US20140336693A1 - Systems and methods for transnasal dilation of passageways in the ear, nose or throat - Google Patents

Systems and methods for transnasal dilation of passageways in the ear, nose or throat Download PDF

Info

Publication number
US20140336693A1
US20140336693A1 US14/265,787 US201414265787A US2014336693A1 US 20140336693 A1 US20140336693 A1 US 20140336693A1 US 201414265787 A US201414265787 A US 201414265787A US 2014336693 A1 US2014336693 A1 US 2014336693A1
Authority
US
United States
Prior art keywords
catheter
guidewire
guide catheter
lumen
handle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/265,787
Inventor
Eric Goldfarb
John Y. Chang
William M. Facteau
Sivette Lam
Hung V. Ha
Isaac J. Kim
Ketan P. Muni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Acclarent Inc
Original Assignee
Acclarent Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/829,917 external-priority patent/US7654997B2/en
Priority claimed from US10/944,270 external-priority patent/US20060004323A1/en
Priority claimed from US11/150,847 external-priority patent/US7803150B2/en
Priority claimed from US11/355,512 external-priority patent/US8894614B2/en
Application filed by Acclarent Inc filed Critical Acclarent Inc
Priority to US14/265,787 priority Critical patent/US20140336693A1/en
Publication of US20140336693A1 publication Critical patent/US20140336693A1/en
Priority to US15/417,712 priority patent/US10874838B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M29/00Dilators with or without means for introducing media, e.g. remedies
    • A61M29/02Dilators made of swellable material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/0045Catheters; Hollow probes characterised by structural features multi-layered, e.g. coated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like
    • A61M25/0662Guide tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/0045Catheters; Hollow probes characterised by structural features multi-layered, e.g. coated
    • A61M2025/0046Coatings for improving slidability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like
    • A61M25/0662Guide tubes
    • A61M2025/0681Systems with catheter and outer tubing, e.g. sheath, sleeve or guide tube
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1086Balloon catheters with special features or adapted for special applications having a special balloon surface topography, e.g. pores, protuberances, spikes or grooves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M29/00Dilators with or without means for introducing media, e.g. remedies
    • A61M29/02Dilators made of swellable material
    • A61M2029/025Dilators made of swellable material characterised by the guiding element
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/06Head
    • A61M2210/0618Nose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/06Head
    • A61M2210/0681Sinus (maxillaris)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0041Catheters; Hollow probes characterised by the form of the tubing pre-formed, e.g. specially adapted to fit with the anatomy of body channels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1002Balloon catheters characterised by balloon shape

Definitions

  • the present invention relates generally to medical devices and methods and particularly to balloon catheters other devices that may be inserted through the nose and used to dilate the ostia of paranasal sinuses for treatment of sinusitis.
  • the paranasal sinuses are hollow cavities in the skull connected by small openings, known as ostia, to the nasal canal. Normally, air passes into and out of the paranasal sinuses through the ostia. Also, mucus is continually formed by the mucosal lining of the sinus and drains through the ostia and into the nasal canal.
  • Sinusitis is a general term that refers to inflammation in one or more of the paranasal sinuses.
  • Acute sinusitis can be associated with upper respiratory infections or allergic conditions which cause tissue swelling and temporarily impedes normal trans-ostial drainage and ventilation of the sinuses, thereby resulting in some collection of mucous and possibly infection within the sinus cavities.
  • Chronic sinusitis is a long term condition characterized by persistent or long term narrowing or blockage of the sinus ostia, resulting in chronic infection and inflammation of the sinuses.
  • Chronic sinusitis is often associated with long standing respiratory allergies, nasal polyps, hypertrophic nasal turbinates and/or deviated internasal septum.
  • acute sinusitis is typically caused by infection with a single pathogen (e.g., one type of bacteria, one type of virus, one type of fungus, etc.)
  • chronic sinusitis is often associated with multiple pathogen infections (e.g., more than one type of bacteria or more than genus of microorganism).
  • Chronic sinusitis if left untreated, can result in irreparable damage to the tissues and/or bony structures of the paranasal anatomy.
  • the initial treatment of chronic sinusitis usually involves the use of drugs such as decongestants, steroid nasal sprays and antibiotics (if the infection is bacterial). In cases where drug treatment alone fails to provide permanent relief, surgical intervention may be indicated.
  • Functional endoscopic sinus surgery is commonly performed use an endoscope and various rigid instruments inserted through the patient's nostril.
  • the endoscope is used to visualize the positioning and use of the operative instruments to perform tasks intended to improve sinus drainage, such as removal of polyps, straightening of deviated septum and excision of mucous membrane and bone to enlarge the narrow the sinus ostia or to create new openings into the sinuses.
  • Balloon SinuplastyTM procedure has been developed by Acclarent, Inc. of Menlo Park, Calif. for treatment of sinusitis.
  • a number of copending U.S. patent applications including parent application Ser. Nos. 11/355,512, 11/150,874, 10/944,270 and Ser. No. 10/829,917, describe various embodiments of the Balloon SinuplastyTM procedure as well as various devices useable in the performance of such procedure.
  • a guide catheter is inserted into the nose and positioned within or adjacent to the ostium of the affected paranasal sinus. A guidewire is then advanced through the guide catheter and into affected paranasal sinus.
  • a dilation catheter having an expandable dilator e.g., an inflatable balloon
  • an expandable dilator e.g., an inflatable balloon
  • the dilator is then expanded causing dilation of the ostium and remodeling of bone adjacent to the ostium, without required incision of the mucosa or removal of any bone.
  • the catheters and guidewire are then removed and the dilated ostium allows for improved drainage from and ventilation of the affected paranasal sinus.
  • a dilation catheter device and system that is useable for dilating the ostium of a paranasal sinus, or other passageway within the ear, nose or throat.
  • This dilation catheter device and system is constructed in a manner that facilitates ease of use by the operator and, in at least some cases, allows the dilation procedure to be performed by a single operator, thereby minimizing the number of personnel required for the procedure.
  • the dilation catheter device and system of the present invention is useable in conjunction with an endoscope and/or a fluoroscope to provide for easy manipulation and positioning of the devices and real time visualization of the entire procedure or selected portions thereof.
  • an optional handle may be attached to the dilation catheter or to a guide catheter through which the dilation catheter is inserted and such handle may be graspable along with another device (e.g., an endoscope) by a single hand. In this manner, the operator may control the dilation catheter an another device (e.g., an endoscope) with one hand while being free to use his other hand for other purposes.
  • another device e.g., an endoscope
  • systems for treating a disease or disorder of the ear, nose or throat of a human or animal subject generally comprise a guide catheter and a working catheter.
  • the working catheter is advanceable through the guide catheter.
  • the guide catheter has a substantially rigid shaft and the working catheter has a proximal portion that is substantially rigid.
  • the working catheter also has a distal portion that is more flexible than the substantially rigid proximal portion.
  • the working catheter is sized relative to the guide catheter so that, at least when the distal portion of the working catheter is advanced out of a distal opening of the guide catheter and the working element is being used to perform a desired diagnostic or therapeutic task, only the substantially rigid proximal portion (or some portion thereof will extend out of the proximal opening of the guide catheter.
  • the working catheter may additionally be sized relative to the guide catheter so that the working catheter is initially advanceable to a first position where its distal end of the working catheter has not yet emerged out of the distal end of the guide catheter but only the substantially rigid proximal portion of the working catheter is protruding out of the proximal end of the guide catheter.
  • sinus ostium dilation catheter devices that generally comprise an elongate catheter shaft having proximal shaft section that is substantially rigid and a distal shaft section that is more flexible than the proximal shaft section.
  • the proximal shaft section may extend along at least about 50% of the overall length of the device.
  • a guidewire lumen extends through at least a portion of the catheter shaft to facilitate advancement of the catheter over a guidewire.
  • a dilator is located on the distal shaft section, such dilator having a non-expanded configuration and an expanded configuration.
  • a guide catheter having a proximal end and a distal end through one of the subject's nostrils and positioning the guide catheter within or near the passageway to be dilated
  • a dilation catheter comprising i) an elongate catheter shaft having a proximal end, a distal end, a proximal shaft section that is substantially rigid and a distal shaft section that is more flexible than the proximal shaft section, ii) a guidewire lumen extending through at least a portion of the catheter shaft to facilitate advancement of the catheter over a that is substantially rigid and a distal shaft section that is more flexible than the proximal shaft section, ii) a guidewire lumen extending through at least
  • FIG. 1 is a side view of one embodiment of a dilation catheter of the present invention with its dilator in an expanded configuration.
  • FIG. 1A is a cross sectional view through line 1 A- 1 A of FIG. 1 with an enlarged break-out view of a portion thereof.
  • FIG. 1B is an enlarged side view of the dilator and distal end of the dilation catheter of FIG. 1 .
  • FIG. 2 shows a collection of transnasal guide catheters useable as components of the system of the present invention.
  • FIG. 3 is a side view of one embodiment of a handle apparatus of the present invention.
  • FIG. 3A is a side view of another embodiment of a handle apparatus of the present invention.
  • FIG. 3B is a side view of yet another embodiment of a handle apparatus of the present invention.
  • FIG. 3C is a side view of yet another embodiment of a handle apparatus of the present invention.
  • FIG. 4 is an exploded, partial view of one embodiment of a dilation catheter system of the present invention including an optional handle apparatus.
  • FIG. 5 is a schematic diagram of one embodiment of a dilation catheter system of the present invention (without the optional handle apparatus) being used to dilate the ostium of a paranasal sinus.
  • FIG. 6 is a schematic diagram of one embodiment of a dilation catheter system of the present invention (with the optional handle apparatus) being used to dilate the ostium of a paranasal sinus.
  • FIG. 7A shows a partial view of the system of FIG. 5 including a guidewire stop/connector apparatus of the present invention mounted on the guidewire prior to advancement of the guidewire.
  • FIG. 7B shows a partial view of the system of FIG. 5 including a guidewire stop/connector apparatus of the present invention mounted on the guidewire and engaged with the hub of the dilation catheter following advancement of the guidewire.
  • FIG. 8A shows the dilation catheter system of FIG. 5 and an endoscope being held by one hand of the operator while the operator's other hand is being used to advance the guidewire of the system into a paranasal sinus.
  • FIG. 8B shows the dilation catheter system of FIG. 6 and an endoscope being held by one hand of the operator while the operator's other hand is being used to advance the dilation catheter so that its dilator becomes positioned within the ostium of the paranasal sinus.
  • FIG. 9 is a flow diagram showing steps in one method for using a dilation catheter system of the present invention.
  • FIG. 10 is a flow diagram showing steps in another method for using a dilation catheter system of the present invention.
  • FIG. 11 is a flow diagram showing steps in yet another method for using a dilation catheter system of the present invention.
  • FIGS. 1-1B show one example of a dilation catheter device 10 of the present invention with a guidewire GW operatively inserted therethrough.
  • the dilation catheter device 10 comprises an elongate catheter shaft 12 having a proximal shaft section 12 prox that is substantially rigid and a distal shaft section 12 dist that is more flexible than the proximal shaft section 12 prox .
  • An expandable dilator such as a balloon 14 or other suitable mechanical or non-inflational dilator, is mounted on the distal shaft section 12 dist and a distal tip member 18 protrudes beyond the distal end of the balloon 14 , as shown.
  • a proximal T hub 16 is attached to the proximal end of the proximal shaft section 12 prox .
  • This proximal T hub 16 has a proximal Luer connector 20 and a side arm 22 having a female Luer connector that extends substantially perpendicular to the longitudinal axis of the hub 16 , as shown.
  • the side arm 22 of this T hub is further away from the proximal Luer connector 20 and is oriented at a right angle to the proximal Luer connector 20 .
  • tubing connected to this perpendicular side arm 22 is less likely to obscure or block the proximal Luer connector 20 than in a typical Y hub and the operator is less likely to confuse the proximal Luer connector 20 with the Luer connector on the side arm 22 .
  • the expandable dilator comprises a balloon 14
  • various other types of expandable dilators such as expandable cages, struts and other expandable mechanical assemblies may be used as an alternative to a balloon 14 .
  • Some non-limiting examples of expandable dilators other than balloons have previously been described in parent U.S. patent application Ser. Nos. 11/355,512, 11/150,874, 10/944,270 and Ser. No. 10/829,917, which are expressly incorporated herein by reference.
  • the overall length of the catheter shaft 12 may be in the range of about 15 cm to about 25 cm, the proximal shaft section 12 prox may have a length in the range of about 10 cm to about 15 cm and the distal shaft section 12 dist may have a length in the range of about 5 cm to about 10 cm.
  • the catheter shaft 12 has an overall length of 21.2 cm, the proximal shaft section 12 prox being 12.5 cm in length and the distal shaft section 12 dist being 8.7 cm in length.
  • proximal shaft section 12 prox and distal shaft section 12 dist have been arrived at based on a number of considerations, which will be discussed more fully herebelow in relation to the concurrent use of this dilation catheter 10 with a trans-nasal guide catheter.
  • the proximal shaft section 12 prox comprises a rigid outer tube 30 a flexible middle tube 32 disposed substantially coaxially within the lumen of the rigid outer tube 30 and an inner tube 36 disposed substantially coaxially within the lumen of the middle tube 32 .
  • the outer tube 30 is formed of stainless steel hypotube having an outer diameter of 0.076 inches and an inner diameter of 0.068 inches.
  • this outer tube 30 may be formed of rigid non-metallic material such as polyetheretherketone (PEEK) or other rigid plastics suitable for such application.
  • PEEK polyetheretherketone
  • the middle tube 32 is formed of Pebax having an inner diameter of 0.055 inches, an outer diameter of 0.065.+ ⁇ .0.003 inches.
  • the inner tube 36 is formed of polyether block copolymer tubing (e.g., Pebax® Resin, Arkema, Inc., Philadelphia, Pa.) having an inner diameter of 0.038 inches, an outer diameter of 0.048 inches.
  • the outer tube 30 terminates at the end of the proximal shaft section 12 prox .
  • the middle tube 32 and inner tube 36 extend beyond the distal end of the outer tube 30 , forming the distal shaft section 12 dist .
  • a polyether block copolymer film laminate 31 (e.g., Pebax® Resin, Arkema, Inc., Philadelphia, Pa.) is heat shrunk onto the outer surface of the catheter shaft 12 from the proximal hub 16 to the balloon 14 .
  • This laminate 31 provides a smooth outer surface and smoothes the step-down in diameter from the distal end of the proximal shaft section 12 prox to the proximal end of the distal shaft section 12 dist (i.e., it provides a smooth surface over the distal end of the outer tube 30 and the adjacent outer surface of the middle tube 32 ).
  • the smooth step down may also be formed by an adhesive fillet. In other embodiments, the smooth step down may be formed by tapering or chamfering the structure of the distal end of the proximal shaft, eliminating the need for a laminate or adhesive.
  • the proximal end of the middle tube 32 extends into and is secured to the hub 16 , distal to side arm Luer connector 22 .
  • the proximal end of the inner tube 36 extends into and is secured within hub 16 , proximal to the side arm Luer connector 22 and in direct alignment and fluid communication with proximal Luer connector 20 .
  • the distal end of the middle tube 32 terminates within the balloon 14 and the proximal end of the dilator is secured to the outer surface of the middle tube.
  • the distal end of the inner tube 36 also extends through the balloon 14 and protrudes distally beyond the balloon 14 , forming the relatively flexible distal tip member 18 as shown in FIG. 1 .
  • the inner tube lumen 38 extends through the entire catheter shaft 12 from the proximal Luer connector 20 through the distal tip 18 and may be used a guidewire lumen or as a working lumen for infusion of irrigation solution, medicaments, contrast media or other substances and/or for aspiration of blood, fluids or debris.
  • Guidewires that may be advantageously used in conjunction with this dilation catheter 10 may have a length of 60 cm to 80 cm and may be either 0.014 inch or 0.035 inch, such as those commercially available as the Relieva® Sinus Guidewires (Acclarent, Inc., Menlo Park, Calif.) or sizes in between such as 0.018 inch, 0.020 inch, or 0.033 inch.
  • the drawings show an over-the-wire catheter having a guidewire lumen that extends through the entire length of the catheter, it is to be appreciated that guidewire lumens extending less than the entire length of the catheter (e.g., rapid exchange guidewire lumens) may be used as an alternative to the over-the-wire lumen shown.
  • the catheter may be equitted with a fixed guidewire tip such as any of those described in U.S. patent application Ser. No. 11/438,090 entitled Catheters with Non-Removable Guide Members Useable for Treatment of Sinusitis, the entire disclosure of which is expressly incorporated herein by reference.
  • the inner tube lumen 38 may be lined or coated with a lubricious material to facilitate passages of the guidewire GW through that lumen 38 .
  • the diameter of the inner tube 36 may be changed to accommodate guidewires of different diameter.
  • the inner tube lumen 38 is sized to receive a 0.035 inch diameter guidewire GW.
  • the inner tube lumen 38 may be internally lined or coated with a 2% solution of linear polydimethylsiloxane (PDMS) (e.g., Dow Corning® 360 Medical Fluid, Dow Corning Corporation, Midland, Mich.) diluted in isopropyl alcohol or another silicone material (such as a 2% solution of Dow-Corning MDX4-4159 in isopropyl alcohol). The coating is cured at room temperature.
  • PDMS linear polydimethylsiloxane
  • the luminal space 34 between the outer surface of the inner tube 36 and the inner surface of the middle tube 32 is in fluidic communication with the side arm Luer connector 22 and extends to the interior of the balloon 14 .
  • this luminal space 34 serves as the passageway through which inflation fluid is passes into and out of the balloon 14 .
  • the size of this luminal space 34 and the relatively short length of the catheter shaft 12 are optimized to minimize drag on inflation fluid passing through this luminal space 34 and allows for rapid deflation of the balloon 14 .
  • the clearance of 0.006 to 0.007 inches between the inner and outer member is desired for catheter length of 20-35 cm.
  • the desired deflation time is 5-10 seconds and the deflation time is measured with application of negative pressure on the inflation/deflation lumen using a 20 cc inflation device that is filled with 10 cc contrast/saline mixture.
  • FIG. 1B shows details of the balloon 14 .
  • the balloon 14 is a non-compliant balloon formed of polyethylene teraphthalate (PET) film having a thickness of 0.8 mils.
  • PET polyethylene teraphthalate
  • the balloon 14 has a cylindrical midregion 44 and tapered proximal and distal end regions 46 prox and 46 dist .
  • the balloon 14 has an overall length of 2.6 cm.
  • the cylindrical midregion 44 of the balloon 14 has a length of 16 mm (i.e., the “working length”) and each tapered end region 46 prox , 46 dist has a length of 5 mm.
  • the balloon 44 has a burst pressure of at least 14 to 16_atmospheres.
  • the outer diameter of the balloon 14 when inflated to a pressure of 14 atmospheres, may be in the range of 5.0 mm to 5.5 mm.
  • the balloon 14 is sized for dilation of the ostia of paranasal sinuses and such balloon 14 is offered in sizes having outer diameters of 5 mm or 7 mm when inflated to a pressure of 14 atmospheres.
  • Dilation catheters 10 having the 5 mm diameter balloon 14 may be more suitable for use in subjects of small body size while dilation catheters 10 having the 7 mm diameter balloon 14 may be more suitable for use in subjects having a large body size.
  • Smaller or larger balloons may be used for dilating structures other than the ostia of paranasal sinuses (e.g., Eustachian tube or naso-lacrimal duct dilations). Larger balloons and higher pressures may be used for dilating revision patients (i.e., patients who have had prior ostial dilations or who's ostia have been previously modified by surgery).
  • paranasal sinuses e.g., Eustachian tube or naso-lacrimal duct dilations.
  • Larger balloons and higher pressures may be used for dilating revision patients (i.e., patients who have had prior ostial dilations or who's ostia have been previously modified by surgery).
  • the tapered end regions 46 prox , 46 dist are tapered at angle A relative to the longitudinal axis LA of the catheter shaft 12 on which the balloon 14 is mounted.
  • This angle of taper A may be in the range of about 10 degrees to about 30 degrees. In the particular example shown in the drawings, such angle of taper A is 20 degrees. This 20 degree angle of taper provides improved transition from balloon working length to the necks, lower profile, improved crossing, improved track, easier withdrawal in the sinus guide after balloon inflation. It also provides optimal performance with minimum increase of overall balloon length.
  • the relatively stiff proximal shaft portion 12 prox may be desirable for the relatively stiff proximal shaft portion 12 prox to extend all the way to or near the proximal end of the balloon 14 or other dilator.
  • Such catheter having a rigid shaft from its proximal end to or near the dilator may be advanced directly into the sphenoid sinus ostium with or without the use of a guide catheter.
  • the proximal end of the balloon 14 could be bonded to the relatively rigid proximal shaft portion 12 prox.
  • Such a construction would allow the flexible distal tip 18 to track turns in the anatomy and may be useable to dilate certain passageways (e.g., the sphenoid sinus ostium) without disrupting the normal anatomy.
  • proximal shaft section 12 prox may be malleable so that it may be shaped (e.g., bent or formed to a desire curve or multi-curvate shape) to facilitate access to any desired passageways or locations.
  • FIG. 2 shows a series of sinus guide catheters 40 a - 40 f that may be used in conjunction with the dilation catheter 10 .
  • These guide catheters 40 a - 40 f are substantially rigid and each has a preset distal curve of 0 degrees ( 40 a ), 30 degrees ( 40 b ), 90 degrees ( 40 d ), 70 degrees ( 40 c ) or 110 degrees ( 40 e and 40 f ).
  • Different curvatures are useable to access the ostia of different sinuses.
  • a 70 degree guide is typically used to access the ostium of a frontal sinus
  • a 90 or 110 degree guide is typically used to access the ostium of a maxillary sinus, etc.
  • Each of these guide catheters 40 a - 40 f has a length of 12.7 cm.
  • These sinus guide catheters are described in parent U.S. patent application Ser. Nos. and are now commercially available as Relieva® sinus guide catheters from Acclarent, Inc., Menlo Park, Calif.
  • FIG. 5 shows a system comprising a guide catheter 40 c having a 90 degree curve formed therein in combination with a dilation catheter 10 shown in FIG. 1 .
  • proximal shaft section 12 prox and distal shaft section 12 dist applicants have determined that, even the maximum distance that the distal end of the dilation catheter of this example is required travel beyond the distal end of the guide catheter 40 a - 40 c is approximately 2.5 cm. However, it will be appreciated that this is just one example. For other application, travel beyond 2.5 cm may be desirable or necessary. Also, it is desirable for the entirety of the more flexible distal shaft section 12 dist to be advanceable into the guide catheter 40 a - 40 f proximal to any curve formed in the guide catheter.
  • the example of the dilation catheter 10 shown in the drawings has a shaft that is about 20 cm in length, with the proximal shaft section 12 prox being 11.3 cm in length and the distal shaft section 12 dist being 8.7 cm in length.
  • the entire distal shaft section 12 dist of the dilation catheter 10 may be initially advanced into the rigid guide catheter 40 c without the distal portion of the dilation catheter 10 passing through the curve of the guide catheter 40 c and with only a portion of the rigid proximal shaft section 12 prox of the dilation catheter 10 protruding out of the proximal end of the guide catheter 40 c .
  • a first shaft marker 26 is provided on the proximal shaft section 12 prox of the dilation catheter shaft 12 .
  • the distal edge of this first shaft marker 26 is 2.7 cm proximal to the distal end of the proximal shaft section 12 prox and 11.4 cm from the distal end of the distal tip member 18 .
  • the entire distal shaft portion 12 dist as well as the distal-most 3 cm of the proximal shaft portion 12 prox will be housed within the guide catheter 40 c such that the distal end of the dilation catheter 10 is located proximal to the curve formed near the distal end of the guide catheter 40 c .
  • Such positioning of the dilation catheter 10 within the guide catheter 40 c provides a guide catheter/dilation catheter assembly that is substantially rigid from the proximal hub 16 of the dilation catheter 10 to the distal end of the guide catheter 40 c .
  • the operator may hold or support the entire assembly by grasping or supporting just one location on either the dilation catheter 10 or guide catheter 40 d .
  • the user may hold or support the entire assembly by using his fingers to grasp or support either the proximal hub of the guide catheter 40 c , the proximal hub 16 of the dilation catheter 10 or somewhere on the proximal shaft section 12 prox of the dilation catheter or on the shaft of the guide catheter 40 c .
  • Such rigidity also substantially eliminates the potential for the exteriorized portion of the dilation catheter 10 to droop down onto the subject's chest or onto the adjacent operating table.
  • the rigid proximal shaft segment 12 prox of the dilation catheter 10 is 11.3 cm in length and the guide catheter 40 d is 12.7 cm in length.
  • the overall length of the portion of the system that remains exteriorized e.g., the proximal part of the guide catheter 10 extending out of the subject's nose and the proximal part of the dilation catheter 10 extending out of the proximal end of the guide catheter 40 c
  • the overall length of the portion of the system that remains exteriorized is not only rigid, but sufficiently short (e.g., typically less than 9 cm) to be easily manageable and capable of being held or supported by a single hand of the operator, thereby allowing the operator's other hand to be used for other purposes, such as for advancing/retracting the guidewire GW or advancing/retracting the dilation catheter 10 in the manner described herebelow in connection with FIGS. 9-11 .
  • the second shaft marker 24 correlates to the position of the balloon. If the dilation catheter 10 is advanced to a position where the distal edge of the second shaft marker 24 is flush with the proximal end of the guide catheter 10 , the distal tip of the balloon catheter will be flush with the distal tip of the guide catheter 40 d . When the proximal edge of the second shaft marker 24 is flush with the proximal end of the guide catheter 10 , the entire balloon 14 will have advanced out of the distal end of the guide catheter 40 d and the operator will know that it is safe to inflate the balloon. Typically, as seen in FIG.
  • the balloon 14 is advanced some distance out of the distal end of the guide catheter 40 d until the balloon 14 is positioned within the sinus ostium SO or other passageway to be dilated.
  • proximal and distal radiographic markers 40 , 42 are provided on the catheter at either end of the cylindrical segment 44 of the balloon.
  • a C arm fluoroscope may be positioned and used to image those proximal and distal markers 40 , 42 as well as the sinus ostium SO and the position of the dilation catheter 10 may be adjusted as needed until the sinus ostium SO is midway between the proximal and distal radiographic markers 40 , 42 .
  • an inflator 50 attached to the side arm Luer connector 22 may be used to inflate the balloon 14 , thereby dilating the sinus ostium SO as shown in FIG. 5 .
  • the inflator 50 may be attached to the side arm Luer connector 22 in advance and may be controlled by a foot pedal which is actuated by the operator's foot.
  • an endoscope may be placed in the nose and used to view all or part of the procedure. Because the exteriorized portion of the system is substantially rigid and is typically less than 15 cm in length, the operator may use a single hand to hold the endoscope as well as the dilation catheter/guide catheter system. Alternatively, a scope holder may be used to hold the endoscope in a fixed position while the operator positions and uses the system seen in FIG. 5 . Alternatively, an optional handle may be used as shown in FIGS. 3-4 , 6 and 8 A- 8 B and described below.
  • a member 61 may be attached to the guidewire.
  • Such member may serve to prevent the dilation catheter 10 and/or guide catheter 40 a - 40 f from inadvertently sliding off of the proximal end of the guidewire.
  • such member 61 may limit the length of guidewire GW that may be advanced through the dilation catheter 10 . This will prevent the operator from advancing too much of the guidewire GW into the subject's sinus, as may injure or damage the mucosa lining the sinus cavity.
  • this member 61 may be a standard guidewire torquer of the type commercially available an well known in the fields of interventional cardiology and/or radiology.
  • a commercially available guidewire torquer that is useable in this application is a two part torquer available as Part No. 97333 from Qosina, Corp., Edgewood, N.Y.
  • the member 61 may comprise a guidewire stop/connector apparatus 61 a as shown in FIGS. 7A-7B .
  • This stop/connector apparatus 61 a comprises a rigid plastic body 63 having a lumen extending therethrough and a tapered elastomeric tube member 65 on its distal end.
  • the stop/connector apparatus 61 a is advanced over the guidewire GW to the desired location.
  • the inner diameter of the tapered elastomeric tube member 65 fits snuggly on the guidewire thereby holding the stop/connector apparatus 61 a as seen in FIG. 7A .
  • the guidewire GW is subsequently advanced through the dilation catheter 10 until the tapered elastomeric tube member 65 is received within and frictionally engages the proximal female Luer connector 20 on the hub of the dilation catheter, as shown in FIG. 7B .
  • the force required to overcome such frictional engagements will preferably be greater than the forces that would normally result form routine movement and use of the system, thereby allowing the stop/connector apparatus 61 a to perform its locking function while still allowing the location of the stop/connector apparatus 61 a to be volitionally adjusted by the operator when necessary.
  • another stop/connector apparatus 61 a of larger size may be mounted on the rigid proximal shaft section 21 prox of the dilation catheter 10 and received within the proximal end of the guide catheter 40 a - f to limit the advancement of the dilation catheter 10 through the guide catheter 40 a - f and to frictionally lock the dilation catheter 10 to the guide catheter 40 a - f in the same manner.
  • FIG. 3 shows an optional handle 42 that may be attached to the guide catheter 40 a - 40 d to facilitate single-handed holding of the guide catheter/dilation catheter system as well as an endoscope (or other device).
  • the handle shown in FIG. 3 comprises a rigid head 44 having a male Luer 10 fitting on one end, a lumen 47 extending therethrough and a handle member 48 extending therefrom.
  • the male Luer fitting 46 may be inserted into the proximal end of the guide catheter 40 c and the guidewire GW and guide catheter 10 may then be inserted through the lumen 47 of the handle head 44 and through the guide catheter.
  • the handle head 44 may be clear or transparent so that the operator may view the shaft markers 24 , 26 on the dilation catheter shaft 12 as the dilation catheter 10 is advanced through the handle head 44 .
  • the locations of the shaft markers 24 , 26 may be adjusted on the catheter shaft 12 to take into account the additional guide length added by the handle head 44 .
  • the handle member 48 is preferably about the size of a standard ink pen and may be conveniently grasped by a human hand.
  • the handle member 48 may have a roughened or elastomeric surface to facilitate gripping by a gloved hand and to deter slippage of the handle from the operator's grip.
  • the handle member 48 may be shapeable (e.g., malleable or bendable) to allow the operator to adjust the shape and/or angle of the handle relative to the shaft of the guide catheter 40 c .
  • the handle member 48 may be pre-shaped to accommodate a typical user and allow fine tuning by individual user.
  • the handle member 48 may have foam or other material on its surface to facilitate grip.
  • the handle member 48 may have various different cross sectional profiles (e.g., round, oval, 3 sided, 4 sided, 5 sided, 6 sided, etc.)
  • the handle 48 serves to facilitate grip and control to manipulate the dilation catheter along with a separate device (e.g., an endoscope or other tool) without having to use second hand.
  • the handle member 48 may include finger loop(s) for easier to translate handle/device attached up/down relative to other device held (e.g. scope) without need for other hand to adjust.
  • a pinch valve or hole can be strategically placed in handle 48 to actuate/allow control of suction or fluid delivery via handle device (e.g., the user may pinch the handle with fingers to restrict flow through handle) or the handle 48 may have a suction hole where the user must cover the suction hole to actuate suction through the optional handle 42 .
  • FIG. 3A shows a handle 42 a which is similar to that seen in FIG. 3 , but wherein a fluid channel 52 extends from the lumen 47 downwardly through the head 44 a and through the handle member 48 a .
  • a one way valve 50 is disposed within the lumen 47 , proximal to the location where the fluid channel 52 meets the lumen 47 .
  • An irrigation and/or suction tube 54 may be attached to the handle member 48 a to infuse fluid through or suction fluid and debris through the fluid channel 52 .
  • the one way valve will ensure that fluid infused or aspirated through the fluid channel 52 of the handle 42 a will not escape out of the proximal opening of the lumen 47 .
  • this one way valve 50 does allow the guidewire GW and dilation catheter 10 to be inserted through the lumen 47 , when desired.
  • the one way valve may provide the additional benefit of maintaining the position of the guidewire or dilatation catheter when it is inserted in the guide handle.
  • other types of valves other than a one-way valve may be used as an alternative (e.g., Touhy rotating type valve, slide to compress valve, etc.) Or, some embodiments may have just a valve and a thumb/finger hole to control the suction force as described above.]
  • FIG. 3B shows another embodiment of an optional handle 42 b comprising a clear or transparent rigid head 44 b having a male Luer fitting 46 b on one end and a lumen 47 extending therethrough.
  • the handle member 48 b is formed of a series or pivotally interconnected units 56 which allows the handle member 48 b to be conveniently formed into various shapes as desired by the operator.
  • FIG. 3C shows yet another handle 42 c comprising a malleable or rigid handle 48 c that is substantially the same as that shown in FIG. 3 , but wherein a clip 58 is provided at the top end of the handle member 48 c to clip the handle member 48 c onto the shaft of the guide catheter 40 c rather than inserting into the proximal end of the guide catheter.
  • FIG. 6 shows the system of FIG. 5 with the inclusion of the optional handle 42 on the proximal end of the guide catheter 40 c .
  • FIGS. 8A and 8B show examples of how a handle 42 may be used to facilitate concurrent holding of an endoscope as well as the guide catheter (or guide catheter/dilation catheter assembly) by a single hand (i.e., the “scope hand”) of the operator.
  • the handle head 44 may initially be loosely inserted into the proximal hub of the guide catheter 40 c .
  • the camera 62 and light cable 66 are attached to the endoscope 60 . While grasping the endoscope 60 in the manner shown in FIG.
  • the operator may rotate the handle 42 relative to the guide catheter 40 c to introduce the handle member 48 to the operator's scope hand.
  • the handle member 48 could be grasped by the operator's scope hand along with the endoscope 60 upon initial introduction.
  • the operator's other hand is used to push the male Luer fitting 46 of the handle 42 firmly into the female Luer fitting on the proximal end of the guide catheter 40 c , thereby locking the handle 42 to the guide catheter 40 c . Thereafter, the operator's other hand is used to manipulate the guidewire GW and dilation catheter 10 .
  • the operator may maintain continuous endoscopic visualization via the endoscope 60 while using the guidewire GW and dilation catheter to dilate the ostium of a paranasal sinus or other passageway within the ear, nose or throat.
  • positioning of the guidewire GW and/or balloon 14 (or other dilator) may be confirmed using fluoroscopy, trans-illumination or other techniques in addition to visualization via the endoscope 60 .
  • the guide handle 42 may also be used to allow the operator to hold or support the guide catheter 40 c (or the entire guide catheter/dilation catheter system) while keeping his hand a spaced distance away from the guide catheter shaft so as to avoid radiation exposure to his hand during use of the fluoroscope.
  • the shape of the handle member 48 may be modified one or more times prior to or during the procedure to facilitate comfortable grasping of the handle by the operator's scope hand and/or to adjust the position or angle of the endoscope relative to the guide catheter.
  • the handle member 48 is bent to a shape that results in a first angle A between the shaft of the guide catheter 40 c and the endoscope 60 , and the operator's other hand is being used to advance the guidewire GW through the lumen of the dilation catheter 10 .
  • FIG. 8A the handle member 48 is bent to a shape that results in a first angle A between the shaft of the guide catheter 40 c and the endoscope 60 , and the operator's other hand is being used to advance the guidewire GW through the lumen of the dilation catheter 10 .
  • the handle has been modified to a different shape that results in a lesser angle A between the shaft of the guide catheter 40 c and the endoscope 60 , and the operator's other hand is being used to advance the dilation catheter 10 through the lumen of the guide catheter 40 c.
  • the optional handle 42 may also be useful with other dilation catheters and other trans-nasal devices described in any or all of the parent applications of which this application is a continuation-in-part and/or those currently available commercially under the trademark Relieva from Acclarent, Inc., Menlo Park, Calif.
  • the handle 42 may be designed to connect by way of a unique or proprietary connector to the guide catheter or other device. Or, in some embodiments, the handle 42 may be pre-attached, integrally formed with or otherwise designed as a part or portion of the guide catheter or other device. In embodiments where the handle 42 is not detachable from the guide catheter or other device, it may nonetheless be rotatable and/or lockable in a desire position
  • An additional visible marker 19 may optionally be formed on the proximal end of the balloon 14 and/or on the distal shaft portion 12 dist , such as at the location where the proximal end of the balloon 14 is bonded to the distal shaft portion 12 dist .
  • These visible markers 19 , 24 , 26 are preferably of a color (e.g., black or blue) that contrasts with the pink color of the nasal mucosa so as to be easily visible within the nose.
  • the optional marker 19 on the proximal end of the a balloon 14 allows the operator to endoscopically view the proximal end of the balloon even when the remainder of the balloon is within the ostium of a paranasal sinus.
  • the other visible markers 24 , 26 formed on the proximal shaft are specifically designed for use in conjunction with a guide catheter as will be discussed in detail herebelow.
  • endoscopic images obtained of the markers or other portions of the guidewires GW, guide catheter 40 a - 40 f or dilation catheter 10 may have areas of glare which can obscure visualization of certain portions of the markers or devices during performance of the procedure.
  • an anti-glare (e.g., anti-reflective) treatment or coating may be applied to all or part of the sinus guide catheter 40 a - 40 f , sinus guidewire GW and/or dilation catheter 10 .
  • Such anti-glare treatment could be applied by etching or sand-blasting and therefore does not add profile to the device.
  • Such anti-glare coating could be applied by dip or spray coating and is very thin. The treatment or coating does not change the mechanical or functional properties of these devices.
  • a black polytetrafluoroethylene (PTFE) coating on the sinus guidewire GW may provide good anti-reflective characteristics.
  • PTFE polytetrafluoroethylene
  • Some of the commercially available anti-glare or anti-reflective coating can be applied.
  • an anti-glare surface treatment e.g., roughening, etching, etc.
  • an anti-glare component such as a sheath, ring, paint, etc.
  • the advantages and benefits of including visible markers and/or the anti-glare coating include, improved endoscopic visualization, safer and easier performance of the procedure, reduced balloon burst or damage to critical structures, accuracy of placement of devices and reduced fluoroscopy time or elimination of fluoroscopy.
  • FIGS. 9-11 are flow diagrams describing three (3) modes of use by which the system of the present invention may be used to dilate the ostium of a paranasal sinus.
  • the dilation catheter 10 is prepared for use separately from the guide catheter 40 a - 40 f .
  • the guide catheter 40 a - 40 f is initially inserted (along with an endoscope 60 ) and is advanced to a position that is within or near the ostium to be dilated.
  • An endoscope 60 is used to view the advancement and positioning of the guide catheter 40 a - 40 f and fluoroscopy may also be used to verify that the guide catheter is properly positioned near or within the ostium.
  • a handle 42 may be attached to the guide catheter 40 a - 40 f as described above or the operator may simply grasp the guide catheter 40 a - 40 f as well as the endoscope 60 with the scope hand, thus leaving the operator's other hand free to be used for subsequent handling and manipulation of the other devices used in this procedure.
  • a scope holder or assistant may be used to hold the endoscope 60 in the desired position thus freeing both of the operator's hands for handling and manipulation of the other devices.
  • the operator will insert the distal end of the guidewire into the proximal end of the guide catheter 40 a - 40 d and will advance the guidewire GW through the guide catheter 40 a - 40 d such that a distal portion of the guidewire GW passes through the sinus ostium and becomes coiled within the sinus cavity. Fluoroscopy (or any other suitable technique) may be used to verify that the guidewire has become coiled within the intended sinus cavity.
  • the proximal end of the guidewire GW is inserted into the distal end of the dilation catheter 10 and the dilation catheter 10 (with its balloon 14 or other dilator in its non-expanded state) is advanced over the guidewire and through the guide catheter 40 a - 40 d to a position where the dilator 14 is positioned within the sinus ostium.
  • the endoscope 60 may be used to view the advancement and positioning of the dilation catheter 10 .
  • the endoscope 60 may be used to view the proximal end of the balloon 14 or other dilator and/or the optional marker 19 (if present) on the proximal end of the balloon 14 or other dilator. Fluoroscopy may be used to image the radiographic markers 40 , 42 and the ostium to confirm that the mid-region 44 of the balloon 14 (or the appropriate portion of any other type of dilator) is positioned within the ostium.
  • the balloon 14 or other dilator After the balloon 14 or other dilator has been positioned within the ostium, the balloon is inflated (or the other dilator is expanded) thereby dilating the ostium.
  • the balloon is then deflated (or the dilator is returned to its non-expanded state) and the successful dilation of the ostium may be confirmed visually using the endoscope 60 and/or radiographically using a fluoroscope.
  • the dilation catheter 10 is prepared for use and is pre-inserted into the guide catheter 40 a - 40 f to a position where the first shaft marker 24 is flush with the proximal end of the guide catheter.
  • the dilation catheter 10 is prepared for use and is pre-inserted into the guide catheter 40 a - 40 f to a position where the first shaft marker 24 is flush with the proximal end of the guide catheter.
  • the guide catheter 40 a - 40 f in combination with the pre-inserted dilation catheter 10 is inserted transnasally (along with an endoscope 60 ) and is advanced to a position that is within or near the ostium to be dilated.
  • the endoscope 60 is used to view the advancement and positioning of the guide catheter 40 a - 40 f and fluoroscopy may also be used to verify that the guide catheter is properly positioned near or within the ostium.
  • a handle 42 may be attached to the guide catheter 40 a - 40 f as described above or the operator may simply grasp the guide catheter 40 a - 40 f as well as the endoscope 60 with the scope hand, thus leaving the operator's other hand free to be used for subsequent handling and manipulation of the other devices used in this procedure.
  • a scope holder or assistant may be used to hold the endoscope 60 in the desired position thus freeing both of the operator's hands for handling and manipulation of the other devices.
  • the operator will insert the distal end of the guidewire into the proximal Luer 20 of the dilation catheter 10 and will advance the guidewire GW through the dilation catheter 10 , out of the distal end of the guide catheter 40 a - 40 d and through the sinus ostium, causing a distal portion of the guidewire to become coiled within the sinus cavity.
  • Fluoroscopy (or any other suitable technique) may be used to verify that the guidewire has become coiled within the intended sinus cavity.
  • the dilation catheter 10 (with its balloon 14 or other dilator still in its non-expanded state) is advanced over the guidewire GW to a position where the balloon 14 or other dilator is positioned within the sinus ostium.
  • the endoscope 60 may be used to view the advancement and positioning of the dilation catheter. Although the distal portion of the balloon 14 or other dilator will be within the sinus and out of the field of view of the endoscope 60 , the endoscope 60 may be used to view the proximal end of the balloon 14 or other dilator and/or the optional marker 19 (if present) on the proximal end of the balloon 14 or other dilator. Fluoroscopy may be used to image the radiographic markers 40 , 42 and the ostium to confirm that the midregion 44 of the balloon 14 (or the appropriate portion of any other type of dilator) is positioned within the ostium.
  • the balloon 14 or other dilator After the balloon 14 or other dilator has been positioned within the ostium, the balloon is inflated (or the other dilator is expanded) thereby dilating the ostium.
  • the balloon is then deflated (or the dilator is returned to its non-expanded state) and the successful dilation of the ostium may be confirmed visually using the endoscope 60 and/or radiographically using a fluoroscope.
  • the dilation catheter 10 is prepared for use and the distal end of the guidewire is pre-inserted into the proximal Luer 20 of the dilation catheter 10 and advanced to a position where the distal end of the guidewire is within protruding just slightly out of the distal end of the dilation catheter 10 .
  • the dilation catheter 10 with the pre-inserted guidewire GW, is pre-inserted into the guide catheter 40 a - 40 f and advanced to a position where the first shaft marker 24 is flush with the proximal end of the guide catheter.
  • the guide catheter 40 a - 40 f with the dilation catheter 10 and guidewire pre-inserted therein is inserted through a nostril (along with an endoscope 60 ) and is advanced to a position that is within or near the ostium to be dilated.
  • the endoscope 60 is used to view the advancement and positioning of the guide catheter 40 a - 40 f and fluoroscopy may also be used to verify that the guide catheter is properly positioned near or within the ostium.
  • a handle 42 may be attached to the guide catheter 40 a - 40 f as described above or the operator may simply grasp the guide catheter 40 a - 40 f as well as the endoscope 60 with the scope hand, thus leaving the operator's other hand free to be used for subsequent handling and manipulation of the other devices used in this procedure.
  • a scope holder or assistant may be used to hold the endoscope 60 in the desired position thus freeing both of the operator's hands for handling and manipulation of the other devices.
  • the operator will advance the guidewire out of the distal end of the guide catheter 40 a - 40 f and through sinus ostium, causing a distal portion of the guidewire to become coiled within the sinus cavity. Fluoroscopy (or any other suitable technique) may be used to verify that the guidewire has become coiled within the intended sinus cavity.
  • the dilation catheter 10 (with its balloon 14 or other dilator still in its non-expanded state) is advanced over the guidewire GW to a position where the balloon 14 or other dilator is positioned within the sinus ostium.
  • the endoscope 60 may be used to view the advancement and positioning of the dilation catheter. Although the distal portion of the balloon 14 or other dilator will be within the sinus and out of the field of view of the endoscope 60 , the endoscope 60 may be used to view the proximal end of the balloon 14 or other dilator and/or the optional marker 19 (if present) on the proximal end of the balloon 14 or other dilator. Fluoroscopy may be used to image the radiographic markers 40 , 42 and the ostium to confirm that the midregion 44 of the balloon 14 (or the appropriate portion of any other type of dilator) is positioned within the ostium.
  • the balloon 14 or other dilator After the balloon 14 or other dilator has been positioned within the ostium, the balloon is inflated (or the other dilator is expanded) thereby dilating the ostium.
  • the balloon is then deflated (or the dilator is returned to its non-expanded state) and the successful dilation of the ostium may be confirmed visually using the endoscope 60 and/or radiographically using a fluoroscope.
  • the dilation catheter may be advanceable or maneuverable to its intended position without the use of a guide catheter 40 a - 40 f and/or guidewire GW.
  • the dilation catheter 10 may be advanced into the sphenoid sinus ostium without the use of a guidewire GW or guide catheter 40 a - 40 d .
  • the flexible balloon portion may be manipulated with forceps to enable insertion in the ostium. Similar techniques may apply to access of the frontal and maxillary ostium.
  • the system described herein includes a guide catheter 40 a - 40 f that is separate from the dilation catheter 10 has certain advantages. For example, by having two separate devices, the operator has separate control of the guide placement and may, in some cases, elect not to actually advance the guide into the ostium or recess before the ostium. Rather, the operator may in some instances elect to maneuver the guide catheter 40 a - 40 f to a position that is close to (e.g., aligned with) but not within the ostium or recess, and may then advanced just the relatively flexible dilation catheter 10 into the ostium or recess. This may avoid damage tissue, bone or other anatomical structures.
  • a guide that is separate from the dilation catheter allows flexibility of positioning and potentially less trauma than where a single rigid device (e.g., a rigid shafted dilation catheter) must be navigated to the desired location and then actually inserted into the ostium or other passageway to be dilated.
  • a single rigid device e.g., a rigid shafted dilation catheter

Abstract

Devices, systems and methods useable for dilating the ostia of paranasal sinuses and/or other passageways within the ear, nose or throat. A dilation catheter device and system is constructed in a manner that facilitates ease of use by the operator and, in at least some cases, allows the dilation procedure to be performed by a single operator. Additionally, the dilation catheter device and system may be useable in conjunction with an endoscope and/or a fluoroscope to provide for easy manipulation and positioning of the devices and real time visualization of the entire procedure or selected portions thereof. In some embodiments, an optional handle may be used to facilitate grasping or supporting a device of the present invention as well as another device (e.g., an endoscope) with a single hand.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 11/789,704, entitled “Systems for Treating Disorders of the Ear, Nose and Throat,” filed Apr. 24, 2007, now U.S. Pat. No. 8,747,389, which is a continuation in part of copending U.S. patent application Ser. No. 11/355,512, entitled “Devices, Systems and Methods Useable for Treating Frontal Sinusitis,” filed Feb. 16, 2006, which is a is a continuation in part of U.S. patent application Ser. No. 11/150,847, entitled “Devices, Systems and Methods Useable for Treating Sinusitus,” filed on Jun. 10, 2005, now U.S. Pat. No. 7,803,150, which is a continuation in part of U.S. patent application Ser. No. 10/944,270, entitled “Apparatus and Methods for Dilating and Modifying Ostia of Paranasal Sinuses and Other Intranasal or Paranasal Structures,” filed on Sep. 17, 2004, now abandoned, which is a continuation in part of U.S. patent application Ser. No. 10/829,917, entitled “Devices, Systems and Methods for Diagnosing and Treating Sinusitis and Other Disorders of the Ears, Nose and/or Throat,” filed on Apr. 21, 2004, now U.S. Pat. No. 7,654,997, the entire disclosures of each such application being expressly incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates generally to medical devices and methods and particularly to balloon catheters other devices that may be inserted through the nose and used to dilate the ostia of paranasal sinuses for treatment of sinusitis.
  • BACKGROUND
  • The paranasal sinuses are hollow cavities in the skull connected by small openings, known as ostia, to the nasal canal. Normally, air passes into and out of the paranasal sinuses through the ostia. Also, mucus is continually formed by the mucosal lining of the sinus and drains through the ostia and into the nasal canal.
  • Sinusitis is a general term that refers to inflammation in one or more of the paranasal sinuses. Acute sinusitis can be associated with upper respiratory infections or allergic conditions which cause tissue swelling and temporarily impedes normal trans-ostial drainage and ventilation of the sinuses, thereby resulting in some collection of mucous and possibly infection within the sinus cavities. Chronic sinusitis is a long term condition characterized by persistent or long term narrowing or blockage of the sinus ostia, resulting in chronic infection and inflammation of the sinuses. Chronic sinusitis is often associated with long standing respiratory allergies, nasal polyps, hypertrophic nasal turbinates and/or deviated internasal septum. While acute sinusitis is typically caused by infection with a single pathogen (e.g., one type of bacteria, one type of virus, one type of fungus, etc.), chronic sinusitis is often associated with multiple pathogen infections (e.g., more than one type of bacteria or more than genus of microorganism).
  • Chronic sinusitis, if left untreated, can result in irreparable damage to the tissues and/or bony structures of the paranasal anatomy. The initial treatment of chronic sinusitis usually involves the use of drugs such as decongestants, steroid nasal sprays and antibiotics (if the infection is bacterial). In cases where drug treatment alone fails to provide permanent relief, surgical intervention may be indicated.
  • Functional endoscopic sinus surgery (FESS) is commonly performed use an endoscope and various rigid instruments inserted through the patient's nostril. The endoscope is used to visualize the positioning and use of the operative instruments to perform tasks intended to improve sinus drainage, such as removal of polyps, straightening of deviated septum and excision of mucous membrane and bone to enlarge the narrow the sinus ostia or to create new openings into the sinuses.
  • Recently technique known as the Balloon Sinuplasty™ procedure has been developed by Acclarent, Inc. of Menlo Park, Calif. for treatment of sinusitis. A number of copending U.S. patent applications, including parent application Ser. Nos. 11/355,512, 11/150,874, 10/944,270 and Ser. No. 10/829,917, describe various embodiments of the Balloon Sinuplasty™ procedure as well as various devices useable in the performance of such procedure. In the Balloon Sinuplasty™ procedure, a guide catheter is inserted into the nose and positioned within or adjacent to the ostium of the affected paranasal sinus. A guidewire is then advanced through the guide catheter and into affected paranasal sinus. Thereafter, a dilation catheter having an expandable dilator (e.g., an inflatable balloon) is advanced over the guidewire to a position where the dilator is positioned within the ostium of the affected paranasal sinus. The dilator is then expanded causing dilation of the ostium and remodeling of bone adjacent to the ostium, without required incision of the mucosa or removal of any bone. The catheters and guidewire are then removed and the dilated ostium allows for improved drainage from and ventilation of the affected paranasal sinus.
  • Parent application Ser. Nos. 11/355,512, 11/150,874, 10/944,270 and Ser. No. 10/829,917 also describe methods for transnasal dilation of other passageways in the ear, nose and/or throat, such as the Eustachian tube and nasolacrimal duct.
  • SUMMARY OF THE INVENTION
  • In accordance with the invention, there is provided a dilation catheter device and system that is useable for dilating the ostium of a paranasal sinus, or other passageway within the ear, nose or throat. This dilation catheter device and system is constructed in a manner that facilitates ease of use by the operator and, in at least some cases, allows the dilation procedure to be performed by a single operator, thereby minimizing the number of personnel required for the procedure. Additionally, the dilation catheter device and system of the present invention is useable in conjunction with an endoscope and/or a fluoroscope to provide for easy manipulation and positioning of the devices and real time visualization of the entire procedure or selected portions thereof. In some embodiments, an optional handle may be attached to the dilation catheter or to a guide catheter through which the dilation catheter is inserted and such handle may be graspable along with another device (e.g., an endoscope) by a single hand. In this manner, the operator may control the dilation catheter an another device (e.g., an endoscope) with one hand while being free to use his other hand for other purposes.
  • Further in accordance with the invention, there are provided systems for treating a disease or disorder of the ear, nose or throat of a human or animal subject. Such systems generally comprise a guide catheter and a working catheter. The working catheter is advanceable through the guide catheter. The guide catheter has a substantially rigid shaft and the working catheter has a proximal portion that is substantially rigid. The working catheter also has a distal portion that is more flexible than the substantially rigid proximal portion. The working catheter is sized relative to the guide catheter so that, at least when the distal portion of the working catheter is advanced out of a distal opening of the guide catheter and the working element is being used to perform a desired diagnostic or therapeutic task, only the substantially rigid proximal portion (or some portion thereof will extend out of the proximal opening of the guide catheter. In some embodiments, the working catheter may additionally be sized relative to the guide catheter so that the working catheter is initially advanceable to a first position where its distal end of the working catheter has not yet emerged out of the distal end of the guide catheter but only the substantially rigid proximal portion of the working catheter is protruding out of the proximal end of the guide catheter.
  • Still further in accordance with the invention, there are provided sinus ostium dilation catheter devices that generally comprise an elongate catheter shaft having proximal shaft section that is substantially rigid and a distal shaft section that is more flexible than the proximal shaft section. In some embodiments, the proximal shaft section may extend along at least about 50% of the overall length of the device. A guidewire lumen extends through at least a portion of the catheter shaft to facilitate advancement of the catheter over a guidewire. A dilator is located on the distal shaft section, such dilator having a non-expanded configuration and an expanded configuration.
  • Still further in accordance with the present invention there are provided methods for dilating the ostia of paranasal sinus and other passageways within the ear, nose or throat of a human or animal subject. In general, such methods comprise the steps of a) inserting a guide catheter having a proximal end and a distal end through one of the subject's nostrils and positioning the guide catheter within or near the passageway to be dilated, b) inserting, through the guide catheter, a dilation catheter comprising i) an elongate catheter shaft having a proximal end, a distal end, a proximal shaft section that is substantially rigid and a distal shaft section that is more flexible than the proximal shaft section, ii) a guidewire lumen extending through at least a portion of the catheter shaft to facilitate advancement of the catheter over a that is substantially rigid and a distal shaft section that is more flexible than the proximal shaft section, ii) a guidewire lumen extending through at least a portion of the catheter shaft to facilitate advancement of the catheter over a guidewire and iii) a dilator located on the distal shaft section, said dilator being in a non-expanded configuration, c) positioning the dilator within the passageway and d) causing the dilator to expand to an expanded configuration, thereby dilating the passageway.
  • Still further embodiments, aspects, features and details of the present invention will be understood upon reading of the detailed description and examples set forth herebelow.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side view of one embodiment of a dilation catheter of the present invention with its dilator in an expanded configuration.
  • FIG. 1A is a cross sectional view through line 1A-1A of FIG. 1 with an enlarged break-out view of a portion thereof.
  • FIG. 1B is an enlarged side view of the dilator and distal end of the dilation catheter of FIG. 1.
  • FIG. 2 shows a collection of transnasal guide catheters useable as components of the system of the present invention.
  • FIG. 3 is a side view of one embodiment of a handle apparatus of the present invention.
  • FIG. 3A is a side view of another embodiment of a handle apparatus of the present invention.
  • FIG. 3B is a side view of yet another embodiment of a handle apparatus of the present invention.
  • FIG. 3C is a side view of yet another embodiment of a handle apparatus of the present invention.
  • FIG. 4 is an exploded, partial view of one embodiment of a dilation catheter system of the present invention including an optional handle apparatus.
  • FIG. 5 is a schematic diagram of one embodiment of a dilation catheter system of the present invention (without the optional handle apparatus) being used to dilate the ostium of a paranasal sinus.
  • FIG. 6 is a schematic diagram of one embodiment of a dilation catheter system of the present invention (with the optional handle apparatus) being used to dilate the ostium of a paranasal sinus.
  • FIG. 7A shows a partial view of the system of FIG. 5 including a guidewire stop/connector apparatus of the present invention mounted on the guidewire prior to advancement of the guidewire.
  • FIG. 7B shows a partial view of the system of FIG. 5 including a guidewire stop/connector apparatus of the present invention mounted on the guidewire and engaged with the hub of the dilation catheter following advancement of the guidewire.
  • FIG. 8A shows the dilation catheter system of FIG. 5 and an endoscope being held by one hand of the operator while the operator's other hand is being used to advance the guidewire of the system into a paranasal sinus.
  • FIG. 8B shows the dilation catheter system of FIG. 6 and an endoscope being held by one hand of the operator while the operator's other hand is being used to advance the dilation catheter so that its dilator becomes positioned within the ostium of the paranasal sinus.
  • FIG. 9 is a flow diagram showing steps in one method for using a dilation catheter system of the present invention.
  • FIG. 10 is a flow diagram showing steps in another method for using a dilation catheter system of the present invention.
  • FIG. 11 is a flow diagram showing steps in yet another method for using a dilation catheter system of the present invention.
  • DETAILED DESCRIPTION
  • The following detailed description and the accompanying drawings are provided for the purpose of describing some, but not necessarily all, examples or embodiments of the invention. The contents of this detailed description and the accompanying drawings are exemplary in nature and do not limit the scope of the invention in any way.
  • A Dilation Catheter of the Present Invention
  • FIGS. 1-1B show one example of a dilation catheter device 10 of the present invention with a guidewire GW operatively inserted therethrough. In this example, the dilation catheter device 10 comprises an elongate catheter shaft 12 having a proximal shaft section 12prox that is substantially rigid and a distal shaft section 12 dist that is more flexible than the proximal shaft section 12 prox. An expandable dilator, such as a balloon 14 or other suitable mechanical or non-inflational dilator, is mounted on the distal shaft section 12 dist and a distal tip member 18 protrudes beyond the distal end of the balloon 14, as shown. Also, a proximal T hub 16 is attached to the proximal end of the proximal shaft section 12 prox. This proximal T hub 16 has a proximal Luer connector 20 and a side arm 22 having a female Luer connector that extends substantially perpendicular to the longitudinal axis of the hub 16, as shown. When compared to a typical Y hub, the side arm 22 of this T hub is further away from the proximal Luer connector 20 and is oriented at a right angle to the proximal Luer connector 20. Thus, tubing connected to this perpendicular side arm 22 is less likely to obscure or block the proximal Luer connector 20 than in a typical Y hub and the operator is less likely to confuse the proximal Luer connector 20 with the Luer connector on the side arm 22.
  • Although, in the particular example shown in the drawings, the expandable dilator comprises a balloon 14, it is to be appreciated that various other types of expandable dilators such as expandable cages, struts and other expandable mechanical assemblies may be used as an alternative to a balloon 14. Some non-limiting examples of expandable dilators other than balloons have previously been described in parent U.S. patent application Ser. Nos. 11/355,512, 11/150,874, 10/944,270 and Ser. No. 10/829,917, which are expressly incorporated herein by reference.
  • For use in teenage or adult humans, the overall length of the catheter shaft 12 may be in the range of about 15 cm to about 25 cm, the proximal shaft section 12 prox may have a length in the range of about 10 cm to about 15 cm and the distal shaft section 12 dist may have a length in the range of about 5 cm to about 10 cm. In the particular example shown in the drawings and described herein, the catheter shaft 12 has an overall length of 21.2 cm, the proximal shaft section 12 prox being 12.5 cm in length and the distal shaft section 12 dist being 8.7 cm in length. These optimal lengths of the proximal shaft section 12 prox and distal shaft section 12 dist have been arrived at based on a number of considerations, which will be discussed more fully herebelow in relation to the concurrent use of this dilation catheter 10 with a trans-nasal guide catheter.
  • As may be appreciated from the cross sectional view of FIG. 1A, the proximal shaft section 12 prox comprises a rigid outer tube 30 a flexible middle tube 32 disposed substantially coaxially within the lumen of the rigid outer tube 30 and an inner tube 36 disposed substantially coaxially within the lumen of the middle tube 32. In this particular example, the outer tube 30 is formed of stainless steel hypotube having an outer diameter of 0.076 inches and an inner diameter of 0.068 inches. As an alternative to stainless steel hypotube, this outer tube 30 may be formed of rigid non-metallic material such as polyetheretherketone (PEEK) or other rigid plastics suitable for such application. Alternatively, other rigid reinforcing members may be used in, or in lieu of, the outer tube, such as wires (round, flat, square or of other cross section), partial tubes (e.g., arcs), etc. Also, in this particular example, the middle tube 32 is formed of Pebax having an inner diameter of 0.055 inches, an outer diameter of 0.065.+−.0.003 inches. The inner tube 36 is formed of polyether block copolymer tubing (e.g., Pebax® Resin, Arkema, Inc., Philadelphia, Pa.) having an inner diameter of 0.038 inches, an outer diameter of 0.048 inches.
  • The outer tube 30 terminates at the end of the proximal shaft section 12 prox. The middle tube 32 and inner tube 36 extend beyond the distal end of the outer tube 30, forming the distal shaft section 12 dist.
  • As seen in the enlarged break-out segment of FIG. 1A, a polyether block copolymer film laminate 31 (e.g., Pebax® Resin, Arkema, Inc., Philadelphia, Pa.) is heat shrunk onto the outer surface of the catheter shaft 12 from the proximal hub 16 to the balloon 14. This laminate 31 provides a smooth outer surface and smoothes the step-down in diameter from the distal end of the proximal shaft section 12 prox to the proximal end of the distal shaft section 12 dist (i.e., it provides a smooth surface over the distal end of the outer tube 30 and the adjacent outer surface of the middle tube 32). The smooth step down may also be formed by an adhesive fillet. In other embodiments, the smooth step down may be formed by tapering or chamfering the structure of the distal end of the proximal shaft, eliminating the need for a laminate or adhesive.
  • The proximal end of the middle tube 32 extends into and is secured to the hub 16, distal to side arm Luer connector 22. The proximal end of the inner tube 36 extends into and is secured within hub 16, proximal to the side arm Luer connector 22 and in direct alignment and fluid communication with proximal Luer connector 20. The distal end of the middle tube 32 terminates within the balloon 14 and the proximal end of the dilator is secured to the outer surface of the middle tube. The distal end of the inner tube 36 also extends through the balloon 14 and protrudes distally beyond the balloon 14, forming the relatively flexible distal tip member 18 as shown in FIG. 1. The distal end of the balloon 14 is secured to the outer surface of the inner tube 36. In this manner, the inner tube lumen 38 extends through the entire catheter shaft 12 from the proximal Luer connector 20 through the distal tip 18 and may be used a guidewire lumen or as a working lumen for infusion of irrigation solution, medicaments, contrast media or other substances and/or for aspiration of blood, fluids or debris. Guidewires that may be advantageously used in conjunction with this dilation catheter 10 may have a length of 60 cm to 80 cm and may be either 0.014 inch or 0.035 inch, such as those commercially available as the Relieva® Sinus Guidewires (Acclarent, Inc., Menlo Park, Calif.) or sizes in between such as 0.018 inch, 0.020 inch, or 0.033 inch. Although the drawings show an over-the-wire catheter having a guidewire lumen that extends through the entire length of the catheter, it is to be appreciated that guidewire lumens extending less than the entire length of the catheter (e.g., rapid exchange guidewire lumens) may be used as an alternative to the over-the-wire lumen shown. Additionally, in some embodiments, rather than advancing the catheter over a guidewire, the catheter may be equitted with a fixed guidewire tip such as any of those described in U.S. patent application Ser. No. 11/438,090 entitled Catheters with Non-Removable Guide Members Useable for Treatment of Sinusitis, the entire disclosure of which is expressly incorporated herein by reference.
  • The inner tube lumen 38 may be lined or coated with a lubricious material to facilitate passages of the guidewire GW through that lumen 38. The diameter of the inner tube 36 may be changed to accommodate guidewires of different diameter. In the particular embodiment described, the inner tube lumen 38 is sized to receive a 0.035 inch diameter guidewire GW. The inner tube lumen 38 may be internally lined or coated with a 2% solution of linear polydimethylsiloxane (PDMS) (e.g., Dow Corning® 360 Medical Fluid, Dow Corning Corporation, Midland, Mich.) diluted in isopropyl alcohol or another silicone material (such as a 2% solution of Dow-Corning MDX4-4159 in isopropyl alcohol). The coating is cured at room temperature.
  • The luminal space 34 between the outer surface of the inner tube 36 and the inner surface of the middle tube 32 is in fluidic communication with the side arm Luer connector 22 and extends to the interior of the balloon 14. Thus, this luminal space 34 serves as the passageway through which inflation fluid is passes into and out of the balloon 14. The size of this luminal space 34 and the relatively short length of the catheter shaft 12 are optimized to minimize drag on inflation fluid passing through this luminal space 34 and allows for rapid deflation of the balloon 14. The clearance of 0.006 to 0.007 inches between the inner and outer member is desired for catheter length of 20-35 cm. The desired deflation time is 5-10 seconds and the deflation time is measured with application of negative pressure on the inflation/deflation lumen using a 20 cc inflation device that is filled with 10 cc contrast/saline mixture.
  • Balloon Construction and Coating
  • FIG. 1B shows details of the balloon 14. In this example, the balloon 14 is a non-compliant balloon formed of polyethylene teraphthalate (PET) film having a thickness of 0.8 mils. The balloon 14 has a cylindrical midregion 44 and tapered proximal and distal end regions 46 prox and 46 dist. The balloon 14 has an overall length of 2.6 cm. The cylindrical midregion 44 of the balloon 14 has a length of 16 mm (i.e., the “working length”) and each tapered end region 46 prox, 46 dist has a length of 5 mm. The balloon 44 has a burst pressure of at least 14 to 16_atmospheres. The outer diameter of the balloon 14, when inflated to a pressure of 14 atmospheres, may be in the range of 5.0 mm to 5.5 mm. In this particular example, the balloon 14 is sized for dilation of the ostia of paranasal sinuses and such balloon 14 is offered in sizes having outer diameters of 5 mm or 7 mm when inflated to a pressure of 14 atmospheres. Dilation catheters 10 having the 5 mm diameter balloon 14 may be more suitable for use in subjects of small body size while dilation catheters 10 having the 7 mm diameter balloon 14 may be more suitable for use in subjects having a large body size. Smaller or larger balloons may be used for dilating structures other than the ostia of paranasal sinuses (e.g., Eustachian tube or naso-lacrimal duct dilations). Larger balloons and higher pressures may be used for dilating revision patients (i.e., patients who have had prior ostial dilations or who's ostia have been previously modified by surgery).
  • The tapered end regions 46 prox, 46 dist are tapered at angle A relative to the longitudinal axis LA of the catheter shaft 12 on which the balloon 14 is mounted. This angle of taper A may be in the range of about 10 degrees to about 30 degrees. In the particular example shown in the drawings, such angle of taper A is 20 degrees. This 20 degree angle of taper provides improved transition from balloon working length to the necks, lower profile, improved crossing, improved track, easier withdrawal in the sinus guide after balloon inflation. It also provides optimal performance with minimum increase of overall balloon length.
  • In some embodiments, it may be desirable for the relatively stiff proximal shaft portion 12 prox to extend all the way to or near the proximal end of the balloon 14 or other dilator. Such catheter having a rigid shaft from its proximal end to or near the dilator may be advanced directly into the sphenoid sinus ostium with or without the use of a guide catheter. In some embodiments, the proximal end of the balloon 14 could be bonded to the relatively rigid proximal shaft portion 12prox. Such a construction would allow the flexible distal tip 18 to track turns in the anatomy and may be useable to dilate certain passageways (e.g., the sphenoid sinus ostium) without disrupting the normal anatomy. Additionally, embodiments with relatively short distal shaft sections (e.g., 1-2 cm beyond the distal end of the rigid proximal shaft portion are particularly suitable for dilating the ostia of frontal sinuses. Also, in some embodiments, the proximal shaft section 12prox may be malleable so that it may be shaped (e.g., bent or formed to a desire curve or multi-curvate shape) to facilitate access to any desired passageways or locations.
  • Dilation Catheter/Guide Catheter System
  • FIG. 2 shows a series of sinus guide catheters 40 a-40 f that may be used in conjunction with the dilation catheter 10. These guide catheters 40 a-40 f are substantially rigid and each has a preset distal curve of 0 degrees (40 a), 30 degrees (40 b), 90 degrees (40 d), 70 degrees (40 c) or 110 degrees (40 e and 40 f). Different curvatures are useable to access the ostia of different sinuses. For example, a 70 degree guide is typically used to access the ostium of a frontal sinus, a 90 or 110 degree guide is typically used to access the ostium of a maxillary sinus, etc. Each of these guide catheters 40 a-40 f has a length of 12.7 cm. These sinus guide catheters are described in parent U.S. patent application Ser. Nos. and are now commercially available as Relieva® sinus guide catheters from Acclarent, Inc., Menlo Park, Calif.
  • FIG. 5 shows a system comprising a guide catheter 40 c having a 90 degree curve formed therein in combination with a dilation catheter 10 shown in FIG. 1. In optimizing the relative lengths of the proximal shaft section 12 prox and distal shaft section 12 dist, applicants have determined that, even the maximum distance that the distal end of the dilation catheter of this example is required travel beyond the distal end of the guide catheter 40 a-40 c is approximately 2.5 cm. However, it will be appreciated that this is just one example. For other application, travel beyond 2.5 cm may be desirable or necessary. Also, it is desirable for the entirety of the more flexible distal shaft section 12 dist to be advanceable into the guide catheter 40 a-40 f proximal to any curve formed in the guide catheter. With these objectives in mind, the example of the dilation catheter 10 shown in the drawings has a shaft that is about 20 cm in length, with the proximal shaft section 12 prox being 11.3 cm in length and the distal shaft section 12 dist being 8.7 cm in length. Thus, prior to or during the procedure, the entire distal shaft section 12 dist of the dilation catheter 10 may be initially advanced into the rigid guide catheter 40 c without the distal portion of the dilation catheter 10 passing through the curve of the guide catheter 40 c and with only a portion of the rigid proximal shaft section 12 prox of the dilation catheter 10 protruding out of the proximal end of the guide catheter 40 c. To facilitate such positioning of the dilation catheter 10 within the guide catheter 40 d, a first shaft marker 26 is provided on the proximal shaft section 12 prox of the dilation catheter shaft 12. The distal edge of this first shaft marker 26 is 2.7 cm proximal to the distal end of the proximal shaft section 12 prox and 11.4 cm from the distal end of the distal tip member 18. If the operator advances the dilation catheter 10 into the guide catheter 40 c until the distal edge of the first shaft marker 26 is flush with the proximal end of the guide catheter 40 c, the entire distal shaft portion 12dist as well as the distal-most 3 cm of the proximal shaft portion 12 prox will be housed within the guide catheter 40 c such that the distal end of the dilation catheter 10 is located proximal to the curve formed near the distal end of the guide catheter 40 c. Such positioning of the dilation catheter 10 within the guide catheter 40 c provides a guide catheter/dilation catheter assembly that is substantially rigid from the proximal hub 16 of the dilation catheter 10 to the distal end of the guide catheter 40 c. As a result, the operator may hold or support the entire assembly by grasping or supporting just one location on either the dilation catheter 10 or guide catheter 40 d. For example, the user may hold or support the entire assembly by using his fingers to grasp or support either the proximal hub of the guide catheter 40 c, the proximal hub 16 of the dilation catheter 10 or somewhere on the proximal shaft section 12 prox of the dilation catheter or on the shaft of the guide catheter 40 c. Such rigidity also substantially eliminates the potential for the exteriorized portion of the dilation catheter 10 to droop down onto the subject's chest or onto the adjacent operating table.
  • As explained above, in this example, the rigid proximal shaft segment 12 prox of the dilation catheter 10 is 11.3 cm in length and the guide catheter 40 d is 12.7 cm in length. Thus, when inserted into the subject's body, the overall length of the portion of the system that remains exteriorized (e.g., the proximal part of the guide catheter 10 extending out of the subject's nose and the proximal part of the dilation catheter 10 extending out of the proximal end of the guide catheter 40 c) is not only rigid, but sufficiently short (e.g., typically less than 9 cm) to be easily manageable and capable of being held or supported by a single hand of the operator, thereby allowing the operator's other hand to be used for other purposes, such as for advancing/retracting the guidewire GW or advancing/retracting the dilation catheter 10 in the manner described herebelow in connection with FIGS. 9-11.
  • The second shaft marker 24 correlates to the position of the balloon. If the dilation catheter 10 is advanced to a position where the distal edge of the second shaft marker 24 is flush with the proximal end of the guide catheter 10, the distal tip of the balloon catheter will be flush with the distal tip of the guide catheter 40 d. When the proximal edge of the second shaft marker 24 is flush with the proximal end of the guide catheter 10, the entire balloon 14 will have advanced out of the distal end of the guide catheter 40 d and the operator will know that it is safe to inflate the balloon. Typically, as seen in FIG. 5, the balloon 14 is advanced some distance out of the distal end of the guide catheter 40 d until the balloon 14 is positioned within the sinus ostium SO or other passageway to be dilated. As seen in the enlarged view of the balloon 14 shown in FIG. 1B, proximal and distal radiographic markers 40, 42 are provided on the catheter at either end of the cylindrical segment 44 of the balloon. A C arm fluoroscope may be positioned and used to image those proximal and distal markers 40, 42 as well as the sinus ostium SO and the position of the dilation catheter 10 may be adjusted as needed until the sinus ostium SO is midway between the proximal and distal radiographic markers 40, 42. Thereafter, an inflator 50 attached to the side arm Luer connector 22 may be used to inflate the balloon 14, thereby dilating the sinus ostium SO as shown in FIG. 5. In keeping with the operator's ability to use a single hand to hold or support the exteriorized portion of the system, the inflator 50 may be attached to the side arm Luer connector 22 in advance and may be controlled by a foot pedal which is actuated by the operator's foot.
  • In some applications of the system shown in FIG. 5, an endoscope may be placed in the nose and used to view all or part of the procedure. Because the exteriorized portion of the system is substantially rigid and is typically less than 15 cm in length, the operator may use a single hand to hold the endoscope as well as the dilation catheter/guide catheter system. Alternatively, a scope holder may be used to hold the endoscope in a fixed position while the operator positions and uses the system seen in FIG. 5. Alternatively, an optional handle may be used as shown in FIGS. 3-4, 6 and 8A-8B and described below.
  • Optionally, a member 61 may be attached to the guidewire. Such member may serve to prevent the dilation catheter 10 and/or guide catheter 40 a-40 f from inadvertently sliding off of the proximal end of the guidewire. Also, such member 61 may limit the length of guidewire GW that may be advanced through the dilation catheter 10. This will prevent the operator from advancing too much of the guidewire GW into the subject's sinus, as may injure or damage the mucosa lining the sinus cavity. In some embodiments, this member 61 may be a standard guidewire torquer of the type commercially available an well known in the fields of interventional cardiology and/or radiology. One example of a commercially available guidewire torquer that is useable in this application is a two part torquer available as Part No. 97333 from Qosina, Corp., Edgewood, N.Y.
  • Alternatively, the member 61 may comprise a guidewire stop/connector apparatus 61 a as shown in FIGS. 7A-7B. This stop/connector apparatus 61 a comprises a rigid plastic body 63 having a lumen extending therethrough and a tapered elastomeric tube member 65 on its distal end. The stop/connector apparatus 61 a is advanced over the guidewire GW to the desired location. The inner diameter of the tapered elastomeric tube member 65 fits snuggly on the guidewire thereby holding the stop/connector apparatus 61 a as seen in FIG. 7A. The guidewire GW is subsequently advanced through the dilation catheter 10 until the tapered elastomeric tube member 65 is received within and frictionally engages the proximal female Luer connector 20 on the hub of the dilation catheter, as shown in FIG. 7B. This limits advancement of the guidewire GW and also frictionally locks the guidewire GW to the dilation catheter 10 so that the operator may move both the guidewire GW and the dilation catheter 10 as a unit. If the operator decides to advance more of the guidewire into the sinus, the operator may grasp and move the stop/connector apparatus 61 a by applying sufficient force to overcome the frictional engagement between the stop/connector apparatus 61 a and the guidewire GW and/or between the stop/connector apparatus 61 a and the guide catheter hub. The force required to overcome such frictional engagements will preferably be greater than the forces that would normally result form routine movement and use of the system, thereby allowing the stop/connector apparatus 61 a to perform its locking function while still allowing the location of the stop/connector apparatus 61 a to be volitionally adjusted by the operator when necessary.
  • Alternatively or additionally, if desired, another stop/connector apparatus 61 a of larger size (or another suitable locking apparatus such as a Touhy-Borst valve) may be mounted on the rigid proximal shaft section 21prox of the dilation catheter 10 and received within the proximal end of the guide catheter 40 a-f to limit the advancement of the dilation catheter 10 through the guide catheter 40 a-f and to frictionally lock the dilation catheter 10 to the guide catheter 40 a-f in the same manner.
  • Dilation Catheter/Guide Catheter System with Optional Handle
  • FIG. 3 shows an optional handle 42 that may be attached to the guide catheter 40 a-40 d to facilitate single-handed holding of the guide catheter/dilation catheter system as well as an endoscope (or other device). The handle shown in FIG. 3 comprises a rigid head 44 having a male Luer 10 fitting on one end, a lumen 47 extending therethrough and a handle member 48 extending therefrom. As seen in the exploded view of FIG. 4, the male Luer fitting 46 may be inserted into the proximal end of the guide catheter 40 c and the guidewire GW and guide catheter 10 may then be inserted through the lumen 47 of the handle head 44 and through the guide catheter. The handle head 44 may be clear or transparent so that the operator may view the shaft markers 24, 26 on the dilation catheter shaft 12 as the dilation catheter 10 is advanced through the handle head 44. Alternatively, the locations of the shaft markers 24, 26 may be adjusted on the catheter shaft 12 to take into account the additional guide length added by the handle head 44. The handle member 48 is preferably about the size of a standard ink pen and may be conveniently grasped by a human hand. The handle member 48 may have a roughened or elastomeric surface to facilitate gripping by a gloved hand and to deter slippage of the handle from the operator's grip. The handle member 48 may be shapeable (e.g., malleable or bendable) to allow the operator to adjust the shape and/or angle of the handle relative to the shaft of the guide catheter 40 c. In some embodiments, the handle member 48 may be pre-shaped to accommodate a typical user and allow fine tuning by individual user. Also, in some embodiments, the handle member 48 may have foam or other material on its surface to facilitate grip. The handle member 48 may have various different cross sectional profiles (e.g., round, oval, 3 sided, 4 sided, 5 sided, 6 sided, etc.) The handle 48 serves to facilitate grip and control to manipulate the dilation catheter along with a separate device (e.g., an endoscope or other tool) without having to use second hand. In this manner, the user may adjust rotation of a guide catheter while observing under endoscope (all with one hand) and use other hand to advance and place the guidewire or other device. Also, in some embodiments, the handle member 48 may include finger loop(s) for easier to translate handle/device attached up/down relative to other device held (e.g. scope) without need for other hand to adjust. Also, in some embodiments, a pinch valve or hole can be strategically placed in handle 48 to actuate/allow control of suction or fluid delivery via handle device (e.g., the user may pinch the handle with fingers to restrict flow through handle) or the handle 48 may have a suction hole where the user must cover the suction hole to actuate suction through the optional handle 42.
  • Alternative embodiments of the handle are shown in FIGS. 3A, 3B and 3C. FIG. 3A shows a handle 42 a which is similar to that seen in FIG. 3, but wherein a fluid channel 52 extends from the lumen 47 downwardly through the head 44 a and through the handle member 48 a. A one way valve 50 is disposed within the lumen 47, proximal to the location where the fluid channel 52 meets the lumen 47. An irrigation and/or suction tube 54 may be attached to the handle member 48 a to infuse fluid through or suction fluid and debris through the fluid channel 52. The one way valve will ensure that fluid infused or aspirated through the fluid channel 52 of the handle 42 a will not escape out of the proximal opening of the lumen 47. However, this one way valve 50 does allow the guidewire GW and dilation catheter 10 to be inserted through the lumen 47, when desired. The one way valve may provide the additional benefit of maintaining the position of the guidewire or dilatation catheter when it is inserted in the guide handle. It will be appreciated that other types of valves other than a one-way valve may be used as an alternative (e.g., Touhy rotating type valve, slide to compress valve, etc.) Or, some embodiments may have just a valve and a thumb/finger hole to control the suction force as described above.]
  • FIG. 3B shows another embodiment of an optional handle 42 b comprising a clear or transparent rigid head 44 b having a male Luer fitting 46 b on one end and a lumen 47 extending therethrough. In this embodiment, the handle member 48 b is formed of a series or pivotally interconnected units 56 which allows the handle member 48 b to be conveniently formed into various shapes as desired by the operator.
  • FIG. 3C shows yet another handle 42 c comprising a malleable or rigid handle 48 c that is substantially the same as that shown in FIG. 3, but wherein a clip 58 is provided at the top end of the handle member 48 c to clip the handle member 48 c onto the shaft of the guide catheter 40 c rather than inserting into the proximal end of the guide catheter.
  • FIG. 6 shows the system of FIG. 5 with the inclusion of the optional handle 42 on the proximal end of the guide catheter 40 c. FIGS. 8A and 8B show examples of how a handle 42 may be used to facilitate concurrent holding of an endoscope as well as the guide catheter (or guide catheter/dilation catheter assembly) by a single hand (i.e., the “scope hand”) of the operator. With reference to FIGS. 5 and 8A-8B, the handle head 44 may initially be loosely inserted into the proximal hub of the guide catheter 40 c. The camera 62 and light cable 66 are attached to the endoscope 60. While grasping the endoscope 60 in the manner shown in FIG. 8A, the operator may rotate the handle 42 relative to the guide catheter 40 c to introduce the handle member 48 to the operator's scope hand. Alternatively, the handle member 48 could be grasped by the operator's scope hand along with the endoscope 60 upon initial introduction. When positioning of the endoscope 60 and guide catheter 40 c have been achieved, the operator's other hand is used to push the male Luer fitting 46 of the handle 42 firmly into the female Luer fitting on the proximal end of the guide catheter 40 c, thereby locking the handle 42 to the guide catheter 40 c. Thereafter, the operator's other hand is used to manipulate the guidewire GW and dilation catheter 10. In this manner, the operator may maintain continuous endoscopic visualization via the endoscope 60 while using the guidewire GW and dilation catheter to dilate the ostium of a paranasal sinus or other passageway within the ear, nose or throat. As explained in more detail below, positioning of the guidewire GW and/or balloon 14 (or other dilator) may be confirmed using fluoroscopy, trans-illumination or other techniques in addition to visualization via the endoscope 60. The guide handle 42 may also be used to allow the operator to hold or support the guide catheter 40 c (or the entire guide catheter/dilation catheter system) while keeping his hand a spaced distance away from the guide catheter shaft so as to avoid radiation exposure to his hand during use of the fluoroscope.
  • In embodiments where the handle member 48 is shapeable (e.g., malleable or bendable) the shape of the handle member 48 may be modified one or more times prior to or during the procedure to facilitate comfortable grasping of the handle by the operator's scope hand and/or to adjust the position or angle of the endoscope relative to the guide catheter. In this regard, in FIG. 8A, the handle member 48 is bent to a shape that results in a first angle A between the shaft of the guide catheter 40 c and the endoscope 60, and the operator's other hand is being used to advance the guidewire GW through the lumen of the dilation catheter 10. In FIG. 8A, the handle has been modified to a different shape that results in a lesser angle A between the shaft of the guide catheter 40 c and the endoscope 60, and the operator's other hand is being used to advance the dilation catheter 10 through the lumen of the guide catheter 40 c.
  • The optional handle 42 may also be useful with other dilation catheters and other trans-nasal devices described in any or all of the parent applications of which this application is a continuation-in-part and/or those currently available commercially under the trademark Relieva from Acclarent, Inc., Menlo Park, Calif.
  • In some applications, the handle 42 may be designed to connect by way of a unique or proprietary connector to the guide catheter or other device. Or, in some embodiments, the handle 42 may be pre-attached, integrally formed with or otherwise designed as a part or portion of the guide catheter or other device. In embodiments where the handle 42 is not detachable from the guide catheter or other device, it may nonetheless be rotatable and/or lockable in a desire position
  • Endoscopically Visible Markers and Anti-Glare Coatings
  • An additional visible marker 19 may optionally be formed on the proximal end of the balloon 14 and/or on the distal shaft portion 12 dist, such as at the location where the proximal end of the balloon 14 is bonded to the distal shaft portion 12 dist.
  • These visible markers 19, 24, 26 are preferably of a color (e.g., black or blue) that contrasts with the pink color of the nasal mucosa so as to be easily visible within the nose. The optional marker 19 on the proximal end of the a balloon 14 allows the operator to endoscopically view the proximal end of the balloon even when the remainder of the balloon is within the ostium of a paranasal sinus. The other visible markers 24, 26 formed on the proximal shaft are specifically designed for use in conjunction with a guide catheter as will be discussed in detail herebelow.
  • In some cases, endoscopic images obtained of the markers or other portions of the guidewires GW, guide catheter 40 a-40 f or dilation catheter 10 may have areas of glare which can obscure visualization of certain portions of the markers or devices during performance of the procedure. To minimize such glare, an anti-glare (e.g., anti-reflective) treatment or coating may be applied to all or part of the sinus guide catheter 40 a-40 f, sinus guidewire GW and/or dilation catheter 10. Such anti-glare treatment could be applied by etching or sand-blasting and therefore does not add profile to the device. Such anti-glare coating could be applied by dip or spray coating and is very thin. The treatment or coating does not change the mechanical or functional properties of these devices. It may be selectively applied. For example, a black polytetrafluoroethylene (PTFE) coating on the sinus guidewire GW may provide good anti-reflective characteristics. Some of the commercially available anti-glare or anti-reflective coating can be applied. In some embodiments, an anti-glare surface treatment (e.g., roughening, etching, etc.) may be used or an anti-glare component such as a sheath, ring, paint, etc. may be used.
  • The advantages and benefits of including visible markers and/or the anti-glare coating include, improved endoscopic visualization, safer and easier performance of the procedure, reduced balloon burst or damage to critical structures, accuracy of placement of devices and reduced fluoroscopy time or elimination of fluoroscopy.
  • Modes of Use of the System
  • FIGS. 9-11 are flow diagrams describing three (3) modes of use by which the system of the present invention may be used to dilate the ostium of a paranasal sinus.
  • Mode 1—Inserting Guide Catheter, Guidewire and Dilation Catheter Separately
  • In the example of FIG. 9, the dilation catheter 10 is prepared for use separately from the guide catheter 40 a-40 f. The guide catheter 40 a-40 f is initially inserted (along with an endoscope 60) and is advanced to a position that is within or near the ostium to be dilated. An endoscope 60 is used to view the advancement and positioning of the guide catheter 40 a-40 f and fluoroscopy may also be used to verify that the guide catheter is properly positioned near or within the ostium. Optionally, a handle 42 may be attached to the guide catheter 40 a-40 f as described above or the operator may simply grasp the guide catheter 40 a-40 f as well as the endoscope 60 with the scope hand, thus leaving the operator's other hand free to be used for subsequent handling and manipulation of the other devices used in this procedure. Alternatively, a scope holder or assistant may be used to hold the endoscope 60 in the desired position thus freeing both of the operator's hands for handling and manipulation of the other devices.
  • After the guide catheter 40 a-40 f has been positioned, the operator will insert the distal end of the guidewire into the proximal end of the guide catheter 40 a-40 d and will advance the guidewire GW through the guide catheter 40 a-40 d such that a distal portion of the guidewire GW passes through the sinus ostium and becomes coiled within the sinus cavity. Fluoroscopy (or any other suitable technique) may be used to verify that the guidewire has become coiled within the intended sinus cavity.
  • Thereafter, the proximal end of the guidewire GW is inserted into the distal end of the dilation catheter 10 and the dilation catheter 10 (with its balloon 14 or other dilator in its non-expanded state) is advanced over the guidewire and through the guide catheter 40 a-40 d to a position where the dilator 14 is positioned within the sinus ostium. The endoscope 60 may be used to view the advancement and positioning of the dilation catheter 10. Although the distal portion of the balloon 14 or other dilator will be within the sinus and out of the field of view of the endoscope 60, the endoscope 60 may be used to view the proximal end of the balloon 14 or other dilator and/or the optional marker 19 (if present) on the proximal end of the balloon 14 or other dilator. Fluoroscopy may be used to image the radiographic markers 40, 42 and the ostium to confirm that the mid-region 44 of the balloon 14 (or the appropriate portion of any other type of dilator) is positioned within the ostium.
  • After the balloon 14 or other dilator has been positioned within the ostium, the balloon is inflated (or the other dilator is expanded) thereby dilating the ostium.
  • The balloon is then deflated (or the dilator is returned to its non-expanded state) and the successful dilation of the ostium may be confirmed visually using the endoscope 60 and/or radiographically using a fluoroscope.
  • Thereafter, the dilation catheter 10, guidewire GW and guide catheter 40 a-40 f are removed.
  • Mode 2—Preloading Dilation Catheter into Guide Catheter then Inserting Guidewire Separately
  • In the example of FIG. 10, the dilation catheter 10 is prepared for use and is pre-inserted into the guide catheter 40 a-40 f to a position where the first shaft marker 24 is flush with the proximal end of the guide catheter. When so positioned all of the flexible distal shaft portion 12dist and a bit of the rigid proximal shaft portion 12prox will be within the guide catheter 40 a-40 f.
  • Thereafter, the guide catheter 40 a-40 f in combination with the pre-inserted dilation catheter 10 is inserted transnasally (along with an endoscope 60) and is advanced to a position that is within or near the ostium to be dilated. The endoscope 60 is used to view the advancement and positioning of the guide catheter 40 a-40 f and fluoroscopy may also be used to verify that the guide catheter is properly positioned near or within the ostium. Optionally, a handle 42 may be attached to the guide catheter 40 a-40 f as described above or the operator may simply grasp the guide catheter 40 a-40 f as well as the endoscope 60 with the scope hand, thus leaving the operator's other hand free to be used for subsequent handling and manipulation of the other devices used in this procedure. Alternatively, a scope holder or assistant may be used to hold the endoscope 60 in the desired position thus freeing both of the operator's hands for handling and manipulation of the other devices.
  • After the guide catheter 40 a-40 f and pre-inserted dilation catheter 10 have been positioned, the operator will insert the distal end of the guidewire into the proximal Luer 20 of the dilation catheter 10 and will advance the guidewire GW through the dilation catheter 10, out of the distal end of the guide catheter 40 a-40 d and through the sinus ostium, causing a distal portion of the guidewire to become coiled within the sinus cavity. Fluoroscopy (or any other suitable technique) may be used to verify that the guidewire has become coiled within the intended sinus cavity.
  • Thereafter, the dilation catheter 10 (with its balloon 14 or other dilator still in its non-expanded state) is advanced over the guidewire GW to a position where the balloon 14 or other dilator is positioned within the sinus ostium. The endoscope 60 may be used to view the advancement and positioning of the dilation catheter. Although the distal portion of the balloon 14 or other dilator will be within the sinus and out of the field of view of the endoscope 60, the endoscope 60 may be used to view the proximal end of the balloon 14 or other dilator and/or the optional marker 19 (if present) on the proximal end of the balloon 14 or other dilator. Fluoroscopy may be used to image the radiographic markers 40, 42 and the ostium to confirm that the midregion 44 of the balloon 14 (or the appropriate portion of any other type of dilator) is positioned within the ostium.
  • After the balloon 14 or other dilator has been positioned within the ostium, the balloon is inflated (or the other dilator is expanded) thereby dilating the ostium.
  • The balloon is then deflated (or the dilator is returned to its non-expanded state) and the successful dilation of the ostium may be confirmed visually using the endoscope 60 and/or radiographically using a fluoroscope.
  • Thereafter, the dilation catheter 10, guidewire GW and guide catheter 40 a-40 f are removed.
  • Mode 3—Preloading Guidewire and Dilation Catheter into Guide Catheter
  • In the example of FIG. 11, the dilation catheter 10 is prepared for use and the distal end of the guidewire is pre-inserted into the proximal Luer 20 of the dilation catheter 10 and advanced to a position where the distal end of the guidewire is within protruding just slightly out of the distal end of the dilation catheter 10. The dilation catheter 10, with the pre-inserted guidewire GW, is pre-inserted into the guide catheter 40 a-40 f and advanced to a position where the first shaft marker 24 is flush with the proximal end of the guide catheter. When so positioned all of the flexible distal shaft portion 12 dist and a bit of the rigid proximal shaft portion 12 prox will be within the guide catheter 40 a-40 f.
  • Thereafter, the guide catheter 40 a-40 f with the dilation catheter 10 and guidewire pre-inserted therein is inserted through a nostril (along with an endoscope 60) and is advanced to a position that is within or near the ostium to be dilated. The endoscope 60 is used to view the advancement and positioning of the guide catheter 40 a-40 f and fluoroscopy may also be used to verify that the guide catheter is properly positioned near or within the ostium. Optionally, a handle 42 may be attached to the guide catheter 40 a-40 f as described above or the operator may simply grasp the guide catheter 40 a-40 f as well as the endoscope 60 with the scope hand, thus leaving the operator's other hand free to be used for subsequent handling and manipulation of the other devices used in this procedure. Alternatively, a scope holder or assistant may be used to hold the endoscope 60 in the desired position thus freeing both of the operator's hands for handling and manipulation of the other devices.
  • After the guide catheter 40 a-40 f and pre-inserted dilation catheter 10 and guidewire GW have been positioned, the operator will advance the guidewire out of the distal end of the guide catheter 40 a-40 f and through sinus ostium, causing a distal portion of the guidewire to become coiled within the sinus cavity. Fluoroscopy (or any other suitable technique) may be used to verify that the guidewire has become coiled within the intended sinus cavity.
  • Thereafter, the dilation catheter 10 (with its balloon 14 or other dilator still in its non-expanded state) is advanced over the guidewire GW to a position where the balloon 14 or other dilator is positioned within the sinus ostium. The endoscope 60 may be used to view the advancement and positioning of the dilation catheter. Although the distal portion of the balloon 14 or other dilator will be within the sinus and out of the field of view of the endoscope 60, the endoscope 60 may be used to view the proximal end of the balloon 14 or other dilator and/or the optional marker 19 (if present) on the proximal end of the balloon 14 or other dilator. Fluoroscopy may be used to image the radiographic markers 40, 42 and the ostium to confirm that the midregion 44 of the balloon 14 (or the appropriate portion of any other type of dilator) is positioned within the ostium.
  • After the balloon 14 or other dilator has been positioned within the ostium, the balloon is inflated (or the other dilator is expanded) thereby dilating the ostium.
  • The balloon is then deflated (or the dilator is returned to its non-expanded state) and the successful dilation of the ostium may be confirmed visually using the endoscope 60 and/or radiographically using a fluoroscope.
  • Thereafter, the dilation catheter 10, guidewire GW and guide catheter 40 a-40 f are removed.
  • Although the above described examples refer to use of a guide catheter 40 a-40 d and/or guidewire GW to guide the advancement of the dilation catheter 10 to its intended position within the ear, nose or throat, it is to be appreciated that in some subjects and/or in some applications, the dilation catheter may be advanceable or maneuverable to its intended position without the use of a guide catheter 40 a-40 f and/or guidewire GW. For example, in some subjects, the dilation catheter 10 may be advanced into the sphenoid sinus ostium without the use of a guidewire GW or guide catheter 40 a-40 d. Alternatively the flexible balloon portion may be manipulated with forceps to enable insertion in the ostium. Similar techniques may apply to access of the frontal and maxillary ostium.
  • The fact that the system described herein includes a guide catheter 40 a-40 f that is separate from the dilation catheter 10 has certain advantages. For example, by having two separate devices, the operator has separate control of the guide placement and may, in some cases, elect not to actually advance the guide into the ostium or recess before the ostium. Rather, the operator may in some instances elect to maneuver the guide catheter 40 a-40 f to a position that is close to (e.g., aligned with) but not within the ostium or recess, and may then advanced just the relatively flexible dilation catheter 10 into the ostium or recess. This may avoid damage tissue, bone or other anatomical structures. Thus, the use of a guide that is separate from the dilation catheter allows flexibility of positioning and potentially less trauma than where a single rigid device (e.g., a rigid shafted dilation catheter) must be navigated to the desired location and then actually inserted into the ostium or other passageway to be dilated.
  • It is to be appreciated that the invention has been described hereabove with reference to certain examples or embodiments of the invention but that various additions, deletions, alterations and modifications may be made to those examples and embodiments without departing from the intended spirit and scope of the invention. For example, any element or attribute of one embodiment or example may be incorporated into or used with another embodiment or example, unless otherwise specified of if to do so would render the embodiment or example unsuitable for its intended use. Also, where the steps of a method or process have been described or listed in a particular order, the order of such steps may be changed unless otherwise specified or unless doing so would render the method or process unworkable for its intended purpose. All reasonable additions, deletions, modifications and alterations are to be considered equivalents of the described examples and embodiments and are to be included within the scope of the following claims.

Claims (21)

1-118. (canceled)
119. A system comprising:
(a) a guide catheter that is insertable into the head of the subject, wherein the guide catheter comprises:
(i) a substantially rigid shaft,
(ii) a proximal opening,
(iii) a distal opening, and
(iv) a lumen extending between the proximal opening and the distal opening;
(b) a handle, wherein the handle is configured to couple with the guide catheter;
(c) a working catheter, wherein the working catheter comprises:
(i) a substantially rigid proximal shaft portion,
(ii) a flexible distal shaft portion, and
(iii) a guidewire lumen,
wherein the working catheter is insertable through the lumen of the guide catheter to a position where some of the distal shaft portion but none of the substantially rigid proximal portion extends out of the distal end of the guide catheter and some of the substantially rigid proximal shaft portion but none of the distal shaft portion extends out of the proximal end of the guide catheter;
(d) a guidewire that is advanceable through the guidewire lumen; and
(e) a first member attached to the guidewire, wherein the first member is configured to facilitate grasping of the guidewire, wherein the first member is further configured to limit the extent to which the guidewire is advanceable through the guidewire lumen.
120. The system of claim 119, wherein the working catheter comprises dilation catheter and the working element comprises an expandable dilator that is positionable within a passageway of the ear, nose or throat and useable to dilate that passageway.
121. The system of claim 120, wherein the expandable dilator comprises a balloon.
122. The system of claim 121, wherein the working catheter further comprises:
(i) a inflation fluid lumen configured to communicate fluid to and from the balloon,
(ii) a proximal hub having an inflation port in communication with the inflation lumen, and
(iii) a guidewire port in communication with the guidewire lumen, wherein the inflation port is substantially perpendicular to said guidewire port.
123. The system of claim 122, wherein the guidewire port is on the proximal end of the hub and the inflation port is on a side of the hub.
124. The system of claim 119, wherein the expandable dilator is sized to be positioned within the ostium of a paranasal sinus while in a non-expanded state and to be thereafter expanded to an expanded state whereby the expandable dilator is configured to cause dilation of the ostium.
125. The system of claim 124, wherein the expandable dilator, when in its expanded state, has a diameter in the range of approximately 2.5 mm to approximately 10 mm.
126. The system of claim 119, wherein the guidewire lumen has a lubricious coating or liner disposed therein.
127. The system of claim 119, wherein the working catheter has an overall length of about 21 cm, wherein the substantially rigid proximal shaft portion of the working catheter is at least 12.5 cm in length.
128. The system of claim 119, wherein the handle is sized and configured to be grasped by a single hand of an operator.
129. The system of claim 119, further comprising a stabilization device that is attachable to the guide catheter, wherein the stabilization device is configured to facilitate control of the guide catheter and an endoscope by a single hand of an operator.
130. The system of claim 119, wherein at least a portion of the handle is shapeable so that it may be deformed to a desired bend or shape by the operator.
131. The system of claim 119, wherein the first member is configured to frictionally engage a hub on the working catheter.
132. The system of claim 119, wherein at least a distal portion of the guide catheter is curved.
133. The system of claim 119, wherein the distal shaft portion of the working catheter is configured to telescope out of the distal end of the guide catheter.
134. The system of claim 119, further comprising a second member that is attachable to the working catheter, wherein the second member is configured to limit the extent to which the working catheter is advanceable through the guide catheter.
135. The system of claim 119, wherein the handle defines a bore, wherein a portion of the handle is insertable into the proximal opening of the guide catheter such that the bore of the handle is in alignment with the lumen of the guide catheter.
136. The system of claim 135, wherein the working catheter is insertable through the bore of the handle.
137. A system comprising:
(a) a guide catheter that is insertable into the head of the subject, wherein the guide catheter defines a working catheter lumen;
(b) a working catheter, wherein the working catheter defines a guidewire lumen, wherein the working catheter is insertable through the working catheter lumen of the guide catheter;
(d) a guidewire that is advanceable through the guidewire lumen of the working catheter; and
(e) a stop member attached to the guidewire, wherein the stop member is configured to facilitate grasping of the guidewire, wherein the stop member is further configured to limit the extent to which the guidewire is advanceable through the guidewire lumen of the working catheter.
138. A system comprising:
(a) a guide catheter that is insertable into the head of the subject, wherein the guide catheter defines a working catheter lumen, wherein a proximal portion of the guide catheter defines a longitudinal axis;
(b) a handle, wherein the handle is configured to couple with the guide catheter, wherein the handle defines a bore, wherein the working catheter lumen of the guide catheter is in alignment with the bore;
(c) a working catheter, wherein the working catheter defines a guidewire lumen, wherein the working catheter is insertable through the working catheter lumen of the guide catheter;
(d) a guidewire that is advanceable through the guidewire lumen; and
(e) a member attached to the guidewire, wherein the member is configured to facilitate grasping of the guidewire.
US14/265,787 2004-04-21 2014-04-30 Systems and methods for transnasal dilation of passageways in the ear, nose or throat Abandoned US20140336693A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/265,787 US20140336693A1 (en) 2004-04-21 2014-04-30 Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US15/417,712 US10874838B2 (en) 2004-04-21 2017-01-27 Systems and methods for transnasal dilation of passageways in the ear, nose or throat

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US10/829,917 US7654997B2 (en) 2004-04-21 2004-04-21 Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat
US10/944,270 US20060004323A1 (en) 2004-04-21 2004-09-17 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US11/150,847 US7803150B2 (en) 2004-04-21 2005-06-10 Devices, systems and methods useable for treating sinusitis
US11/355,512 US8894614B2 (en) 2004-04-21 2006-02-16 Devices, systems and methods useable for treating frontal sinusitis
US11/789,704 US8747389B2 (en) 2004-04-21 2007-04-24 Systems for treating disorders of the ear, nose and throat
US14/265,787 US20140336693A1 (en) 2004-04-21 2014-04-30 Systems and methods for transnasal dilation of passageways in the ear, nose or throat

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/789,704 Continuation US8747389B2 (en) 2004-04-21 2007-04-24 Systems for treating disorders of the ear, nose and throat

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/417,712 Division US10874838B2 (en) 2004-04-21 2017-01-27 Systems and methods for transnasal dilation of passageways in the ear, nose or throat

Publications (1)

Publication Number Publication Date
US20140336693A1 true US20140336693A1 (en) 2014-11-13

Family

ID=39926056

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/789,704 Active 2025-02-07 US8747389B2 (en) 2004-04-21 2007-04-24 Systems for treating disorders of the ear, nose and throat
US14/265,787 Abandoned US20140336693A1 (en) 2004-04-21 2014-04-30 Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US15/417,712 Active 2027-01-09 US10874838B2 (en) 2004-04-21 2017-01-27 Systems and methods for transnasal dilation of passageways in the ear, nose or throat

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/789,704 Active 2025-02-07 US8747389B2 (en) 2004-04-21 2007-04-24 Systems for treating disorders of the ear, nose and throat

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/417,712 Active 2027-01-09 US10874838B2 (en) 2004-04-21 2017-01-27 Systems and methods for transnasal dilation of passageways in the ear, nose or throat

Country Status (4)

Country Link
US (3) US8747389B2 (en)
EP (2) EP3195895B1 (en)
ES (2) ES2621212T3 (en)
WO (1) WO2008134382A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9248266B2 (en) 2013-12-17 2016-02-02 Biovision Technologies, Llc Method of performing a sphenopalatine ganglion block procedure
US9516995B2 (en) 2013-12-17 2016-12-13 Biovision Technologies, Llc Surgical device for performing a sphenopalatine ganglion block procedure
US9597179B2 (en) 2011-07-25 2017-03-21 Rainbow Medical Ltd. Sinus stent
US9610428B2 (en) 2004-04-21 2017-04-04 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
US9694163B2 (en) 2013-12-17 2017-07-04 Biovision Technologies, Llc Surgical device for performing a sphenopalatine ganglion block procedure
US20170199206A1 (en) * 2015-03-30 2017-07-13 Aaron Szymanski Devices and assays for diagnosis of sinusitis
US9814379B2 (en) 2004-04-21 2017-11-14 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US9826999B2 (en) 2004-04-21 2017-11-28 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US10016580B2 (en) 2013-12-17 2018-07-10 Biovision Technologies, Llc Methods for treating sinus diseases
US10098652B2 (en) 2004-04-21 2018-10-16 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US10159586B2 (en) 2015-06-29 2018-12-25 480 Biomedical Inc. Scaffold loading and delivery systems
US10188413B1 (en) 2004-04-21 2019-01-29 Acclarent, Inc. Deflectable guide catheters and related methods
US10201639B2 (en) 2017-05-01 2019-02-12 480 Biomedical, Inc. Drug-eluting medical implants
US10232082B2 (en) 2015-06-29 2019-03-19 480 Biomedical, Inc. Implantable scaffolds for treatment of sinusitis
US10278812B2 (en) 2015-06-29 2019-05-07 480 Biomedical, Inc. Implantable scaffolds and methods for treatment of sinusitis
US10492810B2 (en) 2004-04-21 2019-12-03 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
US10525240B1 (en) 2018-06-28 2020-01-07 Sandler Scientific LLC Sino-nasal rinse delivery device with agitation, flow-control and integrated medication management system
US10631756B2 (en) 2004-04-21 2020-04-28 Acclarent, Inc. Guidewires for performing image guided procedures
US10842978B2 (en) 2005-06-10 2020-11-24 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
US10921320B2 (en) 2015-03-30 2021-02-16 Entvantage Diagnostics, Inc. Devices and methods for diagnosis of sinusitis
US10973664B2 (en) 2015-12-30 2021-04-13 Lyra Therapeutics, Inc. Scaffold loading and delivery systems
US11065061B2 (en) 2004-04-21 2021-07-20 Acclarent, Inc. Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses
WO2022109439A1 (en) * 2020-11-23 2022-05-27 United States Endoscopy Group, Inc. Endoscopic device with additional channel
US11529502B2 (en) 2004-04-21 2022-12-20 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US11650213B2 (en) 2015-03-30 2023-05-16 Entvantage Diagnostics, Inc. Devices and assays for diagnosis of viral and bacterial infections

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10105592A1 (en) 2001-02-06 2002-08-08 Achim Goepferich Placeholder for drug release in the frontal sinus
US8317816B2 (en) 2002-09-30 2012-11-27 Acclarent, Inc. Balloon catheters and methods for treating paranasal sinuses
WO2004082525A2 (en) 2003-03-14 2004-09-30 Sinexus, Inc. Sinus delivery of sustained release therapeutics
US8864787B2 (en) 2004-04-21 2014-10-21 Acclarent, Inc. Ethmoidotomy system and implantable spacer devices having therapeutic substance delivery capability for treatment of paranasal sinusitis
US20110004057A1 (en) * 2004-04-21 2011-01-06 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US7419497B2 (en) 2004-04-21 2008-09-02 Acclarent, Inc. Methods for treating ethmoid disease
US8146400B2 (en) 2004-04-21 2012-04-03 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US20060004323A1 (en) 2004-04-21 2006-01-05 Exploramed Nc1, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US7410480B2 (en) 2004-04-21 2008-08-12 Acclarent, Inc. Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders
US8932276B1 (en) 2004-04-21 2015-01-13 Acclarent, Inc. Shapeable guide catheters and related methods
US8747389B2 (en) 2004-04-21 2014-06-10 Acclarent, Inc. Systems for treating disorders of the ear, nose and throat
US7720521B2 (en) * 2004-04-21 2010-05-18 Acclarent, Inc. Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses
US20070167682A1 (en) 2004-04-21 2007-07-19 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US7361168B2 (en) 2004-04-21 2008-04-22 Acclarent, Inc. Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders
US9554691B2 (en) 2004-04-21 2017-01-31 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US7462175B2 (en) 2004-04-21 2008-12-09 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US7803150B2 (en) 2004-04-21 2010-09-28 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US9089258B2 (en) 2004-04-21 2015-07-28 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US8764729B2 (en) 2004-04-21 2014-07-01 Acclarent, Inc. Frontal sinus spacer
US7559925B2 (en) 2006-09-15 2009-07-14 Acclarent Inc. Methods and devices for facilitating visualization in a surgical environment
US9351750B2 (en) * 2004-04-21 2016-05-31 Acclarent, Inc. Devices and methods for treating maxillary sinus disease
US9101384B2 (en) 2004-04-21 2015-08-11 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, Nose and/or throat
RU2007140909A (en) 2005-04-04 2009-05-20 Синексус, Инк. (Us) DEVICE AND METHODS FOR TREATING DISEASES OF THE NANOLAIN SINUS
US8114113B2 (en) 2005-09-23 2012-02-14 Acclarent, Inc. Multi-conduit balloon catheter
US8190389B2 (en) 2006-05-17 2012-05-29 Acclarent, Inc. Adapter for attaching electromagnetic image guidance components to a medical device
US8535707B2 (en) 2006-07-10 2013-09-17 Intersect Ent, Inc. Devices and methods for delivering active agents to the osteomeatal complex
US9820688B2 (en) 2006-09-15 2017-11-21 Acclarent, Inc. Sinus illumination lightwire device
US8439687B1 (en) 2006-12-29 2013-05-14 Acclarent, Inc. Apparatus and method for simulated insertion and positioning of guidewares and other interventional devices
US8118757B2 (en) 2007-04-30 2012-02-21 Acclarent, Inc. Methods and devices for ostium measurement
US8485199B2 (en) 2007-05-08 2013-07-16 Acclarent, Inc. Methods and devices for protecting nasal turbinate during surgery
CA2709901C (en) 2007-12-18 2022-05-10 Intersect Ent, Inc. Self-expanding devices and methods therefor
US10206821B2 (en) 2007-12-20 2019-02-19 Acclarent, Inc. Eustachian tube dilation balloon with ventilation path
US8182432B2 (en) 2008-03-10 2012-05-22 Acclarent, Inc. Corewire design and construction for medical devices
US9011412B2 (en) * 2008-05-16 2015-04-21 Ford Albritton, IV Apparatus, system and method for manipulating a surgical catheter and working device with a single hand
JP5676446B2 (en) 2008-07-30 2015-02-25 アクラレント インコーポレイテッド Sinus mouth finder
CA2732355A1 (en) 2008-08-01 2010-02-04 Intersect Ent, Inc. Methods and devices for crimping self-expanding devices
WO2010022108A2 (en) * 2008-08-18 2010-02-25 Envisionier Medical Technologies, Inc. Fluid delivery catheter apparatus
US8945142B2 (en) 2008-08-27 2015-02-03 Cook Medical Technologies Llc Delivery system for implanting nasal ventilation tube
US20110201996A1 (en) * 2008-08-27 2011-08-18 Melder Patrick C Nasal ventilation system and method of using same
EP2358278B1 (en) * 2008-12-08 2021-05-12 Acist Medical Systems, Inc. System and catheter for image guidance and methods thereof
US20100241155A1 (en) * 2009-03-20 2010-09-23 Acclarent, Inc. Guide system with suction
US8435290B2 (en) 2009-03-31 2013-05-07 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
US7978742B1 (en) 2010-03-24 2011-07-12 Corning Incorporated Methods for operating diode lasers
EP2429624B1 (en) 2009-05-15 2014-04-02 Intersect ENT, Inc. A combination of an expandable device and a delivery device.
US8834513B2 (en) * 2009-06-05 2014-09-16 Entellus Medical, Inc. Method and articles for treating the sinus system
US8282667B2 (en) 2009-06-05 2012-10-09 Entellus Medical, Inc. Sinus dilation catheter
GB2471517B (en) 2009-07-02 2011-09-21 Cook William Europ Implant deployment catheter
US8435261B2 (en) 2009-07-15 2013-05-07 Regents Of The University Of Minnesota Treatment and placement device for sinusitis applications
WO2011008981A1 (en) * 2009-07-15 2011-01-20 Regents Of The University Of Minnesota Implantable devices for treatment of sinusitis
US9999531B2 (en) 2009-08-24 2018-06-19 Qualimed Innovative Medizinprodukte Gmbh Variable scale stent deployment device
US20120071857A1 (en) 2010-09-22 2012-03-22 Goldfarb Eric A Methods and apparatus for treating disorders of the sinuses
US9155492B2 (en) 2010-09-24 2015-10-13 Acclarent, Inc. Sinus illumination lightwire device
US9022967B2 (en) 2010-10-08 2015-05-05 Sinopsys Surgical, Inc. Implant device, tool, and methods relating to treatment of paranasal sinuses
JP2012085816A (en) * 2010-10-19 2012-05-10 Asahi Intecc Co Ltd Catheter assembly
AU2011343523B2 (en) * 2010-12-16 2014-11-06 Ams Research Corporation High-pressure pneumatic injection system and method
US9486348B2 (en) * 2011-02-01 2016-11-08 S. Jude Medical, Cardiology Division, Inc. Vascular delivery system and method
DK2713890T3 (en) * 2011-05-26 2018-04-16 Adn Int Llc Expandable device for removing tissue from an aerodigestive body cavity
US9089631B2 (en) 2011-07-22 2015-07-28 Cook Medical Technologies Llc Irrigation devices adapted to be used with a light source for the identification and treatment of bodily passages
US20130184574A1 (en) * 2011-07-25 2013-07-18 Richard R. Newhauser, JR. Devices and methods for transnasal irrigation or suctioning of the sinuses
AU2012216740B2 (en) 2011-09-10 2014-04-10 Cook Medical Technologies Llc Methods of providing access to a salivary duct
WO2013070457A2 (en) * 2011-11-01 2013-05-16 The Johns Hopkins University Method and device for endoscopic abrasion
US9283360B2 (en) 2011-11-10 2016-03-15 Entellus Medical, Inc. Methods and devices for treating sinusitis
US9375138B2 (en) 2011-11-25 2016-06-28 Cook Medical Technologies Llc Steerable guide member and catheter
HUE045735T2 (en) 2011-12-28 2020-01-28 Custom Medical Applications Inc Catheters including bend indicators, catheter assemblies including such catheters and related methods
US9044581B2 (en) 2012-03-19 2015-06-02 Cook Medical Technologies Llc Medical devices, methods, and kits for delivering medication to a bodily passage
US9572964B2 (en) 2012-04-11 2017-02-21 Sinapsys Surgical, Inc. Implantation tools, tool assemblies, kits and methods
US20130274715A1 (en) * 2012-04-13 2013-10-17 Acclarent, Inc. Method and System for Eustachian Tube Dilation
JP6525873B2 (en) 2012-08-23 2019-06-05 ボルケーノ コーポレイション Apparatus, system and method for anatomical wound length estimation
US9107628B2 (en) * 2012-10-12 2015-08-18 Karl Storz Gmbh & Co. Kg Video laryngoscope with disposable blade
EP2916748B1 (en) 2012-11-07 2020-07-15 3NT Medical Ltd. Paranasal sinus access system
US9463307B2 (en) * 2012-12-21 2016-10-11 Medtronic Xomed, Inc. Sinus dilation system and method
US9561350B2 (en) 2013-01-25 2017-02-07 Sinopsys Surgical, Inc. Paranasal sinus access implant devices and related tools, methods and kits
US20140277062A1 (en) * 2013-03-14 2014-09-18 Futurematrix Interventional, Inc. Medical balloon having tapered or stepped profile
CN105188831B (en) 2013-03-14 2021-01-01 因特尔赛克特耳鼻喉公司 Systems, devices, and methods for treating sinus conditions
US9629684B2 (en) 2013-03-15 2017-04-25 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9956383B2 (en) 2013-03-15 2018-05-01 Cook Medical Technologies Llc Medical devices and methods for providing access to a bodily passage during dilation
US9433437B2 (en) 2013-03-15 2016-09-06 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
WO2015069433A1 (en) 2013-10-16 2015-05-14 Sinopsys Surgical, Inc. Apparatuses, tools and kits relating to fluid manipulation treatments of paranasal sinuses
US9713456B2 (en) 2013-12-30 2017-07-25 Acist Medical Systems, Inc. Position sensing in intravascular imaging
US9827395B2 (en) 2014-01-15 2017-11-28 Gyrus Acmi, Inc. Interventional sinus endoscope
CN104906682A (en) 2014-01-24 2015-09-16 史蒂文·沙勒布瓦 Articulating balloon catheter and method for using the same
US9937323B2 (en) 2014-02-28 2018-04-10 Cook Medical Technologies Llc Deflectable catheters, systems, and methods for the visualization and treatment of bodily passages
JP2017522122A (en) 2014-07-24 2017-08-10 シノプシス サージカル インコーポレイテッドSinopsys Surgical,Inc. Sinus access implant device and related products and methods
WO2016040237A1 (en) * 2014-09-11 2016-03-17 Acclarent, Inc. Low profile eustachian tube dilation system
USD772406S1 (en) 2014-12-16 2016-11-22 Biovision Technologies, Llc Surgical device
US10322269B1 (en) 2015-01-19 2019-06-18 Dalent, LLC Dilator device
US11160956B1 (en) * 2015-02-06 2021-11-02 David M. Hoganson Balloon dilator
JP6624791B2 (en) * 2015-02-25 2019-12-25 テルモ株式会社 Medical instruments, medical instrument assemblies, balloon devices
CN108289732A (en) * 2015-09-18 2018-07-17 柯利麦德创新医疗产品有限公司 Variable scales stent deployment devices
US10034681B2 (en) * 2015-10-30 2018-07-31 Acclarent, Inc. Fluid communication features for Eustachian tube dilation instrument
CN109561879B (en) 2016-05-19 2022-03-29 阿西斯特医疗系统有限公司 Position sensing in intravascular procedures
US11406352B2 (en) 2016-05-19 2022-08-09 Acist Medical Systems, Inc. Position sensing in intravascular processes
AU2018244352A1 (en) * 2017-03-28 2019-10-10 Entvantage Diagnostics, Inc. Devices and methods for diagnosis of sinusitis
WO2018216560A1 (en) * 2017-05-23 2018-11-29 住友ベークライト株式会社 Treatment tool for coronary artery bypass surgery, component for treatment tool, medical connector, and medical appliance
AU2018338092A1 (en) 2017-09-20 2020-03-19 Sinopsys Surgical, Inc. Paranasal sinus fluid access implantation tools, assemblies, kits and methods
US20190192176A1 (en) * 2017-12-22 2019-06-27 Acclarent, Inc. Dilation instrument with guide catheter type sensor
US11229447B2 (en) 2018-04-25 2022-01-25 excelENT LLC Systems, instruments and methods for treating sinuses
CN109259714A (en) * 2018-10-30 2019-01-25 广东省第二人民医院 A kind of visualization sacculus body
US10863886B2 (en) * 2019-05-03 2020-12-15 UVision360, Inc. Rotatable introducers
USD877325S1 (en) 2019-06-06 2020-03-03 Dalent, LLC Inflatable therapeutic treatment balloon device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5749920A (en) * 1983-12-09 1998-05-12 Endovascular Technologies, Inc. Multicapsule intraluminal grafting system and method
US5823961A (en) * 1993-05-12 1998-10-20 Hdc Corporation Catheter guidewire and flushing apparatus and method of insertion

Family Cites Families (998)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US446173A (en) * 1891-02-10 Hasp and staple
US504424A (en) 1893-09-05 Oscar de pezzer
US513667A (en) * 1894-01-30 Sliding staple for hasps
US2899227A (en) 1959-08-11 Charles-louis gschwend
US705346A (en) 1901-11-02 1902-07-22 Jonathan R Hamilton Dilator.
US816792A (en) 1904-09-06 1906-04-03 Oliver H P Green Lock.
US798775A (en) 1905-04-13 1905-09-05 Valorus A Bradbury Dispensing-bottle.
US1080934A (en) 1912-08-19 1913-12-09 Walter L Shackleford Rectal tube.
US1200267A (en) 1915-02-04 1916-10-03 Motors Lock Company Of America Lock for automobile-hoods.
US1650959A (en) 1926-04-08 1927-11-29 Louis K Pitman Surgical instrument
US1735519A (en) 1926-07-17 1929-11-12 Arlyn T Vance Physician's dilator
US1878671A (en) 1929-07-02 1932-09-20 John Murray Dilator
US1828986A (en) 1929-09-26 1931-10-27 Golder E Stevens Dilating irrigator
US2201749A (en) 1939-02-15 1940-05-21 Vandegrift Middleton Expanding vein tube
US2525183A (en) 1947-03-20 1950-10-10 Jehu M Robison Antral pressure device
US2493326A (en) * 1949-03-01 1950-01-03 John H Trinder Tampon for control of intractable nasal hemorrhages
US2847997A (en) 1956-01-13 1958-08-19 James J Tibone Catheter
US3037286A (en) 1957-01-28 1962-06-05 North American Aviation Inc Vector gage
US2906179A (en) 1957-01-28 1959-09-29 North American Aviation Inc Vector gage
US2955832A (en) 1958-07-11 1960-10-11 Norman Noble Inc Sleeve for taper shank tools
US3009265A (en) 1960-05-09 1961-11-21 Superior Plastics Inc Anatomical device
US2995832A (en) 1960-08-01 1961-08-15 Alderson Res Lab Inc Training aid for intravenous therapy
US3173418A (en) 1961-01-10 1965-03-16 Ostap E Baran Double-wall endotracheal cuff
US3435826A (en) 1964-05-27 1969-04-01 Edwards Lab Inc Embolectomy catheter
US3347061A (en) 1965-01-11 1967-10-17 Eaton Yale & Towne Flexible drive mechanism
US3393073A (en) 1965-04-16 1968-07-16 Eastman Kodak Co High contrast photographic emulsions
US3376659A (en) 1965-06-09 1968-04-09 Bard Inc C R Demonstration device
US3447061A (en) 1965-07-12 1969-05-27 Basic Inc Multi-phase rectifier with inherent phase balance
US3384970A (en) 1965-09-22 1968-05-28 Boice Gages Inc Precision coordinates measurement apparatus for gaging and layout operations
US3486539A (en) 1965-09-28 1969-12-30 Jacuzzi Bros Inc Liquid dispensing and metering assembly
US3469578A (en) 1965-10-12 1969-09-30 Howard R Bierman Infusion device for ambulatory patients with flow control means
US3509638A (en) 1966-08-04 1970-05-05 Midland Ross Corp Treating apparatus
US3515137A (en) * 1966-10-26 1970-06-02 Deseret Pharma Intravenous catheter unit with inserter means for sequential feeding of catheter
US3506005A (en) 1967-02-23 1970-04-14 Arthur S Gilio Pressure infusion device for medical use
US3477438A (en) 1967-04-17 1969-11-11 Dwight L Allen Catheter having one-way inflations valve
US3552384A (en) * 1967-07-03 1971-01-05 American Hospital Supply Corp Controllable tip guide body and catheter
US3515888A (en) 1967-10-27 1970-06-02 California Computer Products Manual optical digitizer
US3481043A (en) 1967-12-12 1969-12-02 Bendix Corp Gaging machine
US3531868A (en) 1968-04-18 1970-10-06 Ford Motor Co Surface scanner for measuring the coordinates of points on a three-dimensional surface
US3527220A (en) 1968-06-28 1970-09-08 Fairchild Hiller Corp Implantable drug administrator
US3948262A (en) 1969-04-01 1976-04-06 Alza Corporation Novel drug delivery device
US3993073A (en) 1969-04-01 1976-11-23 Alza Corporation Novel drug delivery device
US3967618A (en) 1969-04-01 1976-07-06 Alza Corporation Drug delivery device
US3624661A (en) 1969-05-14 1971-11-30 Honeywell Inc Electrographic printing system with plural staggered electrode rows
US3834394A (en) * 1969-11-21 1974-09-10 R Sessions Occlusion device and method and apparatus for inserting the same
US3903893A (en) 1970-05-04 1975-09-09 Alexander L Scheer Nasal hemostatic device
US4069307A (en) 1970-10-01 1978-01-17 Alza Corporation Drug-delivery device comprising certain polymeric materials for controlled release of drug
GB1340788A (en) 1971-02-04 1974-01-30 Matburn Holdings Ltd Nasal tampons
US3731963A (en) 1971-04-20 1973-05-08 R Pond Electrically actuated lock mechanism
US3804081A (en) 1971-07-29 1974-04-16 Olympus Optical Co Endoscope
US3802096A (en) 1971-08-09 1974-04-09 H Matern Composite model for medical study
US3948254A (en) 1971-11-08 1976-04-06 Alza Corporation Novel drug delivery device
US3850176A (en) 1972-02-07 1974-11-26 G Gottschalk Nasal tampon
US3910617A (en) 1972-02-20 1975-10-07 Square D Co Solenoid operated electric strike
JPS4932484U (en) 1972-06-19 1974-03-20
JPS4920979A (en) 1972-06-19 1974-02-23
US3800788A (en) 1972-07-12 1974-04-02 N White Antral catheter for reduction of fractures
CH557178A (en) 1972-08-10 1974-12-31 Siemens Ag DEVICE FOR DISPENSING DRUGS.
US4016251A (en) 1972-08-17 1977-04-05 Alza Corporation Vaginal drug dispensing device
US3792391A (en) * 1972-12-18 1974-02-12 L Ewing Electrically operated two position electromechanical mechanism
US3921636A (en) 1973-01-15 1975-11-25 Alza Corp Novel drug delivery device
US3993069A (en) 1973-03-26 1976-11-23 Alza Corporation Liquid delivery device bladder
US3847145A (en) 1973-04-13 1974-11-12 M Grossan Nasal irrigation system
US4450150A (en) 1973-05-17 1984-05-22 Arthur D. Little, Inc. Biodegradable, implantable drug delivery depots, and method for preparing and using the same
US3859993A (en) * 1973-08-27 1975-01-14 Daniel G Bitner Operating table accessory
US3993072A (en) 1974-08-28 1976-11-23 Alza Corporation Microporous drug delivery device
US4052505A (en) 1975-05-30 1977-10-04 Alza Corporation Ocular therapeutic system manufactured from copolymer
DE2541084C3 (en) 1975-09-15 1978-12-07 Siemens Ag, 1000 Berlin Und 8000 Muenchen Method for producing a self-supporting coil in the winding area
US4102342A (en) 1975-12-29 1978-07-25 Taichiro Akiyama Valved device
US4138151A (en) * 1976-07-30 1979-02-06 Olympus Optical Company Limited Detent device for locking the lid of a cassette receiving compartment of a tape recorder
US4471779A (en) 1976-08-25 1984-09-18 Becton, Dickinson And Company Miniature balloon catheter
JPS5367935A (en) 1976-11-29 1978-06-16 Mitsubishi Electric Corp Device for automatically opening window with lock
US4207890A (en) 1977-01-04 1980-06-17 Mcneilab, Inc. Drug-dispensing device and method
JPS567971Y2 (en) 1977-07-23 1981-02-21
US4184497A (en) * 1977-08-26 1980-01-22 University Of Utah Peritoneal dialysis catheter
US4198766A (en) 1978-06-21 1980-04-22 Baxter Travenol Laboratories, Inc. Intravenous training/demonstration aid
USRE31351E (en) 1978-08-04 1983-08-16 Bell Telephone Laboratories, Incorporated Feedback nonlinear equalization of modulated data signals
US4213095A (en) 1978-08-04 1980-07-15 Bell Telephone Laboratories, Incorporated Feedforward nonlinear equalization of modulated data signals
US4217898A (en) 1978-10-23 1980-08-19 Alza Corporation System with microporous reservoir having surface for diffusional delivery of agent
US4268115A (en) 1979-06-01 1981-05-19 Tetra-Tech, Inc. Quick-release fiber-optic connector
US4299226A (en) * 1979-08-08 1981-11-10 Banka Vidya S Coronary dilation method
JPS5628334A (en) 1979-08-14 1981-03-19 Nissan Motor Co Ltd Automatic change gear
US4299227A (en) 1979-10-19 1981-11-10 Lincoff Harvey A Ophthalmological appliance
US4311146A (en) 1980-05-08 1982-01-19 Sorenson Research Co., Inc. Detachable balloon catheter apparatus and method
US4312353A (en) * 1980-05-09 1982-01-26 Mayfield Education And Research Fund Method of creating and enlarging an opening in the brain
US4338941A (en) 1980-09-10 1982-07-13 Payton Hugh W Apparatus for arresting posterior nosebleeds
DE3041873C2 (en) 1980-11-06 1982-12-23 Danfoss A/S, 6430 Nordborg Device for generating a speed-dependent control pressure
USD269204S (en) 1981-02-05 1983-05-31 Trepp Charles A Dental hygiene device
US4437856A (en) 1981-02-09 1984-03-20 Alberto Valli Peritoneal catheter device for dialysis
FR2502499B1 (en) 1981-03-27 1987-01-23 Farcot Jean Christian APPARATUS FOR BLOOD RETROPERFUSION, IN PARTICULAR FOR THE TREATMENT OF INFARCTUS BY INJECTION OF ARTERIAL BLOOD INTO THE CORONARY SINUS
US4592357A (en) 1981-05-21 1986-06-03 Ersek Robert A Septal splint
CH653400A5 (en) 1981-06-17 1985-12-31 Bauer Kaba Ag LOCK CYLINDER.
US4435716A (en) 1981-09-14 1984-03-06 Adrian Zandbergen Method of making a conical spiral antenna
DE3202878C2 (en) 1982-01-29 1985-10-31 Geze Gmbh, 7250 Leonberg Electromagnetically operated lock for sliding leaves of doors or the like.
US4571239A (en) * 1982-03-01 1986-02-18 Heyman Arnold M Catheter-stylet assembly for slipover urethral instruments
US4445892A (en) 1982-05-06 1984-05-01 Laserscope, Inc. Dual balloon catheter device
US5370675A (en) 1992-08-12 1994-12-06 Vidamed, Inc. Medical probe device and method
US4441495A (en) 1982-08-16 1984-04-10 Becton, Dickinson And Company Detachable balloon catheter device and method of use
GB2125874B (en) 1982-08-17 1985-08-14 Michael David Dunn Solenoid operated locks
US4464175A (en) 1982-08-25 1984-08-07 Altman Alan R Multipurpose tamponade and thrombosclerotherapy tube
US4499899A (en) * 1983-01-21 1985-02-19 Brimfield Precision, Inc. Fiber-optic illuminated microsurgical scissors
US4581017B1 (en) 1983-03-07 1994-05-17 Bard Inc C R Catheter systems
US4639244A (en) * 1983-05-03 1987-01-27 Nabil I. Rizk Implantable electrophoretic pump for ionic drugs and associated methods
US4564364A (en) * 1983-05-26 1986-01-14 Alza Corporation Active agent dispenser
DE3376468D1 (en) 1983-06-27 1988-06-09 Borje Drettner An instrument for the treatment of sinusitis
USD283921S (en) 1983-06-27 1986-05-20 Difco Laboratories Incorporated Blood collector
US4554929A (en) 1983-07-13 1985-11-26 Advanced Cardiovascular Systems, Inc. Catheter guide wire with short spring tip and method of using the same
US4517979A (en) 1983-07-14 1985-05-21 Cordis Corporation Detachable balloon catheter
NL8302648A (en) 1983-07-26 1985-02-18 Fundatech Sa APPARATUS FOR SUPPLY AND EXTRACTION OF A LIQUID SUBSTANCE TO RESP. FROM THE JAWS.
US4675613A (en) 1983-08-11 1987-06-23 Hewlett-Packard Company Noise compensated synchronous detector system
US4571240A (en) * 1983-08-12 1986-02-18 Advanced Cardiovascular Systems, Inc. Catheter having encapsulated tip marker
CA1232814A (en) 1983-09-16 1988-02-16 Hidetoshi Sakamoto Guide wire for catheter
US4585000A (en) 1983-09-28 1986-04-29 Cordis Corporation Expandable device for treating intravascular stenosis
USD284892S (en) 1983-09-29 1986-07-29 Glassman Jacob A Biliary exploratory balloon catheter with replaceable lead-tip
SE442164B (en) 1984-01-11 1985-12-09 Olle Berg DEVICE FOR NAVIGATION WALL OPERATIONS
EP0153190B1 (en) 1984-02-20 1989-05-03 Olympus Optical Co., Ltd. Endoscopic ovum picker instruments
US4589868A (en) 1984-03-12 1986-05-20 Dretler Stephen P Expandable dilator-catheter
JPS60253428A (en) 1984-05-30 1985-12-14 住友電気工業株式会社 Fiberscope with bending mechanism
US4569347A (en) 1984-05-30 1986-02-11 Advanced Cardiovascular Systems, Inc. Catheter introducing device, assembly and method
US4851228A (en) 1984-06-20 1989-07-25 Merck & Co., Inc. Multiparticulate controlled porosity osmotic
US4596528A (en) 1984-07-02 1986-06-24 Lewis Leonard A Simulated skin and method
US5019075A (en) 1984-10-24 1991-05-28 The Beth Israel Hospital Method and apparatus for angioplasty
DE3504292C1 (en) 1985-02-08 1986-07-24 Richard Wolf Gmbh, 7134 Knittlingen Instrument for endoscopic interventions, especially for percutaneous gallstone removal or gallbladder surgery
US4637389A (en) * 1985-04-08 1987-01-20 Heyden Eugene L Tubular device for intubation
US4607622A (en) 1985-04-11 1986-08-26 Charles D. Fritch Fiber optic ocular endoscope
US4619274A (en) 1985-04-18 1986-10-28 Advanced Cardiovascular Systems, Inc. Torsional guide wire with attenuated diameter
US4645495A (en) * 1985-06-26 1987-02-24 Vaillancourt Vincent L Vascular access implant needle patch
US4641654A (en) 1985-07-30 1987-02-10 Advanced Cardiovascular Systems, Inc. Steerable balloon dilatation catheter assembly having dye injection and pressure measurement capabilities
IT1182613B (en) * 1985-10-15 1987-10-05 Olivetti & Co Spa KEY WITH SELECTIVELY ACTIVATED DISPLAY AND KEYBOARD USING SUCH KEY
US4696544A (en) 1985-11-18 1987-09-29 Olympus Corporation Fiberscopic device for inspection of internal sections of construction, and method for using same
US4748986A (en) 1985-11-26 1988-06-07 Advanced Cardiovascular Systems, Inc. Floppy guide wire with opaque tip
US4691948A (en) 1985-11-27 1987-09-08 A-Dec, Inc. Fail-secure lock system
US4682607A (en) 1985-12-02 1987-07-28 Vlv Associates Wire guide
DE3704247A1 (en) 1986-02-14 1987-08-20 Olympus Optical Co ENDOSCOPE INSERTION DEVICE
US4669469A (en) 1986-02-28 1987-06-02 Devices For Vascular Intervention Single lumen atherectomy catheter device
US4834709A (en) 1986-03-26 1989-05-30 Sherwood Medical Company Preformable catheter
US5350395A (en) * 1986-04-15 1994-09-27 Yock Paul G Angioplasty apparatus facilitating rapid exchanges
US5040548A (en) 1989-06-01 1991-08-20 Yock Paul G Angioplasty mehtod
US4708834A (en) 1986-05-01 1987-11-24 Pharmacaps, Inc. Preparation of gelatin-encapsulated controlled release composition
US4672961A (en) 1986-05-19 1987-06-16 Davies David H Retrolasing catheter and method
US4795439A (en) * 1986-06-06 1989-01-03 Edward Weck Incorporated Spiral multi-lumen catheter
CH668188A5 (en) 1986-06-09 1988-12-15 Franz Rappai Corticosteroid ointment compsns. - comprise e.g. dexamethasone in poly:alkylene glycol base, and are used esp. for treating rhinitis
US5019372A (en) 1986-06-27 1991-05-28 The Children's Medical Center Corporation Magnetically modulated polymeric drug release system
US4854330A (en) 1986-07-10 1989-08-08 Medrad, Inc. Formed core catheter guide wire assembly
US4753637A (en) 1986-07-16 1988-06-28 The John Hopkins University Catheter having means for controlling the insertion depth
US4920967A (en) 1986-07-18 1990-05-01 Pfizer Hospital Products Group, Inc. Doppler tip wire guide
US4991588A (en) 1986-07-21 1991-02-12 Pfizer Hospital Products Group, Inc. Doppler guide wire
US4847258A (en) 1986-08-26 1989-07-11 Ciba-Geigy Corporation Substituted benzoylphenylureas compounds useful as pesticides
US4803076A (en) * 1986-09-04 1989-02-07 Pfizer Inc. Controlled release device for an active substance
US4726772A (en) * 1986-12-01 1988-02-23 Kurt Amplatz Medical simulator
US5030227A (en) 1988-06-02 1991-07-09 Advanced Surgical Intervention, Inc. Balloon dilation catheter
US5312430A (en) 1986-12-09 1994-05-17 Rosenbluth Robert F Balloon dilation catheter
US5527336A (en) 1986-12-09 1996-06-18 Boston Scientific Corporation Flow obstruction treatment method
US4771776A (en) 1987-01-06 1988-09-20 Advanced Cardiovascular Systems, Inc. Dilatation catheter with angled balloon and method
US4819619A (en) 1987-01-16 1989-04-11 Augustine Scott D Device for inserting a nasal tube
US4815478A (en) 1987-02-17 1989-03-28 Medtronic Versaflex, Inc. Steerable guidewire with deflectable tip
US4736970A (en) 1987-03-09 1988-04-12 Mcgourty Thomas K Electrically controlled door lock
US4811743A (en) 1987-04-21 1989-03-14 Cordis Corporation Catheter guidewire
US4793359A (en) 1987-04-24 1988-12-27 Gv Medical, Inc. Centering balloon structure for transluminal angioplasty catheter
US5090959A (en) 1987-04-30 1992-02-25 Advanced Cardiovascular Systems, Inc. Imaging balloon dilatation catheter
US4748969A (en) 1987-05-07 1988-06-07 Circon Corporation Multi-lumen core deflecting endoscope
US4867138A (en) * 1987-05-13 1989-09-19 Olympus Optical Co., Ltd. Rigid electronic endoscope
US4934024A (en) * 1987-05-19 1990-06-19 Debra A. Sullivan Thermoplastic grip and method for making same
US4755171A (en) 1987-05-29 1988-07-05 Tennant Jerald L Tubular surgical device
US4796629A (en) * 1987-06-03 1989-01-10 Joseph Grayzel Stiffened dilation balloon catheter device
DE3719250A1 (en) 1987-06-10 1988-12-22 Kellner Hans Joerg Dr Med ENDOSCOPE
US4953553A (en) 1989-05-11 1990-09-04 Advanced Cardiovascular Systems, Inc. Pressure monitoring guidewire with a flexible distal portion
SE8704767L (en) 1987-11-30 1989-05-31 Sigmund Johannes Loefstedt NEW METHOD FOR ADMINISTRATION OF MEDICINAL PRODUCTS
US5041089A (en) 1987-12-11 1991-08-20 Devices For Vascular Intervention, Inc. Vascular dilation catheter construction
US4846186A (en) 1988-01-12 1989-07-11 Cordis Corporation Flexible guidewire
US4917667A (en) 1988-02-11 1990-04-17 Retroperfusion Systems, Inc. Retroperfusion balloon catheter and method
US5372138A (en) 1988-03-21 1994-12-13 Boston Scientific Corporation Acousting imaging catheters and the like
US4883465A (en) 1988-05-24 1989-11-28 Brennan H George Nasal tampon and method for using
US4998917A (en) 1988-05-26 1991-03-12 Advanced Cardiovascular Systems, Inc. High torque steerable dilatation catheter
US4940062A (en) 1988-05-26 1990-07-10 Advanced Cardiovascular Systems, Inc. Guiding member with deflectable tip
JPH01305965A (en) 1988-06-06 1989-12-11 Fuji Syst Kk Catheter provided with balloon
AU618613B2 (en) 1988-06-13 1992-01-02 Yaroslavsky Mezhotraslevoi Nauchno-Tekhnichesky Tsentr Device for diagnosing and treating nasal diseases
EP0349053B1 (en) * 1988-06-29 1992-06-17 Jaico C.V. Cooperatieve Vennootschap Pressure capsule for spray can, and spray can which utilizes such a capsule
US5267965A (en) 1988-07-06 1993-12-07 Ethicon, Inc. Safety trocar
EP0355996A3 (en) 1988-07-21 1990-05-02 Advanced Interventional Systems, Inc. Guidance and delivery system for high-energy pulsed laser light and endoscope
DE8810044U1 (en) 1988-08-03 1988-11-17 Effner Gmbh Optical adjustment device
US5067489A (en) 1988-08-16 1991-11-26 Flexmedics Corporation Flexible guide with safety tip
US4917419A (en) 1988-08-22 1990-04-17 Mora Jr Saturnino F Electromechanical door lock system
US4898577A (en) * 1988-09-28 1990-02-06 Advanced Cardiovascular Systems, Inc. Guiding cathether with controllable distal tip
JPH0296072A (en) 1988-09-30 1990-04-06 Aisin Seiki Co Ltd Lid lock device
US4943275A (en) 1988-10-14 1990-07-24 Abiomed Limited Partnership Insertable balloon with curved support
US4984581A (en) * 1988-10-12 1991-01-15 Flexmedics Corporation Flexible guide having two-way shape memory alloy
JPH066342B2 (en) 1988-10-14 1994-01-26 三菱重工業株式会社 Shape memory film and its use
US5090910A (en) * 1988-10-14 1992-02-25 Narlo Jeanie R Multiple three dimensional facial display system
US4961433A (en) 1988-11-02 1990-10-09 Cardiometrics, Inc. Guide wire assembly with electrical functions and male and female connectors for use therewith
US5001825A (en) 1988-11-03 1991-03-26 Cordis Corporation Catheter guidewire fabrication method
US5189110A (en) * 1988-12-23 1993-02-23 Asahi Kasei Kogyo Kabushiki Kaisha Shape memory polymer resin, composition and the shape memorizing molded product thereof
US5087246A (en) * 1988-12-29 1992-02-11 C. R. Bard, Inc. Dilation catheter with fluted balloon
US4998916A (en) 1989-01-09 1991-03-12 Hammerslag Julius G Steerable medical device
US5221260A (en) 1989-01-13 1993-06-22 Scimed Life Systems, Inc. Innerless dilatation balloon catheter
US5087244A (en) * 1989-01-31 1992-02-11 C. R. Bard, Inc. Catheter and method for locally applying medication to the wall of a blood vessel or other body lumen
US5662674A (en) 1989-02-03 1997-09-02 Debbas; Elie Apparatus for locating a breast mass
US4966163A (en) 1989-02-14 1990-10-30 Advanced Cardiovascular Systems, Inc. Extendable guidewire for vascular procedures
US5024650A (en) 1989-02-15 1991-06-18 Matsushita Electric Works, Ltd. Stress dissolving refreshment system
SU1662571A1 (en) 1989-03-01 1991-07-15 Курский Государственный Медицинский Институт Process for preparing x-ray contrast agent for investigating sinuses
US4946466A (en) 1989-03-03 1990-08-07 Cordis Corporation Transluminal angioplasty apparatus
RU1768142C (en) 1989-03-29 1992-10-15 Ярославский Межотраслевой Научно-Технический Центр Device for therapy of sinuitis
US4919112B1 (en) 1989-04-07 1993-12-28 Low-cost semi-disposable endoscope
US5069226A (en) 1989-04-28 1991-12-03 Tokin Corporation Catheter guidewire with pseudo elastic shape memory alloy
KR0141688B1 (en) 1989-05-24 1998-06-15 스까다 쇼오에이 Balloon-carrying instrument for use in continuously injecting medical fluid
US5009655A (en) 1989-05-24 1991-04-23 C. R. Bard, Inc. Hot tip device with optical diagnostic capability
CN1049287A (en) 1989-05-24 1991-02-20 住友电气工业株式会社 The treatment conduit
US4994033A (en) * 1989-05-25 1991-02-19 Schneider (Usa) Inc. Intravascular drug delivery dilatation catheter
AU5721990A (en) 1989-06-07 1991-01-07 Ultra-Klean Ltd. Exercise and toning apparatus
US5207695A (en) 1989-06-19 1993-05-04 Trout Iii Hugh H Aortic graft, implantation device, and method for repairing aortic aneurysm
ES2081372T3 (en) 1989-06-28 1996-03-01 David S Zimmon STOPPING BALL DEVICES.
DE3923851C1 (en) 1989-07-19 1990-08-16 Richard Wolf Gmbh, 7134 Knittlingen, De
DE3927001A1 (en) 1989-08-16 1991-02-21 Lucien C Dr Med Olivier CATHETER SYSTEM
US5484409A (en) 1989-08-25 1996-01-16 Scimed Life Systems, Inc. Intravascular catheter and method for use thereof
US4986810A (en) 1989-09-01 1991-01-22 Neal Semrad Toggle catheter
US5180368A (en) * 1989-09-08 1993-01-19 Advanced Cardiovascular Systems, Inc. Rapidly exchangeable and expandable cage catheter for repairing damaged blood vessels
US5021043A (en) 1989-09-11 1991-06-04 C. R. Bard, Inc. Method and catheter for dilatation of the lacrimal system
US5169386A (en) 1989-09-11 1992-12-08 Bruce B. Becker Method and catheter for dilatation of the lacrimal system
DK0420488T3 (en) 1989-09-25 1993-08-30 Schneider Usa Inc Multilayer extrusion as a method for preparing angioplasty balloons
US5256144A (en) 1989-11-02 1993-10-26 Danforth Biomedical, Inc. Low profile, high performance interventional catheters
US5335671A (en) 1989-11-06 1994-08-09 Mectra Labs, Inc. Tissue removal assembly with provision for an electro-cautery device
US5026384A (en) 1989-11-07 1991-06-25 Interventional Technologies, Inc. Atherectomy systems and methods
US5112228A (en) 1989-11-13 1992-05-12 Advanced Cardiovascular Systems, Inc. Vascular model
US5215105A (en) * 1989-11-14 1993-06-01 Custom Medical Concepts, Inc. Method of treating epidural lesions
US5137517A (en) 1989-11-28 1992-08-11 Scimed Life Systems, Inc. Device and method for gripping medical shaft
US5053007A (en) 1989-12-14 1991-10-01 Scimed Life Systems, Inc. Compression balloon protector for a balloon dilatation catheter and method of use thereof
US5843089A (en) 1990-12-28 1998-12-01 Boston Scientific Corporation Stent lining
US5439446A (en) 1994-06-30 1995-08-08 Boston Scientific Corporation Stent and therapeutic delivery system
US5209730A (en) * 1989-12-19 1993-05-11 Scimed Life Systems, Inc. Method for placement of a balloon dilatation catheter across a stenosis and apparatus therefor
US5156595A (en) 1989-12-28 1992-10-20 Scimed Life Systems, Inc. Dilatation balloon catheter and method of manufacturing
US5049132A (en) 1990-01-08 1991-09-17 Cordis Corporation Balloon catheter for delivering therapeutic agents
USD329496S (en) 1990-02-20 1992-09-15 Celia Clarke Needle depth gauge
US5084010A (en) 1990-02-20 1992-01-28 Devices For Vascular Intervention, Inc. System and method for catheter construction
US5060660A (en) 1990-02-28 1991-10-29 C. R. Bard, Inc. Steerable extendable guidewire with adjustable tip
US5125915A (en) 1990-03-02 1992-06-30 Cardiopulmonics, Inc. Locking y-connector for selective attachment to exterior of medical tubing
AU113882S (en) 1990-03-07 1992-05-08 Terumo Corp Catheter
US5478565A (en) 1990-03-27 1995-12-26 Warner-Lambert Company Treatment of sinus headache
US5147315A (en) 1990-04-06 1992-09-15 C. R. Bard, Inc. Access catheter and system for use in the female reproductive system
US5238004A (en) 1990-04-10 1993-08-24 Boston Scientific Corporation High elongation linear elastic guidewire
US5171233A (en) 1990-04-25 1992-12-15 Microvena Corporation Snare-type probe
WO1991017788A1 (en) 1990-05-11 1991-11-28 Saab Mark A High-strength, thin-walled single piece catheters
CA2082621C (en) 1990-05-11 2002-07-09 Ralph V. M. D. Clayman Dilatation catheter assembly with cutting element
FR2662083A1 (en) 1990-05-21 1991-11-22 Perouse Sa Laboratoires Dilator apparatus, in particular for a blood vessel
SE502055C2 (en) 1990-05-23 1995-07-31 Atos Medical Ab Device for applying a drainage duct
WO1991019529A1 (en) * 1990-06-15 1991-12-26 Cortrak Medical, Inc. Drug delivery apparatus and method
CA2044867C (en) 1990-06-25 1999-10-12 James J. Rudnick Direct vision prostate balloon catheter
US5044678A (en) 1990-07-25 1991-09-03 Lectron Products, Inc. Solenoid operated latch device with movable pole piece
US5055051A (en) 1990-08-03 1991-10-08 Dornier Medical Systems, Inc. Semi-anthropomorphic biliary/renal training phantom for medical imaging and lithotripsy training
US5167220A (en) 1990-08-09 1992-12-01 Brown Cathy K Systems and methods for maintaining a clear visual field during endoscopic procedures
US5163989A (en) 1990-08-27 1992-11-17 Advanced Cardiovascular Systems, Inc. Method for forming a balloon mold and the use of such mold
US5345945A (en) 1990-08-29 1994-09-13 Baxter International Inc. Dual coil guidewire with radiopaque distal tip
US5197457A (en) 1990-09-12 1993-03-30 Adair Edwin Lloyd Deformable and removable sheath for optical catheter
DE4032096C2 (en) 1990-10-10 1995-03-30 Boehringer Ingelheim Kg Use of emulsifier-free emulsion polymers in pharmaceutical preparations with delayed release of the active ingredient
JP2699641B2 (en) 1990-10-11 1998-01-19 日本電気株式会社 Phase jitter suppression circuit
JPH0683726B2 (en) 1990-10-12 1994-10-26 日本精線株式会社 Guide wire for catheter
EP0555362A4 (en) 1990-10-29 1993-09-15 Scimed Life Systems, Inc. Guide catheter system for angioplasty balloon catheter
US5169043A (en) 1990-12-12 1992-12-08 Catania Claude L Versatile carrying bag
EP0491349B1 (en) 1990-12-18 1998-03-18 Advanced Cardiovascular Systems, Inc. Method of manufacturing a Superelastic guiding member
US5341818A (en) 1992-12-22 1994-08-30 Advanced Cardiovascular Systems, Inc. Guidewire with superelastic distal portion
US5165420A (en) 1990-12-21 1992-11-24 Ballard Medical Products Bronchoalveolar lavage catheter
US5102402A (en) 1991-01-04 1992-04-07 Medtronic, Inc. Releasable coatings on balloon catheters
US5368558A (en) 1991-01-11 1994-11-29 Baxter International Inc. Ultrasonic ablation catheter device having endoscopic component and method of using same
US6006126A (en) 1991-01-28 1999-12-21 Cosman; Eric R. System and method for stereotactic registration of image scan data
US5465717A (en) 1991-02-15 1995-11-14 Cardiac Pathways Corporation Apparatus and Method for ventricular mapping and ablation
US5139510A (en) 1991-02-22 1992-08-18 Xomed-Treace Inc. Nasal packing device
AU1579092A (en) 1991-02-27 1992-10-06 Nova Pharmaceutical Corporation Anti-infective and anti-inflammatory releasing systems for medical devices
US5183470A (en) * 1991-03-04 1993-02-02 International Medical, Inc. Laparoscopic cholangiogram catheter and method of using same
US5195168A (en) 1991-03-15 1993-03-16 Codex Corporation Speech coder and method having spectral interpolation and fast codebook search
US6733473B1 (en) 1991-04-05 2004-05-11 Boston Scientific Corporation Adjustably stiffenable convertible catheter assembly
US5211952A (en) 1991-04-12 1993-05-18 University Of Southern California Contraceptive methods and formulations for use therein
US5226302A (en) 1991-04-15 1993-07-13 Loctec Corporation Six-way self-adjusting lock for use on truck storage boxes and the like
CA2069052A1 (en) 1991-05-21 1992-11-22 L. Venkata Raman Superelastic formable guidewire
US5127393A (en) 1991-05-28 1992-07-07 Medilase, Inc. Flexible endoscope with rigid introducer
US5201908A (en) 1991-06-10 1993-04-13 Endomedical Technologies, Inc. Sheath for protecting endoscope from contamination
US5386817A (en) * 1991-06-10 1995-02-07 Endomedical Technologies, Inc. Endoscope sheath and valve system
US5213576A (en) 1991-06-11 1993-05-25 Cordis Corporation Therapeutic porous balloon catheter
US5429582A (en) 1991-06-14 1995-07-04 Williams; Jeffery A. Tumor treatment
CA2068584C (en) 1991-06-18 1997-04-22 Paul H. Burmeister Intravascular guide wire and method for manufacture thereof
US5264260A (en) 1991-06-20 1993-11-23 Saab Mark A Dilatation balloon fabricated from low molecular weight polymers
US5236422A (en) 1991-06-24 1993-08-17 Eplett Jr James D Antiseptic urinary catheter cuff
US5766151A (en) 1991-07-16 1998-06-16 Heartport, Inc. Endovascular system for arresting the heart
US5161534A (en) * 1991-09-05 1992-11-10 C. R. Bard, Inc. Tool for manipulating a medical guidewire
US5269752A (en) 1991-09-12 1993-12-14 Bennett Laurence M Method of extracorporeal treatment using a kink resistant catheter
US5252183A (en) 1991-09-13 1993-10-12 Abb Lummus Crest Inc. Process of pulping and bleaching fibrous plant material with tert-butyl alcohol and tert-butyl peroxide
US5168864A (en) 1991-09-26 1992-12-08 Clarus Medical Systems, Inc. Deflectable endoscope
US5304123A (en) 1991-10-24 1994-04-19 Children's Medical Center Corporation Detachable balloon catheter for endoscopic treatment of vesicoureteral reflux
US5290310A (en) 1991-10-30 1994-03-01 Howmedica, Inc. Hemostatic implant introducer
US5333620A (en) 1991-10-30 1994-08-02 C. R. Bard, Inc. High performance plastic coated medical guidewire
US5246016A (en) 1991-11-08 1993-09-21 Baxter International Inc. Transport catheter and multiple probe analysis method
US5251092A (en) 1991-11-27 1993-10-05 Protek Devices, Lp Receptacle assembly with both insulation displacement connector bussing and friction connector coupling of power conductors to surge suppressor circuit
EP0575580B1 (en) 1991-12-23 1999-03-17 Sims Deltec, Inc. Guide wire device with location sensing member
US5243996A (en) 1992-01-03 1993-09-14 Cook, Incorporated Small-diameter superelastic wire guide
US6109268A (en) 1995-06-07 2000-08-29 Arthrocare Corporation Systems and methods for electrosurgical endoscopic sinus surgery
US6086585A (en) 1995-06-07 2000-07-11 Arthrocare Corporation System and methods for electrosurgical treatment of sleep obstructive disorders
US6053172A (en) 1995-06-07 2000-04-25 Arthrocare Corporation Systems and methods for electrosurgical sinus surgery
US6063079A (en) 1995-06-07 2000-05-16 Arthrocare Corporation Methods for electrosurgical treatment of turbinates
US6190381B1 (en) 1995-06-07 2001-02-20 Arthrocare Corporation Methods for tissue resection, ablation and aspiration
US5273052A (en) 1992-01-08 1993-12-28 Danforth Biomedical, Incorporated Guidewire with reversible contact seal for releasable securement to catheter
CA2117386A1 (en) 1992-01-09 1993-07-22 Motasim M. Sirhan Guidewire replacement device
US5250059A (en) 1992-01-22 1993-10-05 Devices For Vascular Intervention, Inc. Atherectomy catheter having flexible nose cone
US5699796A (en) 1993-01-29 1997-12-23 Cardima, Inc. High resolution intravascular signal detection
US5341240A (en) 1992-02-06 1994-08-23 Linvatec Corporation Disposable endoscope
JPH05211985A (en) 1992-02-07 1993-08-24 Olympus Optical Co Ltd Endoscope guide apparatus for cerebral ventricle
US5195971A (en) 1992-02-10 1993-03-23 Advanced Cardiovascular Systems, Inc. Perfusion type dilatation catheter
US5263926A (en) 1992-02-18 1993-11-23 Wilk Peter J Device and related method for reducing swelling of hemorrhoidal tissues
DE4206524C2 (en) 1992-03-02 1997-04-24 Andris Raimund Gmbh & Co Kg Dosing pump for viscous, especially paste-like substances
US5769821A (en) 1992-03-02 1998-06-23 Quinton Instrument Company Catheter tip retainer
US5409444A (en) 1992-03-04 1995-04-25 Kensey Nash Corporation Method and apparatus to reduce injury to the vascular system
DE69326631T2 (en) 1992-03-19 2000-06-08 Medtronic Inc Intraluminal expansion device
AU4026793A (en) * 1992-04-10 1993-11-18 Cardiorhythm Shapable handle for steerable electrode catheter
US5334143A (en) 1992-04-17 1994-08-02 Carroll Brendon J Method to remove common bile duct stones
US5346075A (en) 1992-04-17 1994-09-13 Johnson & Johnson Medical, Inc. Apparatus and method for holding a medical instrument
USD355031S (en) * 1992-04-20 1995-01-31 Terumo Kabushiki Kaisha Catheter
US5368566A (en) 1992-04-29 1994-11-29 Cardiovascular Dynamics, Inc. Delivery and temporary stent catheter having a reinforced perfusion lumen
US5275593A (en) * 1992-04-30 1994-01-04 Surgical Technologies, Inc. Ophthalmic surgery probe assembly
US5817102A (en) 1992-05-08 1998-10-06 Schneider (Usa) Inc. Apparatus for delivering and deploying a stent
US5584827A (en) 1992-05-18 1996-12-17 Ultracell Medical Technologies, Inc Nasal-packing article
US5713848A (en) 1993-05-19 1998-02-03 Dubrul; Will R. Vibrating catheter
US5772680A (en) 1992-06-02 1998-06-30 General Surgical Innovations, Inc. Apparatus and method for developing an anatomic space for laparoscopic procedures with laparoscopic visualization
US5255679A (en) 1992-06-02 1993-10-26 Cardiac Pathways Corporation Endocardial catheter for mapping and/or ablation with an expandable basket structure having means for providing selective reinforcement and pressure sensing mechanism for use therewith, and method
US5324284A (en) 1992-06-05 1994-06-28 Cardiac Pathways, Inc. Endocardial mapping and ablation system utilizing a separately controlled ablation catheter and method
US5348537A (en) 1992-07-15 1994-09-20 Advanced Cardiovascular Systems, Inc. Catheter with intraluminal sealing element
US5313967A (en) 1992-07-24 1994-05-24 Medtronic, Inc. Helical guidewire
US5395367A (en) 1992-07-29 1995-03-07 Wilk; Peter J. Laparoscopic instrument with bendable shaft and removable actuator
US5707376A (en) * 1992-08-06 1998-01-13 William Cook Europe A/S Stent introducer and method of use
US5514131A (en) 1992-08-12 1996-05-07 Stuart D. Edwards Method for the ablation treatment of the uvula
US5720719A (en) 1992-08-12 1998-02-24 Vidamed, Inc. Ablative catheter with conformable body
ATE182273T1 (en) 1992-08-18 1999-08-15 Spectranetics Corp GUIDE WIRE WITH FIBER OPTICS
IT1258142B (en) * 1992-09-04 1996-02-20 NASAL AND / OR RHINOPARINGEOUS SWAB
US5647361A (en) 1992-09-28 1997-07-15 Fonar Corporation Magnetic resonance imaging method and apparatus for guiding invasive therapy
ATE198159T1 (en) 1992-10-15 2001-01-15 Gen Hospital Corp INFUSION PUMP WITH ELECTRONICALLY LOADABLE MEDICATION LIBRARY
US5356418A (en) 1992-10-28 1994-10-18 Shturman Cardiology Systems, Inc. Apparatus and method for rotational atherectomy
US5295694A (en) 1992-10-27 1994-03-22 Levin John M Laparoscopic surgery simulating game
US5336178A (en) 1992-11-02 1994-08-09 Localmed, Inc. Intravascular catheter with infusion array
US5306272A (en) 1992-11-02 1994-04-26 Neuro Navigational Corporation Advancer for surgical instrument
US5314408A (en) 1992-11-13 1994-05-24 Cardiovascular Imaging Systems, Inc. Expandable member for a catheter system
US5549542A (en) 1992-11-17 1996-08-27 Life Medical Technologies, Inc. Deflectable endoscope
AU5672194A (en) * 1992-11-18 1994-06-22 Spectrascience, Inc. Apparatus for diagnostic imaging
US5391147A (en) * 1992-12-01 1995-02-21 Cardiac Pathways Corporation Steerable catheter with adjustable bend location and/or radius and method
US5314417A (en) 1992-12-22 1994-05-24 Ethicon, Inc. Safety trocar
US5368564A (en) 1992-12-23 1994-11-29 Angeion Corporation Steerable catheter
US5653690A (en) 1992-12-30 1997-08-05 Medtronic, Inc. Catheter having a balloon with retention enhancement
US5336163A (en) 1993-01-06 1994-08-09 Smith & Nephew Richards, Inc. Expandable nasal stent
CN2151720Y (en) 1993-01-08 1994-01-05 陈吉峰 Hemostat for nasal cavity and nasopharynx cavity
WO1994015533A2 (en) 1993-01-18 1994-07-21 John Crowe Endoscope forceps
JP3345147B2 (en) 1993-01-26 2002-11-18 テルモ株式会社 Vasodilators and catheters
US5407433A (en) 1993-02-10 1995-04-18 Origin Medsystems, Inc. Gas-tight seal accommodating surgical instruments with a wide range of diameters
US5329927A (en) 1993-02-25 1994-07-19 Echo Cath, Inc. Apparatus and method for locating an interventional medical device with a ultrasound color imaging system
WO1994021320A1 (en) 1993-03-15 1994-09-29 Advanced Cardiovascular Systems, Inc. Fluid delivery catheter
US5378234A (en) 1993-03-15 1995-01-03 Pilot Cardiovascular Systems, Inc. Coil polymer composite
JP3553067B2 (en) * 1993-04-13 2004-08-11 ボストン・サイエンティフィック・リミテッド Prosthesis introduction device with extended tip
US5318528A (en) 1993-04-13 1994-06-07 Advanced Surgical Inc. Steerable surgical devices
US5985307A (en) 1993-04-14 1999-11-16 Emory University Device and method for non-occlusive localized drug delivery
US5350396A (en) 1993-04-15 1994-09-27 Hood Laboratories Nasal splint
US5824048A (en) 1993-04-26 1998-10-20 Medtronic, Inc. Method for delivering a therapeutic substance to a body lumen
US5464650A (en) 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
ATE161819T1 (en) 1993-04-27 1998-01-15 Solvay Fluor & Derivate METHOD FOR PRODUCING CARBOXYLIC ACID ESTERS FROM CARBOXYLIC ACID HALIDES AND ALCOHOLS
US5873835A (en) 1993-04-29 1999-02-23 Scimed Life Systems, Inc. Intravascular pressure and flow sensor
US5450853A (en) 1993-10-22 1995-09-19 Scimed Life Systems, Inc. Pressure sensor
US5346508A (en) 1993-04-29 1994-09-13 Scimed Life Systems, Inc. Apparatus and method for performing diagnostics and intravascular therapies
US5617870A (en) 1993-04-29 1997-04-08 Scimed Life Systems, Inc. Intravascular flow measurement system
US6832996B2 (en) 1995-06-07 2004-12-21 Arthrocare Corporation Electrosurgical systems and methods for treating tissue
DE4315821A1 (en) 1993-05-12 1994-11-17 Christian Dr Med Milewski Device for tamponade and for keeping open bone-restricted body cavities and passages after surgical manipulation
US5334187A (en) 1993-05-21 1994-08-02 Cathco, Inc. Balloon catheter system with slit opening handle
US5372584A (en) 1993-06-24 1994-12-13 Ovamed Corporation Hysterosalpingography and selective salpingography
US5402799A (en) 1993-06-29 1995-04-04 Cordis Corporation Guidewire having flexible floppy tip
JP3337272B2 (en) 1993-06-29 2002-10-21 株式会社町田製作所 Medical equipment
US5370640A (en) 1993-07-01 1994-12-06 Kolff; Jack Intracorporeal catheter placement apparatus and method
US5964745A (en) * 1993-07-02 1999-10-12 Med Usa Implantable system for cell growth control
WO1995002430A1 (en) 1993-07-15 1995-01-26 Advanced Cardiovascular Systems, Inc. Rapid exchange type intraluminal catheter with guiding element
US5391199A (en) 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US5827323A (en) 1993-07-21 1998-10-27 Charles H. Klieman Surgical instrument for endoscopic and general surgery
US5472449A (en) 1993-07-26 1995-12-05 Chou; Kuei C. Permanent pigment applicator having a detachable needle coupler
US5415633A (en) 1993-07-28 1995-05-16 Active Control Experts, Inc. Remotely steered catheterization device
US5441494A (en) 1993-07-29 1995-08-15 Ethicon, Inc. Manipulable hand for laparoscopy
US6277107B1 (en) 1993-08-13 2001-08-21 Daig Corporation Guiding introducer for introducing medical devices into the coronary sinus and process for using same
US5562619A (en) 1993-08-19 1996-10-08 Boston Scientific Corporation Deflectable catheter
US5578048A (en) 1993-09-15 1996-11-26 United States Surgical Corporation Manipulator apparatus
EP0722286B1 (en) 1993-09-20 2002-08-21 Boston Scientific Corporation Multiple biopsy sampling device
US5607386A (en) 1993-09-21 1997-03-04 Flam; Gary H. Malleable fiberoptic intubating stylet and method
US5558091A (en) 1993-10-06 1996-09-24 Biosense, Inc. Magnetic determination of position and orientation
US5400783A (en) 1993-10-12 1995-03-28 Cardiac Pathways Corporation Endocardial mapping apparatus with rotatable arm and method
US5465733A (en) 1993-10-14 1995-11-14 Hinohara; Tomoaki Guide wire for catheters and method for its use
US5445646A (en) 1993-10-22 1995-08-29 Scimed Lifesystems, Inc. Single layer hydraulic sheath stent delivery apparatus and method
US5437282A (en) 1993-10-29 1995-08-01 Boston Scientific Corporation Drive shaft for acoustic imaging catheters and flexible catheters
US5720300A (en) 1993-11-10 1998-02-24 C. R. Bard, Inc. High performance wires for use in medical devices and alloys therefor
US5507301A (en) 1993-11-19 1996-04-16 Advanced Cardiovascular Systems, Inc. Catheter and guidewire system with flexible distal portions
US5334167A (en) 1993-11-19 1994-08-02 Cocanower David A Modified nasogastric tube for use in enteral feeding
US5459700A (en) 1993-11-22 1995-10-17 Advanced Cardiovascular Systems, Inc. Manual timer control for inflation device
US6673025B1 (en) * 1993-12-01 2004-01-06 Advanced Cardiovascular Systems, Inc. Polymer coated guidewire
US5451221A (en) 1993-12-27 1995-09-19 Cynosure, Inc. Endoscopic light delivery system
US6716216B1 (en) 1998-08-14 2004-04-06 Kyphon Inc. Systems and methods for treating vertebral bodies
US5538510A (en) * 1994-01-31 1996-07-23 Cordis Corporation Catheter having coextruded tubing
SE9400364D0 (en) 1994-02-02 1994-02-02 Sven Eric Stangerup Nasal catheter and procedure for the treatment of nasal bleeding
US5904701A (en) 1994-02-14 1999-05-18 Daneshvar; Yousef Device for aiding procedural and therapeutic interventions of the gastrointestinal tract
US5591194A (en) 1994-02-18 1997-01-07 C. R. Bard, Inc. Telescoping balloon catheter and method of use
US5411016A (en) * 1994-02-22 1995-05-02 Scimed Life Systems, Inc. Intravascular balloon catheter for use in combination with an angioscope
DE4405720C1 (en) 1994-02-23 1995-10-19 Wolf Gmbh Richard Instrument for endoscopic therapy of carpal tunnel syndrome
AUPM409094A0 (en) 1994-02-25 1994-03-24 Trimec Securities Pty. Limited Improvements in electromagnetic locks
US5582167A (en) 1994-03-02 1996-12-10 Thomas Jefferson University Methods and apparatus for reducing tracheal infection using subglottic irrigation, drainage and servoregulation of endotracheal tube cuff pressure
US5425370A (en) 1994-03-23 1995-06-20 Echocath, Inc. Method and apparatus for locating vibrating devices
US5887467A (en) 1994-03-30 1999-03-30 U-Code, Inc. Pawl & solenoid locking mechanism
US5454817A (en) 1994-04-11 1995-10-03 Katz; David L. Oto-nasal foreign body extractor
US5533985A (en) 1994-04-20 1996-07-09 Wang; James C. Tubing
US5507795A (en) 1994-04-29 1996-04-16 Devices For Vascular Intervention, Inc. Catheter with perfusion system
US5599304A (en) * 1994-05-10 1997-02-04 Mount Sinai School Of Medicine Of The City University Of New York Sinonasal suction apparatus
US6139510A (en) 1994-05-11 2000-10-31 Target Therapeutics Inc. Super elastic alloy guidewire
US5824044A (en) 1994-05-12 1998-10-20 Endovascular Technologies, Inc. Bifurcated multicapsule intraluminal grafting system
US5882333A (en) 1994-05-13 1999-03-16 Cardima, Inc. Catheter with deflectable distal section
US5551946A (en) 1994-05-17 1996-09-03 Bullard; James R. Multifunctional intubating guide stylet and laryngoscope
US5497783A (en) 1994-05-18 1996-03-12 Scimed Life Systems, Inc. Guidewire having radioscopic tip
US5478309A (en) 1994-05-27 1995-12-26 William P. Sweezer, Jr. Catheter system and method for providing cardiopulmonary bypass pump support during heart surgery
US5569183A (en) 1994-06-01 1996-10-29 Archimedes Surgical, Inc. Method for performing surgery around a viewing space in the interior of the body
JPH07327916A (en) 1994-06-02 1995-12-19 Olympus Optical Co Ltd Visual field direction varying type endoscope
DE69532503T2 (en) 1994-06-17 2004-11-04 Hisamitsu Pharmaceutical Co., Inc., Tosu ELECTRODE FOR IONTOPHORESIS AND DEVICE THEREFOR
US5633000A (en) 1994-06-23 1997-05-27 Axxia Technologies Subcutaneous implant
JPH10503673A (en) 1994-06-24 1998-04-07 アドバンスト・カーディオバスキュラー・システムズ・インコーポレイテッド Catheter with reusable proximal body
US5857998A (en) * 1994-06-30 1999-01-12 Boston Scientific Corporation Stent and therapeutic delivery system
US5458572A (en) 1994-07-01 1995-10-17 Boston Scientific Corp. Catheter with balloon folding into predetermined configurations and method of manufacture
US5441497A (en) 1994-07-14 1995-08-15 Pdt Cardiovascular, Inc. Light diffusing guidewire
US5486181A (en) * 1994-08-04 1996-01-23 Implex Corporation Acetabular cup, method and tool and installing the same
US6579285B2 (en) 1994-09-09 2003-06-17 Cardiofocus, Inc. Photoablation with infrared radiation
US5803089A (en) 1994-09-15 1998-09-08 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
US5673707A (en) 1994-09-23 1997-10-07 Boston Scientific Corporation Enhanced performance guidewire
US5558652A (en) 1994-10-06 1996-09-24 B. Braun Medical, Inc. Introducer with radiopaque marked tip and method of manufacture therefor
US5722401A (en) 1994-10-19 1998-03-03 Cardiac Pathways Corporation Endocardial mapping and/or ablation catheter probe
US6458070B1 (en) * 1994-10-27 2002-10-01 Novoste Corporation Method and apparatus for treating a desired area in the vascular system of a patient
US5814029A (en) 1994-11-03 1998-09-29 Daig Corporation Guiding introducer system for use in ablation and mapping procedures in the left ventricle
CA2204789C (en) 1994-11-10 2002-11-12 Paul Ashton Implantable refillable controlled release device to deliver drugs directly to an internal portion of the body
US6059752A (en) 1994-12-09 2000-05-09 Segal; Jerome Mechanical apparatus and method for dilating and irradiating a site of treatment
US5637113A (en) 1994-12-13 1997-06-10 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US5664580A (en) 1995-01-31 1997-09-09 Microvena Corporation Guidewire having bimetallic coil
US5599576A (en) * 1995-02-06 1997-02-04 Surface Solutions Laboratories, Inc. Medical apparatus with scratch-resistant coating and method of making same
US5599284A (en) * 1995-02-08 1997-02-04 Shea; John P. Pre-operative nasal splint for endoscopic sinus surgery and method
US6830785B1 (en) 1995-03-20 2004-12-14 Toto Ltd. Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with a superhydrophilic photocatalytic surface, and method of making thereof
WO1996029071A1 (en) 1995-03-21 1996-09-26 Ramot University Authority For Applied Research & Industrial Development Ltd. Uses of antibacterial compounds
DE820258T1 (en) 1995-03-23 1998-04-30 Advanced Animal Technology Ltd SUBSTANCE DELIVERY DEVICE
DE69626105T2 (en) 1995-03-30 2003-10-23 Heartport Inc ENDOVASCULAR CATHETER FOR LEADING FROM THE HEART
KR960032597U (en) 1995-03-31 1996-10-24 Tape recorder reservation recording switch
US5685838A (en) 1995-04-17 1997-11-11 Xomed-Treace, Inc. Sinus debrider apparatus
US5837313A (en) 1995-04-19 1998-11-17 Schneider (Usa) Inc Drug release stent coating process
US6638291B1 (en) 1995-04-20 2003-10-28 Micrus Corporation Three dimensional, low friction vasoocclusive coil, and method of manufacture
US5752522A (en) * 1995-05-04 1998-05-19 Cardiovascular Concepts, Inc. Lesion diameter measurement catheter and method
US6122541A (en) 1995-05-04 2000-09-19 Radionics, Inc. Head band for frameless stereotactic registration
US5749357A (en) 1995-05-19 1998-05-12 Linder; Gerald S. Malleable introducer
US5735817A (en) 1995-05-19 1998-04-07 Shantha; T. R. Apparatus for transsphenoidal stimulation of the pituitary gland and adjoining brain structures
US5656030A (en) 1995-05-22 1997-08-12 Boston Scientific Corporation Bidirectional steerable catheter with deflectable distal tip
JPH08317989A (en) 1995-05-24 1996-12-03 Piolax Inc Guide wire for medical care
ATE443693T1 (en) 1995-05-26 2009-10-15 Ishihara Sangyo Kaisha METHOD FOR PRODUCING SUBSTITUTED 1,1,1-TRIFLUORO-3-BUTEN-2-ONE
US5833650A (en) 1995-06-05 1998-11-10 Percusurge, Inc. Catheter apparatus and method for treating occluded vessels
WO1996040342A1 (en) 1995-06-07 1996-12-19 Cardima, Inc. Guiding catheter for coronary sinus
US5729129A (en) 1995-06-07 1998-03-17 Biosense, Inc. Magnetic location system with feedback adjustment of magnetic field generator
US5707389A (en) * 1995-06-07 1998-01-13 Baxter International Inc. Side branch occlusion catheter device having integrated endoscope for performing endoscopically visualized occlusion of the side branches of an anatomical passageway
US5752513A (en) 1995-06-07 1998-05-19 Biosense, Inc. Method and apparatus for determining position of object
US6238391B1 (en) 1995-06-07 2001-05-29 Arthrocare Corporation Systems for tissue resection, ablation and aspiration
CA2225784A1 (en) 1995-06-30 1997-01-23 Boston Scientific Corporation Ultrasound imaging catheter with a cutting element
US5782795A (en) 1995-06-30 1998-07-21 Xomed Surgical Products, Inc. Surgical suction cutting instrument with internal irrigation
US6258046B1 (en) 1995-07-06 2001-07-10 Institute Of Critical Care Medicine Method and device for assessing perfusion failure in a patient by measurement of blood flow
US5645789A (en) 1995-07-20 1997-07-08 Navius Corporation Distensible pet balloon and method of manufacture
US5638819A (en) 1995-08-29 1997-06-17 Manwaring; Kim H. Method and apparatus for guiding an instrument to a target
US5669388A (en) 1995-09-06 1997-09-23 Echocath, Inc. Apparatus and method for automatic placement of transducer
US5601594A (en) 1995-09-14 1997-02-11 Best; Barry D. Nasal stent
GB2305174A (en) 1995-09-15 1997-04-02 Zeneca Ltd Chemical process
US5810715A (en) 1995-09-29 1998-09-22 Olympus Optical Co., Ltd. Endoscope provided with function of being locked to flexibility of insertion part which is set by flexibility modifying operation member
US6027461A (en) 1995-10-11 2000-02-22 Micro Therapeutics, Inc. Infusion guidewire having fixed core wire and flexible radiopaque marker
DE69633411T2 (en) 1995-10-13 2005-10-20 Transvascular, Inc., Menlo Park METHOD AND DEVICE FOR PREVENTING ARTERIAL ATTRACTIONS AND / OR FOR CARRYING OUT OTHER TRANSVASCULAR INTERVENTIONS
US6375615B1 (en) 1995-10-13 2002-04-23 Transvascular, Inc. Tissue penetrating catheters having integral imaging transducers and their methods of use
US6283951B1 (en) * 1996-10-11 2001-09-04 Transvascular, Inc. Systems and methods for delivering drugs to selected locations within the body
US6302875B1 (en) 1996-10-11 2001-10-16 Transvascular, Inc. Catheters and related devices for forming passageways between blood vessels or other anatomical structures
US6113567A (en) 1995-10-25 2000-09-05 Becker; Bruce B. Lacrimal silicone tube with reduced friction
US5916149A (en) 1995-10-25 1999-06-29 Ryan, Jr.; Edwin H. Shielded illumination device for ophthalmic surgery and the like
US6287315B1 (en) 1995-10-30 2001-09-11 World Medical Manufacturing Corporation Apparatus for delivering an endoluminal prosthesis
US6019736A (en) 1995-11-06 2000-02-01 Francisco J. Avellanet Guidewire for catheter
US5843050A (en) 1995-11-13 1998-12-01 Micro Therapeutics, Inc. Microcatheter
US5749848A (en) 1995-11-13 1998-05-12 Cardiovascular Imaging Systems, Inc. Catheter system having imaging, balloon angioplasty, and stent deployment capabilities, and method of use for guided stent deployment
US5827224A (en) 1995-11-22 1998-10-27 Shippert; Ronald D. Pressure applying fluid transfer medical device
FI100318B (en) 1995-11-23 1997-11-14 Fiskars Consumer Oy Ab Articulated hand tools
US5733248A (en) 1995-11-29 1998-03-31 Scimed Life Systems, Inc. Universal guide catheter
AU712539B2 (en) * 1996-01-08 1999-11-11 Biosense, Inc. Methods and apparatus for myocardial revascularization
US5722984A (en) 1996-01-16 1998-03-03 Iso Stent, Inc. Antithrombogenic radioactive coating for an intravascular stent
US6039699A (en) 1996-01-22 2000-03-21 Cordis Corporation Stiff catheter guidewire with flexible distal portion
CA2246287C (en) 1996-02-15 2006-10-24 Biosense, Inc. Medical procedures and apparatus using intrabody probes
US5711315A (en) * 1996-02-15 1998-01-27 Jerusalmy; Israel Sinus lift method
CA2197614C (en) 1996-02-20 2002-07-02 Charles S. Taylor Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft surgery
RU2108764C1 (en) 1996-02-20 1998-04-20 Московский государственный институт стали и сплавов (технологический университет) Device for delivering and method for implanting spiral roentgen-endoprostheses of vessels and hollow organs of the human body
US5885258A (en) 1996-02-23 1999-03-23 Memory Medical Systems, Inc. Medical instrument with slotted memory metal tube
US6860264B2 (en) 1996-02-26 2005-03-01 Evergreen Medical Incorporated Method and apparatus for endotracheal intubation using a light wand and curved guide
US5817013A (en) 1996-03-19 1998-10-06 Enable Medical Corporation Method and apparatus for the minimally invasive harvesting of a saphenous vein and the like
US6679833B2 (en) 1996-03-22 2004-01-20 Sdgi Holdings, Inc. Devices and methods for percutaneous surgery
US5682199A (en) 1996-03-28 1997-10-28 Jedmed Instrument Company Video endoscope with interchangeable endoscope heads
US5779699A (en) 1996-03-29 1998-07-14 Medtronic, Inc. Slip resistant field focusing ablation catheter electrode
US5980503A (en) 1996-04-08 1999-11-09 Guidant Corporation Endoscopic cardioplegia infusion cannula and method of use
EP0892625B1 (en) 1996-04-10 2000-06-21 Curaden Ag Apparatus of determining the approximal passability of an interdental space
US6171298B1 (en) * 1996-05-03 2001-01-09 Situs Corporation Intravesical infuser
US7022105B1 (en) 1996-05-06 2006-04-04 Novasys Medical Inc. Treatment of tissue in sphincters, sinuses and orifices
US6503087B1 (en) * 1996-05-08 2003-01-07 Gaumard Scientific, Inc. Interactive education system for teaching patient care
US6270477B1 (en) * 1996-05-20 2001-08-07 Percusurge, Inc. Catheter for emboli containment
US6050972A (en) 1996-05-20 2000-04-18 Percusurge, Inc. Guidewire inflation system
US6652480B1 (en) * 1997-03-06 2003-11-25 Medtronic Ave., Inc. Methods for reducing distal embolization
US5693065A (en) 1996-06-25 1997-12-02 Rains, Iii; B. Manrin Frontal sinus stent
US6167296A (en) 1996-06-28 2000-12-26 The Board Of Trustees Of The Leland Stanford Junior University Method for volumetric image navigation
US5789391A (en) 1996-07-03 1998-08-04 Inspire Pharmaceuticals, Inc. Method of treating sinusitis with uridine triphosphates and related compounds
JPH1024098A (en) 1996-07-10 1998-01-27 Terumo Corp Balloon and balloon catheter
US5865767A (en) 1996-07-10 1999-02-02 Cordis Corporation Guidewire having compound taper
US5882346A (en) 1996-07-15 1999-03-16 Cardiac Pathways Corporation Shapable catheter using exchangeable core and method of use
US5664567A (en) 1996-07-16 1997-09-09 Linder; Gerald S. Fenestrated nasopharyngeal airway for drainage
US5820592A (en) 1996-07-16 1998-10-13 Hammerslag; Gary R. Angiographic and/or guide catheter
JP3693762B2 (en) 1996-07-26 2005-09-07 株式会社ニホンゲンマ Lead-free solder
US6569147B1 (en) 1996-07-26 2003-05-27 Kensey Nash Corporation Systems and methods of use for delivering beneficial agents for revascularizing stenotic bypass grafts and other occluded blood vessels and for other purposes
US5826576A (en) 1996-08-08 1998-10-27 Medtronic, Inc. Electrophysiology catheter with multifunction wire and method for making
US6126682A (en) 1996-08-13 2000-10-03 Oratec Interventions, Inc. Method for treating annular fissures in intervertebral discs
US5797878A (en) 1996-08-15 1998-08-25 Guidant Corporation Catheter having optimized balloon taper angle
US5833682A (en) 1996-08-26 1998-11-10 Illumenex Corporation Light delivery system with blood flushing capability
CA2209366C (en) 1996-09-13 2004-11-02 Interventional Technologies, Inc. Incisor-dilator with tapered balloon
US6322498B1 (en) 1996-10-04 2001-11-27 University Of Florida Imaging scope
US5843113A (en) 1996-10-08 1998-12-01 High; Kenneth Endocystotomy tool
US5971975A (en) 1996-10-09 1999-10-26 Target Therapeutics, Inc. Guide catheter with enhanced guidewire tracking
US6379319B1 (en) 1996-10-11 2002-04-30 Transvascular, Inc. Systems and methods for directing and snaring guidewires
US6016439A (en) * 1996-10-15 2000-01-18 Biosense, Inc. Method and apparatus for synthetic viewpoint imaging
US5820568A (en) 1996-10-15 1998-10-13 Cardiac Pathways Corporation Apparatus and method for aiding in the positioning of a catheter
US5779669A (en) 1996-10-28 1998-07-14 C. R. Bard, Inc. Steerable catheter with fixed curve
US6913763B2 (en) 1996-11-19 2005-07-05 Intrabrain International Nv Method and device for enhanced delivery of a biologically active agent through the spinal spaces into the central nervous system of a mammal
US5872879A (en) 1996-11-25 1999-02-16 Boston Scientific Corporation Rotatable connecting optical fibers
US5836638A (en) 1996-12-09 1998-11-17 Illinois Tool Works Inc. Fuel door assembly
US5830188A (en) 1996-12-11 1998-11-03 Board Of Regents, The University Of Texas System Curved cannula for continuous spinal anesthesia
US5766194A (en) 1996-12-23 1998-06-16 Georgia Skin And Cancer Clinic, Pc Surgical apparatus for tissue removal
US5935061A (en) 1997-01-03 1999-08-10 Biosense, Inc. Obstetrical instrument system and method
EP0893967B1 (en) 1997-01-03 2004-03-17 Biosense, Inc. Conformal catheter
US6007516A (en) 1997-01-21 1999-12-28 Vasca, Inc. Valve port and method for vascular access
US5916213A (en) 1997-02-04 1999-06-29 Medtronic, Inc. Systems and methods for tissue mapping and ablation
US5980551A (en) 1997-02-07 1999-11-09 Endovasc Ltd., Inc. Composition and method for making a biodegradable drug delivery stent
US6669689B2 (en) 1997-02-27 2003-12-30 Cryocath Technologies Inc. Cryosurgical catheter
AU6688398A (en) 1997-03-06 1998-09-22 Percusurge, Inc. Intravascular aspiration system
US5879324A (en) 1997-03-06 1999-03-09 Von Hoffmann; Gerard Low profile catheter shaft
US6190332B1 (en) 1998-02-19 2001-02-20 Percusurge, Inc. Core wire with shapeable tip
US6159170A (en) 1997-03-13 2000-12-12 Borodulin; German Universal mechanical dilator combined with massaging action
US5830220A (en) * 1997-03-13 1998-11-03 Wan; Shaw P. Suturing instrument
US6007991A (en) 1997-03-28 1999-12-28 The Research Foundation Of Suny Antisense oligonucleotides for mitogen-activated protein kinases as therapy for cancer
US6524299B1 (en) 1997-04-09 2003-02-25 Target Therapeutics, Inc. Flow-directed catheter
US5941816A (en) 1997-04-15 1999-08-24 Clarus Medical Systems, Inc. Viewing system with adapter handle for medical breathing tubes
US6019777A (en) 1997-04-21 2000-02-01 Advanced Cardiovascular Systems, Inc. Catheter and method for a stent delivery system
US5862693A (en) * 1997-05-02 1999-01-26 Fort Lock Corporation Electronically controlled security lock
US6016429A (en) * 1997-05-28 2000-01-18 Northern Telecom Limited Method and apparatus for minimizing cellular network costs when upgrading the electronics in an existing cellular system
EP0988081A1 (en) 1997-06-04 2000-03-29 Advanced Cardiovascular Systems, Inc. Steerable guidewire with enhanced distal support
US6146402A (en) 1997-06-09 2000-11-14 Munoz; Cayetano S. Endotracheal tube guide introducer and method of intubation
US5997562A (en) 1997-06-13 1999-12-07 Percusurge, Inc. Medical wire introducer and balloon protective sheath
US5938660A (en) 1997-06-27 1999-08-17 Daig Corporation Process and device for the treatment of atrial arrhythmia
DE19728273C1 (en) 1997-07-02 1998-12-10 Fuss Fritz Gmbh & Co Locking device for furniture
US6514249B1 (en) 1997-07-08 2003-02-04 Atrionix, Inc. Positioning system and method for orienting an ablation element within a pulmonary vein ostium
US7799337B2 (en) 1997-07-21 2010-09-21 Levin Bruce H Method for directed intranasal administration of a composition
US6432986B2 (en) 1997-07-21 2002-08-13 Bruce H. Levin Compositions, kits, and methods for inhibiting cerebral neurovascular disorders and muscular headaches
US20010004644A1 (en) 1997-07-21 2001-06-21 Levin Bruce H. Compositions, kits, apparatus, and methods for inhibiting cephalic inflammation
US5928192A (en) 1997-07-24 1999-07-27 Embol-X, Inc. Arterial aspiration
WO2001028618A2 (en) 1999-10-22 2001-04-26 Boston Scientific Corporation Double balloon thrombectomy catheter
DE19732031C1 (en) 1997-07-25 1999-04-22 Solvay Fluor & Derivate 2-phase production of carboxylic acid esters
US5908407A (en) 1997-07-25 1999-06-01 Neuroperfusion, Inc. Retroperfusion catheter apparatus and method
US6015414A (en) * 1997-08-29 2000-01-18 Stereotaxis, Inc. Method and apparatus for magnetically controlling motion direction of a mechanically pushed catheter
US5902247A (en) 1997-09-09 1999-05-11 Bioenterics Corporation Transilluminating catheter
US6066149A (en) * 1997-09-30 2000-05-23 Target Therapeutics, Inc. Mechanical clot treatment device with distal filter
JP2001518328A (en) 1997-10-01 2001-10-16 ボストン サイエンティフィック リミテッド Expansion system and related methods
US6027478A (en) 1997-10-09 2000-02-22 Medical Purchasing Group, Inc. Nasal cavity drainage and stoppage system
US6042561A (en) 1997-10-22 2000-03-28 Ash Medical Systems, Inc. Non-intravascular infusion access device
US6056702A (en) 1998-10-02 2000-05-02 Cordis Corporation Guidewire with outer sheath
FR2770409B1 (en) 1997-10-31 2000-06-23 Soprane Sa UNIVERSAL CATHETER
JP4121615B2 (en) 1997-10-31 2008-07-23 オリンパス株式会社 Endoscope
US6048299A (en) 1997-11-07 2000-04-11 Radiance Medical Systems, Inc. Radiation delivery catheter
US6212419B1 (en) 1997-11-12 2001-04-03 Walter M. Blume Method and apparatus using shaped field of repositionable magnet to guide implant
US6179811B1 (en) * 1997-11-25 2001-01-30 Medtronic, Inc. Imbedded marker and flexible guide wire shaft
EP0920882A3 (en) 1997-12-04 2000-01-05 Schneider Inc. Balloon dilatation-drug delivery catheter and stent deployment-drug delivery catheter in rapid exchange configuration
WO1999029363A1 (en) 1997-12-08 1999-06-17 Cardeon Corporation Aortic catheter and methods for inducing cardioplegic arrest and for selective aortic perfusion
WO1999030655A1 (en) 1997-12-15 1999-06-24 Arthrocare Corporation Systems and methods for electrosurgical treatment of the head and neck
AU1720199A (en) 1997-12-23 1999-07-12 Somnus Medical Technologies, Inc. Apparatus for reducing tissue volumes by the use of energy
US6093150A (en) 1997-12-31 2000-07-25 Acuson Corporation Ultrasound otoscope
US7008412B2 (en) 1998-01-06 2006-03-07 Cathlogic, Inc. Subcutaneous port catheter system and associated method
US5989231A (en) 1998-01-15 1999-11-23 Scimed Life Systems, Inc. Optical gastrostomy and jejunostomy
NL1008051C2 (en) 1998-01-16 1999-07-19 Cordis Europ Balloon catheter.
US6159178A (en) 1998-01-23 2000-12-12 Heartport, Inc. Methods and devices for occluding the ascending aorta and maintaining circulation of oxygenated blood in the patient when the patient's heart is arrested
US6295990B1 (en) 1998-02-03 2001-10-02 Salient Interventional Systems, Inc. Methods and systems for treating ischemia
US6083188A (en) 1998-02-04 2000-07-04 Becker; Bruce B. Lacrimal silicone stent with very large diameter segment insertable transnasally
US7371210B2 (en) 1998-02-24 2008-05-13 Hansen Medical, Inc. Flexible instrument
US6176829B1 (en) * 1998-02-26 2001-01-23 Echocath, Inc. Multi-beam diffraction grating imager apparatus and method
US6183461B1 (en) 1998-03-11 2001-02-06 Situs Corporation Method for delivering a medication
JPH11265567A (en) 1998-03-17 1999-09-28 Mitsumi Electric Co Ltd Disk drive
DE19813383A1 (en) 1998-03-26 1999-10-07 Storz Karl Gmbh & Co Device with a transmitter unit, via which the position of a medical instrument can be detected in the context of a CAS system
WO1999049910A2 (en) 1998-03-31 1999-10-07 Transvascular, Inc. Transvascular catheters having imaging transducers
US6013019A (en) * 1998-04-06 2000-01-11 Isostent, Inc. Temporary radioisotope stent
US6364856B1 (en) 1998-04-14 2002-04-02 Boston Scientific Corporation Medical device with sponge coating for controlled drug release
US5968085A (en) 1998-04-20 1999-10-19 Medtronic, Inc. Pacing lead with integral guidance using ultrasound
AU769166B2 (en) * 1998-04-24 2004-01-15 Genentech Inc. Fizz proteins
US6450989B2 (en) 1998-04-27 2002-09-17 Artemis Medical, Inc. Dilating and support apparatus with disease inhibitors and methods for use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6306105B1 (en) 1998-05-14 2001-10-23 Scimed Life Systems, Inc. High performance coil wire
US6280411B1 (en) 1998-05-18 2001-08-28 Scimed Life Systems, Inc. Localized delivery of drug agents
US6183464B1 (en) 1998-06-01 2001-02-06 Inviro Medical Devices Ltd. Safety syringe with retractable needle and universal luer coupling
US6048358A (en) 1998-07-13 2000-04-11 Barak; Shlomo Method and apparatus for hemostasis following arterial catheterization
US6290689B1 (en) 1999-10-22 2001-09-18 Corazón Technologies, Inc. Catheter devices and methods for their use in the treatment of calcified vascular occlusions
US6352503B1 (en) 1998-07-17 2002-03-05 Olympus Optical Co., Ltd. Endoscopic surgery apparatus
US5979290A (en) 1998-07-20 1999-11-09 Simeone; Salvatore Mine clearing device
US6226542B1 (en) 1998-07-24 2001-05-01 Biosense, Inc. Three-dimensional reconstruction of intrabody organs
NL1009738C2 (en) 1998-07-24 2000-01-25 Cordis Europ Balloon catheter with filler for stent delivery.
US20040064105A1 (en) 2002-09-27 2004-04-01 Capes David Francis Single-use syringe
US5954694A (en) 1998-08-07 1999-09-21 Embol-X, Inc. Nested tubing sections and methods for making same
US6168586B1 (en) * 1998-08-07 2001-01-02 Embol-X, Inc. Inflatable cannula and method of using same
US6129713A (en) 1998-08-11 2000-10-10 Embol-X, Inc. Slidable cannula and method of use
CN2352818Y (en) 1998-08-12 1999-12-08 李平 Medical use light guide
US6152943A (en) 1998-08-14 2000-11-28 Incept Llc Methods and apparatus for intraluminal deposition of hydrogels
WO2000009192A1 (en) 1998-08-17 2000-02-24 Kazuhiro Noda Operation balloon
JP3244660B2 (en) 1998-08-17 2002-01-07 旭光学工業株式会社 Endoscope treatment tool
USD413629S (en) 1998-08-18 1999-09-07 HA-LO Industries, Inc. Nasal tract model
KR100618932B1 (en) 1998-08-19 2006-09-04 쿡 인코포레이티드 Preformed wire guide
US6741884B1 (en) 1998-09-03 2004-05-25 Hypermed, Inc. Infrared endoscopic balloon probes
EP1112103B1 (en) 1998-09-08 2006-01-04 Lumend, Inc. Apparatus for treating vascular occlusions
US6149213A (en) 1998-10-01 2000-11-21 Southco, Inc. Blind latch keeper
US6613066B1 (en) 1998-10-05 2003-09-02 Kaneka Corporation Balloon catheter and production method therefor
EP1123068A1 (en) 1998-10-21 2001-08-16 John T. Frauens Apparatus for percutaneous interposition balloon arthroplasty
JP2000126303A (en) 1998-10-26 2000-05-09 Asahi Intecc Co Ltd Multi-functional wire for blood vessel treatment
WO2000027461A1 (en) 1998-11-09 2000-05-18 Datascope Investment Corp. Intra-aortic balloon catheter having an ultra-thin stretch blow molded balloon membrane
US6174280B1 (en) * 1998-11-19 2001-01-16 Vision Sciences, Inc. Sheath for protecting and altering the bending characteristics of a flexible endoscope
US6234958B1 (en) 1998-11-30 2001-05-22 Medical Access Systems, Llc Medical device introduction system including medical introducer having a plurality of access ports and methods of performing medical procedures with same
US20030018291A1 (en) * 1999-12-08 2003-01-23 Hill Frank C. Ear tube and method of insertion
US6464650B2 (en) 1998-12-31 2002-10-15 Advanced Cardiovascular Systems, Inc. Guidewire with smoothly tapered segment
US6206870B1 (en) 1999-01-21 2001-03-27 Quest Medical, Inc. Catheter stylet handle
AU2862200A (en) 1999-01-27 2000-08-18 Bruce H. Levin Compositions, kits, apparatus, and methods for inhibiting cerebral neurovasculardisorders and muscular headaches
DE19906191A1 (en) 1999-02-15 2000-08-17 Ingo F Herrmann Mouldable endoscope for transmitting light and images with supplementary device has non-round cross section along longitudinal section for inserting in human or animal body opening
US6332891B1 (en) 1999-02-16 2001-12-25 Stryker Corporation System and method for performing image guided surgery
US6398758B1 (en) 1999-02-16 2002-06-04 Stephen C. Jacobsen Medicament delivery system
US6468297B1 (en) 1999-02-24 2002-10-22 Cryovascular Systems, Inc. Cryogenically enhanced intravascular interventions
US6248122B1 (en) 1999-02-26 2001-06-19 Vascular Architects, Inc. Catheter with controlled release endoluminal prosthesis
US10973397B2 (en) 1999-03-01 2021-04-13 West View Research, Llc Computerized information collection and processing apparatus
PL203959B1 (en) 1999-03-03 2009-11-30 Optinose As Nasal delivery device
AU2876200A (en) 1999-03-08 2000-09-28 University Of Virginia Patent Foundation Device and method for delivering a material into the paranasal sinus cavities
US6179776B1 (en) 1999-03-12 2001-01-30 Scimed Life Systems, Inc. Controllable endoscopic sheath apparatus and related method of use
US6148823A (en) 1999-03-17 2000-11-21 Stereotaxis, Inc. Method of and system for controlling magnetic elements in the body using a gapped toroid magnet
US6200257B1 (en) 1999-03-24 2001-03-13 Proxima Therapeutics, Inc. Catheter with permeable hydrogel membrane
US6328730B1 (en) 1999-03-26 2001-12-11 William W. Harkrider, Jr. Endoluminal multi-luminal surgical sheath and method
US6389313B1 (en) 1999-03-26 2002-05-14 Kevin S. Marchitto Laser probes for drug permeation
US6258065B1 (en) 1999-03-26 2001-07-10 Core Dynamics, Inc. Surgical instrument seal assembly
DK1040843T3 (en) 1999-03-29 2006-01-30 William Cook Europe As A guidewire
EP1040842B1 (en) 1999-03-29 2004-05-12 William Cook Europe ApS A guidewire
US6425877B1 (en) 1999-04-02 2002-07-30 Novasys Medical, Inc. Treatment of tissue in the digestive circulatory respiratory urinary and reproductive systems
US6328564B1 (en) 1999-04-06 2001-12-11 Raymond C. Thurow Deep ear canal locating and head orienting device
US6319275B1 (en) 1999-04-07 2001-11-20 Medtronic Ave, Inc. Endolumenal prosthesis delivery assembly and method of use
US6231543B1 (en) * 1999-04-15 2001-05-15 Intella Interventional Systems, Inc. Single lumen balloon catheter
WO2000062672A1 (en) 1999-04-15 2000-10-26 Surgi-Vision Methods for in vivo magnetic resonance imaging
US6689146B1 (en) 1999-04-29 2004-02-10 Stryker Corporation Powered surgical handpiece with integrated irrigator and suction application
DE59900101D1 (en) 1999-04-29 2001-06-28 Storz Karl Gmbh & Co Kg Medical instrument for tissue preparation
US6268574B1 (en) 1999-04-29 2001-07-31 Rudolph R. Edens Electrical and pneumatic lock-out device
WO2000065987A1 (en) 1999-04-30 2000-11-09 Applied Medical Resources Corporation Guidewire
US6146415A (en) 1999-05-07 2000-11-14 Advanced Cardiovascular Systems, Inc. Stent delivery system
AU4606400A (en) 1999-05-07 2000-11-21 Salviac Limited Improved filter element for embolic protection device
US6758830B1 (en) 1999-05-11 2004-07-06 Atrionix, Inc. Catheter positioning system
AU4836200A (en) 1999-05-11 2000-11-21 Zynergy Cardiovascular, Inc. Steerable catheter
US6394093B1 (en) 1999-05-13 2002-05-28 Scott Lethi Nasopharyngeal airway with inflatable cuff
US20020006961A1 (en) * 1999-05-14 2002-01-17 Katz Stanley E. Method and composition for treating mammalian nasal and sinus diseases caused by inflammatory response
DE19924440A1 (en) 1999-05-28 2000-12-07 Storz Karl Gmbh & Co Kg Shaft for a flexible endoscope
US6264087B1 (en) 1999-07-12 2001-07-24 Powermed, Inc. Expanding parallel jaw device for use with an electromechanical driver device
US6079755A (en) 1999-06-07 2000-06-27 Chang; Chih Chung Electromagnetic lock device
US6206900B1 (en) 1999-06-11 2001-03-27 The General Hospital Corporation Clot evacuation catheter
US6585717B1 (en) 1999-06-15 2003-07-01 Cryocath Technologies Inc. Deflection structure
US6890329B2 (en) 1999-06-15 2005-05-10 Cryocath Technologies Inc. Defined deflection structure
US6280433B1 (en) 1999-09-09 2001-08-28 Medtronic, Inc. Introducer system
DE29923582U1 (en) 1999-07-08 2000-12-14 Hintersdorf Steffen Device for use within the area of the nose, in particular for insertion into the nasal cavities
US6364900B1 (en) 1999-07-14 2002-04-02 Richard R. Heuser Embolism prevention device
JP3447984B2 (en) 1999-07-21 2003-09-16 朝日インテック株式会社 Medical guidewire
US6596009B1 (en) 1999-07-28 2003-07-22 Jeffrey Jelic Retrievable endoscopic orbital floor splint
US6445939B1 (en) 1999-08-09 2002-09-03 Lightlab Imaging, Llc Ultra-small optical probes, imaging optics, and methods for using same
AU760700B2 (en) 1999-08-12 2003-05-22 Wilson-Cook Medical Inc. Dilation balloon having multiple diameters
US6638233B2 (en) 1999-08-19 2003-10-28 Fox Hollow Technologies, Inc. Apparatus and methods for material capture and removal
EP1207931A2 (en) 1999-08-24 2002-05-29 Neuron Therapeutics, Inc. Lumbar drainage catheter
US6249180B1 (en) 1999-09-08 2001-06-19 Atmel Corporation Phase noise and additive noise estimation in a QAM demodulator
US6221042B1 (en) 1999-09-17 2001-04-24 Scimed Life Systems, Inc. Balloon with reversed cones
US6939361B1 (en) * 1999-09-22 2005-09-06 Nmt Medical, Inc. Guidewire for a free standing intervascular device having an integral stop mechanism
EP1244392A1 (en) 1999-09-28 2002-10-02 Novasys Medical, Inc. Treatment of tissue by application of energy and drugs
JP2001095815A (en) 1999-09-28 2001-04-10 Olympus Optical Co Ltd Microwave coagulation applicator
US6436119B1 (en) 1999-09-30 2002-08-20 Raymedica, Inc. Adjustable surgical dilator
US6398775B1 (en) 1999-10-21 2002-06-04 Pulmonx Apparatus and method for isolated lung access
US6381485B1 (en) 1999-10-28 2002-04-30 Surgical Navigation Technologies, Inc. Registration of human anatomy integrated for electromagnetic localization
US7366562B2 (en) 2003-10-17 2008-04-29 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US6536437B1 (en) 1999-10-29 2003-03-25 Branislav M. Dragisic Cuffed nasal airway and anesthetic wand system
US6529756B1 (en) 1999-11-22 2003-03-04 Scimed Life Systems, Inc. Apparatus for mapping and coagulating soft tissue in or around body orifices
US6533754B1 (en) 1999-11-26 2003-03-18 Terumo Kabushiki Kaisha Catheter
US6156294A (en) 1999-11-28 2000-12-05 Scientific Development And Research, Inc. Composition and method for treatment of otitis media
JP4054521B2 (en) 1999-11-29 2008-02-27 キヤノン株式会社 Developer supply cartridge and developer supply system
DK200001852A (en) 1999-12-14 2001-06-15 Asahi Optical Co Ltd Manipulation section for an endoscopic treatment instrument
DE60034146T2 (en) 1999-12-22 2007-12-13 Boston Scientific Ltd., St. Michael ENDOLUMINAL OCCLUSION SPÜLKATHETER
DE10042330A1 (en) 1999-12-22 2002-03-14 Hans Sachse Small intestine probe, wall-reinforced
US6450975B1 (en) 1999-12-30 2002-09-17 Advanced Cardiovascular Systems, Inc. Ultrasonic transmission guide wire
DE10102433B4 (en) 2000-01-21 2008-07-10 Pentax Corp. Flexible tube for an endoscope
US7184827B1 (en) 2000-01-24 2007-02-27 Stuart D. Edwards Shrinkage of dilatations in the body
US20010034530A1 (en) 2000-01-27 2001-10-25 Malackowski Donald W. Surgery system
US6386197B1 (en) 2000-01-27 2002-05-14 Brook D. Miller Nasal air passageway opening device
US6312438B1 (en) 2000-02-01 2001-11-06 Medtronic Xomed, Inc. Rotary bur instruments having bur tips with aspiration passages
WO2001056641A1 (en) * 2000-02-04 2001-08-09 C. R. Bard, Inc. Triple lumen stone balloon catheter and method
US6589164B1 (en) 2000-02-15 2003-07-08 Transvascular, Inc. Sterility barriers for insertion of non-sterile apparatus into catheters or other medical devices
US6527753B2 (en) 2000-02-29 2003-03-04 Olympus Optical Co., Ltd. Endoscopic treatment system
US6443947B1 (en) 2000-03-01 2002-09-03 Alexei Marko Device for thermal ablation of a cavity
US6485475B1 (en) * 2000-03-01 2002-11-26 The Board Of Regents Of The University Texas System Introducer needle for continuous perineural catheter placement
AU2001245528A1 (en) 2000-03-10 2001-09-24 Cardiofocus, Inc. Steerable catheter
US6494894B2 (en) 2000-03-16 2002-12-17 Scimed Life Systems, Inc. Coated wire
AU143359S (en) 2000-03-17 2001-03-28 Astrazeneca Ab Connector for a catheter
US6485500B1 (en) 2000-03-21 2002-11-26 Advanced Cardiovascular Systems, Inc. Emboli protection system
US6440061B1 (en) 2000-03-24 2002-08-27 Donald E. Wenner Laparoscopic instrument system for real-time biliary exploration and stone removal
US6517478B2 (en) 2000-03-30 2003-02-11 Cbyon, Inc. Apparatus and method for calibrating an endoscope
JP2003528688A (en) * 2000-03-30 2003-09-30 シビヨン, インコーポレイテッド Apparatus and method for calibrating an endoscope
US6984203B2 (en) * 2000-04-03 2006-01-10 Neoguide Systems, Inc. Endoscope with adjacently positioned guiding apparatus
US6478776B1 (en) 2000-04-05 2002-11-12 Biocardia, Inc. Implant delivery catheter system and methods for its use
US6638268B2 (en) 2000-04-07 2003-10-28 Imran K. Niazi Catheter to cannulate the coronary sinus
US6471644B1 (en) 2000-04-27 2002-10-29 Medtronic, Inc. Endoscopic stabilization device and method of use
US6283908B1 (en) 2000-05-04 2001-09-04 Radioactive Isolation Consortium, Llc Vitrification of waste with conitnuous filling and sequential melting
US6860849B2 (en) 2000-05-08 2005-03-01 Pentax Corporation Flexible tube for an endoscope
GB0011053D0 (en) 2000-05-09 2000-06-28 Hudson John O Medical device and use thereof
US20040034311A1 (en) 2000-05-19 2004-02-19 Albert Mihalcik Guidewire with viewing capability
AU2001275100A1 (en) 2000-05-31 2001-12-11 Courtney, Brian K. Embolization protection system for vascular procedures
US6719749B1 (en) 2000-06-01 2004-04-13 Medical Components, Inc. Multilumen catheter assembly and methods for making and inserting the same
US6409863B1 (en) * 2000-06-12 2002-06-25 Scimed Life Systems, Inc. Methods of fabricating a catheter shaft having one or more guidewire ports
FR2810458B1 (en) 2000-06-16 2004-04-09 Entrelec Sa ELECTRIC INTERCONNECTION COMB
JP3345645B2 (en) 2000-06-20 2002-11-18 東京大学長 Body cavity observation device
US6663589B1 (en) 2000-06-20 2003-12-16 Haim Halevy Catheter system
US6875212B2 (en) 2000-06-23 2005-04-05 Vertelink Corporation Curable media for implantable medical device
US6572590B1 (en) 2000-07-13 2003-06-03 Merit Medical Systems, Inc. Adjustable quick-release valve with toggle capability
JP2002028166A (en) 2000-07-18 2002-01-29 Olympus Optical Co Ltd Treatment device for nasal cavity
US6440389B1 (en) 2000-07-19 2002-08-27 The General Hospital Corporation Fluorescent agents for real-time measurement of organ function
US20050107738A1 (en) 2000-07-21 2005-05-19 Slater Charles R. Occludable intravascular catheter for drug delivery and method of using the same
WO2002007794A2 (en) 2000-07-24 2002-01-31 Stereotaxis, Inc. Magnetically navigated pacing leads, and methods for delivering medical devices
RU2213530C2 (en) 2000-07-26 2003-10-10 Сунцов Виктор Владимирович Method and device for treating the cases of paranasal sinusitis
JP4429495B2 (en) 2000-07-28 2010-03-10 オリンパス株式会社 Endoscope
DE10038376C2 (en) 2000-08-07 2003-04-30 Zangenstein Elektro Door lock for the door of an electrical household appliance
US6569146B1 (en) 2000-08-18 2003-05-27 Scimed Life Systems, Inc. Method and apparatus for treating saphenous vein graft lesions
US7625335B2 (en) 2000-08-25 2009-12-01 3Shape Aps Method and apparatus for three-dimensional optical scanning of interior surfaces
US6607546B1 (en) 2000-09-01 2003-08-19 Roger E. Murken Nasal catheter
US6503263B2 (en) 2000-09-24 2003-01-07 Medtronic, Inc. Surgical micro-shaving instrument with elevator tip
US6719763B2 (en) 2000-09-29 2004-04-13 Olympus Optical Co., Ltd. Endoscopic suturing device
US7052474B2 (en) 2000-10-02 2006-05-30 Sandhill Scientific, Inc. Pharyngoesophageal monitoring systems
US6537294B1 (en) 2000-10-17 2003-03-25 Advanced Cardiovascular Systems, Inc. Delivery systems for embolic filter devices
US6702735B2 (en) 2000-10-17 2004-03-09 Charlotte Margaret Kelly Device for movement along a passage
US6585639B1 (en) 2000-10-27 2003-07-01 Pulmonx Sheath and method for reconfiguring lung viewing scope
US20020055746A1 (en) 2000-11-03 2002-05-09 Alan Burke Method and apparatus for extracting foreign bodies from nasal passages and the like
JP2002146659A (en) 2000-11-07 2002-05-22 Sumitomo Electric Ind Ltd Metallic nonwoven fabric and method for producing the same
US6571131B1 (en) 2000-11-10 2003-05-27 Biosense Webster, Inc. Deflectable catheter with modifiable handle
JP2004529676A (en) 2000-11-13 2004-09-30 ダブリュ アイ ティー アイ ピー コーポレーション Treatment catheter with insulated area
US6543452B1 (en) 2000-11-16 2003-04-08 Medilyfe, Inc. Nasal intubation device and system for intubation
AU2002239278A1 (en) 2000-11-20 2002-05-27 Surgi-Vision, Inc. Connector and guidewire connectable thereto
US6716813B2 (en) 2000-11-28 2004-04-06 House Ear Institute Use of antimicrobial proteins and peptides for the treatment of otitis media and paranasal sinusitis
EP1341476A2 (en) 2000-12-01 2003-09-10 Nephros Therapeutics, Inc. Intrasvascular drug delivery device and use therefor
WO2002045598A2 (en) 2000-12-05 2002-06-13 Lumend, Inc. Catheter system for vascular re-entry from a sub-intimal space
US6562022B2 (en) 2000-12-13 2003-05-13 Advanced Cardiovascular Systems, Inc. Catheter with enhanced reinforcement
US6500130B2 (en) 2000-12-21 2002-12-31 Scimed Life Systems, Inc. Steerable guidewire
US6511471B2 (en) 2000-12-22 2003-01-28 Biocardia, Inc. Drug delivery catheters that attach to tissue and methods for their use
US6672773B1 (en) * 2000-12-29 2004-01-06 Amkor Technology, Inc. Optical fiber having tapered end and optical connector with reciprocal opening
US6544223B1 (en) 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Balloon catheter for delivering therapeutic agents
KR100731007B1 (en) 2001-01-15 2007-06-22 앰코 테크놀로지 코리아 주식회사 stack-type semiconductor package
US7043961B2 (en) 2001-01-30 2006-05-16 Z-Kat, Inc. Tool calibrator and tracker system
US6997931B2 (en) 2001-02-02 2006-02-14 Lsi Solutions, Inc. System for endoscopic suturing
DE10104663A1 (en) 2001-02-02 2002-08-08 Solvay Fluor & Derivate Production of fluorine compounds
DE10105592A1 (en) 2001-02-06 2002-08-08 Achim Goepferich Placeholder for drug release in the frontal sinus
JP3939158B2 (en) 2001-02-06 2007-07-04 オリンパス株式会社 Endoscope device
US6740191B2 (en) 2001-02-22 2004-05-25 Medtronic Ave, Inc. Through-transmission welding of catheter components
EP1913896B1 (en) * 2001-03-09 2012-12-26 Boston Scientific Limited Method for making a medical sling
US6645223B2 (en) 2001-04-30 2003-11-11 Advanced Cardiovascular Systems, Inc. Deployment and recovery control systems for embolic protection devices
US6585718B2 (en) 2001-05-02 2003-07-01 Cardiac Pacemakers, Inc. Steerable catheter with shaft support system for resisting axial compressive loads
US6796960B2 (en) 2001-05-04 2004-09-28 Wit Ip Corporation Low thermal resistance elastic sleeves for medical device balloons
US7018371B2 (en) 2001-05-07 2006-03-28 Xoft, Inc. Combination ionizing radiation and radiosensitizer delivery devices and methods for inhibiting hyperplasia
US6712757B2 (en) 2001-05-16 2004-03-30 Stephen Becker Endoscope sleeve and irrigation device
WO2002094334A1 (en) 2001-05-21 2002-11-28 Medtronic, Inc. Malleable elongated medical device
US8403954B2 (en) 2001-05-22 2013-03-26 Sanostec Corp. Nasal congestion, obstruction relief, and drug delivery
US7532920B1 (en) 2001-05-31 2009-05-12 Advanced Cardiovascular Systems, Inc. Guidewire with optical fiber
US7140480B2 (en) 2001-06-07 2006-11-28 Drussel Wilfley Design, Llc Centrifugal clutch and cover mount assembly therefor
US6966906B2 (en) 2001-06-08 2005-11-22 Joe Denton Brown Deflection mechanism for a surgical instrument, such as a laser delivery device and/or endoscope, and method of use
DE60239868D1 (en) * 2001-06-12 2011-06-09 Univ Johns Hopkins Med RESERVOIR DEVICE FOR INTRAOCULAR DRUG DELIVERY
US6702744B2 (en) 2001-06-20 2004-03-09 Advanced Cardiovascular Systems, Inc. Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery
US7160255B2 (en) * 2001-07-12 2007-01-09 Vahid Saadat Method and device for sensing and mapping temperature profile of a hollow body organ
US20030013985A1 (en) * 2001-07-12 2003-01-16 Vahid Saadat Method for sensing temperature profile of a hollow body organ
AU2002322520A1 (en) 2001-07-17 2003-03-03 Kerberos Proximal Solutions Fluid exchange system for controlled and localized irrigation and aspiration
AUPR649601A0 (en) 2001-07-20 2001-08-09 Redfern Polymer Optics Pty Ltd Casting preforms for optical fibres
US7438701B2 (en) 2001-07-26 2008-10-21 Durect Corporation Local concentration management system
US6616659B1 (en) 2001-07-27 2003-09-09 Starion Instruments Corporation Polypectomy device and method
CA2456484A1 (en) 2001-08-17 2003-02-27 Antares Pharma, Inc. Administration of insulin by jet injection
JP4761671B2 (en) 2001-08-29 2011-08-31 テルモ株式会社 Shape memory balloon, manufacturing method thereof, and balloon catheter
US20040127820A1 (en) 2001-09-05 2004-07-01 Clayman Ralph V. Guidewire
US20070112358A1 (en) 2001-09-06 2007-05-17 Ryan Abbott Systems and Methods for Treating Septal Defects
EP1435833B1 (en) 2001-09-10 2014-05-21 Pulmonx Apparatus for endobronchial diagnosis
AUPR785001A0 (en) 2001-09-21 2001-10-18 Kleiner, Daniel E. Tamponade apparatus and method of using same
US6918882B2 (en) 2001-10-05 2005-07-19 Scimed Life Systems, Inc. Guidewire with stiffness blending connection
JP3772107B2 (en) 2001-10-12 2006-05-10 オリンパス株式会社 Endoscope system
US6866669B2 (en) 2001-10-12 2005-03-15 Cordis Corporation Locking handle deployment mechanism for medical device and method
US20030073900A1 (en) 2001-10-12 2003-04-17 Pranitha Senarith System and method for monitoring the movement of an interventional device within an anatomical site
FR2832516B1 (en) 2001-11-19 2004-01-23 Tokendo Sarl ROTARY ENDOSCOPES WITH A DEVIED DISTAL VIEW
US7488313B2 (en) 2001-11-29 2009-02-10 Boston Scientific Scimed, Inc. Mechanical apparatus and method for dilating and delivering a therapeutic agent to a site of treatment
AU2002353016A1 (en) 2001-12-03 2003-06-17 Ekos Corporation Small vessel ultrasound catheter
US6832715B2 (en) 2001-12-03 2004-12-21 Scimed Life Systems, Inc. Guidewire distal tip soldering method
US6612999B2 (en) 2001-12-06 2003-09-02 Cardiac Pacemakers, Inc. Balloon actuated guide catheter
US6755812B2 (en) 2001-12-11 2004-06-29 Cardiac Pacemakers, Inc. Deflectable telescoping guide catheter
US20030144683A1 (en) 2001-12-13 2003-07-31 Avantec Vascular Corporation Inflatable members having concentrated force regions
EP1319366A1 (en) 2001-12-14 2003-06-18 BrainLAB AG Magnetic navigation for a catheter
US20030114732A1 (en) 2001-12-18 2003-06-19 Advanced Cardiovascular Systems, Inc. Sheath for guiding imaging instruments
US7736301B1 (en) 2001-12-18 2010-06-15 Advanced Cardiovascular Systems, Inc. Rotatable ferrules and interfaces for use with an optical guidewire
US6939374B2 (en) 2001-12-21 2005-09-06 Scimed Life Systems, Inc. Stents, stenting systems, and related methods for agent delivery
US6955657B1 (en) 2001-12-31 2005-10-18 Advanced Cardiovascular Systems, Inc. Intra-ventricular substance delivery catheter system
US6979319B2 (en) 2001-12-31 2005-12-27 Cardiac Pacemakers, Inc. Telescoping guide catheter with peel-away outer sheath
US6740030B2 (en) 2002-01-04 2004-05-25 Vision Sciences, Inc. Endoscope assemblies having working channels with reduced bending and stretching resistance
US7493156B2 (en) 2002-01-07 2009-02-17 Cardiac Pacemakers, Inc. Steerable guide catheter with pre-shaped rotatable shaft
US20040158229A1 (en) 2002-01-24 2004-08-12 Quinn David G. Catheter assembly and method of catheter insertion
SE0200300D0 (en) 2002-02-01 2002-02-01 Aerocrine Ab Diagnostic device and method
CN100372582C (en) 2002-02-07 2008-03-05 卡拉格股份公司 Displacement device for catheter
US6610059B1 (en) 2002-02-25 2003-08-26 Hs West Investments Llc Endoscopic instruments and methods for improved bubble aspiration at a surgical site
JP2003320031A (en) 2002-02-26 2003-11-11 Buaayu:Kk Balloon catheter
US6989024B2 (en) 2002-02-28 2006-01-24 Counter Clockwise, Inc. Guidewire loaded stent for delivery through a catheter
US7128718B2 (en) 2002-03-22 2006-10-31 Cordis Corporation Guidewire with deflectable tip
US7074426B2 (en) 2002-03-27 2006-07-11 Frank Kochinke Methods and drug delivery systems for the treatment of orofacial diseases
US6855136B2 (en) 2002-04-03 2005-02-15 Gore Enterprise Holdings, Inc. Infusion catheter having an atraumatic tip
US6942635B2 (en) 2002-04-04 2005-09-13 Angiodynamics, Inc. Blood treatment catheter and method
US6953431B2 (en) 2002-04-11 2005-10-11 University Of South Florida Eccentric dilation balloons for use with endoscopes
AU2003223085A1 (en) 2002-04-17 2003-10-27 Super Dimension Ltd. Endoscope structures and techniques for navigating to a target in branched structure
DE10217559B4 (en) 2002-04-19 2004-02-19 Universitätsklinikum Freiburg Device for minimally invasive, intravascular aortic valve extraction
US20040020492A1 (en) 2002-05-02 2004-02-05 Dubrul William R. Upper airway device and method
US7610104B2 (en) 2002-05-10 2009-10-27 Cerebral Vascular Applications, Inc. Methods and apparatus for lead placement on a surface of the heart
EP1509256B1 (en) 2002-05-24 2009-07-22 Angiotech International Ag Compositions and methods for coating medical implants
EP1513440A2 (en) 2002-05-30 2005-03-16 The Board of Trustees of The Leland Stanford Junior University Apparatus and method for coronary sinus access
US7993353B2 (en) 2002-06-04 2011-08-09 Brainlab Ag Medical tracking system with universal interface
US20030229332A1 (en) 2002-06-11 2003-12-11 Scimed Life Systems, Inc. Adjustable double balloon catheter with a through lumen for stone management
IL150189A0 (en) 2002-06-12 2002-12-01 Acoustitech Ltd Acoustic diagnosis of sinusitis
US7248914B2 (en) 2002-06-28 2007-07-24 Stereotaxis, Inc. Method of navigating medical devices in the presence of radiopaque material
GB0215270D0 (en) 2002-07-02 2002-08-14 Optinose As Nasal devices
EP1534152A1 (en) 2002-07-13 2005-06-01 Stryker Corporation System and method for performing irrigated nose and throat surgery
JP2004049583A (en) 2002-07-22 2004-02-19 Piolax Medical Device:Kk Inserting device for therapeutic instrument for tubular organ
US7309334B2 (en) 2002-07-23 2007-12-18 Von Hoffmann Gerard Intracranial aspiration catheter
AU2003259941A1 (en) 2002-08-20 2004-03-11 The Regents Of The University Of California Optical waveguide vibration sensor for use in hearing aid
US6849062B2 (en) 2002-08-23 2005-02-01 Medtronic Vascular, Inc. Catheter having a low-friction guidewire lumen and method of manufacture
US7174774B2 (en) 2002-08-30 2007-02-13 Kimberly-Clark Worldwide, Inc. Method and apparatus of detecting pooling of fluid in disposable or non-disposable absorbent articles
US6783522B2 (en) 2002-09-09 2004-08-31 Angel Medical Systems, Inc. Implantable catheter having an improved check valve
US6619085B1 (en) 2002-09-12 2003-09-16 Hui-Hua Hsieh Remote-controlled lock
MXPA05003044A (en) 2002-09-18 2006-01-27 Asap Breathe Assist Pty Ltd A nasal cavity dilator.
ITVR20020094A1 (en) 2002-09-25 2002-12-24 Vittorio Marinello APPARATUS FOR THE PROCESSING OF THE NEW SYSTEM OF TREATMENT OF THE MAXILLARY SINUSITIES, OF THE FRONTAL AND OF THE TRIGE NEVRITES AND NEVRALGIES
US7488337B2 (en) 2002-09-30 2009-02-10 Saab Mark A Apparatus and methods for bone, tissue and duct dilatation
US7169163B2 (en) * 2002-09-30 2007-01-30 Bruce Becker Transnasal method and catheter for lacrimal system
US8317816B2 (en) 2002-09-30 2012-11-27 Acclarent, Inc. Balloon catheters and methods for treating paranasal sinuses
US6909263B2 (en) 2002-10-23 2005-06-21 Honeywell International Inc. Gas turbine engine starter-generator exciter starting system and method including a capacitance circuit element
DE50202566D1 (en) 2002-10-25 2005-04-28 Brainlab Ag Apparatus and method for calibrating an element
US20040220516A1 (en) 2002-11-04 2004-11-04 Stephen Solomon Food extraction apparatus and method
US6899672B2 (en) 2002-11-08 2005-05-31 Scimed Life Systems, Inc. Endoscopic imaging system including removable deflection device
US7881769B2 (en) 2002-11-18 2011-02-01 Mediguide Ltd. Method and system for mounting an MPS sensor on a catheter
WO2004045387A2 (en) 2002-11-18 2004-06-03 Stereotaxis, Inc. Magnetically navigable balloon catheters
US7697972B2 (en) 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7172562B2 (en) 2002-11-22 2007-02-06 Mckinley Laurence M System, method and apparatus for locating, measuring and evaluating the enlargement of a foramen
DE10254814A1 (en) 2002-11-23 2004-06-03 Fag Kugelfischer Ag Load bearing
EP1570432B1 (en) 2002-12-04 2017-03-22 Koninklijke Philips N.V. Medical viewing system and method for detecting borders of an object of interest in noisy images
US7184067B2 (en) 2003-03-13 2007-02-27 Eastman Kodak Company Color OLED display system
US7343920B2 (en) 2002-12-20 2008-03-18 Toby E Bruce Connective tissue repair system
TW589170B (en) 2002-12-25 2004-06-01 De-Yang Tian Endoscopic device
EP1435757A1 (en) 2002-12-30 2004-07-07 Andrzej Zarowski Device implantable in a bony wall of the inner ear
US20060047261A1 (en) 2004-06-28 2006-03-02 Shailendra Joshi Intra-arterial catheter for drug delivery
EP1438942A1 (en) 2003-01-17 2004-07-21 Schering Oy An otorhinological drug delivery device
US8016752B2 (en) 2003-01-17 2011-09-13 Gore Enterprise Holdings, Inc. Puncturable catheter
US20040230156A1 (en) 2003-02-13 2004-11-18 Schreck Stefan Georg Methods and devices for in-situ crosslinking of vascular tissue
US6893393B2 (en) * 2003-02-19 2005-05-17 Boston Scientific Scimed., Inc. Guidewire locking device and method
EP1599232B1 (en) 2003-02-21 2013-08-14 Electro-Cat, LLC System for measuring cross-sectional areas and pressure gradients in luminal organs
US7182735B2 (en) 2003-02-26 2007-02-27 Scimed Life Systems, Inc. Elongated intracorporal medical device
US8167821B2 (en) 2003-02-26 2012-05-01 Boston Scientific Scimed, Inc. Multiple diameter guidewire
US10376711B2 (en) 2003-03-14 2019-08-13 Light Sciences Oncology Inc. Light generating guide wire for intravascular use
EP1610865A4 (en) 2003-03-14 2007-11-28 Light Sciences Oncology Inc Light generating device to intravascular use
WO2004082525A2 (en) 2003-03-14 2004-09-30 Sinexus, Inc. Sinus delivery of sustained release therapeutics
US20040193073A1 (en) 2003-03-31 2004-09-30 Demello Richard M. Composite guidewire with a linear elastic distal portion
US7303533B2 (en) 2003-04-10 2007-12-04 Intraluminal Therapeutics, Inc. Shapeable intraluminal device and method therefor
US7186224B2 (en) * 2003-04-28 2007-03-06 Scimed Life Systems, Inc. Side attaching guidewire torque device
US20040267347A1 (en) 2003-05-01 2004-12-30 Cervantes Marvin John Protective elongated sleeve for stent systems
US7615005B2 (en) 2003-05-16 2009-11-10 Ethicon Endo-Surgery, Inc. Medical apparatus for use with an endoscope
US7641668B2 (en) * 2003-05-16 2010-01-05 Scimed Life Systems, Inc. Fluid delivery system and related methods of use
US20040236231A1 (en) 2003-05-23 2004-11-25 Embro Corporation Light catheter for illuminating tissue structures
US7108706B2 (en) 2003-05-28 2006-09-19 Rose Biomedical Development Corporation Inflatable nasal packing device with two non-elastic, flexible bags oversized relative to nasal cavities
JP4323221B2 (en) 2003-05-30 2009-09-02 テルモ株式会社 Catheter assembly
US7056314B1 (en) 2003-05-30 2006-06-06 Pacesetter, Inc. Steerable obturator
US20050234431A1 (en) 2004-02-10 2005-10-20 Williams Michael S Intravascular delivery system for therapeutic agents
US7632291B2 (en) 2003-06-13 2009-12-15 Trivascular2, Inc. Inflatable implant
US7758497B2 (en) 2003-06-20 2010-07-20 Contura A/S Endoscopic attachment device
JP4398184B2 (en) * 2003-06-24 2010-01-13 オリンパス株式会社 Endoscope
US8002740B2 (en) 2003-07-18 2011-08-23 Broncus Technologies, Inc. Devices for maintaining patency of surgically created channels in tissue
WO2005011476A2 (en) 2003-07-29 2005-02-10 Endoscopic Technologies, Inc. Tissue positioner
US7359755B2 (en) 2003-08-08 2008-04-15 Advanced Neuromodulation Systems, Inc. Method and apparatus for implanting an electrical stimulation lead using a flexible introducer
US6851290B1 (en) 2003-08-11 2005-02-08 Absolute Access & Security Products, Inc. Door lock assembly and locking system for hinged double-acting impact-traffic doors
US20050038319A1 (en) 2003-08-13 2005-02-17 Benad Goldwasser Gastrointestinal tool over guidewire
US8740844B2 (en) 2003-08-20 2014-06-03 Boston Scientific Scimed, Inc. Medical device with drug delivery member
US7179225B2 (en) 2003-08-26 2007-02-20 Shluzas Alan E Access systems and methods for minimally invasive surgery
US7313430B2 (en) 2003-08-28 2007-12-25 Medtronic Navigation, Inc. Method and apparatus for performing stereotactic surgery
US20050055077A1 (en) 2003-09-05 2005-03-10 Doron Marco Very low profile medical device system having an adjustable balloon
US20050113687A1 (en) 2003-09-15 2005-05-26 Atrium Medical Corporation Application of a therapeutic substance to a tissue location using a porous medical device
US20050059930A1 (en) 2003-09-16 2005-03-17 Michi Garrison Method and apparatus for localized drug delivery
US20050059931A1 (en) 2003-09-16 2005-03-17 Venomatrix Methods and apparatus for localized and semi-localized drug delivery
US20050113850A1 (en) 2003-10-08 2005-05-26 Tagge Bryan C. Apparatus, system, and method for middle turbinate medializer
US7004176B2 (en) 2003-10-17 2006-02-28 Edwards Lifesciences Ag Heart valve leaflet locator
US8014849B2 (en) 2003-11-21 2011-09-06 Stryker Corporation Rotational markers
JP3864344B2 (en) 2003-12-05 2006-12-27 フジノン株式会社 Endoscope insertion aid
US7237313B2 (en) 2003-12-05 2007-07-03 Boston Scientific Scimed, Inc. Elongated medical device for intracorporal use
USD501677S1 (en) 2003-12-11 2005-02-08 Bruce B. Becker Dilatation balloon catheter
US20050131316A1 (en) 2003-12-15 2005-06-16 Cook Incorporated Guidewire with flexible tip
US20070020196A1 (en) * 2003-12-31 2007-01-25 Pipkin James D Inhalant formulation containing sulfoalkyl ether cyclodextrin and corticosteroid prepared from a unit dose suspension
ATE523141T1 (en) 2004-02-17 2011-09-15 Philips Electronics Ltd METHOD AND DEVICE FOR REGISTRATION, VERIFICATION OF AND REFERENCE TO BODY ORGANS
US7988705B2 (en) 2004-03-06 2011-08-02 Lumen Biomedical, Inc. Steerable device having a corewire within a tube and combination with a functional medical component
EP1729676A1 (en) 2004-03-15 2006-12-13 Durect Corporation Pharmaceutical compositions for administration to a sinus
US20060211752A1 (en) 2004-03-16 2006-09-21 Kohn Leonard D Use of phenylmethimazoles, methimazole derivatives, and tautomeric cyclic thiones for the treatment of autoimmune/inflammatory diseases associated with toll-like receptor overexpression
US7282057B2 (en) 2004-03-30 2007-10-16 Wilson-Cook Medical, Inc. Pediatric atresia magnets
JP2005296412A (en) 2004-04-13 2005-10-27 Olympus Corp Endoscopic treatment apparatus
JP4923231B2 (en) 2004-04-15 2012-04-25 クック メディカル テクノロジーズ エルエルシー Endoscopic surgical access instrument and method for articulating an external accessory channel
US7452351B2 (en) * 2004-04-16 2008-11-18 Kyphon Sarl Spinal diagnostic methods and apparatus
US20050234507A1 (en) 2004-04-16 2005-10-20 Jeff Geske Medical tool for access to internal tissue
US9101384B2 (en) 2004-04-21 2015-08-11 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, Nose and/or throat
US7361168B2 (en) 2004-04-21 2008-04-22 Acclarent, Inc. Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders
US8146400B2 (en) 2004-04-21 2012-04-03 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US7559925B2 (en) 2006-09-15 2009-07-14 Acclarent Inc. Methods and devices for facilitating visualization in a surgical environment
US8747389B2 (en) 2004-04-21 2014-06-10 Acclarent, Inc. Systems for treating disorders of the ear, nose and throat
US20110004057A1 (en) * 2004-04-21 2011-01-06 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US9351750B2 (en) 2004-04-21 2016-05-31 Acclarent, Inc. Devices and methods for treating maxillary sinus disease
US7419497B2 (en) * 2004-04-21 2008-09-02 Acclarent, Inc. Methods for treating ethmoid disease
US8894614B2 (en) 2004-04-21 2014-11-25 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
US20070208252A1 (en) 2004-04-21 2007-09-06 Acclarent, Inc. Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses
US7654997B2 (en) 2004-04-21 2010-02-02 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat
US7462175B2 (en) 2004-04-21 2008-12-09 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US20060063973A1 (en) 2004-04-21 2006-03-23 Acclarent, Inc. Methods and apparatus for treating disorders of the ear, nose and throat
US9399121B2 (en) 2004-04-21 2016-07-26 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US7410480B2 (en) 2004-04-21 2008-08-12 Acclarent, Inc. Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders
US20060004323A1 (en) 2004-04-21 2006-01-05 Exploramed Nc1, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US20060284428A1 (en) 2005-06-13 2006-12-21 Darryl Beadle High reliability gate lock for exterior use
US8702626B1 (en) 2004-04-21 2014-04-22 Acclarent, Inc. Guidewires for performing image guided procedures
US20070167682A1 (en) 2004-04-21 2007-07-19 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US9089258B2 (en) 2004-04-21 2015-07-28 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US7803150B2 (en) 2004-04-21 2010-09-28 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US8864787B2 (en) 2004-04-21 2014-10-21 Acclarent, Inc. Ethmoidotomy system and implantable spacer devices having therapeutic substance delivery capability for treatment of paranasal sinusitis
US20150250992A1 (en) 2004-04-21 2015-09-10 Acclarent, Inc. Mechanical dilation of the ostia of paranasal sinuses and other passageways of the ear, nose and throat
US8764729B2 (en) 2004-04-21 2014-07-01 Acclarent, Inc. Frontal sinus spacer
US9554691B2 (en) 2004-04-21 2017-01-31 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US7720521B2 (en) * 2004-04-21 2010-05-18 Acclarent, Inc. Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses
US20050240120A1 (en) * 2004-04-26 2005-10-27 Modesitt D B Vise and method of use
WO2005110374A1 (en) 2004-04-30 2005-11-24 Allergan, Inc. Intraocular drug delivery systems containing a therapeutic component, a cyclodextrin, and a polymeric component
JP2005323702A (en) 2004-05-13 2005-11-24 Asahi Intecc Co Ltd Medical treatment instrument
US7775968B2 (en) 2004-06-14 2010-08-17 Pneumrx, Inc. Guided access to lung tissues
US9289576B2 (en) 2004-06-17 2016-03-22 W. L. Gore & Associates, Inc. Catheter assembly
US7207981B2 (en) 2004-06-28 2007-04-24 Medtronic Vascular, Inc. Multi-exchange catheter guide member with improved seal
JP2008506447A (en) 2004-07-14 2008-03-06 バイ−パス, インコーポレイテッド Material delivery system
US8075476B2 (en) 2004-07-27 2011-12-13 Intuitive Surgical Operations, Inc. Cannula system and method of use
US8277386B2 (en) 2004-09-27 2012-10-02 Volcano Corporation Combination sensor guidewire and methods of use
FR2859377B1 (en) 2004-10-22 2006-05-12 Bertrand Lombard THREE DIMENSIONAL LOCATION DEVICE
US7347868B2 (en) 2004-10-26 2008-03-25 Baronova, Inc. Medical device delivery catheter
US7235099B1 (en) 2004-12-14 2007-06-26 Micromedics, Inc. Sphenoid sinus stent
WO2006078805A2 (en) 2005-01-18 2006-07-27 The Regents Of The University Of California Endoscopic tube delivery system
EP1838215B1 (en) 2005-01-18 2012-08-01 Philips Electronics LTD Electromagnetically tracked k-wire device
US8109981B2 (en) 2005-01-25 2012-02-07 Valam Corporation Optical therapies and devices
US20060173382A1 (en) 2005-01-31 2006-08-03 John Schreiner Guidewire with superelastic core
US20080188803A1 (en) 2005-02-03 2008-08-07 Jang G David Triple-profile balloon catheter
US7195612B2 (en) 2005-03-31 2007-03-27 Gordis Corporation Esophageal balloon catheter with visual marker
RU2007140909A (en) 2005-04-04 2009-05-20 Синексус, Инк. (Us) DEVICE AND METHODS FOR TREATING DISEASES OF THE NANOLAIN SINUS
US20060247750A1 (en) 2005-04-28 2006-11-02 Seifert Kevin R Guide catheters for accessing cardiac sites
US7896891B2 (en) 2005-05-20 2011-03-01 Neotract, Inc. Apparatus and method for manipulating or retracting tissue and anatomical structure
US8951225B2 (en) 2005-06-10 2015-02-10 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
CA2612933C (en) 2005-06-20 2014-08-19 Otomedics Advanced Medical Technologies Ltd. Ear tubes
DE602006017093D1 (en) 2005-09-20 2010-11-04 Medsys S A DEVICE AND METHOD FOR CHECKING A REMOTE DEVICE
GB0519259D0 (en) 2005-09-21 2005-10-26 Imp College Innovations Ltd A device
US7648367B1 (en) 2005-09-23 2010-01-19 Acclarent, Inc. Anatomical models and methods for training and demonstration of medical procedures
US8114113B2 (en) 2005-09-23 2012-02-14 Acclarent, Inc. Multi-conduit balloon catheter
USD534216S1 (en) 2005-09-23 2006-12-26 Acclarent, Inc. Anatomical model and demonstration/training device
EP1988850B1 (en) 2006-02-27 2016-10-12 AHM Technologies, Inc. Eustachian tube device
US8585753B2 (en) 2006-03-04 2013-11-19 John James Scanlon Fibrillated biodegradable prosthesis
US7520876B2 (en) * 2006-04-21 2009-04-21 Entellus Medical, Inc. Device and method for treatment of sinusitis
AU2007249293C1 (en) 2006-05-12 2013-06-27 Arthrocare Corporation Middle turbinate medializer
US7927271B2 (en) 2006-05-17 2011-04-19 C.R. Bard, Inc. Endoscope tool coupling
US8190389B2 (en) 2006-05-17 2012-05-29 Acclarent, Inc. Adapter for attaching electromagnetic image guidance components to a medical device
US20070269385A1 (en) 2006-05-18 2007-11-22 Mercator Medsystems, Inc Devices, methods, and systems for delivering therapeutic agents for the treatment of sinusitis, rhinitis, and other disorders
US8475360B2 (en) 2006-06-09 2013-07-02 Cook Medical Technologies Llc Endoscopic apparatus having an expandable balloon delivery system
US8535707B2 (en) * 2006-07-10 2013-09-17 Intersect Ent, Inc. Devices and methods for delivering active agents to the osteomeatal complex
US9820688B2 (en) 2006-09-15 2017-11-21 Acclarent, Inc. Sinus illumination lightwire device
WO2008036368A2 (en) 2006-09-20 2008-03-27 University Of Virginia Patent Foundation Tube, stent and collar insertion device
US7535991B2 (en) 2006-10-16 2009-05-19 Oraya Therapeutics, Inc. Portable orthovoltage radiotherapy
WO2008051918A2 (en) 2006-10-23 2008-05-02 Allux Medical, Inc. Methods, devices and kits for phototherapy and photodynamic therapy treatment of body cavities
US7634233B2 (en) 2006-11-27 2009-12-15 Chung Shan Institute Of Science And Technology Transmission system with interference avoidance capability and method thereof
US8104483B2 (en) * 2006-12-26 2012-01-31 The Spectranetics Corporation Multi-port light delivery catheter and methods for the use thereof
JP2008161491A (en) 2006-12-28 2008-07-17 Asahi Intecc Co Ltd Medical guide wire
US8439687B1 (en) 2006-12-29 2013-05-14 Acclarent, Inc. Apparatus and method for simulated insertion and positioning of guidewares and other interventional devices
US20080172033A1 (en) 2007-01-16 2008-07-17 Entellus Medical, Inc. Apparatus and method for treatment of sinusitis
WO2008091652A2 (en) 2007-01-24 2008-07-31 Acclarent, Inc. Methods, devices and systems for treatment and/or diagnosis of disorder of the ear, nose and throat
CN201005758Y (en) 2007-03-16 2008-01-16 北京米道斯医疗器械有限公司 Endoscope vascular acquisition system
US9387124B2 (en) 2007-04-19 2016-07-12 Tusker Medical, Inc. Disposable iontophoresis system and tympanic membrane pain inhibition method
FR2916144A1 (en) 2007-05-14 2008-11-21 Olivier Pascal Bruno Rollet Endotracheal catheter for use during surgery, has tube including distal end connected to collar and another end connected to circular pusher, where pusher is actuated outside buccal cavity by user after endotracheal intubation
EP2160140B1 (en) 2007-06-26 2014-11-05 Galit Avior Eustachian tube device
EP2190520A4 (en) 2007-09-20 2011-01-26 Estimme Ltd Electrical stimulation in the middle ear for treatment of hearing related disorders
US20090088728A1 (en) 2007-09-28 2009-04-02 Dollar Michael L Malleable sleeve for balloon catheter and endoscopic surgical method
USD590502S1 (en) 2007-11-13 2009-04-14 Karl Storz Gmbh & Co. Kg Grip for laparoscope
US20090163890A1 (en) 2007-12-20 2009-06-25 Acclarent, Inc. Method and System for Accessing, Diagnosing and Treating Target Tissue Regions Within the Middle Ear and the Eustachian Tube
US20100274188A1 (en) 2007-12-20 2010-10-28 Acclarent, Inc. Method and System for Treating Target Tissue Within the Eustachian Tube
US20100198191A1 (en) 2007-12-20 2010-08-05 Acclarent, Inc. Method and system for treating target tissue within the eustachian tube
JP5117263B2 (en) 2008-04-11 2013-01-16 オリンパスメディカルシステムズ株式会社 Endoscope system
USD586465S1 (en) 2008-05-09 2009-02-10 Lifescan Scotland Limited Handheld lancing device
USD586916S1 (en) 2008-05-09 2009-02-17 Lifescan Scotland, Ltd. Handheld lancing device
EA022565B1 (en) 2008-05-27 2016-01-29 Дзе Юниверсити Оф Мельбурн Methods of treating mammals with eustachian tube dysfunctions
US20100030031A1 (en) 2008-07-30 2010-02-04 Acclarent, Inc. Swing prism endoscope
AU2009293312B2 (en) 2008-09-18 2015-07-09 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US20100087811A1 (en) 2008-10-06 2010-04-08 Coaptus Medical Corporation Systems and Methods for Controlling Patient Catheters
US9101739B2 (en) 2009-02-17 2015-08-11 Entellus Medical, Inc. Balloon catheter inflation apparatus and methods
USD630321S1 (en) * 2009-05-08 2011-01-04 Angio Dynamics, Inc. Probe handle
US8608360B2 (en) 2009-05-18 2013-12-17 Günther Nath Liquid light guide having position retaining function
USD633208S1 (en) 2009-09-11 2011-02-22 Stryker Trauma Ag External fixation clamp

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5749920A (en) * 1983-12-09 1998-05-12 Endovascular Technologies, Inc. Multicapsule intraluminal grafting system and method
US5823961A (en) * 1993-05-12 1998-10-20 Hdc Corporation Catheter guidewire and flushing apparatus and method of insertion

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Durometer Made Easy Durometer Hardness Scales - General Reference Guide." Paramount Industries, Inc. 2008. Accessed online: <http://www.paramountind.com/pdfs/paramount_durometer_scale_guide.pdf> *
"Durometer Shore Hardness Scale." Smooth-On, Inc. 2016. Accessed online: <https://www.smooth-on.com/page/durometer-shore-hardness-scale/> *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9826999B2 (en) 2004-04-21 2017-11-28 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US9610428B2 (en) 2004-04-21 2017-04-04 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
US10492810B2 (en) 2004-04-21 2019-12-03 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
US10631756B2 (en) 2004-04-21 2020-04-28 Acclarent, Inc. Guidewires for performing image guided procedures
US10188413B1 (en) 2004-04-21 2019-01-29 Acclarent, Inc. Deflectable guide catheters and related methods
US11065061B2 (en) 2004-04-21 2021-07-20 Acclarent, Inc. Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses
US11020136B2 (en) 2004-04-21 2021-06-01 Acclarent, Inc. Deflectable guide catheters and related methods
US10806477B2 (en) 2004-04-21 2020-10-20 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US11529502B2 (en) 2004-04-21 2022-12-20 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US11864725B2 (en) 2004-04-21 2024-01-09 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
US9814379B2 (en) 2004-04-21 2017-11-14 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US10034682B2 (en) 2004-04-21 2018-07-31 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
US10779752B2 (en) 2004-04-21 2020-09-22 Acclarent, Inc. Guidewires for performing image guided procedures
US10098652B2 (en) 2004-04-21 2018-10-16 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US10695080B2 (en) 2004-04-21 2020-06-30 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
US10842978B2 (en) 2005-06-10 2020-11-24 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
US9597179B2 (en) 2011-07-25 2017-03-21 Rainbow Medical Ltd. Sinus stent
US9839347B2 (en) 2013-12-17 2017-12-12 Biovision Technologies Llc Method of performing a sphenopalatine ganglion block procedure
US11058855B2 (en) 2013-12-17 2021-07-13 Biovision Technologies, Llc Surgical device for performing a sphenopalatine ganglion block procedure
US10420459B2 (en) 2013-12-17 2019-09-24 Biovision Technologies, Llc Method of performing a sphenopalatine ganglion block procedure
US9510743B2 (en) 2013-12-17 2016-12-06 Biovision Technologies, Llc Stabilized surgical device for performing a sphenopalatine ganglion block procedure
US9516995B2 (en) 2013-12-17 2016-12-13 Biovision Technologies, Llc Surgical device for performing a sphenopalatine ganglion block procedure
US10589072B2 (en) 2013-12-17 2020-03-17 Biovision Technologies, Llc Methods for treating sinus diseases
US9694163B2 (en) 2013-12-17 2017-07-04 Biovision Technologies, Llc Surgical device for performing a sphenopalatine ganglion block procedure
US9248266B2 (en) 2013-12-17 2016-02-02 Biovision Technologies, Llc Method of performing a sphenopalatine ganglion block procedure
US10016580B2 (en) 2013-12-17 2018-07-10 Biovision Technologies, Llc Methods for treating sinus diseases
US10046143B2 (en) 2013-12-17 2018-08-14 Biovision Technologies Llc Surgical device for performing a sphenopalatine ganglion block procedure
US10921320B2 (en) 2015-03-30 2021-02-16 Entvantage Diagnostics, Inc. Devices and methods for diagnosis of sinusitis
US20170199206A1 (en) * 2015-03-30 2017-07-13 Aaron Szymanski Devices and assays for diagnosis of sinusitis
US10620221B2 (en) * 2015-03-30 2020-04-14 Entvantage Diagnostics, Inc. Devices and assays for diagnosis of sinusitis
US11650213B2 (en) 2015-03-30 2023-05-16 Entvantage Diagnostics, Inc. Devices and assays for diagnosis of viral and bacterial infections
US10159586B2 (en) 2015-06-29 2018-12-25 480 Biomedical Inc. Scaffold loading and delivery systems
US10857013B2 (en) 2015-06-29 2020-12-08 Lyra Therapeutics, Inc. Scaffold loading and delivery systems
US10278812B2 (en) 2015-06-29 2019-05-07 480 Biomedical, Inc. Implantable scaffolds and methods for treatment of sinusitis
US10232082B2 (en) 2015-06-29 2019-03-19 480 Biomedical, Inc. Implantable scaffolds for treatment of sinusitis
US10973664B2 (en) 2015-12-30 2021-04-13 Lyra Therapeutics, Inc. Scaffold loading and delivery systems
US10201639B2 (en) 2017-05-01 2019-02-12 480 Biomedical, Inc. Drug-eluting medical implants
US10525240B1 (en) 2018-06-28 2020-01-07 Sandler Scientific LLC Sino-nasal rinse delivery device with agitation, flow-control and integrated medication management system
WO2022109439A1 (en) * 2020-11-23 2022-05-27 United States Endoscopy Group, Inc. Endoscopic device with additional channel

Also Published As

Publication number Publication date
ES2621212T3 (en) 2017-07-03
US20170197067A1 (en) 2017-07-13
US20080195041A1 (en) 2008-08-14
EP2185234B1 (en) 2017-03-08
US10874838B2 (en) 2020-12-29
US8747389B2 (en) 2014-06-10
EP3195895A1 (en) 2017-07-26
ES2699236T3 (en) 2019-02-08
EP2185234A1 (en) 2010-05-19
WO2008134382A1 (en) 2008-11-06
EP3195895B1 (en) 2018-10-17
EP2185234A4 (en) 2010-11-03

Similar Documents

Publication Publication Date Title
US10874838B2 (en) Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US10806477B2 (en) Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US20110004057A1 (en) Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US11167080B2 (en) Balloon dilation catheter system for treatment and irrigation of the sinuses
US11744994B2 (en) Devices and method for maxillary sinus lavage
US10695537B2 (en) System and method for dilating an airway stenosis
US10806849B2 (en) Devices and methods for transnasal irrigation or suctioning of the sinuses
US10136907B2 (en) Methods of locating and treating tissue in a wall defining a bodily passage
CA2755321A1 (en) Guide system with suction

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION