US20140316014A1 - Aerogel/xerogel composite material amalgamated with single-walled carbon nanotubes for multipurpose usage - Google Patents

Aerogel/xerogel composite material amalgamated with single-walled carbon nanotubes for multipurpose usage Download PDF

Info

Publication number
US20140316014A1
US20140316014A1 US14/256,761 US201414256761A US2014316014A1 US 20140316014 A1 US20140316014 A1 US 20140316014A1 US 201414256761 A US201414256761 A US 201414256761A US 2014316014 A1 US2014316014 A1 US 2014316014A1
Authority
US
United States
Prior art keywords
aerogel
nanotubes
carbon
gel
xerogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/256,761
Inventor
Joel Ricardo Lee Meeks-Matous
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US14/256,761 priority Critical patent/US20140316014A1/en
Publication of US20140316014A1 publication Critical patent/US20140316014A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/16Preparation of silica xerogels
    • C01B33/163Preparation of silica xerogels by hydrolysis of organosilicon compounds, e.g. ethyl orthosilicate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249986Void-containing component contains also a solid fiber or solid particle

Definitions

  • Silica Aerogels are a seemingly new creation, when in fact, they have been in existence (theoretically) for nearly 70 years.
  • Steven S. Kistler first set out to prove that a “gel” contained a continuous solid network of the same size and shape as the wet gel. The obvious way to prove this hypothesis was to remove the liquid from the wet gel without damaging the solid component. “Obviously, if one wishes to produce an aerogel [Kistler is credited with coining the term “aerogel”], he must replace the liquid with air by some means in which the surface of the liquid is never permitted to recede within the gel.
  • Examples of similar inventions with similar application as the embodiments described herein include Hydrocarbon (Hydrogen)/Air Aerogel Catalyzed Carbon Electrode Fuel System Cell System: U.S. Pat. No. 5,429,886, issued Jul. 4, 1995; Carbon Aerogel Electrodes For Direct Energy Conversion, U.S. Pat. No. 5,601,938, issued Feb. 11, 1997; Organic Aerogel Microspheres, U.S. Pat. No. 5,908,896, issued Jun. 1, 1999; and Metal Alloy Laded Carbon Aerogel Hydrogen Hydride Battery, U.S. Pat. No. 5,366,828, issued Nov. 22, 1994.
  • FIGS. 1-7 describe the process in which the carbon aerogels are produced.
  • FIG. 3 shows an image of the preparation of the gel solution (second part of the process being amalgamation and vacuum treatment).
  • FIG. 8 shows an SEM (Scanning Electron Microscopy) enhanced image of a section of the carbon aerogel in which interlocking occurs between the aerogel structure and carbon nanotube bundles.
  • a nanotube In a nanotube, the rows of carbon hexagons wind around the walls in spirals; the conductivity of the tube depends on the “slope” or “slant” of the helical structure. Some nanotubes (depending on their characteristic helix pitch) are conducting as well as semi-conducting, making it possible to combine both types for electrical circuitry. In order to create a “carbon-aerogel” silicon chip, this would require machines capable of manipulating nanotubes to form an “etched” silicon chip. AFM (Atomic Force Microscopy) is a possible tool, capable of moving, breaking, and bending nanotubes. A magnetic field could be used in conjunction with the AFM, since magnetic fields can align nanotubes in a specific direction.
  • AFM Anamic Force Microscopy
  • Nanotubes emit electrons at a relatively low voltage, which translates to minimal power requirements, while maintaining high current densities. These characteristics encouraged Otto Z. Zhou, a physicist at the University of North Carolina at Chapel Hill working with colleagues at Lucent, to try to generate microwaves via nanotube field emission, with implications for wireless communications. Cellular phones typically send a weak signal to a local base station, where microwave amplifiers beef up that signal.
  • the gel solution is made up of ethanol and pre-condensed silica (SILBOND H-5, an alkyl silicate that includes 73% ethyl alcohol and 27% ethyl polysilicate), in a 4:5 ratio, respectively.
  • SILBOND H-5 an alkyl silicate that includes 73% ethyl alcohol and 27% ethyl polysilicate
  • the SWNTs were added to the stoichiometric amount of EtOH.
  • the nanotubes must first be distributed throughout the stoichiometric amount of EtOH. This is accomplished by ultrasonicating the SWNTs and EtOH in an ultrasonic cleaner ( FIGS. 1 and 2 a - 2 b ).
  • the sonicated SWNT+EtOH is added to the SILBOND, to form the gel solution.
  • a catalyst is added, in order to complete all reactions, and speed up gel time. In order to insure that the formation of bubbles with in the gel does not take place (which is not evident until gelation).
  • the solution is given a vacuum treatment, to vent out all unnecessary air bubbles ( FIG. 3 ).
  • the gels are soaked in an aging bath ( FIG. 7 ).
  • the bath consists of EtOH and NH 4 OH, as the same ratio used in the catalyst. This process strengthens the gel, and confirms all hydrolysis/condensation reactions are complete.
  • the gel can be soaked in pure EtOH, in order to remove all water from within the gel. Several soakings are required to insure this.
  • the gels are ready for supercritical drying.
  • the Sol-gel was then immersed in an aging solution, composed of a 100:1 ratio of Ethanol and NH 4 OH (i.e.
  • SFE DRYING The conventional supercritical procedure required a specially designed autoclave, to vent Carbon Dioxide (CO 2 ) through the gels (to excavate ethanol), then increase the temperature and pressure, in order to vent all CO 2 , leaving an Aerogel.
  • CO 2 Carbon Dioxide
  • SFE Supercritical Fluid Extractor
  • An alternate supercritical drying procedure (inspired by the standard) was developed exclusively for the SFE.
  • the gels are placed within a semi-automated autoclave, and slowly, the interior of the samples is filled with liquid carbon dioxide.
  • the ethanol is vented out, and more carbon dioxide is emitted with the autoclave, until all the ethanol has been extracted.
  • the autoclave is set to the supercritical level, where the carbon dioxide becomes a gas, and the carbon dioxide gas is vented out, leaving a finished “carbon aerogel”.
  • ONE-STEP SAMPLE TESTING Both the normal aerogel and SWNT aerogel samples were prepared and dried in essentially the same manner. Approximately 20 hours later, then samples were analyzed in the TGA for comparative testing. Tested sizes were a fraction of sample sizes, with a mass of 4.236 mg (aerogel) and 3.817 mg (for SWNT+aerogel). The TGA was set at a heating rate of 10° C./min (50° F./min), beginning at the subsequent room temperature and lasting until a final temperature of 800° C. (1472° F.). This test was performed in order to show whether the aerogel had gained a more stabilized behavior during increasing torridity.
  • TWO-STEP SAMPLE TESTING More in-depth, conclusive tests were performed on these samples.
  • TGA testing the deionized SWNT samples were utilized. The TGA was set at a heating rate of 10° C./min (50° F./min), beginning at the subsequent room temperature and lasting until a final temperature of 700° C. (1292° F.).
  • XPS testing the DI control and SWNT 2 ⁇ samples were used. This test was performed in order to observe the chemical composition and bonding that took place in the surface of the material(s). The XPS used a magnesium x-ray to refract electrons out of the atomic orbital (of the composite sample) to the electron detector, in order to determine bonding energy.
  • the TA was used in order to assess the mechanical strength of the materials.
  • the TA used three-point bending as a method of fracturing the sample. This test provided a Stress VS Strain relationship, where (when graphically analyzed) the graph slopes equaled the corresponding values for Young's Modulus. All two-step samples were finally examined more closely, using the SEM.
  • the SEM was set to a frequency of 20 kv, providing a magnification of 2000 ⁇ (in an area of ⁇ 5 microns).
  • the samples were measured by dimension, using a ruler, and then weighed, using an electronic metric scale.
  • Water conductivity of the samples was taken using a special conductivity probe. The constraints of the probe (which was designed to calculate the conductivity of liquid only) may have contributed to inaccuracies in data. In an attempt to ignore this inconvenience, the samples were submerged in DI water, and slightly fractured. The conductivity of the DI water was taken, then the conductivity of the same DI water sample containing the gel pieces.
  • FIG. 8 shows an SEM (Scanning Electron Microscopy) enhanced image of a section of the carbon aerogel, which displays a section in which interlocking occurs between the aerogel structure and carbon nanotube bundles.

Abstract

An amalgam comprising a highly porous, carbon-enveloped structure, such as aerogel. The carbon dispersion within the aerogel substrate consists of sonicated (using ultrasonic cleanser) carbon nanotubes, which can be inserted into the aerogel/xerogel through various techniques. Procedures include mixture of nanotubes to any aerogel/xerogel preparation solution prior and/or during solgel/alcogel stage; addition of nanotubes to aerogel during any solvent exchange with liquids (ethanol, etc.) or gas (carbon dioxide, etc.) as a solgel/alcogel; permeation of vapor containing nanotubes (by way of carbon burning using the Kratchmer-Huffman, or any other related, similar machine) in aerogel/solgel/alcogel/xerogel pore structure and/or preparation solutions; intravenous introduction of nanotubes, manually or by way of any conveyance device (i.e. syringe) to finished aerogels/xerogels or solgels/alcogels.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation of U.S. patent application Ser. No. 09/844,554, now U.S. Pat. No. 8,703,284 issued Apr. 22, 2014, which claims priority to U.S. Provisional Application No. 60/200,362, filed Apr. 28, 2000. These applications are incorporated by reference herein in their entireties.
  • BACKGROUND
  • Silica Aerogels are a seemingly new creation, when in fact, they have been in existence (theoretically) for nearly 70 years. In 1931, Steven S. Kistler first set out to prove that a “gel” contained a continuous solid network of the same size and shape as the wet gel. The obvious way to prove this hypothesis was to remove the liquid from the wet gel without damaging the solid component. “Obviously, if one wishes to produce an aerogel [Kistler is credited with coining the term “aerogel”], he must replace the liquid with air by some means in which the surface of the liquid is never permitted to recede within the gel. If a liquid is held under pressure always greater than the vapor pressure, and the temperature is raised, it will be transformed at the critical temperature into a gas without two phases having been present at any time.” (S. S. Kistler, J. Phys. Chem. 34, 52, 1932).
  • Further advancement in this research was prolonged until the late 70's, when the specific, correct procedure for creating Aerogels was developed. Basically, and Aerogel is simply a Silica water-based gel, that has been exchanged with ethanol (to remove water), then supercritically dried (to remove the ethanol) in order to excavate ALL liquid, leaving a 3 dimensional matrix, resulting in a retention of surface area and in increase in free-space. Amazing Characteristics of Aerogel include its low solid percentage (0.13-15% solid, typically 95% air), high internal surface area (600-100 m2/g), a low index of refraction (1.0-1.05, close to that of AIR) and high thermal tolerance (shrinkage begins at 500° C.; melting point 1200° C.). Unfortunately, it is somewhat unstable, with a maximum tensile strength of 48 kPa (48,000 Pa), which accounts for its brittleness.
  • Carbon Nanotubes (CNT), on the other hand, are a relatively new discovery. These stem from the detection of a class of allotropes of carbon, the fullerenes (which are perfect “cages” of Carbon atoms in geometric configurations, usually even-numbered between 60-80). Carbon fullerenes can be located in soot as produced by the Kratschmer-Huffman (a machine which, along with high-temperatures, arcs electricity between two sticks of carbon) arc process. Single-wall nanotubes can also be found in the arc, usually in the presence of a metal catalyst. The nanotubes are found in the matted soot deposited on the reaction chamber wall. Japanese scientist Sumio Iijima is credited with discovering the nano-size tubes during experimentation in late 1991. Recently, nanotubes with unique characteristics and unusually small/large areas/diameters can be produced using a laser burning technique, which produces carbon “ropes”. Carbon Nanotubes (CNTs) consist of concentric shells of graphite. Each shell can be thought of as one layer of a conventional graphite structure rolled up into a cylinder such that the lattice of carbon atoms remains continuous around the circumference. These are known as Multi-Walled Nanotubes (MWNT), whereas Single-Walled Nanotubes (SWNT) have only a single “shell of graphite”. CNTs are usually 1-50 nanometers in diameter and typically a few microns long, although recently SWNTs have been grown to over 300 microns. Even though the nanotubes are extremely small, they are currently renown as the stiffest, strongest materials known, possessing the ability to be bent and warped without breaking and then be bent back into their original shape. To express this numerically, the nanotubes have an average tensile strength of 1.3 TPa (1,300,000,000,000 Pa), able to sustain a critical stress of 156 GPa (156,000,000,000 Pa) before collapsing plastically.
  • Examples of similar inventions with similar application as the embodiments described herein include Hydrocarbon (Hydrogen)/Air Aerogel Catalyzed Carbon Electrode Fuel System Cell System: U.S. Pat. No. 5,429,886, issued Jul. 4, 1995; Carbon Aerogel Electrodes For Direct Energy Conversion, U.S. Pat. No. 5,601,938, issued Feb. 11, 1997; Organic Aerogel Microspheres, U.S. Pat. No. 5,908,896, issued Jun. 1, 1999; and Metal Alloy Laded Carbon Aerogel Hydrogen Hydride Battery, U.S. Pat. No. 5,366,828, issued Nov. 22, 1994.
  • SUMMARY OF INVENTION
  • Disclosed herein are silicon aerogel-carbon nanotube composites and methods of making and using these composites. The composites disclosed herein may be more efficiently made than previous similar composites (both time-wise and financially), may have broader application than previous similar composites (which are limited to minor usage cases) and may be mechanically stronger than previous similar composites. Computer chips using the composites disclosed herein as a substrate are also disclosed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1-7 describe the process in which the carbon aerogels are produced.
  • FIGS. 1 and 2 a-2 b are images of the preparation of the gel solution (first part of the process being Nanotube dispersion).
  • FIG. 3 shows an image of the preparation of the gel solution (second part of the process being amalgamation and vacuum treatment).
  • FIGS. 4-5 show images of the gels being molded.
  • FIG. 6 shows images of the gels being decasted.
  • FIG. 7 shows images of the gels in aging solution and solvent changes.
  • FIG. 8 shows an SEM (Scanning Electron Microscopy) enhanced image of a section of the carbon aerogel in which interlocking occurs between the aerogel structure and carbon nanotube bundles.
  • DETAILED DESCRIPTION OF INVENTION
  • The goal of this invention has been envisioned over a significant time period and tedious process. In the summer of 1998, the aim was to create a unique multi-purpose frame. The multi-purpose frame would be used in various fields, among them, the aerospace and prosthetics industries. The search for a new material began, when it was evident that current high-performance composites were substandard for this usage. Silica aerogel has been regarded as the lightest material ever, and had been used as an insulator on the Mars land rover in 1997. Experimentation was performed with various forms of carbon and carbon composites, including graphite, polycarbonate, and carbon fullerenes. It was concluded that carbon nanotubes would be the best choice as the addition to silica aerogel. In the end, it was discovered that this invention was not only more efficient (both time-wise and financially), but was also better than similar inventions, whose application was limited to minor usage.
  • Another of the primary goals of this research was to discover if this novel new composite could one day be altered for a replacement to the current silicon computer chip. Silicon, the current material used for computer microprocessors, has a dielectric constant of about 13. This means that only so many transistors can be placed on the area, before they are not applicable. It should be noted that the lower the dielectric constant, the more circuits/transistors can be placed in a given area. Silica aerogel maintains a dielectric constant of about 1.1, which is very low, considering air has a perfect dielectric constant of 1. This means that nearly infinite transistors can be placed within an aerogel substrate. In a nanotube, the rows of carbon hexagons wind around the walls in spirals; the conductivity of the tube depends on the “slope” or “slant” of the helical structure. Some nanotubes (depending on their characteristic helix pitch) are conducting as well as semi-conducting, making it possible to combine both types for electrical circuitry. In order to create a “carbon-aerogel” silicon chip, this would require machines capable of manipulating nanotubes to form an “etched” silicon chip. AFM (Atomic Force Microscopy) is a possible tool, capable of moving, breaking, and bending nanotubes. A magnetic field could be used in conjunction with the AFM, since magnetic fields can align nanotubes in a specific direction.
  • Last been not least, research is currently being conducted to reinforce aerogels with nanotubes, to increase mechanical strength, allowing for more strenuous application for aerogels.
  • The following is from the article “Tantalizing Tubes” from the June 2000 issue of Scientific American. This excerpt briefly explains several of the applications of this material, including cellular phone signal amplification, materials strengthening capability, ion energy storage, and electron emission sources for flat-panel displays.
  • “Fortunately, not all electronic applications need to be so elegant. Even messy mixtures of multi-walled tubes are good at field emission—they emit electrons under the influence of an electrical field. And field emission is the force behind flat-panel displays. A deep-bellied television or computer monitor relies on a big gun to shoot electrons at the pixels of a phosphor screen, which light up as ordered. Alternatively, millions of nanotubes arranged just below the screen could take the place of the gun. “Each pixel gets its own gun,” explains David Tománek, a physicist at Michigan State University.
  • Several firms around the world are trying to exploit the nanotube talent in flat-panel displays. Researchers at the Samsung Advanced Institute of Technology in Suwon, South Korea, led by Won Bong Choi, appear to be in the lead. “Last Christmas they had a nine-inch display, and I could see baseball players,” Tománek relates. The prototype required half the power of conventional liquid-crystal displays, and the nanotubes appear to meet the 10,000-hour lifetime typically demanded of electronics components. Zhifeng Ren of Boston College has produced neat forests of multiwalled nanotubes directly on glass surfaces, showing the potential of growing nanotubes in place, with the screen as substrate.
  • The issue for displays then becomes the orderly operation of all those nanotubes.
  • “You have the complexity of now needing a separate circuit for every single pixel,” points out Philip G. Collins, also of IBM's nanoscale group. Experts in conventional electronics need to find solutions to these intricate wiring problems before nanotube displays can become commonplace.
  • Nanotubes emit electrons at a relatively low voltage, which translates to minimal power requirements, while maintaining high current densities. These characteristics encouraged Otto Z. Zhou, a physicist at the University of North Carolina at Chapel Hill working with colleagues at Lucent, to try to generate microwaves via nanotube field emission, with implications for wireless communications. Cellular phones typically send a weak signal to a local base station, where microwave amplifiers beef up that signal.
  • “In principle, you could make the base station smaller, with a longer working life, thanks to the stability of the nanotubes,” Zhou says. “We have a prototype that generates microwaves, the first time that that has been demonstrated in an electron emission material.”
  • The battery designers are also keeping an eye on nanotubes. Graphite can store lithium ions, the charge carriers for some batteries, but at a weighty price: six carbon atoms for every lithium ion. Researchers speculate that the geometry inherent in bundles of nanotubes allows them to accommodate more than one lithium per six carbons. “It would be nice if you could access both the inside and the outside of the cylinder,” remarks John E. Fischer, a materials scientist at the University of Pennsylvania, referring to both the insides of carbon nanotubes as well as the gaps between tightly packed tubes. “That's the leitmotif that runs through all research using nanotubes for anode materials,” he adds.
  • The holy grail in this world is probably hydrogen storage. The target for hydrogen capacity that would interest electric-car manufacturers is about 6.5 percent by weight, in whatever storage medium is used. Dresselhaus, writing in the Materials Research Society Bulletin last November, pointed out that various claims exceeding 6.5 percent have been difficult to reproduce. She notes that 4 percent by weight of hydrogen is the best figure available and that increasing it to the benchmark “represents a significant technological future challenge.”
  • The other major arena for the small tubes is in materials. Nanotubes are about six times lighter and 10 times stronger than steel at the same diameter. But that's an awfully small diameter. “The strength of a nanotube is something that people have talked about quite a lot,” says materials scientist Paul D. Calvert of the University of Arizona. “But in the end, the strength that counts is the strength of the thing you make out of it.” Carbon fiber is already a proven winner in composite materials, and carbon nanotubes certainly have promise in the same market because of their exceptionally high length-to-diameter ratio, the vital figure in stress transmission. But there are miles to go to fulfill that potential. At a January meeting, Calvert recounts, “the nicest statement was from a group that demonstrated that carbon nanotubes do not degrade the properties of the epoxy resin. In other words, we can make something that's no worse than if we didn't put the tubes in at all.”
  • One of the biggest boosters of future materials applications is the National Aeronautical Space Administration, which hopes to find a place for nanotubes in everything from spacecraft to space suits. “But we have to figure out how to get the properties that are now on the nanoscopic scale up to something that we can use on a macroscale,” says Bradley Files of the NASA Johnson Space Center of the nanotubes' low weight and high strength. “Every pound counts.”
  • Embodiments of the present disclosure are now discussed. For the production of the composite material comprised of silica aerogel and single-walled carbon nanotubes, the two-step procedure (described below) was used.
  • ONE-STEP PROCEDURE: The gel solution is made up of ethanol and tetraethyl-orthosilicate (TEOS), in a 4:5 ratio, respectively. For the SWNT+Aerogel samples, the SWNTs were added at this step. The ethanol, prior to adding it to the TEOS, was combined with SWNTs and sonicated for 1-2 hours, depending on amount, in a standard ultrasonic cleanser. In order to increase the gel time, a catalyst was added to the solution. The Catalyst consisted of NH4OH (30% aqueous), NH4F (0.5 M), rainwater, and ethanol (for uniformity, this catalyst was modified to an approximate ratio of 1:4:100:200, respectively). In early produced samples, the original catalyst formula had very little effect on the gel solution, with gelation lasting 20-50 hours. Eventually, a better formula was devised, consisting of a modified catalyst, in association with 1-4 drops (depending on volume) of pure NH4F added to gel/catalyst solution. This formula decreased gel-time from a minimum of 20 hours to 5-20 min. Once the full gelation had taken place, the solution was as a sol-gel. The Alcogel is suggested to be allowed up to one week to form a “complete”, or aged gel (where the silica network has reached its maximum strength), without a special aging process (which decreases the time to less than 48 hours). The sol-gel was submersed in 1:1 ratio solution of ethanol and water. After the aging process, it was imperative that all water be removed before the final process of supercritical drying. This was achieved by repeatedly soaking the alcogel in pure ethanol (for up to 36 hours). At this point, the gel was ready for supercritical extraction.
  • Initially, a random gel (one-step sample) was given a surfactant (Surface Activated Reagent). This was done in order to keep the nanotubes bundles as separate as possible, aside from ultrasonication. This later became standard in procedure.
  • TWO-STEP PROCEDURE: The gel solution is made up of ethanol and pre-condensed silica (SILBOND H-5, an alkyl silicate that includes 73% ethyl alcohol and 27% ethyl polysilicate), in a 4:5 ratio, respectively. For the SWNT+Aerogel samples, the SWNTs were added to the stoichiometric amount of EtOH. Before adding the SWNTs to the SILBOND to form the gel solution, the nanotubes must first be distributed throughout the stoichiometric amount of EtOH. This is accomplished by ultrasonicating the SWNTs and EtOH in an ultrasonic cleaner (FIGS. 1 and 2 a-2 b). The ultrasonic pulse breaks up nanotube bundles, and allows for an even SWNT deposit. This solution of EtOH and SWNTs were sonicated for 1-2 hours, depending on amount, in a standard ultrasonic cleanser. If needed, a surfactant should be used, in order to aid nanotube fragmentation. TWEEN 40 (polyoxyethylenesorbitan monopalmitate) was used, due to its low viscosity.
  • The sonicated SWNT+EtOH is added to the SILBOND, to form the gel solution. A catalyst is added, in order to complete all reactions, and speed up gel time. In order to insure that the formation of bubbles with in the gel does not take place (which is not evident until gelation). The solution is given a vacuum treatment, to vent out all unnecessary air bubbles (FIG. 3).
  • In order to increase the gel time, a catalyst was added to the solution, the catalyst consisting of NH4OH (30% aqueous), rainwater (for RW samples) or deionized water (for DI samples), and ethanol. After the solution was completed, a vacuum treatment was provided, in order to remove the formation of “bubbles” in the gel.
  • The sample was then sonicated in the ultrasonic cleanser until gelation (to ensure the even distribution of SWNTs remained). The gel solution was poured into molds, until full gelation occurs (FIGS. 4 and 5). This takes place, immediately following the vacuum treatment and sonication. The gel was removed from its mold (FIG. 6), and then submersed in the aging solution. A small plug (of paraffin) is removed from the bottom of the mold, leaving small hole. A pipette bulb is used to wedge the gel out of the mold, by shooting a small “puff” of air into the mold, through the hole. After two or three puffs, the sample comes out. This is a very tricky process, because if the air puff is too powerful, it can severely damage the gel.
  • After decasting, the gels are soaked in an aging bath (FIG. 7). The bath consists of EtOH and NH4OH, as the same ratio used in the catalyst. This process strengthens the gel, and confirms all hydrolysis/condensation reactions are complete. Then after 2 days, the gel can be soaked in pure EtOH, in order to remove all water from within the gel. Several soakings are required to insure this. After 3-6 soakings (depending on density/size), the gels are ready for supercritical drying. In particular, the Sol-gel was then immersed in an aging solution, composed of a 100:1 ratio of Ethanol and NH4OH (i.e. 400 mL of EtOH with 4 mL of NH4OH), for 48 hours to form a complete aged gel. The sol-gel was then submersed in pure ethanol several times (each time lasting 20+ hours), in order to produce an alcogel. After all the water was removed from within the sol-gel, the alcogel was ready for supercritical drying. For each water type (deionized or rainwater), 4 gel formulas were made (a control aerogel, an Aerogel+SWNT at a given concentration: 1×, another Aerogel+SWNT at two times the previous concentration: 2×, and then a third Aerogel+SWNT at four times the initial concentration: 4×). In all, 8 samples were produced.
  • SFE DRYING: The conventional supercritical procedure required a specially designed autoclave, to vent Carbon Dioxide (CO2) through the gels (to excavate ethanol), then increase the temperature and pressure, in order to vent all CO2, leaving an Aerogel. Unfortunately, a Supercritical Fluid Extractor (SFE) had to be used in place of the specially designed autoclave. An alternate supercritical drying procedure (inspired by the standard) was developed exclusively for the SFE. The gels are placed within a semi-automated autoclave, and slowly, the interior of the samples is filled with liquid carbon dioxide. The ethanol is vented out, and more carbon dioxide is emitted with the autoclave, until all the ethanol has been extracted. Then, the autoclave is set to the supercritical level, where the carbon dioxide becomes a gas, and the carbon dioxide gas is vented out, leaving a finished “carbon aerogel”.
  • In particular, the process began first with a wet-gel sample being placed in a vessel that has been filled with ethanol, giving it an initial systematic pressure of about 1300 psi. Since the SFE was incapable of cooling, the vessel had to first be manually cooled. The vessel was then filled with CO2, for approximately 8 hours (which caused an increase in pressure, to about 1530 psi). The outlet valve was then open to empty the ethanol and CO2 flow. When all the liquid had been vented, the valve was closed, and approximately 2 hours later, the CO2 flow was terminated. This left a fair amount of CO2 in the vessel, allowing the cavities of the gel sample to be inhabited. After 12 hours, the outlet valve was opened this time, venting out the remaining CO2. This caused an impending decrease in pressure. It was crucial that the CO2 be vented in a controlled, slow, consistent manner . . . at a rate of 5-10 psi per minute. After equilibrium had been attained inside the vessel (100-40 psi), the samples were observed. In this experiment, very small samples were produced, due to the narrow, cylindrical contours of the SFE vessel.
  • SEMI-AUTOMATED AUTOCLAVE DRYING: In this supercritical procedure, the suggested specially designed autoclave was used. This worked quite differently from the SFE. This system allowed the vessel to be automatically pre-cooled and pressurized. The initial temperature/pressure was placed at around 10° C./800 psi (respectively). After the CO2 condensed into liquid, the vessel was flushed once. After this time, more liquid CO2 was vented in, and again flushed. This was repeated 4-5 times (approximately 12 hours for each flush), until no ethanol was present in the discharge waste. At this time, both the temperature and pressure were set above the supercritical point of CO2 (30°, 1000 psi). After a few hours, the vessel was given a final excavation, at a slower, controlled rate than usual (20-24 hours).
  • ONE-STEP SAMPLE TESTING: Both the normal aerogel and SWNT aerogel samples were prepared and dried in essentially the same manner. Approximately 20 hours later, then samples were analyzed in the TGA for comparative testing. Tested sizes were a fraction of sample sizes, with a mass of 4.236 mg (aerogel) and 3.817 mg (for SWNT+aerogel). The TGA was set at a heating rate of 10° C./min (50° F./min), beginning at the subsequent room temperature and lasting until a final temperature of 800° C. (1472° F.). This test was performed in order to show whether the aerogel had gained a more stabilized behavior during increasing torridity.
  • TWO-STEP SAMPLE TESTING: More in-depth, conclusive tests were performed on these samples. For TGA testing, the deionized SWNT samples were utilized. The TGA was set at a heating rate of 10° C./min (50° F./min), beginning at the subsequent room temperature and lasting until a final temperature of 700° C. (1292° F.). For the XPS testing, the DI control and SWNT 2× samples were used. This test was performed in order to observe the chemical composition and bonding that took place in the surface of the material(s). The XPS used a magnesium x-ray to refract electrons out of the atomic orbital (of the composite sample) to the electron detector, in order to determine bonding energy. With this energy level and number of electrons, the electron “type” and abundance could be determined. The TA was used in order to assess the mechanical strength of the materials. The TA used three-point bending as a method of fracturing the sample. This test provided a Stress VS Strain relationship, where (when graphically analyzed) the graph slopes equaled the corresponding values for Young's Modulus. All two-step samples were finally examined more closely, using the SEM. The SEM was set to a frequency of 20 kv, providing a magnification of 2000× (in an area of ˜5 microns).
  • Lastly, a set of High-Density gels was made for two-step gels. These gels were expected to be 1.5-3 times denser, and ultimately stronger. The procedure for making them is similar to that of the standard density two-step gels, but the gel solution, along with the catalyst, is the only alteration. The SILBOND and NH4OH ratio is increased by a factor of 1.5×; the water ratio increased by 1.25×; the ethanol ratio remains unchanged. The SILBOND and NH4OH amount must be higher, because they serve as the “glass” solid portion of the sample, while the slight increase in water completes hydrolysis reactions.
  • Density for both standard and high density samples was calculated manually, using the formula (D=MN). The samples were measured by dimension, using a ruler, and then weighed, using an electronic metric scale. Also, Water conductivity of the samples was taken using a special conductivity probe. The constraints of the probe (which was designed to calculate the conductivity of liquid only) may have contributed to inaccuracies in data. In an attempt to ignore this inconvenience, the samples were submerged in DI water, and slightly fractured. The conductivity of the DI water was taken, then the conductivity of the same DI water sample containing the gel pieces. A formula (Conductivity sample=Conductivity sample+water−Conductivity water) was used to calculate sample conductivity. The units of obtained values were in micro “mhos”(Ω−1). Since resistance is measured in “ohms”(Ω), and conductivity is the opposite of resistivity, “mhos”(Ω−1) is the appropriate unit name.
  • FIG. 8 shows an SEM (Scanning Electron Microscopy) enhanced image of a section of the carbon aerogel, which displays a section in which interlocking occurs between the aerogel structure and carbon nanotube bundles.
  • While more testing of this composite is required to confirm all aforementioned possibilities, the initial tests have provided optimistic results. It has been shown that aerogels/xerogels containing carbon nanotubes are substantially more conductive than those without.
  • While this process briefly and concisely describes one method of silica aerogel and carbon nanotube amalgamation, there are many other methods, as described in the earlier aforementioned statements. This invention is comprised of not only the described method, but also the other three.

Claims (2)

1. A composite material comprising a non-metal catalyst;
wherein, upon application of a supercritical drying procedure, the composite material gel solution forms a vastly porous substrate, that is aerogels, xerogels, and pure carbon consisting of a honeycomb, tessellated structure, wherein said the porous substrate is laced and reinforced with a uniform dispersion of sonicated carbon nanotubes, and when required, with the aid of a surfactant.
2-21. (canceled)
US14/256,761 2000-04-28 2014-04-18 Aerogel/xerogel composite material amalgamated with single-walled carbon nanotubes for multipurpose usage Abandoned US20140316014A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/256,761 US20140316014A1 (en) 2000-04-28 2014-04-18 Aerogel/xerogel composite material amalgamated with single-walled carbon nanotubes for multipurpose usage

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US20036200P 2000-04-28 2000-04-28
US09/844,554 US8703284B1 (en) 2000-04-28 2001-04-28 Aerogel/xerogel composite material amalgamated with single-walled carbon nanotubes for multipurpose usage
US14/256,761 US20140316014A1 (en) 2000-04-28 2014-04-18 Aerogel/xerogel composite material amalgamated with single-walled carbon nanotubes for multipurpose usage

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/844,554 Continuation US8703284B1 (en) 2000-04-28 2001-04-28 Aerogel/xerogel composite material amalgamated with single-walled carbon nanotubes for multipurpose usage

Publications (1)

Publication Number Publication Date
US20140316014A1 true US20140316014A1 (en) 2014-10-23

Family

ID=50481779

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/844,554 Expired - Fee Related US8703284B1 (en) 2000-04-28 2001-04-28 Aerogel/xerogel composite material amalgamated with single-walled carbon nanotubes for multipurpose usage
US14/256,761 Abandoned US20140316014A1 (en) 2000-04-28 2014-04-18 Aerogel/xerogel composite material amalgamated with single-walled carbon nanotubes for multipurpose usage

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/844,554 Expired - Fee Related US8703284B1 (en) 2000-04-28 2001-04-28 Aerogel/xerogel composite material amalgamated with single-walled carbon nanotubes for multipurpose usage

Country Status (1)

Country Link
US (2) US8703284B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9764301B2 (en) * 2013-11-14 2017-09-19 Nanyang Technological University Silica aerogel composite
KR101955184B1 (en) * 2016-03-28 2019-03-08 주식회사 엘지화학 Method of preparing for aerogel blanket with low dust and high thermal insulation
CN112480465B (en) * 2019-09-12 2022-05-24 北京化工大学 Preparation method of hot air drying gel heat-conducting framework material, framework material and polymer composite material
CN112194180A (en) * 2020-10-14 2021-01-08 北京化工大学 Modification method for enhancing mechanical property of aerogel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039250A1 (en) * 1997-03-07 1998-09-11 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
US6492014B1 (en) * 1999-04-01 2002-12-10 The United States Of America As Represented By The Secretary Of The Navy Mesoporous composite gels an aerogels
US6683783B1 (en) * 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508341A (en) 1993-07-08 1996-04-16 Regents Of The University Of California Organic aerogel microspheres and fabrication method therefor
US5429886A (en) 1993-08-30 1995-07-04 Struthers; Ralph C. Hydrocarbon (hydrogen)/air aerogel catalyzed carbon electrode fuel cell system
US5366828A (en) 1993-11-08 1994-11-22 Struthers Ralph C Metal alloy laded carbon aerogel hydrogen hydride battery
US5601938A (en) 1994-01-21 1997-02-11 Regents Of The University Of California Carbon aerogel electrodes for direct energy conversion
US5698140A (en) 1996-05-02 1997-12-16 The Arizona Board Of Regents, On Behalf Of The University Of Arizona Aerogel/fullerene hybrid materials for energy storage applications
US20030012722A1 (en) * 2002-07-02 2003-01-16 Jie Liu High yiel vapor phase deposition method for large scale sing walled carbon nanotube preparation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039250A1 (en) * 1997-03-07 1998-09-11 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
US6683783B1 (en) * 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
US6492014B1 (en) * 1999-04-01 2002-12-10 The United States Of America As Represented By The Secretary Of The Navy Mesoporous composite gels an aerogels

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Quantum Confinement Effect of Fullerenes in Silica Aerogel," Shen et al., Chin. Phys. Lett., Vol. 12, No. 11, 1995, p 693-696. *

Also Published As

Publication number Publication date
US8703284B1 (en) 2014-04-22

Similar Documents

Publication Publication Date Title
Huang et al. Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology
Zhang et al. Iron‐oxide‐based advanced anode materials for lithium‐ion batteries
Wang et al. Tailoring carbon nanomaterials via a molecular scissor
Chen et al. Confined assembly of hollow carbon spheres in carbonaceous nanotube: a spheres‐in‐tube carbon nanostructure with hierarchical porosity for high‐performance supercapacitor
Li et al. Research progress of silicon/carbon anode materials for lithium‐ion batteries: structure design and synthesis method
TW564238B (en) Method of making nanotube-based material with enhanced electron field emission properties
Rakov The chemistry and application of carbon nanotubes
US6872330B2 (en) Chemical manufacture of nanostructured materials
JP5775603B2 (en) Graphene derivative-carbon nanotube composite material and manufacturing method thereof
EP1165440B1 (en) Nanotube-based high energy material and method
Yu et al. Synthesis and electrochemical lithium storage behavior of carbon nanotubes filled with iron sulfide nanoparticles
US20140316014A1 (en) Aerogel/xerogel composite material amalgamated with single-walled carbon nanotubes for multipurpose usage
Ning et al. Superior pseudocapacitive storage of a novel Ni 3 Si 2/NiOOH/graphene nanostructure for an all-solid-state supercapacitor
Zhao et al. Versatile zero‐to three‐dimensional carbon for electrochemical energy storage
US20100187484A1 (en) Mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogels
Chen et al. A Phase‐Separation Route to Synthesize Porous CNTs with Excellent Stability for Na+ Storage
Lv et al. Understanding the effect of pore size on electrochemical capacitive performance of MXene foams
CN112086627B (en) Composite electrode material, preparation method thereof, composite electrode containing composite electrode material and lithium battery
CN103985846B (en) A kind of silicon nanoparticle structure of carbon load and its preparation method and application
Chen et al. Four‐Layer Tin–Carbon Nanotube Yolk–Shell Materials for High‐Performance Lithium‐Ion Batteries
Zhou et al. High electroactive material loading on a carbon nanotube/carbon nanofiber as an advanced free-standing electrode for asymmetric supercapacitors
CN109585801A (en) A kind of carbon nano-tube filled silicon/hollow carbon compound cathode materials and preparation method thereof
Sun et al. Recent progress in synthesis and application of low-dimensional silicon based anode material for lithium ion battery
WO2002024574A1 (en) Method of producing hybrid single-wall carbon nanotube
Wang et al. Controlled filling of Permalloy into one-end-opened carbon nanotubes

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION