US20140321508A1 - Resistance Temperature Sensor - Google Patents

Resistance Temperature Sensor Download PDF

Info

Publication number
US20140321508A1
US20140321508A1 US14/324,309 US201414324309A US2014321508A1 US 20140321508 A1 US20140321508 A1 US 20140321508A1 US 201414324309 A US201414324309 A US 201414324309A US 2014321508 A1 US2014321508 A1 US 2014321508A1
Authority
US
United States
Prior art keywords
temperature sensor
measuring
temperature
transmitter
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/324,309
Inventor
Reinhard Buchner
Peter Seefeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Wetzer GmbH and Co KG
Original Assignee
Endress and Hauser Wetzer GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser Wetzer GmbH and Co KG filed Critical Endress and Hauser Wetzer GmbH and Co KG
Priority to US14/324,309 priority Critical patent/US20140321508A1/en
Assigned to ENDRESS + HAUSER WETZER GMBH + CO. KG reassignment ENDRESS + HAUSER WETZER GMBH + CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BUCHNER, REINHARD, SEEFELD, PETER
Publication of US20140321508A1 publication Critical patent/US20140321508A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure
    • G01D3/036Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure on measuring arrangements themselves
    • G01D3/0365Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure on measuring arrangements themselves the undesired influence being measured using a separate sensor, which produces an influence related signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K5/00Measuring temperature based on the expansion or contraction of a material

Definitions

  • the invention relates to a resistance temperature sensor and a measuring device with such a resistance temperature sensor.
  • Temperature dependent resistors, or resistances, arrangements comprising a number of such resistors and measuring devices using such resistors for registering a process variable, especially temperature, are known in the state of the art.
  • Offenlegungsschrift EP 0828146 A1 discloses a self-monitoring temperature measuring apparatus with a first and a second resistance element with positive or negative resistance coefficients.
  • the two resistance elements lie in parallel electrical current paths, of which one includes a diode which allows electrical current to flow in one direction only.
  • the resistances of the two resistance elements are determined by a corresponding circuit which periodically changes a voltage applied to the electrical current paths, especially by reversing polarity.
  • the sensor elements have electrical impedances that differ with regard to their temperature coefficients and, integrated in a sensor head, are thermally coupled with one another and with the medium to be measured.
  • a resistance temperature sensor which comprises a first and a second sensor unit, which, for example, are manufactured using thin film technology, wherein the sensor units are arranged in parallel planes one on top of the other in order to enable a compact construction of the resistance temperature sensor, is known from Offenlegungsschrift DE 102006005393 A1
  • measuring devices which are installed, for example, in a plant utilizing process automation technology, should not disturb the actual process. Consequently, further miniaturization is desired. Also simplification is desired, in order to reduce costs, for example, of manufacture of the measuring devices.
  • An object of the invention is to provide a compact apparatus for temperature measurement not having the above mentioned disadvantages.
  • the object is achieved by a resistance temperature sensor as well as a measuring device with such a resistance temperature sensor.
  • the object is achieved by a resistance temperature sensor having a first temperature sensor element and a second temperature sensor element, wherein the first temperature sensor element has a first measuring path and the second temperature sensor element has a second measuring path, wherein the first and the second measuring paths extend on a substrate, wherein the substrate has an anisotropic thermal expansion with at least two mutually differing expansion directions, and wherein a projection of the first measuring path on the expansion directions differs from a projection of the second measuring path on the expansion directions.
  • any other support element with an anisotropic thermal expansion can also be used.
  • the determining of the temperature can be continued using the other temperature sensor element.
  • the first or the second temperature sensor element can thus be applied for monitoring the second or the first temperature sensor element.
  • the present invention accordingly provides differently extending measuring paths for determining temperature.
  • the present invention provides that the measuring paths can extend on a substrate with an anisotropic, i.e. directionally dependent, thermal expansion.
  • the substrate can have at least two directions having different thermal expansions.
  • the first and the second temperature sensor element can comprise the same substrate for example, but differ, however, as regards the measuring paths which extend along the substrate.
  • the first and the second measuring paths also differ as regards their projections on the expansion directions.
  • the measuring paths can extend so that the components of the measuring paths differ from one another as regards the directions predetermined by the expansion directions.
  • the measuring paths thus experience a thermal expansion due to the underlying substrate with an anisotropic thermal expansion, and the resistances present over the respective measuring paths change.
  • the resistance of the first measuring path and the second measuring path do not change at the same rate due to the substrate with an anisotropic thermal expansion, since for example, the coefficient of thermal expansion of the substrate is directionally dependent and the resistances differ from one another depending on direction. This can essentially be due to the thermal expansion of the substrate.
  • the substrate can thus have, for example, a directionally dependent length coefficient of expansion or a directionally dependent volume coefficient of expansion.
  • the size of this effect, i.e. the thermal expansion can, in such case, depend on the material used for the substrate.
  • the thermal expansion or the coefficient of thermal expansion can also be temperature dependent.
  • the projection of the second vector on the first vector is given by the vector that extends in the direction of the first vector, as limited by the foot of the perpendicular to the first vector, which perpendicular extends through the end point of the second vector.
  • a plurality of vectors which describe, for example the route of the first or second measuring path can also be projected onto the expansion directions. This projection, or also only the length of the projected vector, can be taken into consideration for a comparison for determining whether the first and the second measuring paths differ from one another as regards their projections on the expansion directions.
  • the first and/or the second temperature sensor element comprise at least one thin film coating which is applied to the substrate.
  • the thin film coating can be applied to the substrate by a conventional method known from the state of the art, for example by means of a physical and/or chemical gas deposition process.
  • the thicknesses of the thin film layer can, in such case, lie in the micrometer range ( ⁇ m), especially it can also be less than 1 ⁇ m (10 ⁇ 6 m).
  • Thin film coatings should not be only understood as coatings which are produced by additive processes such as sputtering, for example, but also coatings which arise by subtractive processes such as etching, for example.
  • the thin film coating forms a thin film resistance.
  • a single, especially a continuous thin, film coating, on which two measuring paths are defined can be utilized.
  • a compact resistance temperature sensor can be produced which can additionally calibrate and/or monitor itself.
  • the effect that in the case of an expansion of the substrate, the thin film coating applied to the substrate likewise expands or shrinks and thereby changes the electrical resistance of the first and the second measuring path, is exploited.
  • the first measuring path is a first thin film resistance and the second measuring path is a second thin film resistance, wherein the first and the second thin film resistances are applied on different surface regions of the substrate.
  • the first measuring path can also be applied to a thin film layer, especially in different surface regions of the substrate than the second measuring path.
  • the thin film resistances and the associated measuring paths and the associated temperature sensor elements can be applied on opposite sides of the substrate.
  • the first or the second measuring path extends on the substrate, such that the first measuring path experiences a different thermal expansion than the second measuring path due to the anisotropic thermal expansion of the substrate.
  • the substrate can experience a thermally related contraction in one direction and a thermally related expansion in another direction. This can also affect then the first and the second measuring path or the thin film coating applied to the substrate in the manner mentioned above.
  • the first measuring path extends on the substrate at least sectionally along an expansion direction which has a different thermal expansion compared to an expansion direction along which the second measuring path extends.
  • At least a first and a second pair of electrical contacts are provided, by means of which the first and/or the second measuring path are contactable.
  • One of the temperature sensor elements can thus essentially comprise the substrate, the thin film coating applied thereon, the measuring path defined by the thin film coating as well as the contacts for contacting the thin film layer.
  • the resistance temperature sensor provided can then comprise at least two, preferably exactly two, such temperature sensor elements.
  • the first or second measuring path extends, in such case, between the first or the second pair of electrical contacts.
  • the first and, respectively, the second measuring paths are predetermined by the first and, respectively, the second pair of electrical contacts.
  • the measuring paths can be defined by the positioning of the contacts on the thin film coating.
  • the first pair of electrical contacts by which the first measuring path is defined can be arranged on opposite ends of the thin film coating.
  • the second pair of contacts can be arranged on opposite ends of the thin film coating.
  • the contacts can be so arranged, that, for example, an imaginary connecting line between the second pair of electrical contacts and, for example, an imaginary connecting line between the first pair of contacts form an angle a (alpha), wherein the angle a is preferably selected as a function of the expansion directions of the anisotropic substrate, and lies especially preferably between 20° and 160°.
  • the imaginary connecting lines can in such case preferably match the expansion directions of the substrate with anisotropic thermal expansion.
  • the electrical contacts are arranged on the substrate so that the first measuring path experiences a different thermal expansion than the second measuring path.
  • the electrical contacts are provided, in each case, on essentially opposite ends of at least one thin film coating.
  • the contacts adjoin a single thin film coating applied on the substrate.
  • the contacts adjoin different thin film coatings, especially ones separated from one another, on the substrate.
  • the first and/or the second thin film coating has a thickness between 0.5 ⁇ m and 10 ⁇ m.
  • the substrate has a thickness between 300 ⁇ m and 2 mm.
  • the substrate has a first expansion direction a, in which one thermal expansion occurs, wherein the substrate has a second expansion direction c, in which one thermal expansion occurs.
  • the thermal expansion in the second expansion direction c is smaller than the thermal expansion in the first expansion direction a.
  • a thermally related expansion occurs along the expansion direction a of the substrate and a thermally related contraction along the expansion direction c of the substrate.
  • the first and/or the second thin film coating experiences an expansion along the expansion direction a and a contraction along the expansion direction c due to the thermal expansion of the substrate.
  • At least one thin film coating comprises a single material.
  • the material which forms at least one thin film coating has essentially the same thermal resistance and, respectively, expansion coefficient.
  • the substrate is an anisotropic crystalline material.
  • the substrate is essentially anisotropic beta-eucryptite, LiAlSiO4 or a lithium aluminum silicate.
  • the substrate has a rectangular, prismatic, ellipsoidal or circular shape.
  • the object is achieved by a measuring device for determining temperature with a resistance temperature sensor according to one of the preceding embodiments.
  • the first and the second measuring paths serve to determine the ambient temperature.
  • the resistance measurements of the first and the second measuring paths serve for diagnosis of the resistance temperature sensor or the measuring device.
  • the measuring device has a control/evaluation unit available, which serves to compare the measured resistances of the first measuring path and the second measuring path with each other
  • the measuring device includes two measurement signal inputs, which serve to connect the first temperature sensor element and the second temperature sensor element to the control/evaluation unit, for example one integrated in a transmitter unit.
  • the object can be achieved by a corresponding method for the manufacture and/or operation of a resistance temperature sensor or a measuring device.
  • Another embodiment of the invention provides that, by means of the first and the second temperature sensor element, in each case, an information portion is ascertained, from which the process variable can then be determined totally.
  • the process variable can be, for example, the deviation of the measurement signal of the first temperature sensor element from the measurement signal of the second temperature sensor element, as would be used in a calibration, for example.
  • the resistance temperature sensor and/or at least the first and/or the second temperature sensor element can serve and/or be operated as a heating element. Then, for example, the anisotropic expansion of the substrate can be utilized in order to calibrate the resistance temperature sensor. In such case, the resistance temperature sensor can also additionally serve as a heating element of a thermal, flow measuring device.
  • FIG. 1 is a plan view of a resistance temperature sensor according to the state of the art
  • FIG. 2 is a plan view of a resistance temperature sensor in an embodiment of the present invention, wherein the substrate has anisotropic thermal expansion;
  • FIG. 3 is a resistance temperature sensor in an additional embodiment of the present invention, wherein the measuring path meanders;
  • FIG. 4 is a resistance temperature sensor in an additional embodiment of the present invention with a likewise meandering measuring path;
  • FIG. 5 is a schematic representation of the crystalline structure of an anisotropic substrate at normal temperature
  • FIG. 6 is a schematic representation of the crystalline structure of the anisotropic substrate at temperature increased relative to normal temperature
  • FIG. 7 is a schematic representation of a cross section through an embodiment of the proposed invention, wherein the thin film resistor is surrounded by an inerting embedding material and a substrate cover;
  • FIG. 8 is a schematic representation of a cross section through another embodiment of the proposed invention, in which the thin film resistor is surrounded only by an inerting, embedding material;
  • FIG. 9 is a schematic representation of two measuring transducers, which are connected to a transmitter unit
  • FIG. 10 is a schematic representation of a measuring transducer with a built-in transmitter unit.
  • FIG. 11 is a schematic representation of a device architecture in an industrial plant.
  • FIG. 1 shows a resistance temperature sensor according to the state of the art.
  • a thin film layer 2 which is contactable via electrical contacts 31 , is applied on a substrate 1 .
  • a measuring path on the thin film layer 2 is defined by the contacts 31 .
  • the measuring path extends, in such case, between the contacts 31 .
  • the measuring path has a so-called thin film resistance.
  • the measuring path and the so-called thin film resistance are subject, in such case, to the thermal expansion of the underlying substrate 1 .
  • a thin film resistance is generally a type of resistance used for integrated circuits, for example, and is embodied as a thin layer of resistive material. Numerous resistive materials can be used for forming thin film resistances. The behavior of such thin film resistances is defined by a number of parameters, which include the resistance, the resistance tolerance and the temperature coefficient of resistance (TCR) (measure of resistance change with temperature change).
  • TCR temperature coefficient of resistance
  • the resistance in FIG. 1 is measured with four conductor technology, i.e. an electrical current flows between two of the connection lines 5 while only a voltage is sensed between the other two connection lines 5 , which are thus essentially free of electrical current.
  • the substrate 1 applied in the example of an embodiment according to FIG. 1 has an isotropic thermal expansion, so that, in the case of a temperature change, the expansion of the material occurs independently of spatial orientation.
  • FIG. 2 shows a resistance temperature sensor 10 according to an embodiment of the present invention.
  • the resistance temperature sensor 10 serves to measure temperature and includes a thin film coating 2 with a thickness between 0.5 and 10 micrometers made from coating materials containing conductive metal, transition metal, carbon, or carbon nano tubes, which are applied on a plate-like substrate 1 with a thickness between 300 micrometers and 2 mm, wherein the substrate 1 has anisotropic thermal coefficients of expansion, wherein the anisotropic substrate surface has one principal direction a, in which an increased thermal expansion occurs in a direction a′, and in the direction c perpendicular to a and lying in the same plane, in the case of heating, a contraction occurs in the direction c′ or else a smaller thermal expansion compared with the direction a, whereby the bonded thin film coating experiences an expansion in direction a′ and a contraction in direction c′.
  • the resistance temperature sensor 10 can have one or more thin film segments, for example of the same coating material 2 with the same thermal resistance coefficient, which are applied, in each case, in the orientation a and in the orientation c to the same anisotropic substrate 1 .
  • the thin film coating 2 shown in FIG. 2 is contacted on opposite ends in the orientations a and c with two or more electrical connections in the form of electrical contacts 6 , 7 . Via the measuring paths thus formed, resistance measurements through the contacts 6 at different coating sections of the same coating material 2 with the same thermal resistance coefficient on an anisotropic substrate 1 can be used for a measurement difference evaluation.
  • the substrate 1 applied for this purpose can be an anisotropic crystalline material, e.g.
  • the substrate 1 for this purpose can also have a rectangular, prismatic, ellipsoidal or circular, plate-like shape.
  • a substrate with an essentially circular outline is shown in FIG. 3 and one with an essentially square outline in FIG. 4 .
  • the substrate 1 can be composed of at least one anisotropic material that has a negative thermal expansion at least in one principal direction.
  • the conductive traces 72 especially flat conductive traces, can be covered U-shaped by the substrate 1 , as shown in FIG. 7 and FIG. 8 , wherein the substrate, in the latter case, extends laterally beyond the conductive traces 72 .
  • the conductive trace(s) 72 can also be completely surrounded by the anisotropic substrate material 71 , as in FIG. 7 , wherein the substrate base part 71 accommodating the conductive trace 72 is covered by an additional substrate flat part 3 , which has an anisotropic orientation of the same sense as the base material 71 .
  • the conductive trace 2 can simply be “capped” with an embedding material as shown in FIG. 8 .
  • both surfaces of the anisotropic substrate 1 can be equipped with conductive traces 2 , 32 , 42 .
  • the coating can comprise meandering, hairpin curved conductive traces 32 , 42 .
  • the conductive traces 32 , 42 can have a rectangular cross section or an ovally rounded off, cross section.
  • the resistance temperature sensor 10 can be assembled of many layers, wherein a multilayered, sandwich-type construction is composed of planar portions of anisotropic substrate 1 and a conductive thin film coatings 2 , which are enclosed by an inerting, dielectrically insulating, embedding material 4 .
  • FIG. 5 and FIG. 6 show a schematic representation of the crystalline structure of the material, which forms the substrate 1 .
  • the substrate 1 has, in such case, two principal expansion directions, along which the substrate 1 experiences a change of length in the case of a temperature change. In direction a, the substrate experiences an expansion while experiencing a contraction in direction c. This is represented by the distances a′ and c′ in FIG. 6 .
  • the thin film coating 2 applied to the substrate experiences, consequently, a comparable expansion, whereupon the electrical resistance of the thin film coating 2 changes dependent on location, or corresponding to the route of the respective measuring path.
  • FIG. 9 shows a schematic representation of two measuring transducers MT 1 , MT 2 connected for monitoring a process variable in a process, which is occurring in a pipe or other container, for example.
  • the measuring transducers MT 1 , MT 2 can be, for example, the resistance temperature sensors 10 of the invention, however, other sensors can also be used.
  • the measuring signals of the respective sensors carried via connection lines K 1 , K 2 are supplied to a transmitter unit TU, which as in the case shown in FIG. 9 can be separate from the measuring transducers MT 1 and MT 2 , respectively.
  • the transmitter unit TU has two measurement signal inputs available, which are connected via cable to the corresponding connections of the measuring transducers.
  • the measurement signal inputs can be 2 conductor, 3 conductor or 4 conductor connections.
  • the measurement signal inputs can be optimally matched corresponding to a measurement signal connector of the temperature sensor element used.
  • the resistance of a resistance temperature sensor can be sensed in a 2, 3 or 4 conductor measurement.
  • the measuring signals can be evaluated by the transmitter unit TU and, in given cases, error reports can be output, as for example, in the case of drift of one of the measuring transducers or both of the measuring transducers MT 1 , MT 2 .
  • the measurement signal i.e. the measured values collected, which are used for conditioning and/or further processing, can be selected temperature dependently.
  • a high accuracy of the measuring point, above all however, of the measuring device composed of measuring transducers MT 1 , MT 2 and transmitter unit TU, can be achieved by so-called sensor transmitter matching.
  • the output of a resistance temperature sensor 10 is linearized. This can be accomplished, for example, using the Callender-van Dusen equation:
  • R T R 0 (1 +A ⁇ T+B ⁇ T 2 +( T ⁇ 100) ⁇ C ⁇ T 3 )
  • the coefficients A, B, C serve for matching the temperature sensor elements and the transmitter unit TU.
  • a first set of coefficients A, B, C for matching the first temperature sensor element and a second set of coefficients A′, B′, C′ for matching the second temperature sensor element of a resistance temperature sensor 10 of the invention can be provided.
  • the coefficients can be ascertained during a calibration of the temperature sensor elements or the resistance temperature sensor 10 and can be stored, for example, in the transmitter unit TU.
  • FIG. 10 shows only one measuring transducer MT.
  • the measuring transducer MT has an installed transmitter unit TU, a so-called temperature head transmitter.
  • the temperature head transmitter is, for example, a two conductor measuring device with, for example, two measurement inputs and an analog output A.
  • the measuring transducer MT can use a temperature sensor element, as shown in FIG. 1 for example, or two temperature sensor elements, e.g. in the form of the resistance temperature sensor 10 of the invention shown in FIG. 2 . In the case of two temperature sensor elements, these can, for example, be redundantly designed.
  • the two measurement inputs of the transmitter unit TU can serve to connect a measuring transducer MT with a resistance temperature sensor of the invention, which has two temperature sensor elements.
  • the first temperature sensor element can be connected to the first measurement input and the second temperature sensor element to the second measurement input.
  • the measuring signals of the two temperature sensor elements can be (pre-) processed and/or diagnostic functions can already be executed.
  • the transmitter unit TU i.e. a temperature head transmitter, for example, can safely detect a line break, a short circuit, and corrosion, as well as a wiring error.
  • the working range of the measuring transducer MT and the ambient temperature can be monitored by the transmitter unit TU.
  • a corresponding error report can be output via the analog output, which uses for example, a 4 to 20 mA output signal or the HART protocol.
  • either of the embodiments according to FIG. 9 or FIG. 10 additionally can be provided with a so-called sensor backup function, which switches to the second temperature sensor element and, for example, outputs this via the analog output in case the first temperature sensor element fails.
  • the two measurement inputs can serve to switch to the first and the second temperature sensor element, in case the two temperature sensor elements should be applied in different temperature or measuring ranges or are provided for use in different temperatures.
  • a drift warning can also be provided in the form of an alarm, which is output in the case of a deviation, which lies outside a predetermined limit value.
  • the temperature head transmitter forms the total measuring point for the most varied of applications in the industrial environment.
  • FIG. 11 shows a schematic representation of a device architecture, as present, for example, in an industrial plant.
  • the measuring device TMT 82 has, in such case, an analog output O, via which it can communicate, for example, by means of a 4 to 20 mA electrical current signal and the HART protocol.
  • the analog output O is connected by connecting lines to an RN 221 N active barrier, which supplies the measuring device TMT 82 with auxiliary energy and transmits a measurement signal issued by the measuring device TMT 82 , for example, to a process control system PLC.
  • Other communication interfaces such as a Bluetooth interface B and a Commubox signal converter, can also be connected to the active barrier RN 221 N, to enable communication, respectively, with an SFX 100 handheld device and laptop computer C connected to the feed separator RN 221 N.
  • a Bluetooth interface B and a Commubox signal converter can also be connected to the active barrier RN 221 N, to enable communication, respectively, with an SFX 100 handheld device and laptop computer C connected to the feed separator RN 221 N.
  • a Bluetooth interface B can be connected to the RN 221 N active barrier, so that a SFX 100 handheld device can be communicated with, which has, for example, a display unit D 2 , on which can be displayed especially measured values and/or other process relevant data.
  • a further communication interface such as, for example, a Commubox signal converter of the firm, Endress+Hauser
  • the Commubox signal converter for example, is an intrinsically safe communication interface for transmitter units TU for converting HART signals to USB signals and thereby enabling communication with a computer C.
  • a computer C can run a process diagnosis and/or maintenance program, such as, for example, the Fieldcare software of the firm, Endress+Hauser.
  • measured values and/or process relevant data can also then be displayed on this computer, especially on the display unit D 1 .

Abstract

A resistance temperature sensor with a first temperature sensor element and a second temperature sensor element, wherein the first temperature sensor element comprises a first measuring path and the second temperature sensor element a second measuring path, wherein the first and the second measuring paths extend on a substrate, wherein the substrate has an anisotropic thermal expansion with at least two mutually differing expansion directions (a, c), and wherein a projection of the first measuring path on the expansion directions (a) differs from a projection of the second measuring path on the expansion directions (c).

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This is a continuation of U.S. patent application Ser. No. 13/166,854, filed on Jun. 23, 2011, which is a nonprovisional application, claiming the benefit of U.S. Provisional Application No. 61/344,285 filed on Jun. 23, 2010.
  • TECHNICAL FIELD
  • The invention relates to a resistance temperature sensor and a measuring device with such a resistance temperature sensor.
  • BACKGROUND DISCUSSION
  • Temperature dependent resistors, or resistances, arrangements comprising a number of such resistors and measuring devices using such resistors for registering a process variable, especially temperature, are known in the state of the art.
  • Thus, for example, Offenlegungsschrift EP 0828146 A1 discloses a self-monitoring temperature measuring apparatus with a first and a second resistance element with positive or negative resistance coefficients. The two resistance elements lie in parallel electrical current paths, of which one includes a diode which allows electrical current to flow in one direction only. The resistances of the two resistance elements are determined by a corresponding circuit which periodically changes a voltage applied to the electrical current paths, especially by reversing polarity.
  • An arrangement of sensor elements is also known from the Gebrauchsmuster DE 202004021438 U1. In such case, the sensor elements have electrical impedances that differ with regard to their temperature coefficients and, integrated in a sensor head, are thermally coupled with one another and with the medium to be measured.
  • A resistance temperature sensor, which comprises a first and a second sensor unit, which, for example, are manufactured using thin film technology, wherein the sensor units are arranged in parallel planes one on top of the other in order to enable a compact construction of the resistance temperature sensor, is known from Offenlegungsschrift DE 102006005393 A1
  • However, these arrangements require complex wiring as well as an increased space requirement due to the separately executed temperature sensors, or at least are not directly suitable for self monitoring and/or self calibrating. Moreover, measuring devices, which are installed, for example, in a plant utilizing process automation technology, should not disturb the actual process. Consequently, further miniaturization is desired. Also simplification is desired, in order to reduce costs, for example, of manufacture of the measuring devices.
  • SUMMARY OF THE INVENTION
  • An object of the invention is to provide a compact apparatus for temperature measurement not having the above mentioned disadvantages.
  • According to the invention, the object is achieved by a resistance temperature sensor as well as a measuring device with such a resistance temperature sensor.
  • As regards the resistance temperature sensor, the object is achieved by a resistance temperature sensor having a first temperature sensor element and a second temperature sensor element, wherein the first temperature sensor element has a first measuring path and the second temperature sensor element has a second measuring path, wherein the first and the second measuring paths extend on a substrate, wherein the substrate has an anisotropic thermal expansion with at least two mutually differing expansion directions, and wherein a projection of the first measuring path on the expansion directions differs from a projection of the second measuring path on the expansion directions.
  • Instead of the substrate, any other support element with an anisotropic thermal expansion can also be used. By using two different temperature sensor elements, it can be assured that drift occurring, in given cases, in the resistance temperature sensor can be recognized and/or diagnosed. Moreover, in the case of failure of one of the temperature sensor elements, the determining of the temperature can be continued using the other temperature sensor element. The first or the second temperature sensor element can thus be applied for monitoring the second or the first temperature sensor element.
  • Via the first or the second measuring path, a value and/or curve of a physical variable, here the temperature, can be ascertained. The present invention accordingly provides differently extending measuring paths for determining temperature. Furthermore, the present invention provides that the measuring paths can extend on a substrate with an anisotropic, i.e. directionally dependent, thermal expansion. For such purpose, the substrate can have at least two directions having different thermal expansions. Thus, the first and the second temperature sensor element can comprise the same substrate for example, but differ, however, as regards the measuring paths which extend along the substrate. In this way, the first and the second measuring paths also differ as regards their projections on the expansion directions. For example, the measuring paths can extend so that the components of the measuring paths differ from one another as regards the directions predetermined by the expansion directions. In this way, the measuring paths thus experience a thermal expansion due to the underlying substrate with an anisotropic thermal expansion, and the resistances present over the respective measuring paths change. It can additionally be exploited that the resistance of the first measuring path and the second measuring path do not change at the same rate due to the substrate with an anisotropic thermal expansion, since for example, the coefficient of thermal expansion of the substrate is directionally dependent and the resistances differ from one another depending on direction. This can essentially be due to the thermal expansion of the substrate. The substrate can thus have, for example, a directionally dependent length coefficient of expansion or a directionally dependent volume coefficient of expansion. The size of this effect, i.e. the thermal expansion, can, in such case, depend on the material used for the substrate. The thermal expansion or the coefficient of thermal expansion can also be temperature dependent.
  • If one assigns, for example, a first vector to one of the expansion directions, and, for example, a second vector to the first measuring path, then the projection of the second vector on the first vector is given by the vector that extends in the direction of the first vector, as limited by the foot of the perpendicular to the first vector, which perpendicular extends through the end point of the second vector. Of course, a plurality of vectors which describe, for example the route of the first or second measuring path, can also be projected onto the expansion directions. This projection, or also only the length of the projected vector, can be taken into consideration for a comparison for determining whether the first and the second measuring paths differ from one another as regards their projections on the expansion directions.
  • In an embodiment of the resistance temperature sensor, the first and/or the second temperature sensor element comprise at least one thin film coating which is applied to the substrate. In such case, the thin film coating can be applied to the substrate by a conventional method known from the state of the art, for example by means of a physical and/or chemical gas deposition process. The thicknesses of the thin film layer can, in such case, lie in the micrometer range (μm), especially it can also be less than 1 μm (10−6 m). Thin film coatings should not be only understood as coatings which are produced by additive processes such as sputtering, for example, but also coatings which arise by subtractive processes such as etching, for example.
  • In an embodiment of the resistance temperature sensor, the thin film coating forms a thin film resistance. Thus, especially a single, especially a continuous thin, film coating, on which two measuring paths are defined, can be utilized. In this way, a compact resistance temperature sensor can be produced which can additionally calibrate and/or monitor itself. In such case, the effect that in the case of an expansion of the substrate, the thin film coating applied to the substrate likewise expands or shrinks and thereby changes the electrical resistance of the first and the second measuring path, is exploited.
  • In another embodiment of the resistance temperature sensor, the first measuring path is a first thin film resistance and the second measuring path is a second thin film resistance, wherein the first and the second thin film resistances are applied on different surface regions of the substrate. Accordingly, the first measuring path can also be applied to a thin film layer, especially in different surface regions of the substrate than the second measuring path. For example, the thin film resistances and the associated measuring paths and the associated temperature sensor elements can be applied on opposite sides of the substrate.
  • In an embodiment of the resistance temperature sensor, the first or the second measuring path extends on the substrate, such that the first measuring path experiences a different thermal expansion than the second measuring path due to the anisotropic thermal expansion of the substrate. For example, the substrate can experience a thermally related contraction in one direction and a thermally related expansion in another direction. This can also affect then the first and the second measuring path or the thin film coating applied to the substrate in the manner mentioned above.
  • In an embodiment of the resistance temperature sensor, the first measuring path extends on the substrate at least sectionally along an expansion direction which has a different thermal expansion compared to an expansion direction along which the second measuring path extends.
  • In an embodiment of the resistance temperature sensor, at least a first and a second pair of electrical contacts are provided, by means of which the first and/or the second measuring path are contactable. One of the temperature sensor elements can thus essentially comprise the substrate, the thin film coating applied thereon, the measuring path defined by the thin film coating as well as the contacts for contacting the thin film layer. The resistance temperature sensor provided can then comprise at least two, preferably exactly two, such temperature sensor elements. The first or second measuring path extends, in such case, between the first or the second pair of electrical contacts.
  • In an embodiment of the resistance temperature sensor, the first and, respectively, the second measuring paths are predetermined by the first and, respectively, the second pair of electrical contacts. The measuring paths can be defined by the positioning of the contacts on the thin film coating. Thus the first pair of electrical contacts by which the first measuring path is defined, for example, can be arranged on opposite ends of the thin film coating. Likewise the second pair of contacts can be arranged on opposite ends of the thin film coating. Moreover, the contacts can be so arranged, that, for example, an imaginary connecting line between the second pair of electrical contacts and, for example, an imaginary connecting line between the first pair of contacts form an angle a (alpha), wherein the angle a is preferably selected as a function of the expansion directions of the anisotropic substrate, and lies especially preferably between 20° and 160°. For example, the imaginary connecting lines can in such case preferably match the expansion directions of the substrate with anisotropic thermal expansion.
  • In an embodiment of the resistance temperature sensor, the electrical contacts are arranged on the substrate so that the first measuring path experiences a different thermal expansion than the second measuring path.
  • In an embodiment of the resistance temperature sensor, the electrical contacts are provided, in each case, on essentially opposite ends of at least one thin film coating.
  • In an embodiment of the resistance temperature sensor, the contacts adjoin a single thin film coating applied on the substrate.
  • In an embodiment of the resistance temperature sensor, the contacts adjoin different thin film coatings, especially ones separated from one another, on the substrate.
  • In an embodiment of the resistance temperature sensor, the first and/or the second thin film coating has a thickness between 0.5 μm and 10 μm.
  • In an embodiment of the resistance temperature sensor, the substrate has a thickness between 300 μm and 2 mm.
  • In an embodiment of the resistance temperature sensor, the substrate has a first expansion direction a, in which one thermal expansion occurs, wherein the substrate has a second expansion direction c, in which one thermal expansion occurs.
  • In an embodiment of the resistance temperature sensor, the thermal expansion in the second expansion direction c is smaller than the thermal expansion in the first expansion direction a.
  • In an embodiment of the resistance temperature sensor, a thermally related expansion occurs along the expansion direction a of the substrate and a thermally related contraction along the expansion direction c of the substrate.
  • In an embodiment of the resistance temperature sensor, the first and/or the second thin film coating experiences an expansion along the expansion direction a and a contraction along the expansion direction c due to the thermal expansion of the substrate.
  • In an embodiment of the resistance temperature sensor, at least one thin film coating comprises a single material.
  • In an embodiment of the resistance temperature sensor, the material which forms at least one thin film coating has essentially the same thermal resistance and, respectively, expansion coefficient.
  • In an embodiment of the resistance temperature sensor, the substrate is an anisotropic crystalline material.
  • In an embodiment of the resistance temperature sensor, the substrate is essentially anisotropic beta-eucryptite, LiAlSiO4 or a lithium aluminum silicate.
  • In an embodiment of the resistance temperature sensor, the substrate has a rectangular, prismatic, ellipsoidal or circular shape.
  • Regarding the measuring device, the object is achieved by a measuring device for determining temperature with a resistance temperature sensor according to one of the preceding embodiments.
  • In an embodiment of the measuring device, the first and the second measuring paths serve to determine the ambient temperature.
  • In an embodiment of the measuring device, the resistance measurements of the first and the second measuring paths serve for diagnosis of the resistance temperature sensor or the measuring device.
  • In an embodiment of the measuring device, the measuring device has a control/evaluation unit available, which serves to compare the measured resistances of the first measuring path and the second measuring path with each other
  • In an embodiment of the measuring device, the measuring device includes two measurement signal inputs, which serve to connect the first temperature sensor element and the second temperature sensor element to the control/evaluation unit, for example one integrated in a transmitter unit.
  • Additionally, the object can be achieved by a corresponding method for the manufacture and/or operation of a resistance temperature sensor or a measuring device.
  • Another embodiment of the invention provides that, by means of the first and the second temperature sensor element, in each case, an information portion is ascertained, from which the process variable can then be determined totally. The process variable can be, for example, the deviation of the measurement signal of the first temperature sensor element from the measurement signal of the second temperature sensor element, as would be used in a calibration, for example.
  • Additionally, the resistance temperature sensor and/or at least the first and/or the second temperature sensor element can serve and/or be operated as a heating element. Then, for example, the anisotropic expansion of the substrate can be utilized in order to calibrate the resistance temperature sensor. In such case, the resistance temperature sensor can also additionally serve as a heating element of a thermal, flow measuring device.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will now be explained in greater detail on the basis of the appended drawing, the figures of which show as follows:
  • FIG. 1 is a plan view of a resistance temperature sensor according to the state of the art;
  • FIG. 2 is a plan view of a resistance temperature sensor in an embodiment of the present invention, wherein the substrate has anisotropic thermal expansion;
  • FIG. 3 is a resistance temperature sensor in an additional embodiment of the present invention, wherein the measuring path meanders;
  • FIG. 4 is a resistance temperature sensor in an additional embodiment of the present invention with a likewise meandering measuring path;
  • FIG. 5 is a schematic representation of the crystalline structure of an anisotropic substrate at normal temperature;
  • FIG. 6 is a schematic representation of the crystalline structure of the anisotropic substrate at temperature increased relative to normal temperature;
  • FIG. 7 is a schematic representation of a cross section through an embodiment of the proposed invention, wherein the thin film resistor is surrounded by an inerting embedding material and a substrate cover;
  • FIG. 8 is a schematic representation of a cross section through another embodiment of the proposed invention, in which the thin film resistor is surrounded only by an inerting, embedding material;
  • FIG. 9 is a schematic representation of two measuring transducers, which are connected to a transmitter unit;
  • FIG. 10 is a schematic representation of a measuring transducer with a built-in transmitter unit; and
  • FIG. 11 is a schematic representation of a device architecture in an industrial plant.
  • DETAILED DESCRIPTION IN CONJUNCTION WITH DRAWINGS
  • FIG. 1 shows a resistance temperature sensor according to the state of the art. In such case, a thin film layer 2, which is contactable via electrical contacts 31, is applied on a substrate 1. A measuring path on the thin film layer 2 is defined by the contacts 31. The measuring path extends, in such case, between the contacts 31. The measuring path has a so-called thin film resistance. The measuring path and the so-called thin film resistance are subject, in such case, to the thermal expansion of the underlying substrate 1.
  • A thin film resistance is generally a type of resistance used for integrated circuits, for example, and is embodied as a thin layer of resistive material. Numerous resistive materials can be used for forming thin film resistances. The behavior of such thin film resistances is defined by a number of parameters, which include the resistance, the resistance tolerance and the temperature coefficient of resistance (TCR) (measure of resistance change with temperature change).
  • The resistance in FIG. 1 is measured with four conductor technology, i.e. an electrical current flows between two of the connection lines 5 while only a voltage is sensed between the other two connection lines 5, which are thus essentially free of electrical current.
  • The substrate 1 applied in the example of an embodiment according to FIG. 1 has an isotropic thermal expansion, so that, in the case of a temperature change, the expansion of the material occurs independently of spatial orientation.
  • FIG. 2 shows a resistance temperature sensor 10 according to an embodiment of the present invention. In such case, the resistance temperature sensor 10 serves to measure temperature and includes a thin film coating 2 with a thickness between 0.5 and 10 micrometers made from coating materials containing conductive metal, transition metal, carbon, or carbon nano tubes, which are applied on a plate-like substrate 1 with a thickness between 300 micrometers and 2 mm, wherein the substrate 1 has anisotropic thermal coefficients of expansion, wherein the anisotropic substrate surface has one principal direction a, in which an increased thermal expansion occurs in a direction a′, and in the direction c perpendicular to a and lying in the same plane, in the case of heating, a contraction occurs in the direction c′ or else a smaller thermal expansion compared with the direction a, whereby the bonded thin film coating experiences an expansion in direction a′ and a contraction in direction c′.
  • Furthermore, the resistance temperature sensor 10 can have one or more thin film segments, for example of the same coating material 2 with the same thermal resistance coefficient, which are applied, in each case, in the orientation a and in the orientation c to the same anisotropic substrate 1. The thin film coating 2 shown in FIG. 2 is contacted on opposite ends in the orientations a and c with two or more electrical connections in the form of electrical contacts 6, 7. Via the measuring paths thus formed, resistance measurements through the contacts 6 at different coating sections of the same coating material 2 with the same thermal resistance coefficient on an anisotropic substrate 1 can be used for a measurement difference evaluation. The substrate 1 applied for this purpose can be an anisotropic crystalline material, e.g. anisotropic crystalline β-eucryptite, LiAlSiO4 or a lithium aluminum silicate. The substrate 1 for this purpose can also have a rectangular, prismatic, ellipsoidal or circular, plate-like shape. Thus, a substrate with an essentially circular outline is shown in FIG. 3 and one with an essentially square outline in FIG. 4. In general, the substrate 1 can be composed of at least one anisotropic material that has a negative thermal expansion at least in one principal direction. The conductive traces 72, especially flat conductive traces, can be covered U-shaped by the substrate 1, as shown in FIG. 7 and FIG. 8, wherein the substrate, in the latter case, extends laterally beyond the conductive traces 72. The conductive trace(s) 72 can also be completely surrounded by the anisotropic substrate material 71, as in FIG. 7, wherein the substrate base part 71 accommodating the conductive trace 72 is covered by an additional substrate flat part 3, which has an anisotropic orientation of the same sense as the base material 71. On the other hand, the conductive trace 2 can simply be “capped” with an embedding material as shown in FIG. 8.
  • Moreover, both surfaces of the anisotropic substrate 1 can be equipped with conductive traces 2, 32, 42.
  • As shown in FIG. 3 and FIG. 4, the coating can comprise meandering, hairpin curved conductive traces 32, 42. The conductive traces 32, 42 can have a rectangular cross section or an ovally rounded off, cross section.
  • The resistance temperature sensor 10 can be assembled of many layers, wherein a multilayered, sandwich-type construction is composed of planar portions of anisotropic substrate 1 and a conductive thin film coatings 2, which are enclosed by an inerting, dielectrically insulating, embedding material 4.
  • FIG. 5 and FIG. 6 show a schematic representation of the crystalline structure of the material, which forms the substrate 1. The substrate 1 has, in such case, two principal expansion directions, along which the substrate 1 experiences a change of length in the case of a temperature change. In direction a, the substrate experiences an expansion while experiencing a contraction in direction c. This is represented by the distances a′ and c′ in FIG. 6. Also, the thin film coating 2 applied to the substrate experiences, consequently, a comparable expansion, whereupon the electrical resistance of the thin film coating 2 changes dependent on location, or corresponding to the route of the respective measuring path.
  • FIG. 9 shows a schematic representation of two measuring transducers MT1, MT2 connected for monitoring a process variable in a process, which is occurring in a pipe or other container, for example. The measuring transducers MT1, MT2 can be, for example, the resistance temperature sensors 10 of the invention, however, other sensors can also be used. The firm Endress+Hauser manufacturers an extensive assortment of resistance thermometers, thermocouples and protective tubes P suited therefor.
  • These sensors are inserted into a protective tube P, which is exposed to the process. The measuring signals of the respective sensors carried via connection lines K1, K2 are supplied to a transmitter unit TU, which as in the case shown in FIG. 9 can be separate from the measuring transducers MT1 and MT2, respectively. For this purpose the transmitter unit TU has two measurement signal inputs available, which are connected via cable to the corresponding connections of the measuring transducers. The measurement signal inputs can be 2 conductor, 3 conductor or 4 conductor connections. Thus, the measurement signal inputs can be optimally matched corresponding to a measurement signal connector of the temperature sensor element used. For, as already indicated, the resistance of a resistance temperature sensor can be sensed in a 2, 3 or 4 conductor measurement.
  • The measuring signals can be evaluated by the transmitter unit TU and, in given cases, error reports can be output, as for example, in the case of drift of one of the measuring transducers or both of the measuring transducers MT1, MT2. On the other hand, the measurement signal, i.e. the measured values collected, which are used for conditioning and/or further processing, can be selected temperature dependently.
  • Especially, a high accuracy of the measuring point, above all however, of the measuring device composed of measuring transducers MT1, MT2 and transmitter unit TU, can be achieved by so-called sensor transmitter matching. For such purpose, the output of a resistance temperature sensor 10 is linearized. This can be accomplished, for example, using the Callender-van Dusen equation:

  • R T =R 0(1+A·T+B·T 2+(T−100)·C·T 3)
  • where T is the temperature, RT the measured ohmic resistance, R0 the ohmic resistance at 0° C. The coefficients A, B, C serve for matching the temperature sensor elements and the transmitter unit TU. In such case, a first set of coefficients A, B, C for matching the first temperature sensor element and a second set of coefficients A′, B′, C′ for matching the second temperature sensor element of a resistance temperature sensor 10 of the invention can be provided. The coefficients can be ascertained during a calibration of the temperature sensor elements or the resistance temperature sensor 10 and can be stored, for example, in the transmitter unit TU.
  • In contrast with FIG. 9, FIG. 10 shows only one measuring transducer MT. The measuring transducer MT has an installed transmitter unit TU, a so-called temperature head transmitter. The temperature head transmitter is, for example, a two conductor measuring device with, for example, two measurement inputs and an analog output A. The measuring transducer MT can use a temperature sensor element, as shown in FIG. 1 for example, or two temperature sensor elements, e.g. in the form of the resistance temperature sensor 10 of the invention shown in FIG. 2. In the case of two temperature sensor elements, these can, for example, be redundantly designed. Consequently, the two measurement inputs of the transmitter unit TU can serve to connect a measuring transducer MT with a resistance temperature sensor of the invention, which has two temperature sensor elements. In such case, thus, the first temperature sensor element can be connected to the first measurement input and the second temperature sensor element to the second measurement input. In the transmitter unit TU, the measuring signals of the two temperature sensor elements can be (pre-) processed and/or diagnostic functions can already be executed. Thus, the transmitter unit TU, i.e. a temperature head transmitter, for example, can safely detect a line break, a short circuit, and corrosion, as well as a wiring error. Moreover, the working range of the measuring transducer MT and the ambient temperature can be monitored by the transmitter unit TU. Moreover, corrosion of the measuring transducer connection lines, which serve for the connecting the measuring transducer MT with the transmitter unit TU, can be monitored, e.g. when line resistances exceed plausible limits. In such case, for example, a corresponding error report can be output via the analog output, which uses for example, a 4 to 20 mA output signal or the HART protocol.
  • Due to the two measurement signal inputs, either of the embodiments according to FIG. 9 or FIG. 10 additionally can be provided with a so-called sensor backup function, which switches to the second temperature sensor element and, for example, outputs this via the analog output in case the first temperature sensor element fails. Also the two measurement inputs can serve to switch to the first and the second temperature sensor element, in case the two temperature sensor elements should be applied in different temperature or measuring ranges or are provided for use in different temperatures. As already mentioned, a drift warning can also be provided in the form of an alarm, which is output in the case of a deviation, which lies outside a predetermined limit value.
  • Together with the named components, the temperature head transmitter forms the total measuring point for the most varied of applications in the industrial environment.
  • FIG. 11 shows a schematic representation of a device architecture, as present, for example, in an industrial plant. The measuring device TMT82 has, in such case, an analog output O, via which it can communicate, for example, by means of a 4 to 20 mA electrical current signal and the HART protocol. The analog output O is connected by connecting lines to an RN221N active barrier, which supplies the measuring device TMT82 with auxiliary energy and transmits a measurement signal issued by the measuring device TMT82, for example, to a process control system PLC.
  • Other communication interfaces, such as a Bluetooth interface B and a Commubox signal converter, can also be connected to the active barrier RN221N, to enable communication, respectively, with an SFX100 handheld device and laptop computer C connected to the feed separator RN221N.
  • As presented in FIG. 11, a Bluetooth interface B can be connected to the RN221N active barrier, so that a SFX100 handheld device can be communicated with, which has, for example, a display unit D2, on which can be displayed especially measured values and/or other process relevant data.
  • Additionally, instead of, or in parallel with, the Bluetooth interface, a further communication interface, such as, for example, a Commubox signal converter of the firm, Endress+Hauser, can be connected. The Commubox signal converter, for example, is an intrinsically safe communication interface for transmitter units TU for converting HART signals to USB signals and thereby enabling communication with a computer C. In turn, such a computer C can run a process diagnosis and/or maintenance program, such as, for example, the Fieldcare software of the firm, Endress+Hauser. Of course, measured values and/or process relevant data can also then be displayed on this computer, especially on the display unit D1.
  • LIST OF REFERENCE CHARACTERS
  • 1 substrate
  • 2 coating material
  • 3 substrate cover
  • 4 inerting, embedding material
  • 5 double contacting
  • 6 first pair of contacts
  • 7 second pair of contacts
  • a first expansion direction
  • c second expansion direction
  • TU transmitter unit
  • MT measuring transducer
  • MT1 first measuring transducer
  • MT2 second measuring transducer
  • SFX 100 handheld device
  • B Bluetooth interface
  • Commubox USB interface
  • C computer
  • PLC process control system
  • RN221N active barrier
  • D1 first display unit
  • D2 second display unit
  • Fieldcare diagnosis/maintenance program
  • O analog output
  • P protective tube
  • 72 conductive traces
  • 32 conductive traces
  • 31 electrical contacts
  • 42 conductive traces
  • a′, c′ length change in expansion direction a, c
  • 10 resistance temperature sensor

Claims (9)

1-15. (canceled)
16. A temperature measuring device, comprising:
two measuring transducers for monitoring a process variable in a process, which is occurring in a pipe or other container, each measuring transducer comprises a resistance temperature sensor; and
the measuring signals of the respective resistance temperature sensors are carried via connection lines and are supplied to a transmitter unit,
wherein:
said transmitter unit has two measurement signal inputs available, which are connected via cable to the corresponding connections of the measuring transducers; and
the measurement signals are evaluated by said transmitter unit and, in given cases, error reports are output in the case of drift of one of said measuring transducers or both of said measuring transducers.
17. The temperature measuring device according to claim 16, wherein:
a high accuracy of said temperature measuring device is achieved by sensor-transmitter-matching, e.g. by using the Callendar-van-Dusen equation.
18. The temperature measuring device according to claim 17, wherein:
the coefficients (A, B, C) serve for matching the respective temperature sensor elements and the transmitter unit, i.e. a first set of coefficients (A, B, C) for matching the first temperature sensor element and a second set of coefficients (A′, B′, C′) for matching the second temperature sensor element.
19. A measuring device according to claim 18, wherein:
the coefficients are ascertained during a calibration of the temperature sensor elements and are stored in the transmitter unit.
20. A temperature head transmitter; wherein:
the temperature head transmitter is a two conductor measuring device with two measurement inputs and an analog output;
the temperature head transmitter has a build-in transmitter unit,
the temperature head transmitter has a single the measuring transducer with a first and a second temperature sensor element,
the first temperature sensor element is connected to the first measurement input and the second temperature sensor element to the second measurement input of the temperature head transmitter; and
in the transmitter unit, the measuring signals of the two temperature sensor elements are be (pre-)processed and/or diagnostic functions using the measuring signals are executed.
21. A temperature head transmitter according to claim 20, wherein:
the temperature head transmitter detects a line break, a short circuit, and a corrosion, as well as a wiring error respectively.
22. The temperature head transmitter according to claim 20, wherein:
the working range of the measuring transducer and the ambient temperature is monitored by said transmitter unit.
23. A temperature head transmitter according to claim 20, wherein:
corrosion of said measuring transducer connection lines, which serve for the connecting said measuring transducer with said transmitter unit, are monitored, and in case the line resistances exceed plausible limits a corresponding error report can be output via the analog output.
US14/324,309 2010-06-23 2014-07-07 Resistance Temperature Sensor Abandoned US20140321508A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/324,309 US20140321508A1 (en) 2010-06-23 2014-07-07 Resistance Temperature Sensor

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US34428510P 2010-06-23 2010-06-23
DE102010030442A DE102010030442A1 (en) 2010-06-23 2010-06-23 Resistance temperature sensor
DE102010030442.5 2010-06-23
US13/166,854 US8777484B2 (en) 2010-06-23 2011-06-23 Resistance temperature sensor
US14/324,309 US20140321508A1 (en) 2010-06-23 2014-07-07 Resistance Temperature Sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/166,854 Continuation US8777484B2 (en) 2010-06-23 2011-06-23 Resistance temperature sensor

Publications (1)

Publication Number Publication Date
US20140321508A1 true US20140321508A1 (en) 2014-10-30

Family

ID=44119039

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/166,854 Active 2032-02-23 US8777484B2 (en) 2010-06-23 2011-06-23 Resistance temperature sensor
US14/324,309 Abandoned US20140321508A1 (en) 2010-06-23 2014-07-07 Resistance Temperature Sensor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/166,854 Active 2032-02-23 US8777484B2 (en) 2010-06-23 2011-06-23 Resistance temperature sensor

Country Status (5)

Country Link
US (2) US8777484B2 (en)
EP (1) EP2585801B1 (en)
DE (1) DE102010030442A1 (en)
RU (1) RU2521726C1 (en)
WO (1) WO2011160893A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150211942A1 (en) * 2012-10-19 2015-07-30 Okazaki Manufacturing Company Cryogenic temperature measuring resistor element

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012209746A1 (en) * 2012-06-11 2013-12-12 Ifm Electronic Gmbh Transmitter for automatic control engineering field, has separate current outputs, where complete supply current is supplied by current input and values of process variables is transferred as current signals moving in opposite directions
US9559162B2 (en) 2013-06-19 2017-01-31 Globalfoundries Inc. Thermoresistance sensor structure for integrated circuits and method of making
GB2522639A (en) * 2014-01-30 2015-08-05 Nokia Technologies Oy An apparatus and associated methods for temperature sensing
CN103884912B (en) * 2014-03-14 2016-09-07 京东方科技集团股份有限公司 A kind of measuring method of square resistance
US10317295B2 (en) * 2016-09-30 2019-06-11 Rosemount Inc. Heat flux sensor
DE102018213625A1 (en) * 2018-08-13 2020-02-13 Siemens Aktiengesellschaft Switchgear temperature measurement
DE102020212743A1 (en) * 2020-10-08 2022-04-14 Carl Zeiss Smt Gmbh Adaptive optical element for microlithography

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3644864A (en) * 1969-12-05 1972-02-22 Texas Instruments Inc Composite thermistor temperature sensor having step-function response
US4122719A (en) * 1977-07-08 1978-10-31 Environmental Systems Corporation System for accurate measurement of temperature
US4778538A (en) * 1987-07-15 1988-10-18 Westinghouse Electric Corp. Dual temperature sensing device having twin well thermowell for dual resistance temperature detectors
JPH01288744A (en) * 1988-05-17 1989-11-21 Chino Corp Heat value detector
US4901061A (en) * 1987-06-05 1990-02-13 Westinghouse Electric Corp. Instrumentation and monitoring systems employing differential temperature sensors
US5030849A (en) * 1989-06-30 1991-07-09 Analog Devices, Inc. Monolithic ratiometric temperature measurement circuit
US5663899A (en) * 1995-06-05 1997-09-02 Advanced Micro Devices Redundant thermocouple
US6772085B2 (en) * 1999-12-20 2004-08-03 Bechtel Bwxt Idaho, Llc Device for self-verifying temperature measurement and control
US20060225507A1 (en) * 2003-01-13 2006-10-12 Paulson Peter O Pipeline monitoring system
US7588368B2 (en) * 2006-12-20 2009-09-15 Cummins Inc. System for diagnosing temperature sensor operation in an exhaust gas aftertreatment system
US20140126608A1 (en) * 2012-11-08 2014-05-08 Honda Motor Co., Ltd. Temperature detecting circuit
US20150139268A1 (en) * 2013-11-15 2015-05-21 Hyundai Motor Company Method for managing temperature anomaly in hydrogen tank, and system for monitoring temperatures in same
US9316548B2 (en) * 2009-12-08 2016-04-19 Endress + Hauser Wetzer Gmbh + Co. Kg Measuring arrangement for determining amount of heat

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3232787A (en) * 1961-05-08 1966-02-01 Donald C Bennett Bistable magnetic film and method for making same
DE3022942A1 (en) * 1980-06-19 1981-12-24 Linde Ag, 6200 Wiesbaden Resistive thermometer for temp. below 400 K - has two changeover elements in protective tube and measurement circuit
JPS5948924A (en) * 1982-09-14 1984-03-21 Nec Corp Positioning mark for electron beam exposure
US5308980A (en) * 1991-02-20 1994-05-03 Amber Engineering, Inc. Thermal mismatch accommodated infrared detector hybrid array
RU2085874C1 (en) * 1992-09-24 1997-07-27 Общество с ограниченной ответственностью "Сенсорные системы" Process of manufacture of thermoresistive converter
US5350236A (en) * 1993-03-08 1994-09-27 Micron Semiconductor, Inc. Method for repeatable temperature measurement using surface reflectivity
US5488226A (en) * 1994-11-18 1996-01-30 The United States Of America As Represented By The Secretary Of The Army Infrared imaging array based on temperature driven anisotropic optical absorption
JPH08178768A (en) * 1994-12-20 1996-07-12 Matsushita Electric Ind Co Ltd Sensor for mechanical quantity
US5748429A (en) 1996-09-09 1998-05-05 Honeywell Inc. Self checking temperature sensing circuit
JP3457826B2 (en) * 1997-01-31 2003-10-20 株式会社リコー Thin film resistor and method of manufacturing the same, flow sensor, humidity sensor, gas sensor, temperature sensor
US6447964B2 (en) * 2000-03-01 2002-09-10 Nikon Corporation Charged-particle-beam microlithography methods including chip-exposure sequences for reducing thermally induced lateral shift of exposure position on the substrate
US6958535B2 (en) * 2000-09-22 2005-10-25 Matsushita Electric Industrial Co., Ltd. Thermal conductive substrate and semiconductor module using the same
JP3538188B2 (en) * 2002-04-02 2004-06-14 三菱電機株式会社 Thermosensitive flow rate detecting element and method of manufacturing the same
DE10249411B3 (en) * 2002-10-23 2004-05-13 Honeywell B.V. Measuring arrangement and method for determining a measured variable such as temperature
US7888842B2 (en) * 2004-02-13 2011-02-15 University Of Maine System Board Of Trustees Ultra-thin film electrodes and protective layer for high temperature device applications
DE202004021438U1 (en) 2004-07-20 2008-02-21 Ifm Electronic Gmbh Arrangement of sensor elements for reliably measuring a temperature
GB2426336A (en) * 2005-05-20 2006-11-22 Transense Technologies Plc SAW based torque and temperature sensor
DE102005026243B4 (en) * 2005-06-07 2018-04-05 Snaptrack, Inc. Electrical component and manufacturing method
DE102006005393B4 (en) 2006-02-03 2023-05-17 Innovative Sensor Technology Ist Ag Device for determining and/or monitoring at least one process variable of a medium
JP4898266B2 (en) * 2006-04-12 2012-03-14 株式会社日産アーク Method for measuring thin film Poisson's ratio
DE102006062750B4 (en) * 2006-09-15 2010-07-08 Infineon Technologies Ag Apparatus for detecting a change in a physical quantity by means of a current conductor structure
DE102008055774B4 (en) * 2008-11-04 2013-07-25 Bundesrepublik Deutschland, vertr.d.d. Bundesministerium für Wirtschaft und Technologie, d.vertr.d.d. Präsidenten der Physikalisch-Technischen Bundesanstalt Apparatus for measuring a temperature of a component and apparatus for measuring a strain of a component

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3644864A (en) * 1969-12-05 1972-02-22 Texas Instruments Inc Composite thermistor temperature sensor having step-function response
US4122719A (en) * 1977-07-08 1978-10-31 Environmental Systems Corporation System for accurate measurement of temperature
US4901061A (en) * 1987-06-05 1990-02-13 Westinghouse Electric Corp. Instrumentation and monitoring systems employing differential temperature sensors
US4778538A (en) * 1987-07-15 1988-10-18 Westinghouse Electric Corp. Dual temperature sensing device having twin well thermowell for dual resistance temperature detectors
JPH01288744A (en) * 1988-05-17 1989-11-21 Chino Corp Heat value detector
US5030849A (en) * 1989-06-30 1991-07-09 Analog Devices, Inc. Monolithic ratiometric temperature measurement circuit
US5663899A (en) * 1995-06-05 1997-09-02 Advanced Micro Devices Redundant thermocouple
US6772085B2 (en) * 1999-12-20 2004-08-03 Bechtel Bwxt Idaho, Llc Device for self-verifying temperature measurement and control
US20060225507A1 (en) * 2003-01-13 2006-10-12 Paulson Peter O Pipeline monitoring system
US7588368B2 (en) * 2006-12-20 2009-09-15 Cummins Inc. System for diagnosing temperature sensor operation in an exhaust gas aftertreatment system
US9316548B2 (en) * 2009-12-08 2016-04-19 Endress + Hauser Wetzer Gmbh + Co. Kg Measuring arrangement for determining amount of heat
US20140126608A1 (en) * 2012-11-08 2014-05-08 Honda Motor Co., Ltd. Temperature detecting circuit
US20150139268A1 (en) * 2013-11-15 2015-05-21 Hyundai Motor Company Method for managing temperature anomaly in hydrogen tank, and system for monitoring temperatures in same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150211942A1 (en) * 2012-10-19 2015-07-30 Okazaki Manufacturing Company Cryogenic temperature measuring resistor element
US9464947B2 (en) * 2012-10-19 2016-10-11 Okazaki Manufacturing Company Cryogenic temperature measuring resistor element

Also Published As

Publication number Publication date
RU2013102868A (en) 2014-07-27
RU2521726C1 (en) 2014-07-10
EP2585801A1 (en) 2013-05-01
US20110317741A1 (en) 2011-12-29
WO2011160893A1 (en) 2011-12-29
DE102010030442A1 (en) 2011-12-29
US8777484B2 (en) 2014-07-15
EP2585801B1 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
US8777484B2 (en) Resistance temperature sensor
US10317295B2 (en) Heat flux sensor
KR100844092B1 (en) Dynamic quantity measurement device
US7826991B2 (en) Temperature-averaging field device compensation
EP3333558B1 (en) Flexible tactile sensor and manufacturing method therefor
EP2577245B1 (en) Process variable transmitter with thermocouple polarity detection
CN208297003U (en) Sensor capsule, temperature measurement component and temperature sensor
JP2005121631A (en) Flowmeter having multiple technologies
CN110940257B (en) Device and method for measuring inclination angle change of pipeline
JP2020134451A (en) Pressure sensor
EP3023804B1 (en) Magnetic induction measuring device and method
CN108204865A (en) Industrial instrument, industrial control system and RTD temp measuring methods
Chen Design, Fabrication and Integration of Large-scale Stretchable Strain Sensor Networks
JP5287269B2 (en) Calibration method for sensor data transmission system
CN206583553U (en) Industrial instrument and industrial control system
EP3346238B1 (en) Sensor with multiple sensing elements
CN111406203B (en) Monitoring the state of a temperature sensor
CN113739689B (en) Sensor and system
CN219842082U (en) Four-wire-system-based thin film platinum resistor temperature sensor
JP5779487B2 (en) Pressure sensor module
CN114235186A (en) Temperature measuring system
EP2866012A1 (en) A sensor element comprising a constraining layer
JP4278097B2 (en) Temperature compensation device
JP5292630B2 (en) Strain and temperature measuring device
CN113739689A (en) Sensor and system

Legal Events

Date Code Title Description
AS Assignment

Owner name: ENDRESS + HAUSER WETZER GMBH + CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SEEFELD, PETER;BUCHNER, REINHARD;REEL/FRAME:033248/0653

Effective date: 20140512

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION