003-05-13 Lightwave Electronics Optical wavelength filtering apparatus with depressed-index claddings
US20040058407A1 (en) 2001-04-10 2004-03-25 Miller Scott E. Reactor systems having a light-interacting component
US20030006363A1 (en) 2001-04-27 2003-01-09 Campbell Scott Patrick Optimization of alignment between elements in an image sensor
US6709929B2 (en) 2001-06-25 2004-03-23 North Carolina State University Methods of forming nano-scale electronic and optoelectronic devices using non-photolithographically defined nano-channel templates
US6846565B2 (en) 2001-07-02 2005-01-25 Board Of Regents, The University Of Texas System Light-emitting nanoparticles and method of making same
US8816443B2 (en) 2001-10-12 2014-08-26 Quantum Semiconductor Llc Method of fabricating heterojunction photodiodes with CMOS
US7109517B2 (en) 2001-11-16 2006-09-19 Zaidi Saleem H Method of making an enhanced optical absorption and radiation tolerance in thin-film solar cells and photodetectors
FR2832995B1 (en) 2001-12-04 2004-02-27 Thales Sa CATALYTIC GROWTH PROCESS OF NANOTUBES OR NANOFIBERS COMPRISING A DIFFUSION BARRIER OF THE NISI ALLOY TYPE
US6987258B2 (en) 2001-12-19 2006-01-17 Intel Corporation Integrated circuit-based compound eye image sensor using a light pipe bundle
US6720594B2 (en) 2002-01-07 2004-04-13 Xerox Corporation Image sensor array with reduced pixel crosstalk
US6566723B1 (en) 2002-01-10 2003-05-20 Agilent Technologies, Inc. Digital color image sensor with elevated two-color photo-detector and related circuitry
WO2003058023A1 (en) 2002-01-14 2003-07-17 China Petroleum & Chemical Corporation A power transmission unit of an impactor, a hydraulic jet impactor and the application thereof
US7078296B2 (en) 2002-01-16 2006-07-18 Fairchild Semiconductor Corporation Self-aligned trench MOSFETs and methods for making the same
US7192533B2 (en) 2002-03-28 2007-03-20 Koninklijke Philips Electronics N.V. Method of manufacturing nanowires and electronic device
US20040026684A1 (en) 2002-04-02 2004-02-12 Nanosys, Inc. Nanowire heterostructures for encoding information
US20030189202A1 (en) 2002-04-05 2003-10-09 Jun Li Nanowire devices and methods of fabrication
US6852619B2 (en) 2002-05-31 2005-02-08 Sharp Kabushiki Kaisha Dual damascene semiconductor devices
US6660930B1 (en) 2002-06-12 2003-12-09 Rwe Schott Solar, Inc. Solar cell modules with improved backskin
US7311889B2 (en) 2002-06-19 2007-12-25 Fujitsu Limited Carbon nanotubes, process for their production, and catalyst for production of carbon nanotubes
EP1516368B1 (en) * 2002-06-25 2008-01-23 Commissariat A L'energie Atomique Imager
US7335908B2 (en) 2002-07-08 2008-02-26 Qunano Ab Nanostructures and methods for manufacturing the same
AU2003261205A1 (en) 2002-07-19 2004-02-09 President And Fellows Of Harvard College Nanoscale coherent optical components
KR100541320B1 (en) 2002-07-19 2006-01-10 동부아남반도체 주식회사 A pinned photodiode for a CMOS image sensor and fabricating method thereof
US6904187B2 (en) 2002-08-19 2005-06-07 Massachusetts Institute Of Technology Method of efficient carrier generation in silicon waveguide systems for switching/modulating purposes using parallel pump and signal waveguides
AU2003268487A1 (en) 2002-09-05 2004-03-29 Nanosys, Inc. Nanocomposites
JP3672900B2 (en) 2002-09-11 2005-07-20 松下電器産業株式会社 Pattern formation method
US8120079B2 (en) 2002-09-19 2012-02-21 Quantum Semiconductor Llc Light-sensing device for multi-spectral imaging
US7135728B2 (en) 2002-09-30 2006-11-14 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
JP2004128060A (en) 2002-09-30 2004-04-22 Canon Inc Growth method of silicon film, manufacturing method of solar cell, semiconductor substrate, and solar cell
US7067867B2 (en) 2002-09-30 2006-06-27 Nanosys, Inc. Large-area nonenabled macroelectronic substrates and uses therefor
US20040124366A1 (en) 2002-10-02 2004-07-01 Haishan Zeng Apparatus and methods relating to high speed spectroscopy and excitation-emission matrices
US7507293B2 (en) 2002-10-28 2009-03-24 Hewlett-Packard Development Company, L.P. Photonic crystals with nanowire-based fabrication
US20040125266A1 (en) 2002-10-30 2004-07-01 Akihiro Miyauchi Functioning substrate with a group of columnar micro pillars and its manufacturing method
GB0227261D0 (en) 2002-11-21 2002-12-31 Element Six Ltd Optical quality diamond material
US7163659B2 (en) 2002-12-03 2007-01-16 Hewlett-Packard Development Company, L.P. Free-standing nanowire sensor and method for detecting an analyte in a fluid
US7135698B2 (en) * 2002-12-05 2006-11-14 Lockheed Martin Corporation Multi-spectral infrared super-pixel photodetector and imager
WO2004054001A2 (en) 2002-12-09 2004-06-24 Quantum Semiconductor Llc Cmos image sensor
US6969897B2 (en) 2002-12-10 2005-11-29 Kim Ii John Optoelectronic devices employing fibers for light collection and emission
WO2004055898A1 (en) 2002-12-13 2004-07-01 Sony Corporation Solid-state imaging device and production method therefor
US6837212B2 (en) 2002-12-19 2005-01-04 Caterpillar Inc. Fuel allocation at idle or light engine load
FR2850882B1 (en) 2003-02-11 2005-03-18 Eurecat Sa PASSIVATION OF SULFIDE HYDROCONVERSION CATALYST
CA2419704A1 (en) 2003-02-24 2004-08-24 Ignis Innovation Inc. Method of manufacturing a pixel with organic light-emitting diode
US7061028B2 (en) 2003-03-12 2006-06-13 Taiwan Semiconductor Manufacturing, Co., Ltd. Image sensor device and method to form image sensor device
US7050660B2 (en) 2003-04-07 2006-05-23 Eksigent Technologies Llc Microfluidic detection device having reduced dispersion and method for making same
US7388147B2 (en) 2003-04-10 2008-06-17 Sunpower Corporation Metal contact structure for solar cell and method of manufacture
US6888974B2 (en) 2003-04-23 2005-05-03 Intel Corporation On-chip optical signal routing
US8212138B2 (en) 2003-05-16 2012-07-03 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Reverse bias protected solar array with integrated bypass battery
US7462774B2 (en) 2003-05-21 2008-12-09 Nanosolar, Inc. Photovoltaic devices fabricated from insulating nanostructured template
US7465661B2 (en) 2003-05-28 2008-12-16 The United States Of America As Represented By The Secretary Of The Navy High aspect ratio microelectrode arrays
US7149396B2 (en) 2003-06-16 2006-12-12 The Regents Of The University Of California Apparatus for optical measurements on low-index non-solid materials based on arrow waveguides
US7265037B2 (en) 2003-06-20 2007-09-04 The Regents Of The University Of California Nanowire array and nanowire solar cells and methods for forming the same
WO2005014784A2 (en) 2003-06-20 2005-02-17 Tumer Tumay O System for molecular imaging
US7416911B2 (en) * 2003-06-24 2008-08-26 California Institute Of Technology Electrochemical method for attaching molecular and biomolecular structures to semiconductor microstructures and nanostructures
US7560750B2 (en) 2003-06-26 2009-07-14 Kyocera Corporation Solar cell device
US7170001B2 (en) 2003-06-26 2007-01-30 Advent Solar, Inc. Fabrication of back-contacted silicon solar cells using thermomigration to create conductive vias
US7649141B2 (en) 2003-06-30 2010-01-19 Advent Solar, Inc. Emitter wrap-through back contact solar cells on thin silicon wafers
US7148528B2 (en) 2003-07-02 2006-12-12 Micron Technology, Inc. Pinned photodiode structure and method of formation
US7335259B2 (en) 2003-07-08 2008-02-26 Brian A. Korgel Growth of single crystal nanowires
US6927432B2 (en) * 2003-08-13 2005-08-09 Motorola, Inc. Vertically integrated photosensor for CMOS imagers
US6960526B1 (en) 2003-10-10 2005-11-01 The United States Of America As Represented By The Secretary Of The Army Method of fabricating sub-100 nanometer field emitter tips comprising group III-nitride semiconductors
US7330404B2 (en) 2003-10-10 2008-02-12 Seagate Technology Llc Near-field optical transducers for thermal assisted magnetic and optical data storage
US7019402B2 (en) 2003-10-17 2006-03-28 International Business Machines Corporation Silicon chip carrier with through-vias using laser assisted chemical vapor deposition of conductor
US7823783B2 (en) 2003-10-24 2010-11-02 Cognex Technology And Investment Corporation Light pipe illumination system and method
JP2005142268A (en) 2003-11-05 2005-06-02 Canon Inc Photovoltaic element and its manufacturing method
US20050116271A1 (en) 2003-12-02 2005-06-02 Yoshiaki Kato Solid-state imaging device and manufacturing method thereof
US6969899B2 (en) 2003-12-08 2005-11-29 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor with light guides
US7208094B2 (en) 2003-12-17 2007-04-24 Hewlett-Packard Development Company, L.P. Methods of bridging lateral nanowires and device using same
DE10360274A1 (en) 2003-12-18 2005-06-02 Tesa Ag Optical data storer with a number of superposed storage sites each having a reflection layer, preferably a metal layer, where the absorption or reflection can be altered selectively by thermal treatment useful for storage of optical data
US20070196239A1 (en) 2003-12-22 2007-08-23 Koninklijke Philips Electronics N.V. Optical nanowire biosensor based on energy transfer
CN100444338C (en) 2003-12-22 2008-12-17 皇家飞利浦电子股份有限公司 Fabricating a set of semiconducting nanowires, and electric device comprising a set of nanowires
WO2005064664A1 (en) 2003-12-23 2005-07-14 Koninklijke Philips Electronics N.V. Semiconductor device comprising a heterojunction
JP2007516620A (en) 2003-12-23 2007-06-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Semiconductor device having PN heterojunction
US7647695B2 (en) 2003-12-30 2010-01-19 Lockheed Martin Corporation Method of matching harnesses of conductors with apertures in connectors
TWI228782B (en) 2004-01-19 2005-03-01 Toppoly Optoelectronics Corp Method of fabricating display panel
US7052927B1 (en) 2004-01-27 2006-05-30 Raytheon Company Pin detector apparatus and method of fabrication
US6969568B2 (en) 2004-01-28 2005-11-29 Freescale Semiconductor, Inc. Method for etching a quartz layer in a photoresistless semiconductor mask
US6927145B1 (en) 2004-02-02 2005-08-09 Advanced Micro Devices, Inc. Bitline hard mask spacer flow for memory cell scaling
JP2005252210A (en) 2004-02-03 2005-09-15 Sharp Corp Solar cell
US7254287B2 (en) 2004-02-12 2007-08-07 Panorama Labs, Pty Ltd. Apparatus, method, and computer program product for transverse waveguided display system
JP2005251804A (en) 2004-03-01 2005-09-15 Canon Inc Imaging device
US7471428B2 (en) 2004-03-12 2008-12-30 Seiko Epson Corporation Contact image sensor module and image reading device equipped with the same
US7106938B2 (en) 2004-03-16 2006-09-12 Regents Of The University Of Minnesota Self assembled three-dimensional photonic crystal
WO2005091392A1 (en) 2004-03-18 2005-09-29 Phoseon Technology, Inc. Micro-reflectors on a substrate for high-density led array
US7115971B2 (en) 2004-03-23 2006-10-03 Nanosys, Inc. Nanowire varactor diode and methods of making same
US7223641B2 (en) 2004-03-26 2007-05-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, liquid crystal television and EL television
US7019391B2 (en) 2004-04-06 2006-03-28 Bao Tran NANO IC packaging
US7061106B2 (en) 2004-04-28 2006-06-13 Advanced Chip Engineering Technology Inc. Structure of image sensor module and a method for manufacturing of wafer level package
AU2005251089A1 (en) 2004-04-30 2005-12-15 Nanosys, Inc. Systems and methods for nanowire growth and harvesting
US8280214B2 (en) 2004-05-13 2012-10-02 The Regents Of The University Of California Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices
KR101260981B1 (en) 2004-06-04 2013-05-10 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 Methods and devices for fabricating and assembling printable semiconductor elements
JP2006013403A (en) 2004-06-29 2006-01-12 Sanyo Electric Co Ltd Solar cell, solar cell module, its manufacturing method, and its reparing method
US8035142B2 (en) 2004-07-08 2011-10-11 Micron Technology, Inc. Deuterated structures for image sensors and methods for forming the same
US7427798B2 (en) 2004-07-08 2008-09-23 Micron Technology, Inc. Photonic crystal-based lens elements for use in an image sensor
FR2873492B1 (en) 2004-07-21 2006-11-24 Commissariat Energie Atomique PHOTOACTIVE NANOCOMPOSITE AND METHOD OF MANUFACTURING THE SAME
US20090046749A1 (en) 2004-08-04 2009-02-19 Kiminori Mizuuchi Coherent light source
US20060027071A1 (en) 2004-08-06 2006-02-09 Barnett Ronald J Tensegrity musical structures
US7713849B2 (en) 2004-08-20 2010-05-11 Illuminex Corporation Metallic nanowire arrays and methods for making and using same
US7285812B2 (en) 2004-09-02 2007-10-23 Micron Technology, Inc. Vertical transistors
CN102759466A (en) 2004-09-15 2012-10-31 英特基因有限公司 Microfluidic devices
US20060071290A1 (en) 2004-09-27 2006-04-06 Rhodes Howard E Photogate stack with nitride insulating cap over conductive layer
EP1643565B1 (en) 2004-09-30 2020-03-04 OSRAM Opto Semiconductors GmbH Radiation detector
US20080260225A1 (en) 2004-10-06 2008-10-23 Harold Szu Infrared Multi-Spectral Camera and Process of Using Infrared Multi-Spectral Camera
US7544977B2 (en) 2006-01-27 2009-06-09 Hewlett-Packard Development Company, L.P. Mixed-scale electronic interface
US7208783B2 (en) 2004-11-09 2007-04-24 Micron Technology, Inc. Optical enhancement of integrated circuit photodetectors
KR100745595B1 (en) 2004-11-29 2007-08-02 삼성전자주식회사 Microlens of an image sensor and method for forming the same
US7306963B2 (en) 2004-11-30 2007-12-11 Spire Corporation Precision synthesis of quantum dot nanostructures for fluorescent and optoelectronic devices
US7193289B2 (en) 2004-11-30 2007-03-20 International Business Machines Corporation Damascene copper wiring image sensor
TWI263802B (en) 2004-12-03 2006-10-11 Innolux Display Corp Color filter
US7235475B2 (en) 2004-12-23 2007-06-26 Hewlett-Packard Development Company, L.P. Semiconductor nanowire fluid sensor and method for fabricating the same
US7342268B2 (en) 2004-12-23 2008-03-11 International Business Machines Corporation CMOS imager with Cu wiring and method of eliminating high reflectivity interfaces therefrom
US7245370B2 (en) 2005-01-06 2007-07-17 Hewlett-Packard Development Company, L.P. Nanowires for surface-enhanced Raman scattering molecular sensors
KR100688542B1 (en) 2005-03-28 2007-03-02 삼성전자주식회사 Vertical type nanotube semiconductor device and method of manufacturing the same
US7655860B2 (en) 2005-04-01 2010-02-02 North Carolina State University Nano-structured photovoltaic solar cell and related methods
US20070238265A1 (en) 2005-04-05 2007-10-11 Keiichi Kurashina Plating apparatus and plating method
KR101145146B1 (en) 2005-04-07 2012-05-14 엘지디스플레이 주식회사 TFT and method of fabricating of the same
US7272287B2 (en) 2005-05-11 2007-09-18 Fitel Usa Corp Optical fiber filter for suppression of amplified spontaneous emission
US7230286B2 (en) 2005-05-23 2007-06-12 International Business Machines Corporation Vertical FET with nanowire channels and a silicided bottom contact
TW201101476A (en) 2005-06-02 2011-01-01 Sony Corp Semiconductor image sensor module and method of manufacturing the same
GB0511300D0 (en) 2005-06-03 2005-07-13 Ct For Integrated Photonics Th Control of vertical axis for passive alignment of optical components with wave guides
US7262408B2 (en) 2005-06-15 2007-08-28 Board Of Trustees Of Michigan State University Process and apparatus for modifying a surface in a work region
US20090050204A1 (en) 2007-08-03 2009-02-26 Illuminex Corporation. Photovoltaic device using nanostructured material
US8084728B2 (en) 2005-07-06 2011-12-27 Capella Microsystems, Corp. Optical sensing device
DE102005033455A1 (en) 2005-07-18 2007-01-25 GEMÜ Gebr. Müller Apparatebau GmbH & Co. KG Drive device for linear movement of elongated bodies
EP1748494B1 (en) 2005-07-29 2008-04-09 Interuniversitair Microelektronica Centrum Wavelength-sensitive detector with elongate nanostructures
US7683407B2 (en) 2005-08-01 2010-03-23 Aptina Imaging Corporation Structure and method for building a light tunnel for use with imaging devices
US7307327B2 (en) 2005-08-04 2007-12-11 Micron Technology, Inc. Reduced crosstalk CMOS image sensors
KR100750933B1 (en) 2005-08-14 2007-08-22 삼성전자주식회사 Top-emitting White Light Emitting Devices Using Nano-structures of Rare-earth Doped Transparent Conducting ZnO And Method Of Manufacturing Thereof
US7485908B2 (en) 2005-08-18 2009-02-03 United States Of America As Represented By The Secretary Of The Air Force Insulated gate silicon nanowire transistor and method of manufacture
US7847180B2 (en) 2005-08-22 2010-12-07 Q1 Nanosystems, Inc. Nanostructure and photovoltaic cell implementing same
US7265328B2 (en) 2005-08-22 2007-09-04 Micron Technology, Inc. Method and apparatus providing an optical guide for an imager pixel having a ring of air-filled spaced slots around a photosensor
EP1917557A4 (en) 2005-08-24 2015-07-22 Trustees Boston College Apparatus and methods for solar energy conversion using nanoscale cometal structures
US7623746B2 (en) 2005-08-24 2009-11-24 The Trustees Of Boston College Nanoscale optical microscope
US7649665B2 (en) * 2005-08-24 2010-01-19 The Trustees Of Boston College Apparatus and methods for optical switching using nanoscale optics
US7736954B2 (en) 2005-08-26 2010-06-15 Sematech, Inc. Methods for nanoscale feature imprint molding
US20070052050A1 (en) 2005-09-07 2007-03-08 Bart Dierickx Backside thinned image sensor with integrated lens stack
US8592136B2 (en) 2005-09-13 2013-11-26 Affymetrix, Inc. Methods for producing codes for microparticles
US7608823B2 (en) 2005-10-03 2009-10-27 Teledyne Scientific & Imaging, Llc Multimode focal plane array with electrically isolated commons for independent sub-array biasing
US8133637B2 (en) 2005-10-06 2012-03-13 Headwaters Technology Innovation, Llc Fuel cells and fuel cell catalysts incorporating a nanoring support
US7286740B2 (en) 2005-10-07 2007-10-23 Sumitomo Electric Industries, Ltd. Optical fiber, optical transmission line, optical module and optical transmission system
US7585474B2 (en) 2005-10-13 2009-09-08 The Research Foundation Of State University Of New York Ternary oxide nanostructures and methods of making same
CN1956223A (en) 2005-10-26 2007-05-02 松下电器产业株式会社 Semiconductor device and method for fabricating the same
US7732769B2 (en) 2005-11-08 2010-06-08 General Atomics Apparatus and methods for use in flash detection
US20070104441A1 (en) 2005-11-08 2007-05-10 Massachusetts Institute Of Technology Laterally-integrated waveguide photodetector apparatus and related coupling methods
JP2007134562A (en) 2005-11-11 2007-05-31 Sharp Corp Solid-state imaging device and its manufacturing method
US7728277B2 (en) 2005-11-16 2010-06-01 Eastman Kodak Company PMOS pixel structure with low cross talk for active pixel image sensors
US7960251B2 (en) 2005-12-01 2011-06-14 Samsung Electronics Co., Ltd. Method for producing nanowires using a porous template
US7262400B2 (en) 2005-12-02 2007-08-28 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor device having an active layer overlying a substrate and an isolating region in the active layer
US8337721B2 (en) 2005-12-02 2012-12-25 Vanderbilt University Broad-emission nanocrystals and methods of making and using same
US7439560B2 (en) 2005-12-06 2008-10-21 Canon Kabushiki Kaisha Semiconductor device using semiconductor nanowire and display apparatus and image pick-up apparatus using the same
JP2007158119A (en) 2005-12-06 2007-06-21 Canon Inc Electric element having nano wire and its manufacturing method, and electric element assembly
US7524694B2 (en) 2005-12-16 2009-04-28 International Business Machines Corporation Funneled light pipe for pixel sensors
JP4745816B2 (en) 2005-12-20 2011-08-10 富士通セミコンダクター株式会社 Image processing circuit and image processing method
US7368779B2 (en) 2006-01-04 2008-05-06 Taiwan Semiconductor Manufacturing Co., Ltd. Hemi-spherical structure and method for fabricating the same
US20070155025A1 (en) 2006-01-04 2007-07-05 Anping Zhang Nanowire structures and devices for use in large-area electronics and methods of making the same
KR100767629B1 (en) 2006-01-05 2007-10-17 한국과학기술원 Complementary Metal Oxide Semiconductor image sensor having high photosensitivity and method for fabricating thereof
JP4952227B2 (en) 2006-01-06 2012-06-13 富士通株式会社 Fine particle size sorter
US20070290193A1 (en) 2006-01-18 2007-12-20 The Board Of Trustees Of The University Of Illinois Field effect transistor devices and methods
JP2007226935A (en) 2006-01-24 2007-09-06 Sony Corp Audio reproducing device, audio reproducing method, and audio reproducing program
JP2007201091A (en) 2006-01-25 2007-08-09 Fujifilm Corp Process for fabricating solid state image sensor
US20070187787A1 (en) 2006-02-16 2007-08-16 Ackerson Kristin M Pixel sensor structure including light pipe and method for fabrication thereof
US7358583B2 (en) 2006-02-24 2008-04-15 Tower Semiconductor Ltd. Via wave guide with curved light concentrator for image sensing devices
CA2643439C (en) 2006-03-10 2015-09-08 Stc.Unm Pulsed growth of gan nanowires and applications in group iii nitride semiconductor substrate materials and devices
TW200742425A (en) 2006-03-24 2007-11-01 Matsushita Electric Ind Co Ltd Solid-state image pickup device
US7718347B2 (en) 2006-03-31 2010-05-18 Applied Materials, Inc. Method for making an improved thin film solar cell interconnect using etch and deposition process
US20070246689A1 (en) 2006-04-11 2007-10-25 Jiaxin Ge Transparent thin polythiophene films having improved conduction through use of nanomaterials
KR20070101917A (en) 2006-04-12 2007-10-18 엘지전자 주식회사 Thin-film solar cell and fabrication method thereof
US7381966B2 (en) 2006-04-13 2008-06-03 Integrated Micro Sensors, Inc. Single-chip monolithic dual-band visible- or solar-blind photodetector
US7566875B2 (en) 2006-04-13 2009-07-28 Integrated Micro Sensors Inc. Single-chip monolithic dual-band visible- or solar-blind photodetector
US7582857B2 (en) * 2006-04-18 2009-09-01 The Trustees Of The University Of Pennsylvania Sensor and polarimetric filters for real-time extraction of polarimetric information at the focal plane
TWI297223B (en) 2006-04-25 2008-05-21 Gigno Technology Co Ltd Package module of light emitting diode
US7924413B2 (en) 2006-04-28 2011-04-12 Hewlett-Packard Development Company, L.P. Nanowire-based photonic devices
US20070272828A1 (en) 2006-05-24 2007-11-29 Micron Technology, Inc. Method and apparatus providing dark current reduction in an active pixel sensor
JP5060740B2 (en) 2006-05-26 2012-10-31 シャープ株式会社 Integrated circuit device, method for manufacturing the same, and display device
WO2008057629A2 (en) 2006-06-05 2008-05-15 The Board Of Trustees Of The University Of Illinois Photovoltaic and photosensing devices based on arrays of aligned nanostructures
US7696964B2 (en) 2006-06-09 2010-04-13 Philips Lumileds Lighting Company, Llc LED backlight for LCD with color uniformity recalibration over lifetime
US7718995B2 (en) 2006-06-20 2010-05-18 Panasonic Corporation Nanowire, method for fabricating the same, and device having nanowires
US7579593B2 (en) 2006-07-25 2009-08-25 Panasonic Corporation Night-vision imaging apparatus, control method of the same, and headlight module
TWI305047B (en) 2006-08-11 2009-01-01 United Microelectronics Corp Image sensor and the method for manufacturing the same
US20080044984A1 (en) 2006-08-16 2008-02-21 Taiwan Semiconductor Manufacturing Co., Ltd. Methods of avoiding wafer breakage during manufacture of backside illuminated image sensors
US7786376B2 (en) 2006-08-22 2010-08-31 Solexel, Inc. High efficiency solar cells and manufacturing methods
US7893348B2 (en) 2006-08-25 2011-02-22 General Electric Company Nanowires in thin-film silicon solar cells
JP4321568B2 (en) 2006-08-29 2009-08-26 ソニー株式会社 Solid-state imaging device and imaging device
JP2008066497A (en) 2006-09-07 2008-03-21 Sony Corp Photodetector and method for manufacturing photodetector
CN101140637A (en) 2006-09-08 2008-03-12 鸿富锦精密工业(深圳)有限公司 System and method for turn electric order list to work list
JP2010503981A (en) 2006-09-19 2010-02-04 クナノ アーベー Nanoscale field-effect transistor structure
US7361989B1 (en) 2006-09-26 2008-04-22 International Business Machines Corporation Stacked imager package
JP4296193B2 (en) 2006-09-29 2009-07-15 株式会社東芝 Optical device
KR100772114B1 (en) 2006-09-29 2007-11-01 주식회사 하이닉스반도체 Method of manufacturing semiconductor device
JP5116277B2 (en) 2006-09-29 2013-01-09 株式会社半導体エネルギー研究所 Semiconductor device, display device, liquid crystal display device, display module, and electronic apparatus
US7525170B2 (en) 2006-10-04 2009-04-28 International Business Machines Corporation Pillar P-i-n semiconductor diodes
US7427525B2 (en) 2006-10-13 2008-09-23 Hewlett-Packard Development Company, L.P. Methods for coupling diamond structures to photonic devices
US7608905B2 (en) 2006-10-17 2009-10-27 Hewlett-Packard Development Company, L.P. Independently addressable interdigitated nanowires
US7888159B2 (en) 2006-10-26 2011-02-15 Omnivision Technologies, Inc. Image sensor having curved micro-mirrors over the sensing photodiode and method for fabricating
US7537951B2 (en) 2006-11-15 2009-05-26 International Business Machines Corporation Image sensor including spatially different active and dark pixel interconnect patterns
US7781781B2 (en) 2006-11-17 2010-08-24 International Business Machines Corporation CMOS imager array with recessed dielectric
EP1926211A3 (en) 2006-11-21 2013-08-14 Imec Diamond enhanced thickness shear mode resonator
KR101232179B1 (en) 2006-12-04 2013-02-12 엘지디스플레이 주식회사 Apparatus And Method of Fabricating Thin Film Pattern
US20080128760A1 (en) 2006-12-04 2008-06-05 Electronics And Telecommunications Research Institute Schottky barrier nanowire field effect transistor and method for fabricating the same
KR100993056B1 (en) 2006-12-05 2010-11-08 주식회사 엘지화학 Method for high resolution ink-jet print using pre-patterned substrate and conductive substrate manufactured using the same
JP4795214B2 (en) * 2006-12-07 2011-10-19 チェイル インダストリーズ インコーポレイテッド Wire grid polarizer and manufacturing method thereof
US8183587B2 (en) 2006-12-22 2012-05-22 Qunano Ab LED with upstanding nanowire structure and method of producing such
US8049203B2 (en) 2006-12-22 2011-11-01 Qunano Ab Nanoelectronic structure and method of producing such
JP5453105B2 (en) 2006-12-22 2014-03-26 クナノ アーベー Nanostructured LEDs and devices
KR100830587B1 (en) 2007-01-10 2008-05-21 삼성전자주식회사 Image sensor and method of displaying a image using the same
JP5470852B2 (en) 2007-01-10 2014-04-16 日本電気株式会社 Light control element
US7977568B2 (en) 2007-01-11 2011-07-12 General Electric Company Multilayered film-nanowire composite, bifacial, and tandem solar cells
US8003883B2 (en) 2007-01-11 2011-08-23 General Electric Company Nanowall solar cells and optoelectronic devices
CN101627479B (en) 2007-01-30 2011-06-15 索拉斯特公司 Photovoltaic cell and method of making thereof
US7960807B2 (en) 2007-02-09 2011-06-14 Intersil Americas Inc. Ambient light detectors using conventional CMOS image sensor process
KR20080079058A (en) 2007-02-26 2008-08-29 엘지전자 주식회사 Thin-film solar cell module and fabrication method thereof
WO2008143727A2 (en) 2007-02-27 2008-11-27 The Regents Of The University Of California Nanowire photodetector and image sensor with internal gain
EP1971129A1 (en) 2007-03-16 2008-09-17 STMicroelectronics (Research & Development) Limited Improvements in or relating to image sensors
US20080233280A1 (en) 2007-03-22 2008-09-25 Graciela Beatriz Blanchet Method to form a pattern of functional material on a substrate by treating a surface of a stamp
SE532485C2 (en) 2007-03-27 2010-02-02 Qunano Ab Nanostructure for charge storage
US7906778B2 (en) 2007-04-02 2011-03-15 Hewlett-Packard Development Company, L.P. Methods of making nano-scale structures having controlled size, nanowire structures and methods of making the nanowire structures
US7803698B2 (en) 2007-04-09 2010-09-28 Hewlett-Packard Development Company, L.P. Methods for controlling catalyst nanoparticle positioning and apparatus for growing a nanowire
US8027086B2 (en) 2007-04-10 2011-09-27 The Regents Of The University Of Michigan Roll to roll nanoimprint lithography
US7652280B2 (en) 2007-04-11 2010-01-26 General Electric Company Light-emitting device and article
WO2008131313A2 (en) 2007-04-18 2008-10-30 Invisage Technologies, Inc. Materials systems and methods for optoelectronic devices
US7554346B2 (en) 2007-04-19 2009-06-30 Oerlikon Trading Ag, Trubbach Test equipment for automated quality control of thin film solar modules
US7719688B2 (en) 2007-04-24 2010-05-18 Hewlett-Packard Development Company, L.P. Optical device and method of making the same
US7719678B2 (en) 2007-04-25 2010-05-18 Hewlett-Packard Development Company, L.P. Nanowire configured to couple electromagnetic radiation to selected guided wave, devices using same, and methods of fabricating same
US8212235B2 (en) 2007-04-25 2012-07-03 Hewlett-Packard Development Company, L.P. Nanowire-based opto-electronic device
EP2156471A2 (en) 2007-05-07 2010-02-24 Nxp B.V. A photosensitive device and a method of manufacturing a photosensitive device
TW200915551A (en) 2007-05-10 2009-04-01 Koninkl Philips Electronics Nv Spectrum detector and manufacturing method therefore
JP2008288243A (en) 2007-05-15 2008-11-27 Sony Corp Solid-state imaging device, manufacturing method thereof and imaging device
KR100901236B1 (en) 2007-05-16 2009-06-08 주식회사 동부하이텍 Image Sensor and Method for Manufacturing thereof
KR101426941B1 (en) 2007-05-30 2014-08-06 주성엔지니어링(주) Solar cell and method for fabricating the same
US7812692B2 (en) 2007-06-01 2010-10-12 Georgia Tech Research Corporation Piezo-on-diamond resonators and resonator systems
KR101547711B1 (en) * 2007-06-19 2015-08-26 큐나노 에이비 Nanowire-based solar cell structure
US7736979B2 (en) 2007-06-20 2010-06-15 New Jersey Institute Of Technology Method of forming nanotube vertical field effect transistor
US7663202B2 (en) 2007-06-26 2010-02-16 Hewlett-Packard Development Company, L.P. Nanowire photodiodes and methods of making nanowire photodiodes
AU2008275956A1 (en) 2007-07-19 2009-01-22 California Institute Of Technology Structures of ordered arrays of semiconductors
US8154127B1 (en) 2007-07-30 2012-04-10 Hewlett-Packard Development Company, L.P. Optical device and method of making the same
TW200919318A (en) 2007-08-01 2009-05-01 Silverbrook Res Pty Ltd System for conferring interactivity on previously printed graphic images containing URI text
JP5285880B2 (en) 2007-08-31 2013-09-11 シャープ株式会社 Photoelectric conversion element, photoelectric conversion element connector, and photoelectric conversion module
US8885987B2 (en) 2007-09-06 2014-11-11 Quantum Semiconductor Llc Photonic via waveguide for pixel arrays
US7786440B2 (en) 2007-09-13 2010-08-31 Honeywell International Inc. Nanowire multispectral imaging array
US7623560B2 (en) 2007-09-27 2009-11-24 Ostendo Technologies, Inc. Quantum photonic imagers and methods of fabrication thereof
US8619168B2 (en) 2007-09-28 2013-12-31 Regents Of The University Of Minnesota Image sensor with high dynamic range imaging and integrated motion detection
US7790495B2 (en) 2007-10-26 2010-09-07 International Business Machines Corporation Optoelectronic device with germanium photodetector
WO2009060808A1 (en) 2007-11-09 2009-05-14 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method for manufacturing the same
KR20090048920A (en) 2007-11-12 2009-05-15 삼성전자주식회사 Camera module and electronic apparatus including the same
FR2923602B1 (en) 2007-11-12 2009-11-20 Commissariat Energie Atomique ELECTROMAGNETIC RADIATION DETECTOR WITH NANOFIL THERMOMETER AND METHOD OF MAKING SAME
US7822300B2 (en) 2007-11-20 2010-10-26 Aptina Imaging Corporation Anti-resonant reflecting optical waveguide for imager light pipe
WO2009067668A1 (en) 2007-11-21 2009-05-28 The Trustees Of Boston College Apparatus and methods for visual perception using an array of nanoscale waveguides
KR101385250B1 (en) 2007-12-11 2014-04-16 삼성전자주식회사 CMOS image sensor
KR101000064B1 (en) 2007-12-18 2010-12-10 엘지전자 주식회사 Hetero-junction silicon solar cell and fabrication method thereof
US8106289B2 (en) 2007-12-31 2012-01-31 Banpil Photonics, Inc. Hybrid photovoltaic device
US7880207B2 (en) 2008-01-14 2011-02-01 International Business Machines Corporation Photo detector device
US8030729B2 (en) 2008-01-29 2011-10-04 Hewlett-Packard Development Company, L.P. Device for absorbing or emitting light and methods of making the same
US20090188552A1 (en) 2008-01-30 2009-07-30 Shih-Yuan Wang Nanowire-Based Photovoltaic Cells And Methods For Fabricating The Same
US20090189145A1 (en) 2008-01-30 2009-07-30 Shih-Yuan Wang Photodetectors, Photovoltaic Devices And Methods Of Making The Same
CN101990713B (en) 2008-02-03 2012-12-05 尼坦能源公司 Thin-film photovoltaic devices and related manufacturing methods
US20090199597A1 (en) 2008-02-07 2009-08-13 Danley Jeffrey D Systems and methods for collapsing air lines in nanostructured optical fibers
US20090201400A1 (en) 2008-02-08 2009-08-13 Omnivision Technologies, Inc. Backside illuminated image sensor with global shutter and storage capacitor
JP2011512670A (en) 2008-02-15 2011-04-21 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Photodetector with valence compensation adsorbing layer region and method for manufacturing the same
US20090206405A1 (en) 2008-02-15 2009-08-20 Doyle Brian S Fin field effect transistor structures having two dielectric thicknesses
US20090266418A1 (en) * 2008-02-18 2009-10-29 Board Of Regents, The University Of Texas System Photovoltaic devices based on nanostructured polymer films molded from porous template
US8101526B2 (en) 2008-03-12 2012-01-24 City University Of Hong Kong Method of making diamond nanopillars
US8016993B2 (en) * 2008-03-14 2011-09-13 Stuart Alfred Hoenig Electrostatic desalination and water purification
US20110284061A1 (en) 2008-03-21 2011-11-24 Fyzikalni Ustav Av Cr, V.V.I. Photovoltaic cell and methods for producing a photovoltaic cell
KR101448152B1 (en) 2008-03-26 2014-10-07 삼성전자주식회사 Distance measuring sensor having vertical photogate and three dimensional color image sensor having the same
JP4770857B2 (en) 2008-03-27 2011-09-14 日本テキサス・インスツルメンツ株式会社 Semiconductor device
KR20090105732A (en) 2008-04-03 2009-10-07 삼성전자주식회사 Solar cell
WO2009137241A2 (en) 2008-04-14 2009-11-12 Bandgap Engineering, Inc. Process for fabricating nanowire arrays
KR20090109980A (en) 2008-04-17 2009-10-21 한국과학기술연구원 Visible-range semiconductor nanowire-based photosensor and method for manufacturing the same
WO2009135078A2 (en) 2008-04-30 2009-11-05 The Regents Of The University Of California Method and apparatus for fabricating optoelectromechanical devices by structural transfer using re-usable substrate
US7902540B2 (en) 2008-05-21 2011-03-08 International Business Machines Corporation Fast P-I-N photodetector with high responsitivity
US8138493B2 (en) 2008-07-09 2012-03-20 Qunano Ab Optoelectronic semiconductor device
KR101435519B1 (en) 2008-07-24 2014-08-29 삼성전자주식회사 Image sensor having light focusing structure
US7863625B2 (en) 2008-07-24 2011-01-04 Hewlett-Packard Development Company, L.P. Nanowire-based light-emitting diodes and light-detection devices with nanocrystalline outer surface
US8198706B2 (en) 2008-07-25 2012-06-12 Hewlett-Packard Development Company, L.P. Multi-level nanowire structure and method of making the same
US8198796B2 (en) * 2008-07-25 2012-06-12 Konica Minolta Holdings, Inc. Transparent electrode and production method of same
JP2010040672A (en) 2008-08-01 2010-02-18 Oki Semiconductor Co Ltd Semiconductor device, and fabrication method thereof
CN102171836B (en) 2008-08-14 2013-12-11 布鲁克哈文科学协会 Structured pillar electrodes
US8384007B2 (en) 2009-10-07 2013-02-26 Zena Technologies, Inc. Nano wire based passive pixel image sensor
JP2012502466A (en) 2008-09-04 2012-01-26 クナノ アーベー Nanostructured photodiode
US8269985B2 (en) 2009-05-26 2012-09-18 Zena Technologies, Inc. Determination of optimal diameters for nanowires
US20100148221A1 (en) 2008-11-13 2010-06-17 Zena Technologies, Inc. Vertical photogate (vpg) pixel structure with nanowires
US7646943B1 (en) 2008-09-04 2010-01-12 Zena Technologies, Inc. Optical waveguides in image sensors
US9082673B2 (en) 2009-10-05 2015-07-14 Zena Technologies, Inc. Passivated upstanding nanostructures and methods of making the same
US9000353B2 (en) 2010-06-22 2015-04-07 President And Fellows Of Harvard College Light absorption and filtering properties of vertically oriented semiconductor nano wires
US8735797B2 (en) 2009-12-08 2014-05-27 Zena Technologies, Inc. Nanowire photo-detector grown on a back-side illuminated image sensor
US8299472B2 (en) 2009-12-08 2012-10-30 Young-June Yu Active pixel sensor with nanowire structured photodetectors
US8507840B2 (en) 2010-12-21 2013-08-13 Zena Technologies, Inc. Vertically structured passive pixel arrays and methods for fabricating the same
US20100304061A1 (en) 2009-05-26 2010-12-02 Zena Technologies, Inc. Fabrication of high aspect ratio features in a glass layer by etching
US8274039B2 (en) 2008-11-13 2012-09-25 Zena Technologies, Inc. Vertical waveguides with various functionality on integrated circuits
US8519379B2 (en) 2009-12-08 2013-08-27 Zena Technologies, Inc. Nanowire structured photodiode with a surrounding epitaxially grown P or N layer
US9515218B2 (en) 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US20130112256A1 (en) 2011-11-03 2013-05-09 Young-June Yu Vertical pillar structured photovoltaic devices with wavelength-selective mirrors
US8229255B2 (en) 2008-09-04 2012-07-24 Zena Technologies, Inc. Optical waveguides in image sensors
US8546742B2 (en) 2009-06-04 2013-10-01 Zena Technologies, Inc. Array of nanowires in a single cavity with anti-reflective coating on substrate
KR101143706B1 (en) 2008-09-24 2012-05-09 인터내셔널 비지네스 머신즈 코포레이션 Nanoelectronic device
US7972885B1 (en) 2008-09-25 2011-07-05 Banpil Photonics, Inc. Broadband imaging device and manufacturing thereof
US20110247676A1 (en) 2008-09-30 2011-10-13 The Regents Of The University Of California Photonic Crystal Solar Cell
US8591661B2 (en) 2009-12-11 2013-11-26 Novellus Systems, Inc. Low damage photoresist strip method for low-K dielectrics
US20100090341A1 (en) 2008-10-14 2010-04-15 Molecular Imprints, Inc. Nano-patterned active layers formed by nano-imprint lithography
EP2180526A2 (en) 2008-10-23 2010-04-28 Samsung Electronics Co., Ltd. Photovoltaic device and method for manufacturing the same
WO2010048607A2 (en) 2008-10-24 2010-04-29 Carnegie Institution Of Washington Enhanced optical properties of chemical vapor deposited single crystal diamond by low-pressure/high-temperature annealing
WO2010062644A2 (en) 2008-10-28 2010-06-03 The Regents Of The University Of California Vertical group iii-v nanowires on si, heterostructures, flexible arrays and fabrication
KR20100063536A (en) 2008-12-03 2010-06-11 삼성에스디아이 주식회사 Light emission device and display device using same as light source
WO2010071658A1 (en) 2008-12-19 2010-06-24 Hewlett-Packard Development Company, Hewlett-Packard Development Company, L.P. Photovoltaic structure and method of fabrication employing nanowire on stub
KR20100079058A (en) 2008-12-30 2010-07-08 주식회사 동부하이텍 Image sensor and method for manufacturing thereof
US20100200065A1 (en) 2009-02-12 2010-08-12 Kyu Hyun Choi Photovoltaic Cell and Fabrication Method Thereof
TW201034212A (en) 2009-03-13 2010-09-16 guo-hong Shen Thin-film solar cell structure
US8242353B2 (en) 2009-03-16 2012-08-14 International Business Machines Corporation Nanowire multijunction solar cell
US7888155B2 (en) 2009-03-16 2011-02-15 Industrial Technology Research Institute Phase-change memory element and method for fabricating the same
US20100244108A1 (en) 2009-03-31 2010-09-30 Glenn Eric Kohnke Cmos image sensor on a semiconductor-on-insulator substrate and process for making same
TWI425643B (en) 2009-03-31 2014-02-01 Sony Corp Solid-state imaging device, fabrication method thereof, imaging apparatus, and fabrication method of anti-reflection structure
WO2010118198A1 (en) 2009-04-09 2010-10-14 E. I. Du Pont De Nemours And Company Glass compositions used in conductors for photovoltaic cells
WO2010119916A1 (en) 2009-04-13 2010-10-21 Olympus Corporation Fluorescence sensor, needle-type fluorescence sensor, and method for measuring analyte
WO2010129163A2 (en) 2009-05-06 2010-11-11 Thinsilicon Corporation Photovoltaic cells and methods to enhance light trapping in semiconductor layer stacks
US8809672B2 (en) * 2009-05-27 2014-08-19 The Regents Of The University Of California Nanoneedle plasmonic photodetectors and solar cells
JP5504695B2 (en) 2009-05-29 2014-05-28 ソニー株式会社 Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
KR20120016297A (en) 2009-06-01 2012-02-23 코넬 유니버시티 Integrated optofluidic system using microspheres
US8211735B2 (en) 2009-06-08 2012-07-03 International Business Machines Corporation Nano/microwire solar cell fabricated by nano/microsphere lithography
US20100313952A1 (en) 2009-06-10 2010-12-16 Thinsilicion Corporation Photovoltaic modules and methods of manufacturing photovoltaic modules having multiple semiconductor layer stacks
WO2010144866A2 (en) * 2009-06-11 2010-12-16 The Arizona Board Of Regents On Behalf Of The University Of Arizona Microgrid imaging polarimeters with frequency domain reconstruction
US8304759B2 (en) 2009-06-22 2012-11-06 Banpil Photonics, Inc. Integrated image sensor system on common substrate
US8558336B2 (en) 2009-08-17 2013-10-15 United Microelectronics Corp. Semiconductor photodetector structure and the fabrication method thereof
EP2290718B1 (en) * 2009-08-25 2015-05-27 Samsung Electronics Co., Ltd. Apparatus for generating electrical energy and method for manufacturing the same
US20110084212A1 (en) * 2009-09-22 2011-04-14 Irvine Sensors Corporation Multi-layer photon counting electronic module
CN102714137B (en) 2009-10-16 2015-09-30 康奈尔大学 Comprise the method and apparatus of nano thread structure
US8115097B2 (en) 2009-11-19 2012-02-14 International Business Machines Corporation Grid-line-free contact for a photovoltaic cell
US8563395B2 (en) 2009-11-30 2013-10-22 The Royal Institute For The Advancement Of Learning/Mcgill University Method of growing uniform semiconductor nanowires without foreign metal catalyst and devices thereof
JP5608384B2 (en) 2010-02-05 2014-10-15 東京エレクトロン株式会社 Semiconductor device manufacturing method and plasma etching apparatus
EP2537019B1 (en) 2010-02-19 2016-09-07 Pacific Biosciences Of California, Inc. Device for measuring analytical reactions
US8194197B2 (en) 2010-04-13 2012-06-05 Sharp Kabushiki Kaisha Integrated display and photovoltaic element
US9182338B2 (en) 2010-05-21 2015-11-10 The Trustees Of Princeton University Structures for enhancement of local electric field, light absorption, light radiation, material detection and methods for making and using of the same
US8431817B2 (en) 2010-06-08 2013-04-30 Sundiode Inc. Multi-junction solar cell having sidewall bi-layer electrical interconnect
US8324010B2 (en) 2010-06-29 2012-12-04 Himax Imaging, Inc. Light pipe etch control for CMOS fabrication
US20120318336A1 (en) 2011-06-17 2012-12-20 International Business Machines Corporation Contact for silicon heterojunction solar cells
US20130220406A1 (en) 2012-02-27 2013-08-29 Sharp Kabushiki Kaisha Vertical junction solar cell structure and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090153961A1 (en) * 2005-07-22 2009-06-18 Zeon Corporation Grid Polarizer and Method for Manufacturing the Same
US20100110433A1 (en) * 2008-10-24 2010-05-06 Thales Polarimetric imaging device optimized for polarization contrast
US8835831B2 (en) * 2010-06-22 2014-09-16 Zena Technologies, Inc. Polarized light detecting device and fabrication methods of the same

Also Published As

Publication number Publication date
US8835831B2 (en) 2014-09-16
US9054008B2 (en) 2015-06-09
US20150001410A1 (en) 2015-01-01
US20110309240A1 (en) 2011-12-22
US20110309331A1 (en) 2011-12-22
US8835905B2 (en) 2014-09-16

Similar Documents

Publication Publication Date Title
US8835831B2 (en) Polarized light detecting device and fabrication methods of the same
US9337220B2 (en) Solar blind ultra violet (UV) detector and fabrication methods of the same
JP6161554B2 (en) Electromagnetic wave detector and electromagnetic wave detector array
JP6113372B1 (en) Electromagnetic wave detector
US6633716B2 (en) Optical device and method therefor
JP5937006B2 (en) Single or multi-layer graphene-based photodetection device and method of forming the same
JP2015045629A5 (en)
CN108987525B (en) MSM photoelectric detector and manufacturing method thereof
JP6918631B2 (en) Photodetector
US20140124782A1 (en) Image sensor
JP2012514322A (en) Photodetector with very thin semiconductor region
US20160111460A1 (en) Back-lit photodetector
JP5010253B2 (en) Semiconductor lens, infrared detector using the same, and method for manufacturing semiconductor lens
US8969911B2 (en) Photo detector consisting of tunneling field-effect transistors and the manufacturing method thereof
US20160111562A1 (en) Multispectral and polarization-selective detector
US7923689B2 (en) Multi-band sub-wavelength IR detector having frequency selective slots and method of making the same
KR101936466B1 (en) Vertical Nano-structured Photodetector and Method of Forming the same
US9772463B2 (en) Intra chip optical interconnect structure
JP3396698B2 (en) Thermoelectric converter
CN112054034A (en) Memory device
US9395490B2 (en) Variable buried oxide thickness for a waveguide
JP2697081B2 (en) Semiconductor light receiving device
JPH0226083A (en) Planar photodetector and manufacture of same
CN113314625A (en) Integrated circuit, integrated device and forming method thereof
JP2005175142A (en) Light receiver and its manufacturing method

Legal Events

Date Code Title Description
AS Assignment

Owner name: ZENA TECHNOLOGIES, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YU, YOUNG-JUNE;WOBER, MUNIB;REEL/FRAME:033456/0883

Effective date: 20140804

AS Assignment

Owner name: WU, XIANHONG, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:ZENA TECHNOLOGIES, INC.;REEL/FRAME:041901/0038

Effective date: 20151015

AS Assignment

Owner name: HABBAL, FAWWAZ, MASSACHUSETTS

Free format text: SECURITY INTEREST;ASSIGNOR:ZENA TECHNOLOGIES, INC.;REEL/FRAME:041941/0895

Effective date: 20161230

AS Assignment

Owner name: PILLSBURY WINTHROP SHAW PITTMAN LLP, VIRGINIA

Free format text: SECURITY INTEREST;ASSIGNOR:ZENA TECHNOLOGIES, INC.;REEL/FRAME:042106/0301

Effective date: 20170320

Owner name: PILLSBURY WINTHROP SHAW PITTMAN LLP, VIRGINIA

Free format text: SECURITY INTEREST;ASSIGNOR:ZENA TECHNOLOGIES, INC.;REEL/FRAME:042107/0543

Effective date: 20170320

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE