US20140277055A1 - Method and apparatus for damage and removal of fat - Google Patents

Method and apparatus for damage and removal of fat Download PDF

Info

Publication number
US20140277055A1
US20140277055A1 US14/233,985 US201214233985A US2014277055A1 US 20140277055 A1 US20140277055 A1 US 20140277055A1 US 201214233985 A US201214233985 A US 201214233985A US 2014277055 A1 US2014277055 A1 US 2014277055A1
Authority
US
United States
Prior art keywords
tissue
arrangement
needle arrangement
needle
canceled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/233,985
Inventor
William G. Austen, JR.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Hospital Corp
Original Assignee
General Hospital Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Hospital Corp filed Critical General Hospital Corp
Priority to US14/233,985 priority Critical patent/US20140277055A1/en
Assigned to THE GENERAL HOSPITAL CORPORATION reassignment THE GENERAL HOSPITAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AUSTEN, WILLIAM G.
Publication of US20140277055A1 publication Critical patent/US20140277055A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/32053Punch like cutting instruments, e.g. using a cylindrical or oval knife
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/20Surgical instruments, devices or methods, e.g. tourniquets for vaccinating or cleaning the skin previous to the vaccination
    • A61B17/205Vaccinating by means of needles or other puncturing devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/84Drainage tubes; Aspiration tips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/158Needles for infusions; Accessories therefor, e.g. for inserting infusion needles, or for holding them on the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00792Plastic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • A61B2017/32004Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes having a laterally movable cutting member at its most distal end which remains within the contours of said end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B2017/320064Surgical cutting instruments with tissue or sample retaining means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/08Lipoids

Definitions

  • the present disclosure relates to methods and apparatus for removing or damaging small regions of fatty tissue, e.g., subcutaneous fat, while reducing or avoiding significant damage to the overlying tissue, e.g., the dermis and epidermis.
  • Procedures and devices for removing fatty tissue are common and represent a significant market in the cosmetic procedures sector.
  • Conventional fat-removal procedures and devices e.g., liposuction
  • the present disclosure describes exemplary embodiments of simple, inexpensive, and safe methods and devices for affecting fatty tissue, e.g., subcutaneous fat, while reducing or avoiding significant damage to the overlying tissue, such as the dermis and epidermis.
  • fatty tissue e.g., subcutaneous fat
  • Such methods and apparatus can provide removal of small portions of subcutaneous fatty tissue, which may optionally be implanted in other parts of the body or used to harvest stem cells present therein.
  • Methods and apparatus for locally disrupting small regions of fatty tissue, which may then be resorbed by the body are also described.
  • An exemplary apparatus can be provided that includes a hollow needle and at least one protrusion provided on an inner wall of the hollow needle.
  • the hollow needle can be configured to be inserted into a biological tissue such as skin, such that the needle penetrates the upper tissue layers.
  • the size and geometry of the needle can be configured such that softer or less resilient subsurface tissue, e.g., subcutaneous fat, can enter the hollow core of the needle when the distal end of the needle advances into the fat.
  • the protrusion can be configured to facilitate retention of a portion of the fat when the needle is withdrawn from the tissue.
  • a plurality of such hollow needles that include internal protrusions can be affixed to a substrate.
  • the substrate and needles can be arranged to control and/or limit the depth of penetration of the needles into the tissue when the substrate is placed on the tissue surface.
  • the lengths of the distal ends of the needles protruding from a lower surface of the substrate can be selected to correspond to a depth within the fatty tissue below the skin surface.
  • the hollow needle can include a pivoting flap or one or more barbs provided within the lumen to facilitate detachment and removal of portions of the fat by the needle.
  • the hollow needle can include a cutting arrangement provided within the lumen to facilitate mechanical damage and/or disruption of portions of the fat by the needle.
  • the exemplary apparatus can further include a vacuum source provided in communication with the proximal ends of the needles, which can facilitate separation and/or removal of portions of the fat from the surrounding tissue when the needle is inserted and withdrawn.
  • the exemplary apparatus can include a reciprocating arrangement affixed to the one or more needles.
  • the reciprocating arrangement can include a motor or other actuator configured to repeatedly advance and withdraw the needles relative to the tissue.
  • the reciprocating arrangement can be provided in a housing that facilitates manipulation of the apparatus, e.g., placement of the apparatus on the tissue being treated and/or traversing the apparatus over the tissue.
  • the housing can optionally be configured to stretch or otherwise stabilize the tissue proximal to the needle(s) being inserted, to reduce deformation of the tissue and/or improve accuracy of the placement of the needle(s) in the tissue.
  • the reciprocating arrangement can further include a translational controller configured to translate the needles over the tissue in at least one direction, and optionally in two orthogonal directions, to facilitate removal or harvesting of fat from larger regions of a donor tissue site without translating the entire apparatus over the tissue surface.
  • a translational controller configured to translate the needles over the tissue in at least one direction, and optionally in two orthogonal directions, to facilitate removal or harvesting of fat from larger regions of a donor tissue site without translating the entire apparatus over the tissue surface.
  • the exemplary apparatus can include a vibrating arrangement mechanically coupled to the one or more needles.
  • the vibrating arrangement can facilitate improved removal and/or disruption of the fat tissue by the needles.
  • FIG. 1A is a cross-sectional side view of an exemplary apparatus for removal of subsurface fatty tissue in accordance with exemplary embodiments of the present disclosure
  • FIG. 1B is a lateral cross-sectional view of the exemplary apparatus shown in FIG. 1A according to a first embodiment of the present disclosure
  • FIG. 1C is a lateral cross-sectional view of the exemplary apparatus shown in FIG. 1A according to a second embodiment of the present disclosure
  • FIGS. 2A-2C are schematic side views of the exemplary apparatus shown in FIG. 1A being used to remove subsurface fatty tissue in accordance with exemplary embodiments of the present disclosure
  • FIG. 3A is a cross-sectional side view of a second exemplary apparatus for removal of subsurface fatty tissue in accordance with further exemplary embodiments of the present disclosure
  • FIG. 3B is a schematic frontal view of a first exemplary embodiment of the exemplary apparatus shown in FIG. 3A ;
  • FIG. 3C is a schematic frontal view of a second exemplary embodiment of the exemplary apparatus shown in FIG. 3A ;
  • FIG. 4 is a cross-sectional side view of a third exemplary apparatus for removal of subsurface fatty tissue in accordance with still further exemplary embodiments of the present disclosure
  • FIG. 5A is a cross-sectional side view of a fourth exemplary apparatus for removal of subsurface fatty tissue in accordance with still further exemplary embodiments of the present disclosure
  • FIGS. 5B and 5C are schematic side views of the exemplary apparatus shown in FIG. 5A illustrating removal of subsurface fatty tissue in accordance with exemplary embodiments of the present disclosure
  • FIG. 6A is a view of one end of a first exemplary embodiment of the exemplary apparatus shown in FIG. 5A ;
  • FIG. 6B is a view of one end of a second exemplary embodiment of the exemplary apparatus shown in FIG. 5A ;
  • FIG. 7 is a cross-sectional side view of a fifth exemplary apparatus for removal of subsurface fatty tissue in accordance with still further exemplary embodiments of the present disclosure.
  • FIG. 8A is a cross-sectional side view of an exemplary apparatus for damage or disruption of subsurface fatty tissue in accordance with yet further exemplary embodiments of the present disclosure
  • FIG. 8B is a view of one end of a first exemplary variant of the exemplary apparatus shown in FIG. 8A ;
  • FIG. 8C is a view of one end of a second exemplary variant of the exemplary apparatus shown in FIG. 8A .
  • Exemplary embodiments of the present disclosure can provide a method and apparatus for removing or locally damaging or disrupting soft tissue, e.g., subcutaneous fat, while reducing or avoiding significant damage to the overlying tissue, e.g., the dermis and epidermis in skin. Exemplary embodiments of the present disclosure can thereby facilitate removal, harvesting or disruption of subsurface tissue while avoiding and/or minimizing adverse effects such as scarring, bleeding, likelihood of infection, etc.
  • the exemplary apparatus 100 can include a hollow needle 120 having a central lumen that further includes at least one protrusion 130 provided along at least a portion of an inner surface thereof, e.g., extending into a portion of the central lumen.
  • An open distal end 110 of the needle 120 can be provided with a sharpened and/or angled edge to facilitate insertion of the needle 120 into skin or other tissue.
  • the distal end 110 of the needle 120 can be provided as a wedge shape that can be formed, e.g., by grinding the end of the needle 120 at an acute angle relative to its longitudinal axis.
  • the angle of the distal end can be, e.g., approximately 45 degrees, or between about 30 degrees and about 50 degree, which can provide the tissue-selective penetration characteristics described herein. These exemplary angles can be used with any of the exemplary embodiments described herein.
  • the protrusion 130 can be provided along the inner surface of a shorter side of the angled or tapered end 110 of the needle 120 .
  • a handle 140 and/or other gripping arrangement can be provided at a proximal portion of the needle 120 to facilitate holding and manipulating the needle 120 .
  • FIG. 1B A frontal view of the exemplary apparatus 100 is shown in FIG. 1B .
  • the protrusion 130 can be configured to block and/or occlude a portion of the hollow center of the needle 120 .
  • the exemplary protrusion 130 shown in FIG. 1B can include a substantially straight edge provided towards the center of the hollow core of the needle 120 .
  • a further exemplary protrusion 130 is shown in FIG. 1C that includes a curved edge oriented towards the center of the hollow core of the needle 120 .
  • Other shapes for the protrusion 130 can also be used in further exemplary embodiments of the present disclosure.
  • a plurality of such protrusions 130 can also be provided in the needle 120 .
  • the cross-sectional shape of the exemplary needle 120 shown in FIG. 1B is substantially round.
  • the needles 120 having other cross-sectional shapes can also be used, e.g., needles 120 can be provided that have oval, square, or triangular cross-sections, etc.
  • the protrusion 130 can block less than about 50% of the cross-sectional area of the hollow center, or optionally less than about 30% of this area.
  • the protrusion 130 can block more than about 10% of the cross-sectional area, or more than about 20% of this area.
  • the size and shape of the protrusion 130 can be configured to facilitate a retention of fatty tissue in the hollow core of the needle 120 as described herein.
  • the exemplary apparatus 100 can be inserted into a dermal tissue such that the distal end 110 penetrates at least partially into the subcutaneous fatty layer 210 beneath the dermis 220 , as shown in FIG. 2 .
  • a portion 230 of the fatty tissue can be present within the hollow core of the needle 120 after such insertion.
  • the exemplary apparatus 100 can then be withdrawn from the dermal tissue.
  • the portion 230 of the fatty tissue can also be removed from the fatty layer 210 , and can remain inside the hollow needle 210 .
  • the protrusion 130 can facilitate the removal of the portion 230 of the fatty tissue from the fatty layer 210 .
  • the dermal layer can collapse around the insertion path, as shown in FIG. 2C , and subsequently heal, whereas a portion 230 of fat from the fatty layer 210 has been removed. Accordingly, such exemplary method and apparatus can facilitate the removal of the subcutaneous fat 230 with a relatively little disturbance of the overlying dermis 220 .
  • the angled or tapered distal end 110 of the needle 120 as described herein can divert or push aside the resilient dermal tissue 220 as the needle 120 is inserted.
  • the portion 230 of the softer fatty tissue can be more easily separated from the surrounding fatty layer 210 , and enter the hollow core of the needle 120 .
  • the protrusion 130 can anchor the portion 230 of fatty tissue within the needle 120 , and facilitate its separation and removal from the surrounding fatty layer 210 when the exemplary apparatus 100 is withdrawn from the dermal tissue.
  • the exemplary apparatus 100 can be inserted and removed a plurality of times to remove further portions 230 of the fatty tissue.
  • FIG. 3A A further exemplary apparatus 300 for removal of subcutaneous fat according to the present disclosure is shown in FIG. 3A .
  • This exemplary apparatus 300 can include a plurality of needles 120 affixed to a substrate 330 .
  • the substrate 330 can have a substantially flat lower surface from which the needles 120 protrude, or this surface may be curved or otherwise contoured, e.g., to more closely match a contour of the surface of the dermal tissue being treated.
  • FIG. 3B A frontal view of the exemplary apparatus 300 is shown in FIG. 3B .
  • the needles 120 can be arranged in a square or rectangular pattern, as shown in FIG. 3 B.
  • the rows of needles 120 can be offset or staggered to form a triangular pattern, as shown in FIG. 3C .
  • Other exemplary arrangements of needles 120 can also be used, such as a spatially random distribution of the needles 120 on the substrate 330 .
  • the number of the needles 120 and spacing between adjacent ones of the needles 120 can be selected based on the particular tissue being treated, the amount of fat to be removed, etc.
  • the protrusion distance of the needles 120 from the lower surface of the substrate 330 can also be selected based on a local depth of the subcutaneous fatty layer 210 and the depth to which the fatty tissue is to be removed.
  • the exemplary apparatus 300 can include an arrangement configured to adjust the protrusion distance of the needles 120 .
  • Such arrangement can include, e.g., a plate or the like affixed to the substrate 330 such that the needles 120 pass through the plate.
  • the distance between the plate and the substrate 330 can be adjustable to vary the distance that the needles 120 protrude from the lower surface of the plate.
  • Other exemplary arrangements that can facilitate the adjustment of the effective length of the needles 120 protruding from the bottom of the apparatus 300 may also be used.
  • the location of the one or more protrusions 130 within the needles 120 can also be selected to control the size or height of the tissue samples 230 that may be retained and removed in the needles 120 when they are inserted into and withdrawn from the tissue, as described herein.
  • the exemplary apparatus 300 can be pressed into the dermal tissue and subsequently withdrawn, such that the needles 120 penetrate into the into the fatty layer 210 and remove portions of the tissue sample 230 of the fatty tissue from the fatty layer 210 , as described herein and shown in FIGS. 2A-2C for a single needle 210 .
  • the exemplary apparatus 300 can facilitate removal or harvesting of a larger amount of fatty tissue with a single insertion and withdrawal of the exemplary apparatus 300 from the dermal tissue.
  • FIG. 4 A still further exemplary apparatus 400 according to the present disclosure is shown in FIG. 4 that includes one or more needles 120 as described herein, which can be affixed to a reciprocating arrangement 420 provided within a housing 430 .
  • the housing 430 can also include a handle 410 .
  • the reciprocating arrangement 420 can be configured to displace the needle 120 back and forth along a direction that can be substantially parallel to the axis of the needle 120 .
  • the reciprocating arrangement 420 can be powered by a motor or the like, and/or controlled by a switch that can turn the reciprocating arrangement 420 on and off, and can further control the reciprocating frequency and/or protrusion distance of the needle 120 below the lower surface of the housing 430 .
  • the exemplary apparatus 400 can be traversed over a region of skin to be treated such that the one or more needles 120 can be repeatedly inserted and withdrawn from the tissue, removing a portion of fatty tissue upon each withdrawal as described herein.
  • the penetration depth of the needles 120 can be determined by the configuration of the reciprocating arrangement 420 .
  • the reciprocating arrangement 420 can further include a translational mechanism configured to translate the one or more needles 120 over the tissue surface in one or two orthogonal directions.
  • the reciprocating arrangement 420 can be configured to translate such one or more needles 120 over an area of the tissue while the exemplary apparatus 400 is held stationary with respect to the tissue surface at a donor or treatment site.
  • the reciprocating arrangement 420 can be configured to translate the one or more needles 120 along a single direction to harvest fatty tissue along one or more rows.
  • the exemplary apparatus 400 can optionally be translated over the tissue surface after such rows are formed, e.g., in a direction that is not parallel to the row, to remove or harvest fatty tissue from a larger area of the donor tissue site.
  • any of the exemplary apparatuses described herein can be configured to remove or harvest fatty tissue from a plurality of locations in any of a variety of spatial distributions, where each location can correspond to a single insertion and withdrawal of a single needle 120 .
  • the fatty tissue can be removed or harvested from a plurality of locations configured as one or more rows, a regular two-dimensional pattern, a random distribution, or the like.
  • Such exemplary patterns or spatial distributions of fat harvesting or removal sites can be generated based on, e.g., the configuration of such one or more needles 120 provided, the properties of the reciprocating arrangement 420 , and/or the rate of translation of the exemplary apparatus 400 over the tissue surface.
  • the housing 430 can be configured to stretch skin or other tissue when the exemplary apparatus 400 is placed on the tissue to be treated. Such stretching can facilitate mechanical stabilization of the tissue, e.g., to reduce or avoid deformation of the tissue 350 while the needles 120 are inserted into and withdrawn from the tissue.
  • Such stretching of the tissue can also reduce the effective size of the disrupted region of the upper tissue layers formed by the exemplary apparatus 400 when the tissue is allowed to relax after treatment.
  • the surface of the tissue to be treated can be stretched or stabilized using other techniques prior to and/or during treatment of the region in accordance with any of the exemplary embodiments described herein.
  • a vacuum or suction source e.g. a pump or a reservoir containing a fluid under low-pressure
  • a vacuum or suction source can be provided in communication with the lumen of the needle 120 , e.g., via a conduit in communication with the proximal end of the needles 120 , in any of the exemplary embodiments described herein.
  • Such low pressure e.g., pressure less than atmospheric or ambient pressure, provided in the central lumen can facilitate the removal of the portions 230 of fatty tissue when the distal ends of the needles 120 are located within the subcutaneous fat layer 210 .
  • the exemplary devices described herein can be configured to provide such a vacuum when the distal ends of the needles 120 are at least partially inserted into the fatty layer 210 , and such vacuum may be applied as the needles 120 are withdrawn from the fatty layer 210 .
  • the strength of the vacuum can be selected to facilitate removal of the portions 230 of the fatty tissue within the distal portions of the needles 120 , without causing a significant damage to the tissue surrounding the inserted needles 120 .
  • an apparatus 500 can be provided that is adapted to remove fatty tissue is shown in FIG. 5A .
  • the exemplary apparatus 500 can include a hollow needle 120 having a central lumen, where the size and shape of the needle 120 and distal end 110 thereof can be similar to those described herein above for the apparatus 100 shown in FIG. 1A .
  • the apparatus 500 can include at least one pivoting flap 510 within the lumen of the needle 120 .
  • the flap 510 can be provided in the distal portion of the needle 120 , e.g., and configured such that one portion of the flap 510 is pivotally connected to an inside wall of the needle 120 at a pivot point 520 .
  • a stop arrangement 530 can be provided on another location on the inside wall of the needle 120 to constrain or prevent movement of the flap beyond a certain limit in a particular direction.
  • the stop arrangement 530 can be provided on an opposite side of the interior needle wall from the pivot point 520 , as shown in FIG. 5A .
  • the flap 510 can be free and configured to pivot upwards towards the proximal end of the needle 120 , but may be constrained from pivoting towards the distal end 110 of the needle 120 past the stop arrangement 530 .
  • the stop arrangement 530 can be provided at a location further up or down from the pivot point 520 (e.g., closer to or further from the distal end 110 of the needle 120 ).
  • the stop arrangement 530 can also be provided on a lateral side of the interior needle wall, instead of diametrically opposite the pivot point 520 as illustrated in FIG. 5A .
  • the stop arrangement 530 can be provided, e.g., by indenting an exterior portion of the needle wall such that the portion of the wall projects or bulges inward into the lumen of the needle 120 .
  • a small object can be affixed to the interior wall of the needle 120 to form the stop arrangement.
  • Other techniques and configurations may also be used to provide the stop arrangement 530 .
  • the exemplary apparatus 500 can be used to remove or harvest portions of fatty tissue in a manner similar to that described with respect to the exemplary apparatus 100 and shown in FIGS. 2A-2C .
  • the distal end 110 of the apparatus 500 can be advanced through the dermis 220 and into the subcutaneous fat layer 210 , as shown in FIG. 5B .
  • the exemplary apparatus 500 can be configured such that the distal end penetrates the dermis 220 with little or no portion of the dermal tissue entering the lumen of the needle 120 .
  • a portion 230 of softer fatty tissue may enter the lumen of the needle 120 .
  • the portion 230 can advance into the lumen, pushing the flap 510 upward and closer to the inner wall of the needle 120 , as shown in FIG. 5B .
  • the fat portion 230 may be pulled downward slightly within the lumen, pulling or dragging the flap 510 with it towards the distal end 110 of the needle 120 .
  • an edge of the flap 510 may ‘catch’ or penetrate the edge of the fat portion 230 .
  • the flap 510 may partially or completely sever the fat portion 230 from the remainder of the subcutaneous fat below it, thereby retaining the fat portion 230 within the apparatus 500 as the apparatus 500 is withdrawn from the skin.
  • the flap 510 can be substantially round or moon shaped, e.g., such that it can block or occlude substantially the entire lumen when it is lowered against the stop arrangement 530 .
  • an exemplary flap 510 is illustrated in FIG. 6A in a raised position (e.g., pivoted upward away from the distal end 110 of the needle 120 ).
  • the view of the flap 510 is from the distal end 110 of the needle 120 along the longitudinal axis thereof.
  • the thin round flap is curved rather than planar, such that it can more closely conform to the shape of the inner wall of the needle 120 when pivoted upward as shown in FIG. 6A .
  • Such a curved flap 510 can facilitate advancement of a fatty tissue 230 into the exemplary apparatus 500 by reducing or minimizing obstruction of the lumen when it is pivoted upward.
  • the flap 510 can be provided as a substantially rectangular shape or in another shape that does not fully occlude the lumen when the flap 510 is pivoted to a lowered position, e.g., resting against the stop arrangement 530 , as shown in a view of an end the needle 120 in FIG. 6B .
  • This exemplary flap shape can also be curved, similar to the flap 510 shown in FIG. 6A , to reduce obstruction of the lumen when the flap 510 is pivoted in an upward position.
  • any of the features of the exemplary apparatus 500 can be used in conjunction with the other exemplary embodiments described herein.
  • one or more needles 120 that include a pivoting flap 510 , and the stop arrangement 530 can be affixed to a substrate 330 , e.g., as shown in FIGS. 3A-3C .
  • One or more such needles 120 that include a pivoting flap 510 can also be coupled to a reciprocating arrangement 420 as illustrated in FIG. 4 .
  • an apparatus 700 can be provided that includes one or more barbs 710 provided on the interior wall of the hollow needle 120 .
  • the barb 710 can be angled upward, e.g., sloping away from the distal end 110 of the needle 120 , as shown in FIG. 7 .
  • Such exemplary configuration can facilitate an advancement of fatty tissue into the lumen as the apparatus 700 is advanced into the fat layer 210 , while promoting retention of a fat portion 230 within the lumen as the apparatus 700 is withdrawn from the skin.
  • Such barbs can be formed, e.g., by deforming the outer wall of the needle 120 inward at an angle at one or more locations, by attaching pre-formed barbs 710 to the inside wall of the needle 120 , or by other techniques.
  • the features of the exemplary apparatus 700 can be used in conjunction with the other exemplary embodiments described herein.
  • a plurality of needles 120 that include one or more barbs 710 can be affixed to a substrate 330 , e.g., as shown in FIGS. 3A-3C .
  • One or more such needles 120 can also be coupled to a reciprocating arrangement 420 as illustrated in FIG. 4 .
  • an apparatus 800 can be provided that includes a cutting arrangement 810 provided in a distal portion of the lumen of the hollow needle 120 , as shown in FIG. 8A .
  • the apparatus 800 can facilitate mechanical disruption of fatty tissue 210 without removing a substantial amount thereof from the surrounding tissue.
  • the exemplary apparatus 800 can affect tissue in the fat layer 210 without significantly affecting or damaging the overlying dermal layer 220 when the apparatus 800 is withdrawn from the skin. For example, a generation of mechanical disruption in the fat layer 210 can lead to cellular damage and/or death. The damaged or dead cells may then be resorbed by the body over time, reducing the amount of fat present in the treated area.
  • the cutting arrangement 810 can include, for example, one or more thin wires, blades, or the like that extend across a portion of the lumen of the needle 120 . End views of two exemplary cutting arrangements 810 are shown in FIGS. 8B and 8C .
  • the cutting arrangement 810 in FIGS. 8B and 8C can include a plurality of thin wires or blades attached to the inner wall of the needle 120 , and traversing a portion of the lumen.
  • Other configurations of the cutting arrangement 810 can be provided in further embodiments of the disclosure.
  • the exemplary apparatus 800 can be inserted into skin tissue and then withdrawn as described herein, for example, with respect to other exemplary embodiments of the present disclosure. Such exemplary insertion and withdrawal of the exemplary apparatus 800 can cause a portion of the fat layer 210 to enter the lumen of the needle 120 , with the overlying dermis layer 220 remaining substantially unaffected after the apparatus 800 is fully withdrawn.
  • the fat tissue that enters the lumen may be damaged by the cutting arrangement 810 during the insertion and withdrawal procedures.
  • the exemplary apparatus can may be partially withdrawn from the skin and then advanced again a plurality of times before fully withdrawing it from the skin.
  • the exemplary apparatus 800 can be withdrawn until the distal end 110 is proximal to the lower portion of the dermal layer 220 , and then re-advanced deeper into the fat layer 210 .
  • Such repeated cycles can create a greater degree of local damage to the fat tissue. Little or no fat may remain within the lumen when the apparatus 800 is withdrawn from the skin. However, the damaged fat cells may die and be resorbed by the body over time.
  • a plurality of needles 120 that include a cutting arrangement 810 can be affixed to a substrate 330 , e.g., as shown in FIGS. 3A-3C .
  • One or more such needles 120 can also be coupled to a reciprocating arrangement 420 as illustrated in FIG. 4 , to generate damage in a broader region of the fat layer 210 .
  • the exemplary apparatus 800 can include a plurality of needles 120 having different types of fat-disrupting arrangements as described herein.
  • different ones of the needles 120 may include a protrusion 130 , a pivoting flap 510 , or a cutting arrangement 810 .
  • a plurality of needles 120 containing different types of such fat disruption arrangements 130 , 510 , 810 can be mechanically coupled to a reciprocating arrangement 420 as described herein.
  • Different ones of the needles 120 in such multi-needle devices can optionally have different lengths, which can facilitate harvesting or damaging of fat at different depths within the fat layer 210 .
  • a vibrating arrangement can be mechanically coupled to any exemplary apparatus described herein. Inducing vibration in the needles 120 can facilitate detachment of fat portions 230 from the surrounding tissue and/or can generate a greater mechanical damage by a cutting arrangement provided in the needle 120 .
  • the exemplary methods and devices described herein can be used for a variety of purposes, for example, to remove small portions of the fatty tissue for cosmetic purposes, to harvest stem cells that may be present in regions of the subcutaneous fat layer to harvest fatty tissue for implantation in other portions of the body for cosmetic purposes, and/or to generate mechanical damage of fat cells to promote cell death and resorption of damaged fat by the body.

Abstract

Exemplary embodiments of method and apparatus are provided for damaging and/or removing portions of subcutaneous fatty tissue while leaving the overlying dermal layer of the skin substantially undamaged. One or more hollow needles can be provided that include an arrangement within the lumen configured to retain or damage portions of fatty tissue that enter the lumen. Properties of the needle can be selected such that the needle can be inserted into skin and pass through the dermal layer, allowing fatty tissue to enter the distal portion of the lumen as it is advanced further, and then leaving the dermis undamaged when withdrawn. Such exemplary apparatus can include a plurality of such needles, a reciprocating arrangement to mechanically advance and withdraw the one or more needles, and/or a vibrating arrangement.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • The present application relates to and claims priority from U.S. Provisional Patent Application Ser. No. 61/510,242 filed Jul. 21, 2011, the disclosure of which is incorporated herein by reference in its entirety.
  • FIELD OF THE DISCLOSURE
  • The present disclosure relates to methods and apparatus for removing or damaging small regions of fatty tissue, e.g., subcutaneous fat, while reducing or avoiding significant damage to the overlying tissue, e.g., the dermis and epidermis.
  • BACKGROUND INFORMATION
  • Procedures and devices for removing fatty tissue, e.g. for cosmetic reasons, are common and represent a significant market in the cosmetic procedures sector. Conventional fat-removal procedures and devices, e.g., liposuction, can be disruptive to surrounding tissue and often includes many risks such as excessive bleeding, etc. There are relatively few procedures for removal of small amounts of fatty tissue, e.g., subcutaneous fat, for cosmetic purposes and such procedures generally require a skilled practitioner for effective removal and can be very time-consuming and subject to complications.
  • Accordingly, there may be a need to provide simpler and safer method and apparatus for removal of subcutaneous fatty tissue that addresses and/or reduces the limitations described above.
  • SUMMARY OF THE DISCLOSURE
  • The present disclosure describes exemplary embodiments of simple, inexpensive, and safe methods and devices for affecting fatty tissue, e.g., subcutaneous fat, while reducing or avoiding significant damage to the overlying tissue, such as the dermis and epidermis. Such methods and apparatus can provide removal of small portions of subcutaneous fatty tissue, which may optionally be implanted in other parts of the body or used to harvest stem cells present therein. Methods and apparatus for locally disrupting small regions of fatty tissue, which may then be resorbed by the body, are also described.
  • An exemplary apparatus according to the present disclosure can be provided that includes a hollow needle and at least one protrusion provided on an inner wall of the hollow needle. The hollow needle can be configured to be inserted into a biological tissue such as skin, such that the needle penetrates the upper tissue layers. The size and geometry of the needle can be configured such that softer or less resilient subsurface tissue, e.g., subcutaneous fat, can enter the hollow core of the needle when the distal end of the needle advances into the fat. The protrusion can be configured to facilitate retention of a portion of the fat when the needle is withdrawn from the tissue.
  • In a further exemplary embodiment of the present disclosure, a plurality of such hollow needles that include internal protrusions can be affixed to a substrate. The substrate and needles can be arranged to control and/or limit the depth of penetration of the needles into the tissue when the substrate is placed on the tissue surface. For example, the lengths of the distal ends of the needles protruding from a lower surface of the substrate can be selected to correspond to a depth within the fatty tissue below the skin surface.
  • In further exemplary embodiments of the present disclosure, the hollow needle can include a pivoting flap or one or more barbs provided within the lumen to facilitate detachment and removal of portions of the fat by the needle.
  • In yet further exemplary embodiments of the present disclosure, the hollow needle can include a cutting arrangement provided within the lumen to facilitate mechanical damage and/or disruption of portions of the fat by the needle.
  • In a another exemplary embodiment of the present disclosure, the exemplary apparatus can further include a vacuum source provided in communication with the proximal ends of the needles, which can facilitate separation and/or removal of portions of the fat from the surrounding tissue when the needle is inserted and withdrawn.
  • In a still further exemplary embodiment of the present disclosure, the exemplary apparatus can include a reciprocating arrangement affixed to the one or more needles. The reciprocating arrangement can include a motor or other actuator configured to repeatedly advance and withdraw the needles relative to the tissue. The reciprocating arrangement can be provided in a housing that facilitates manipulation of the apparatus, e.g., placement of the apparatus on the tissue being treated and/or traversing the apparatus over the tissue. The housing can optionally be configured to stretch or otherwise stabilize the tissue proximal to the needle(s) being inserted, to reduce deformation of the tissue and/or improve accuracy of the placement of the needle(s) in the tissue. The reciprocating arrangement can further include a translational controller configured to translate the needles over the tissue in at least one direction, and optionally in two orthogonal directions, to facilitate removal or harvesting of fat from larger regions of a donor tissue site without translating the entire apparatus over the tissue surface.
  • In yet another exemplary embodiment of the present disclosure, the exemplary apparatus can include a vibrating arrangement mechanically coupled to the one or more needles. The vibrating arrangement can facilitate improved removal and/or disruption of the fat tissue by the needles.
  • These and other objects, features and advantages of the present disclosure will become apparent upon reading the following detailed description of exemplary embodiments of the present disclosure, when taken in conjunction with the appended drawings and claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Further objects, features and advantages of the present disclosure will become apparent from the following detailed description taken in conjunction with the accompanying figures showing illustrative embodiments, results and/or features of the exemplary embodiments of the present disclosure, in which:
  • FIG. 1A is a cross-sectional side view of an exemplary apparatus for removal of subsurface fatty tissue in accordance with exemplary embodiments of the present disclosure;
  • FIG. 1B is a lateral cross-sectional view of the exemplary apparatus shown in FIG. 1A according to a first embodiment of the present disclosure;
  • FIG. 1C is a lateral cross-sectional view of the exemplary apparatus shown in FIG. 1A according to a second embodiment of the present disclosure;
  • FIGS. 2A-2C are schematic side views of the exemplary apparatus shown in FIG. 1A being used to remove subsurface fatty tissue in accordance with exemplary embodiments of the present disclosure;
  • FIG. 3A is a cross-sectional side view of a second exemplary apparatus for removal of subsurface fatty tissue in accordance with further exemplary embodiments of the present disclosure;
  • FIG. 3B is a schematic frontal view of a first exemplary embodiment of the exemplary apparatus shown in FIG. 3A;
  • FIG. 3C is a schematic frontal view of a second exemplary embodiment of the exemplary apparatus shown in FIG. 3A;
  • FIG. 4 is a cross-sectional side view of a third exemplary apparatus for removal of subsurface fatty tissue in accordance with still further exemplary embodiments of the present disclosure;
  • FIG. 5A is a cross-sectional side view of a fourth exemplary apparatus for removal of subsurface fatty tissue in accordance with still further exemplary embodiments of the present disclosure;
  • FIGS. 5B and 5C are schematic side views of the exemplary apparatus shown in FIG. 5A illustrating removal of subsurface fatty tissue in accordance with exemplary embodiments of the present disclosure;
  • FIG. 6A is a view of one end of a first exemplary embodiment of the exemplary apparatus shown in FIG. 5A;
  • FIG. 6B is a view of one end of a second exemplary embodiment of the exemplary apparatus shown in FIG. 5A;
  • FIG. 7 is a cross-sectional side view of a fifth exemplary apparatus for removal of subsurface fatty tissue in accordance with still further exemplary embodiments of the present disclosure;
  • FIG. 8A is a cross-sectional side view of an exemplary apparatus for damage or disruption of subsurface fatty tissue in accordance with yet further exemplary embodiments of the present disclosure;
  • FIG. 8B is a view of one end of a first exemplary variant of the exemplary apparatus shown in FIG. 8A; and
  • FIG. 8C is a view of one end of a second exemplary variant of the exemplary apparatus shown in FIG. 8A.
  • Throughout the drawings, the same reference numerals and characters, unless otherwise stated, are used to denote like features, elements, components, or portions of the illustrated embodiments. Moreover, while the present disclosure will now be described in detail with reference to the figures, it is done so in connection with the illustrative embodiments and is not limited by the particular embodiments illustrated in the figures and the appended claims.
  • DETAILED DESCRIPTION
  • Exemplary embodiments of the present disclosure can provide a method and apparatus for removing or locally damaging or disrupting soft tissue, e.g., subcutaneous fat, while reducing or avoiding significant damage to the overlying tissue, e.g., the dermis and epidermis in skin. Exemplary embodiments of the present disclosure can thereby facilitate removal, harvesting or disruption of subsurface tissue while avoiding and/or minimizing adverse effects such as scarring, bleeding, likelihood of infection, etc.
  • A cross-sectional view of an exemplary apparatus 100 for removing fatty tissue is shown in FIG. 1A. The exemplary apparatus 100 can include a hollow needle 120 having a central lumen that further includes at least one protrusion 130 provided along at least a portion of an inner surface thereof, e.g., extending into a portion of the central lumen. An open distal end 110 of the needle 120 can be provided with a sharpened and/or angled edge to facilitate insertion of the needle 120 into skin or other tissue. For example, the distal end 110 of the needle 120 can be provided as a wedge shape that can be formed, e.g., by grinding the end of the needle 120 at an acute angle relative to its longitudinal axis. The angle of the distal end can be, e.g., approximately 45 degrees, or between about 30 degrees and about 50 degree, which can provide the tissue-selective penetration characteristics described herein. These exemplary angles can be used with any of the exemplary embodiments described herein.
  • The protrusion 130 can be provided along the inner surface of a shorter side of the angled or tapered end 110 of the needle 120. A handle 140 and/or other gripping arrangement can be provided at a proximal portion of the needle 120 to facilitate holding and manipulating the needle 120.
  • A frontal view of the exemplary apparatus 100 is shown in FIG. 1B. The protrusion 130 can be configured to block and/or occlude a portion of the hollow center of the needle 120. The exemplary protrusion 130 shown in FIG. 1B can include a substantially straight edge provided towards the center of the hollow core of the needle 120. A further exemplary protrusion 130 is shown in FIG. 1C that includes a curved edge oriented towards the center of the hollow core of the needle 120. Other shapes for the protrusion 130 can also be used in further exemplary embodiments of the present disclosure. A plurality of such protrusions 130 can also be provided in the needle 120. The cross-sectional shape of the exemplary needle 120 shown in FIG. 1B is substantially round. The needles 120 having other cross-sectional shapes can also be used, e.g., needles 120 can be provided that have oval, square, or triangular cross-sections, etc.
  • For example, the protrusion 130 can block less than about 50% of the cross-sectional area of the hollow center, or optionally less than about 30% of this area. The protrusion 130 can block more than about 10% of the cross-sectional area, or more than about 20% of this area. The size and shape of the protrusion 130 can be configured to facilitate a retention of fatty tissue in the hollow core of the needle 120 as described herein.
  • The exemplary apparatus 100 can be inserted into a dermal tissue such that the distal end 110 penetrates at least partially into the subcutaneous fatty layer 210 beneath the dermis 220, as shown in FIG. 2. A portion 230 of the fatty tissue can be present within the hollow core of the needle 120 after such insertion. The exemplary apparatus 100 can then be withdrawn from the dermal tissue. As shown in FIG. 2B, the portion 230 of the fatty tissue can also be removed from the fatty layer 210, and can remain inside the hollow needle 210. The protrusion 130 can facilitate the removal of the portion 230 of the fatty tissue from the fatty layer 210. After the removal of the exemplary apparatus 100 from the dermal tissue, the dermal layer can collapse around the insertion path, as shown in FIG. 2C, and subsequently heal, whereas a portion 230 of fat from the fatty layer 210 has been removed. Accordingly, such exemplary method and apparatus can facilitate the removal of the subcutaneous fat 230 with a relatively little disturbance of the overlying dermis 220.
  • The diameter of the needle 120 can be selected to facilitate the insertion through the dermal layer 220 without removing a substantial amount of the dermal tissue, as well as separation and removal of the portion 230 of the fatty tissue, as described herein. For example, the needle 120 can have the size of a conventional 16 gauge needle, or between 14 gauge and 19 gauge. Such needle diameters can provide the tissue-selective penetration properties described herein when the apparatus 100 is inserted into skin. The diameter of the central lumen of the needle 120 can be, e.g., about 1 mm or about 1.25 mm. These exemplary needle sizes can be used with any of the exemplary embodiments described herein. Larger or smaller needle sizes may also be used in embodiments of the present disclosure if they exhibit the selective tissue properties described herein, e.g., if the methods and apparatus described herein are being used on tissues other than skin.
  • In exemplary embodiments of the present disclosure, the angled or tapered distal end 110 of the needle 120 as described herein can divert or push aside the resilient dermal tissue 220 as the needle 120 is inserted. As the needle 120 penetrates further into the fatty layer 210, the portion 230 of the softer fatty tissue can be more easily separated from the surrounding fatty layer 210, and enter the hollow core of the needle 120. The protrusion 130 can anchor the portion 230 of fatty tissue within the needle 120, and facilitate its separation and removal from the surrounding fatty layer 210 when the exemplary apparatus 100 is withdrawn from the dermal tissue. The exemplary apparatus 100 can be inserted and removed a plurality of times to remove further portions 230 of the fatty tissue.
  • A further exemplary apparatus 300 for removal of subcutaneous fat according to the present disclosure is shown in FIG. 3A. This exemplary apparatus 300 can include a plurality of needles 120 affixed to a substrate 330. The substrate 330 can have a substantially flat lower surface from which the needles 120 protrude, or this surface may be curved or otherwise contoured, e.g., to more closely match a contour of the surface of the dermal tissue being treated.
  • A frontal view of the exemplary apparatus 300 is shown in FIG. 3B. The needles 120 can be arranged in a square or rectangular pattern, as shown in FIG. 3B. Alternatively, the rows of needles 120 can be offset or staggered to form a triangular pattern, as shown in FIG. 3C. Other exemplary arrangements of needles 120 can also be used, such as a spatially random distribution of the needles 120 on the substrate 330. The number of the needles 120 and spacing between adjacent ones of the needles 120 can be selected based on the particular tissue being treated, the amount of fat to be removed, etc.
  • The protrusion distance of the needles 120 from the lower surface of the substrate 330 can also be selected based on a local depth of the subcutaneous fatty layer 210 and the depth to which the fatty tissue is to be removed. For example, the exemplary apparatus 300 can include an arrangement configured to adjust the protrusion distance of the needles 120. Such arrangement can include, e.g., a plate or the like affixed to the substrate 330 such that the needles 120 pass through the plate. The distance between the plate and the substrate 330 can be adjustable to vary the distance that the needles 120 protrude from the lower surface of the plate. Other exemplary arrangements that can facilitate the adjustment of the effective length of the needles 120 protruding from the bottom of the apparatus 300 may also be used. The location of the one or more protrusions 130 within the needles 120 can also be selected to control the size or height of the tissue samples 230 that may be retained and removed in the needles 120 when they are inserted into and withdrawn from the tissue, as described herein.
  • The exemplary apparatus 300 can be pressed into the dermal tissue and subsequently withdrawn, such that the needles 120 penetrate into the into the fatty layer 210 and remove portions of the tissue sample 230 of the fatty tissue from the fatty layer 210, as described herein and shown in FIGS. 2A-2C for a single needle 210. The exemplary apparatus 300 can facilitate removal or harvesting of a larger amount of fatty tissue with a single insertion and withdrawal of the exemplary apparatus 300 from the dermal tissue.
  • A still further exemplary apparatus 400 according to the present disclosure is shown in FIG. 4 that includes one or more needles 120 as described herein, which can be affixed to a reciprocating arrangement 420 provided within a housing 430. The housing 430 can also include a handle 410. The reciprocating arrangement 420 can be configured to displace the needle 120 back and forth along a direction that can be substantially parallel to the axis of the needle 120. For example, the reciprocating arrangement 420 can be powered by a motor or the like, and/or controlled by a switch that can turn the reciprocating arrangement 420 on and off, and can further control the reciprocating frequency and/or protrusion distance of the needle 120 below the lower surface of the housing 430. The exemplary apparatus 400 can be traversed over a region of skin to be treated such that the one or more needles 120 can be repeatedly inserted and withdrawn from the tissue, removing a portion of fatty tissue upon each withdrawal as described herein. The penetration depth of the needles 120 can be determined by the configuration of the reciprocating arrangement 420.
  • In a further exemplary embodiment according to the present disclosure, the reciprocating arrangement 420 can further include a translational mechanism configured to translate the one or more needles 120 over the tissue surface in one or two orthogonal directions. For example, the reciprocating arrangement 420 can be configured to translate such one or more needles 120 over an area of the tissue while the exemplary apparatus 400 is held stationary with respect to the tissue surface at a donor or treatment site. In one exemplary embodiment of the present disclosure, the reciprocating arrangement 420 can be configured to translate the one or more needles 120 along a single direction to harvest fatty tissue along one or more rows. The exemplary apparatus 400 can optionally be translated over the tissue surface after such rows are formed, e.g., in a direction that is not parallel to the row, to remove or harvest fatty tissue from a larger area of the donor tissue site.
  • In further exemplary embodiments of the present disclosure, any of the exemplary apparatuses described herein can be configured to remove or harvest fatty tissue from a plurality of locations in any of a variety of spatial distributions, where each location can correspond to a single insertion and withdrawal of a single needle 120. For example, the fatty tissue can be removed or harvested from a plurality of locations configured as one or more rows, a regular two-dimensional pattern, a random distribution, or the like. Such exemplary patterns or spatial distributions of fat harvesting or removal sites can be generated based on, e.g., the configuration of such one or more needles 120 provided, the properties of the reciprocating arrangement 420, and/or the rate of translation of the exemplary apparatus 400 over the tissue surface.
  • In still further exemplary embodiments according to the present disclosure, the housing 430 can be configured to stretch skin or other tissue when the exemplary apparatus 400 is placed on the tissue to be treated. Such stretching can facilitate mechanical stabilization of the tissue, e.g., to reduce or avoid deformation of the tissue 350 while the needles 120 are inserted into and withdrawn from the tissue.
  • Such stretching of the tissue can also reduce the effective size of the disrupted region of the upper tissue layers formed by the exemplary apparatus 400 when the tissue is allowed to relax after treatment. Alternatively, the surface of the tissue to be treated can be stretched or stabilized using other techniques prior to and/or during treatment of the region in accordance with any of the exemplary embodiments described herein.
  • For example, a vacuum or suction source, e.g. a pump or a reservoir containing a fluid under low-pressure, can be provided in communication with the lumen of the needle 120, e.g., via a conduit in communication with the proximal end of the needles 120, in any of the exemplary embodiments described herein. Such low pressure, e.g., pressure less than atmospheric or ambient pressure, provided in the central lumen can facilitate the removal of the portions 230 of fatty tissue when the distal ends of the needles 120 are located within the subcutaneous fat layer 210. For example, the exemplary devices described herein can be configured to provide such a vacuum when the distal ends of the needles 120 are at least partially inserted into the fatty layer 210, and such vacuum may be applied as the needles 120 are withdrawn from the fatty layer 210. The strength of the vacuum can be selected to facilitate removal of the portions 230 of the fatty tissue within the distal portions of the needles 120, without causing a significant damage to the tissue surrounding the inserted needles 120.
  • In another exemplary embodiment of the present disclosure, an apparatus 500 can be provided that is adapted to remove fatty tissue is shown in FIG. 5A. The exemplary apparatus 500 can include a hollow needle 120 having a central lumen, where the size and shape of the needle 120 and distal end 110 thereof can be similar to those described herein above for the apparatus 100 shown in FIG. 1A. The apparatus 500 can include at least one pivoting flap 510 within the lumen of the needle 120. The flap 510 can be provided in the distal portion of the needle 120, e.g., and configured such that one portion of the flap 510 is pivotally connected to an inside wall of the needle 120 at a pivot point 520.
  • A stop arrangement 530 can be provided on another location on the inside wall of the needle 120 to constrain or prevent movement of the flap beyond a certain limit in a particular direction. For example, the stop arrangement 530 can be provided on an opposite side of the interior needle wall from the pivot point 520, as shown in FIG. 5A. In this exemplary configuration, the flap 510 can be free and configured to pivot upwards towards the proximal end of the needle 120, but may be constrained from pivoting towards the distal end 110 of the needle 120 past the stop arrangement 530. In further exemplary embodiments, the stop arrangement 530 can be provided at a location further up or down from the pivot point 520 (e.g., closer to or further from the distal end 110 of the needle 120). The stop arrangement 530 can also be provided on a lateral side of the interior needle wall, instead of diametrically opposite the pivot point 520 as illustrated in FIG. 5A. The stop arrangement 530 can be provided, e.g., by indenting an exterior portion of the needle wall such that the portion of the wall projects or bulges inward into the lumen of the needle 120. Alternatively, a small object can be affixed to the interior wall of the needle 120 to form the stop arrangement. Other techniques and configurations may also be used to provide the stop arrangement 530.
  • The exemplary apparatus 500 can be used to remove or harvest portions of fatty tissue in a manner similar to that described with respect to the exemplary apparatus 100 and shown in FIGS. 2A-2C. For example, the distal end 110 of the apparatus 500 can be advanced through the dermis 220 and into the subcutaneous fat layer 210, as shown in FIG. 5B. The exemplary apparatus 500 can be configured such that the distal end penetrates the dermis 220 with little or no portion of the dermal tissue entering the lumen of the needle 120. As the distal end 110 penetrates the fat layer 210, a portion 230 of softer fatty tissue may enter the lumen of the needle 120. The portion 230 can advance into the lumen, pushing the flap 510 upward and closer to the inner wall of the needle 120, as shown in FIG. 5B.
  • When the exemplary apparatus 500 is withdrawn from the skin, the fat portion 230 may be pulled downward slightly within the lumen, pulling or dragging the flap 510 with it towards the distal end 110 of the needle 120. For example, an edge of the flap 510 may ‘catch’ or penetrate the edge of the fat portion 230. As the flap 510 moves downward, it may partially or completely sever the fat portion 230 from the remainder of the subcutaneous fat below it, thereby retaining the fat portion 230 within the apparatus 500 as the apparatus 500 is withdrawn from the skin.
  • The flap 510 can be substantially round or moon shaped, e.g., such that it can block or occlude substantially the entire lumen when it is lowered against the stop arrangement 530. For example, an exemplary flap 510 is illustrated in FIG. 6A in a raised position (e.g., pivoted upward away from the distal end 110 of the needle 120). In this figure, the view of the flap 510 is from the distal end 110 of the needle 120 along the longitudinal axis thereof. In this exemplary configuration, the thin round flap is curved rather than planar, such that it can more closely conform to the shape of the inner wall of the needle 120 when pivoted upward as shown in FIG. 6A. Such a curved flap 510 can facilitate advancement of a fatty tissue 230 into the exemplary apparatus 500 by reducing or minimizing obstruction of the lumen when it is pivoted upward.
  • In a further exemplary embodiment, the flap 510 can be provided as a substantially rectangular shape or in another shape that does not fully occlude the lumen when the flap 510 is pivoted to a lowered position, e.g., resting against the stop arrangement 530, as shown in a view of an end the needle 120 in FIG. 6B. This exemplary flap shape can also be curved, similar to the flap 510 shown in FIG. 6A, to reduce obstruction of the lumen when the flap 510 is pivoted in an upward position.
  • Any of the features of the exemplary apparatus 500 can be used in conjunction with the other exemplary embodiments described herein. For example, one or more needles 120 that include a pivoting flap 510, and the stop arrangement 530 can be affixed to a substrate 330, e.g., as shown in FIGS. 3A-3C. One or more such needles 120 that include a pivoting flap 510 can also be coupled to a reciprocating arrangement 420 as illustrated in FIG. 4.
  • In a still further exemplary embodiment of the present disclosure, an apparatus 700 can be provided that includes one or more barbs 710 provided on the interior wall of the hollow needle 120. The barb 710 can be angled upward, e.g., sloping away from the distal end 110 of the needle 120, as shown in FIG. 7. Such exemplary configuration can facilitate an advancement of fatty tissue into the lumen as the apparatus 700 is advanced into the fat layer 210, while promoting retention of a fat portion 230 within the lumen as the apparatus 700 is withdrawn from the skin. Such barbs can be formed, e.g., by deforming the outer wall of the needle 120 inward at an angle at one or more locations, by attaching pre-formed barbs 710 to the inside wall of the needle 120, or by other techniques. The features of the exemplary apparatus 700 can be used in conjunction with the other exemplary embodiments described herein.
  • For example, a plurality of needles 120 that include one or more barbs 710 can be affixed to a substrate 330, e.g., as shown in FIGS. 3A-3C. One or more such needles 120 can also be coupled to a reciprocating arrangement 420 as illustrated in FIG. 4.
  • In further exemplary embodiments of the present disclosure, an apparatus 800 can be provided that includes a cutting arrangement 810 provided in a distal portion of the lumen of the hollow needle 120, as shown in FIG. 8A. The apparatus 800 can facilitate mechanical disruption of fatty tissue 210 without removing a substantial amount thereof from the surrounding tissue. As with the other exemplary embodiments described herein, the exemplary apparatus 800 can affect tissue in the fat layer 210 without significantly affecting or damaging the overlying dermal layer 220 when the apparatus 800 is withdrawn from the skin. For example, a generation of mechanical disruption in the fat layer 210 can lead to cellular damage and/or death. The damaged or dead cells may then be resorbed by the body over time, reducing the amount of fat present in the treated area.
  • The cutting arrangement 810 can include, for example, one or more thin wires, blades, or the like that extend across a portion of the lumen of the needle 120. End views of two exemplary cutting arrangements 810 are shown in FIGS. 8B and 8C. The cutting arrangement 810 in FIGS. 8B and 8C can include a plurality of thin wires or blades attached to the inner wall of the needle 120, and traversing a portion of the lumen. Other configurations of the cutting arrangement 810 can be provided in further embodiments of the disclosure.
  • The exemplary apparatus 800 can be inserted into skin tissue and then withdrawn as described herein, for example, with respect to other exemplary embodiments of the present disclosure. Such exemplary insertion and withdrawal of the exemplary apparatus 800 can cause a portion of the fat layer 210 to enter the lumen of the needle 120, with the overlying dermis layer 220 remaining substantially unaffected after the apparatus 800 is fully withdrawn. The fat tissue that enters the lumen may be damaged by the cutting arrangement 810 during the insertion and withdrawal procedures. The exemplary apparatus can may be partially withdrawn from the skin and then advanced again a plurality of times before fully withdrawing it from the skin. For example, the exemplary apparatus 800 can be withdrawn until the distal end 110 is proximal to the lower portion of the dermal layer 220, and then re-advanced deeper into the fat layer 210. Such repeated cycles can create a greater degree of local damage to the fat tissue. Little or no fat may remain within the lumen when the apparatus 800 is withdrawn from the skin. However, the damaged fat cells may die and be resorbed by the body over time.
  • The features of the exemplary apparatus 800 can be used in conjunction with the other exemplary embodiments described herein. For example, a plurality of needles 120 that include a cutting arrangement 810 can be affixed to a substrate 330, e.g., as shown in FIGS. 3A-3C. One or more such needles 120 can also be coupled to a reciprocating arrangement 420 as illustrated in FIG. 4, to generate damage in a broader region of the fat layer 210.
  • The exemplary apparatus 800 can include a plurality of needles 120 having different types of fat-disrupting arrangements as described herein. For example, different ones of the needles 120 may include a protrusion 130, a pivoting flap 510, or a cutting arrangement 810. In another exemplary embodiment, a plurality of needles 120 containing different types of such fat disruption arrangements 130, 510, 810 can be mechanically coupled to a reciprocating arrangement 420 as described herein. Different ones of the needles 120 in such multi-needle devices can optionally have different lengths, which can facilitate harvesting or damaging of fat at different depths within the fat layer 210.
  • In further exemplary embodiments of the present disclosure, a vibrating arrangement can be mechanically coupled to any exemplary apparatus described herein. Inducing vibration in the needles 120 can facilitate detachment of fat portions 230 from the surrounding tissue and/or can generate a greater mechanical damage by a cutting arrangement provided in the needle 120.
  • The exemplary methods and devices described herein can be used for a variety of purposes, for example, to remove small portions of the fatty tissue for cosmetic purposes, to harvest stem cells that may be present in regions of the subcutaneous fat layer to harvest fatty tissue for implantation in other portions of the body for cosmetic purposes, and/or to generate mechanical damage of fat cells to promote cell death and resorption of damaged fat by the body.
  • The foregoing merely illustrates the principles of the present disclosure. Various modifications and alterations to the described embodiments will be apparent to those skilled in the art in view of the teachings herein. It will thus be appreciated that those skilled in the art will be able to devise numerous techniques which, although not explicitly described herein, embody the principles of the present disclosure and are thus within the spirit and scope of the present disclosure. All patents and publications cited herein are incorporated herein by reference in their entireties.

Claims (32)

1. An apparatus for affecting subcutaneous fatty tissue, comprising:
at least one hollow needle arrangement comprising a central lumen; and
at least one protrusion provided along at least one portion of an interior wall of the needle arrangement and proximal to a distal end of the at least one needle arrangement,
wherein the at least one protrusion is structured to contact a portion of the subcutaneous fatty tissue when the at least one hollow needle arrangement is inserted into skin tissue such that at least a distal portion thereof is located within the subcutaneous fatty tissue.
2. The apparatus of claim 1, wherein the distal end of the at least one needle arrangement is configured to be inserted into skin tissue, pass through a dermal layer thereof, and prevent a significant portion of the dermal tissue from entering the central lumen.
3. The apparatus of claim 2, wherein the distal end of the at least one needle arrangement is provided as an angled tip, and wherein an angle of the tip is between about 30 degrees and about 50 degrees.
4. (canceled)
5. The apparatus of claim 2, wherein a diameter of the central lumen of the at least one needle arrangement is about 1 mm.
6. (canceled)
7. The apparatus of claim 2, wherein a size of the at least one needle arrangement is between 14 gauge and 19 gauge.
8. (canceled)
9. The apparatus of claim 1, further comprising a reciprocating arrangement configured to repeatedly insert and withdraw the at least one needle arrangement from a skin tissue.
10. The apparatus of claim 9, wherein the reciprocating arrangement comprises an actuator and a control arrangement.
11. The apparatus of claim 1, wherein the at least one protrusion is configured to retain at least one sample of the subcutaneous fatty tissue within the central lumen when the at least one needle arrangement is withdrawn from the skin tissue.
12. The apparatus of claim 11, wherein the at least one protrusion occludes less than about 50% of the cross-sectional area of the central lumen.
13. (canceled)
14. The apparatus of claim 11, wherein the at least one needle arrangement comprises a plurality of the hollow needle arrangements, and wherein the hollow needle arrangements are mechanically coupled to a substrate.
15. The apparatus of claim 11, wherein the at least one protrusion comprises a flap pivotally affixed to the portion of the interior wall.
16. (canceled)
17. (canceled)
18. (canceled)
19. (canceled)
20. The apparatus of claim 11, wherein the at least one protrusion comprises an angled barb directed toward the proximal end of the needle arrangement.
21. The apparatus of claim 20, wherein the at least one needle arrangement comprises a plurality of the hollow needle arrangements, and wherein the hollow needle arrangements are mechanically coupled to a substrate.
22. The apparatus of claim 1, wherein the at least one protrusion is configured to generate mechanical damage in the portion of the subcutaneous fatty tissue.
23. The apparatus of claim 22, wherein the at least one protrusion comprises a wire extending across at least a portion of the lumen.
24. (canceled)
25. (canceled)
26. The apparatus of claim 22, wherein the at least one needle arrangement comprises a plurality of the hollow needle arrangements, and wherein the hollow needle arrangements are mechanically coupled to a substrate.
27. The apparatus of claim 10, further comprising a low-pressure source provided in communication with the central lumen.
28. (canceled)
29. (canceled)
30. A method for affecting subcutaneous fatty tissue, comprising:
inserting at least one hollow needle arrangement into a skin tissue until at least a distal portion of the needle arrangement is located within the subcutaneous fatty tissue; and
withdrawing the at least one hollow needle arrangement from the skin tissue;
wherein the at least one hollow needle arrangement is configured to substantially prevent dermal tissue from entering a lumen of the at least one hollow needle arrangement and to allow a portion of the subcutaneous fatty tissue to enter the lumen of the at least one hollow needle arrangement;
wherein the at least one hollow needle arrangement comprises at least one protrusion provided along at least one portion of an interior wall of the needle arrangement; and
wherein the at least one protrusion is configured to affect the portion of the subcutaneous fatty tissue.
31. The method of claim 30, further comprising:
removing a sample of the portion of the fatty tissue from the skin tissue when the at least one hollow needle arrangement is withdrawn from the skin tissue.
32. The method of claim 30, further comprising:
Generating mechanical damage to the portion of the fatty tissue when the at least one hollow needle arrangement is inserted into the skin tissue.
US14/233,985 2011-07-21 2012-07-20 Method and apparatus for damage and removal of fat Abandoned US20140277055A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/233,985 US20140277055A1 (en) 2011-07-21 2012-07-20 Method and apparatus for damage and removal of fat

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161510242P 2011-07-21 2011-07-21
US14/233,985 US20140277055A1 (en) 2011-07-21 2012-07-20 Method and apparatus for damage and removal of fat
PCT/US2012/047708 WO2013013196A1 (en) 2011-07-21 2012-07-20 Method and apparatus for damage and removal of fat

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2012/047708 A-371-Of-International WO2013013196A1 (en) 2011-07-21 2012-07-20 Method and apparatus for damage and removal of fat
PCT/US2014/047708 A-371-Of-International WO2015013341A1 (en) 2013-07-22 2014-07-22 Compositions, methods and kits for diagnosing and treating cd206 expressing cell-related disorders

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/916,020 Division US11337720B2 (en) 2011-07-21 2018-03-08 Method and apparatus for damage and removal of fat

Publications (1)

Publication Number Publication Date
US20140277055A1 true US20140277055A1 (en) 2014-09-18

Family

ID=47558515

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/233,985 Abandoned US20140277055A1 (en) 2011-07-21 2012-07-20 Method and apparatus for damage and removal of fat
US15/916,020 Active 2033-11-19 US11337720B2 (en) 2011-07-21 2018-03-08 Method and apparatus for damage and removal of fat
US17/659,945 Pending US20230065372A1 (en) 2011-07-21 2022-04-20 Method and Apparatus for Damage and Removal of Fat

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/916,020 Active 2033-11-19 US11337720B2 (en) 2011-07-21 2018-03-08 Method and apparatus for damage and removal of fat
US17/659,945 Pending US20230065372A1 (en) 2011-07-21 2022-04-20 Method and Apparatus for Damage and Removal of Fat

Country Status (11)

Country Link
US (3) US20140277055A1 (en)
EP (2) EP2734249B1 (en)
AU (2) AU2012283861B2 (en)
BR (1) BR112014001248B1 (en)
CA (1) CA2846229C (en)
DK (1) DK2734249T3 (en)
ES (2) ES2693162T3 (en)
HU (1) HUE042454T2 (en)
IL (1) IL230573A0 (en)
PT (1) PT2734249T (en)
WO (1) WO2013013196A1 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160015416A1 (en) * 2014-07-15 2016-01-21 The General Hospital Corporation Method and Apparatus for Tissue Copying and Grafting
WO2016128976A1 (en) * 2015-02-10 2016-08-18 Shemi Daniela Efficient subcutaneous tissue treatment
US20180000504A1 (en) * 2013-12-06 2018-01-04 Edward KNOWLTON Pixel array medical systems, devices and methods
US10251792B2 (en) 2013-02-20 2019-04-09 Cytrellis Biosystems, Inc. Methods and devices for skin tightening
US10278677B2 (en) 2011-01-28 2019-05-07 The General Hospital Corporation Apparatus and method for tissue biopsy
US10327800B2 (en) 2011-01-28 2019-06-25 The General Hospital Corporation Method and apparatus for skin resurfacing
US10555754B2 (en) 2013-08-09 2020-02-11 Cytrellis Biosystems, Inc. Methods and apparatuses for skin treatment using non-thermal tissue ablation
US10661063B2 (en) 2010-12-17 2020-05-26 Srgi Holdings, Llc Systems, devices and methods for fractional resection, fractional skin grafting, fractional scar reduction and fractional tattoo removal
US10695546B2 (en) 2010-12-17 2020-06-30 Srgi Holdings, Llc Systems, devices and methods for fractional resection, fractional skin grafting, fractional scar reduction and fractional tattoo removal
US10702684B2 (en) 2010-12-17 2020-07-07 Srgi Holdings, Llc Systems, devices and methods for fractional resection, fractional skin grafting, fractional scar reduction and fractional tattoo removal
US10736653B2 (en) 2013-12-06 2020-08-11 Srgi Holdings, Llc Pixel array medical systems, devices and methods
US10773064B2 (en) 2009-12-18 2020-09-15 Srgi Holdings, Llc Skin treatment device and methods
US10772658B2 (en) 2010-12-17 2020-09-15 Srgi Holdings, Llc Pixel array medical systems, devices and methods
US10953143B2 (en) 2013-12-19 2021-03-23 Cytrellis Biosystems, Inc. Methods and devices for manipulating subdermal fat
US11000310B2 (en) 2010-12-17 2021-05-11 Srgi Holdings, Llc Pixel array medical systems, devices and methods
US11051844B2 (en) 2010-12-17 2021-07-06 Srgi Holdings, Llc Pixel array medical devices and methods
US11103275B2 (en) 2010-12-17 2021-08-31 Srgi Holdings, Llc Pixel array medical systems, devices and methods
US11116540B2 (en) 2010-12-17 2021-09-14 Srgi Holdings, Llc Pixel array medical devices and methods
US11166743B2 (en) 2016-03-29 2021-11-09 Cytrellis Biosystems, Inc. Devices and methods for cosmetic skin resurfacing
US11229452B2 (en) 2013-12-06 2022-01-25 Srgi Holdings, Llc Pixel array medical systems, devices and methods
US11278309B2 (en) 2010-12-17 2022-03-22 Srgi Holdings, Llc Pixel array medical systems, devices and methods
EP3981337A1 (en) * 2015-09-27 2022-04-13 Follica, Inc. Needling device
US11324534B2 (en) 2014-11-14 2022-05-10 Cytrellis Biosystems, Inc. Devices and methods for ablation of the skin
US11337720B2 (en) 2011-07-21 2022-05-24 The General Hospital Corporation Method and apparatus for damage and removal of fat
US11464954B2 (en) 2016-09-21 2022-10-11 Cytrellis Biosystems, Inc. Devices and methods for cosmetic skin resurfacing
US11490952B2 (en) 2015-08-31 2022-11-08 Srgi Holdings, Llc Pixel array medical devices and methods
US11564706B2 (en) 2019-10-28 2023-01-31 Srgi Holdings, Llc Pixel array medical systems, devices and methods
US11751904B2 (en) 2015-08-31 2023-09-12 Srgi Holdings, Llc Pixel array medical systems, devices and methods
US11871959B2 (en) 2010-12-17 2024-01-16 Srgi Holdings, Llc Pixel array medical systems, devices and methods
US11937846B2 (en) 2013-12-06 2024-03-26 Srgi Holdings Llc Pixel array medical systems, devices and methods

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10335190B2 (en) 2013-12-06 2019-07-02 Srgi Holdings, Llc Pixel array medical systems, devices and methods
US10485606B2 (en) 2010-12-17 2019-11-26 Srgi Holdings Llc Pixel array medical devices and methods
MX349915B (en) 2011-01-28 2017-08-18 Massachusetts Gen Hospital Method and apparatus for discontinuous dermabrasion.
SG11201504495XA (en) 2012-12-06 2015-07-30 Srgi Holdings Llc Pixel array medical devices and methods
CA2910687A1 (en) 2013-05-03 2014-11-06 Cytrellis Biosystems, Inc. Microclosures and related methods for skin treatment
CA3037715A1 (en) * 2016-09-21 2018-03-29 Cytrellis Biosystems, Inc. Rapid skin treatment using microcoring
CN109730751B (en) * 2019-03-06 2019-11-12 济民健康管理股份有限公司 One kind taking fatty surgical device

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3683892A (en) * 1970-07-13 1972-08-15 Battelle Development Corp Device for the extraction of core samples
US4649918A (en) * 1980-09-03 1987-03-17 Custom Medical Devices, Inc. Bone core removing tool
US4903709A (en) * 1988-09-21 1990-02-27 Skinner Bruce A J Biopsy method
US5922000A (en) * 1997-11-19 1999-07-13 Redfield Corp. Linear punch
US6022324A (en) * 1998-01-02 2000-02-08 Skinner; Bruce A. J. Biopsy instrument
US6264618B1 (en) * 1999-01-28 2001-07-24 Minrad, Inc. Sampling device and method of retrieving a sample
US6461369B1 (en) * 1999-08-05 2002-10-08 Jung Chul Kim Hair transplanter
US20030158521A1 (en) * 2002-02-21 2003-08-21 Ameri Darius M. Trocar placement guide needle
US20040073195A1 (en) * 1990-12-14 2004-04-15 Cucin Robert L. Power-assisted tissue-aspiration instrument system employing an electronically-controlled air-flow valve assembly within an external instrument controller
US20050165329A1 (en) * 2004-01-22 2005-07-28 Reflux Corporation Multiple biopsy collection device
US20060161179A1 (en) * 2004-12-23 2006-07-20 Kachenmeister Robert M Follicular transplantation device and method
US20070060888A1 (en) * 2005-09-06 2007-03-15 Kerberos Proximal Solutions, Inc. Methods and apparatus for assisted aspiration
US20070078473A1 (en) * 2005-09-30 2007-04-05 Restoration Robotics, Inc. Methods of harvesting and implanting follicular units using a coaxial tool
US20070198000A1 (en) * 2006-02-21 2007-08-23 Olympus Medical Systems Corp. Overtube and operative procedure via bodily orifice
US20070213634A1 (en) * 2006-02-24 2007-09-13 Boston Scientific Scimed, Inc. Obtaining a tissue sample
US20080045858A1 (en) * 2003-08-07 2008-02-21 Marco Tessitore Device for Transcutaneous Biopsy of Tissues
US20080234699A1 (en) * 2007-03-19 2008-09-25 Oostman Jr Clifford A Biological unit removal tools with concentric tubes
US20090227895A1 (en) * 2008-03-04 2009-09-10 Goldenberg Alec S Biopsy needle
US20100082042A1 (en) * 2008-09-30 2010-04-01 Drews Michael J Biological unit removal tool with occluding member
US20100185116A1 (en) * 2009-01-19 2010-07-22 King Saud University Punch biopsy device
US20110105949A1 (en) * 2008-06-25 2011-05-05 Neodynamics Ab Core biopsy arrangement
US20110245834A1 (en) * 2010-03-30 2011-10-06 S.U.A. Martin Gmbh & Co. Kg Surgical punch

Family Cites Families (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3001522A (en) 1957-12-26 1961-09-26 Silverman Irving Biopsy device
US3867942A (en) * 1972-06-08 1975-02-25 Aseff Jr Taman M Motor-operated multiple hair transplant cutter tool
US3929123A (en) 1973-02-07 1975-12-30 Khosrow Jamshidi Muscle biopsy needle
US4108096A (en) 1977-05-16 1978-08-22 The Singer Company Needle bar drive stabilizing arrangement
US4167179A (en) * 1977-10-17 1979-09-11 Mark Kirsch Planar radioactive seed implanter
US4274419A (en) 1979-10-19 1981-06-23 Quinton Instrument Co. Skin preparation device and method used in the application of medical electrodes
US4476864A (en) * 1982-09-29 1984-10-16 Jirayr Tezel Combined multiple punch and single punch hair transplant cutting device
SU1426740A1 (en) 1987-01-22 1988-09-30 Специализированное конструкторское бюро по механизации и автоматизации слесарно-сборочных работ Arrangement for press fitting needles into cannula
US4865026A (en) 1987-04-23 1989-09-12 Barrett David M Sealing wound closure device
SU1801391A1 (en) 1990-08-09 1993-03-15 Arkhangelskij G Med I Device for biopsy analysis
US5749895A (en) 1991-02-13 1998-05-12 Fusion Medical Technologies, Inc. Method for bonding or fusion of biological tissue and material
DE4211889A1 (en) * 1991-08-16 1993-07-15 Hans Henning Spitalny Surgical extraction and transplant instrument
WO1993022971A1 (en) 1992-05-11 1993-11-25 Boston Scientific Corporation Multiple needle biopsy instrument
US5885211A (en) 1993-11-15 1999-03-23 Spectrix, Inc. Microporation of human skin for monitoring the concentration of an analyte
US5417683A (en) * 1994-07-13 1995-05-23 Shiao; I-Shen Mini-graft hair implanting device for implanting multiple clumps of hair follicles at one time
US5458112A (en) 1994-08-15 1995-10-17 Arrow Precision Products, Inc. Biliary biopsy device
US5615690A (en) 1995-02-15 1997-04-01 Symbiosis Corporation Tissue core biopsy cannula
US5643308A (en) * 1995-02-28 1997-07-01 Markman; Barry Stephen Method and apparatus for forming multiple cavities for placement of hair grafts
RU2119304C1 (en) 1996-07-01 1998-09-27 Научно-исследовательский институт новых медицинских технологий Минздравмедпрома Российской Федерации Method of puncture biopsy and needle for its embodiment
US6733496B2 (en) 2001-06-06 2004-05-11 Oratec Interventions, Inc. Intervertebral disc device employing flexible probe
US6432098B1 (en) 1997-09-04 2002-08-13 The Procter & Gamble Company Absorbent article fastening device
US6251097B1 (en) 1997-09-04 2001-06-26 The Procter & Gamble Company Absorbent article fastening device
AU3908099A (en) 1997-12-05 1999-06-28 Thermolase Corporation Skin enhancement using laser light
US6562037B2 (en) 1998-02-12 2003-05-13 Boris E. Paton Bonding of soft biological tissues by passing high frequency electric current therethrough
US6669694B2 (en) 2000-09-05 2003-12-30 John H. Shadduck Medical instruments and techniques for highly-localized thermally-mediated therapies
RU11679U1 (en) 1998-10-16 1999-11-16 Ившин Владислав Геннадьевич TOOL SET FOR ASPIRATION BIOPSY
US6211598B1 (en) 1999-09-13 2001-04-03 Jds Uniphase Inc. In-plane MEMS thermal actuator and associated fabrication methods
EP1224949A1 (en) 1999-10-18 2002-07-24 Hisamitsu Pharmaceutical Co. Inc. Device and electrode for electroporation
US6241739B1 (en) 1999-11-12 2001-06-05 Altair Instruments, Inc. Microdermabrasion device and method of treating the skin surface
AU2001249984B2 (en) 2000-02-11 2005-05-26 The General Hospital Corporation Photochemical tissue bonding
US7073510B2 (en) 2000-02-11 2006-07-11 The General Hospital Corporation Photochemical tissue bonding
US6241687B1 (en) 2000-02-18 2001-06-05 Ethicon Endo-Surgery, Inc. Method of use for a biopsy instrument with breakable sample segments
US6494844B1 (en) * 2000-06-21 2002-12-17 Sanarus Medical, Inc. Device for biopsy and treatment of breast tumors
US6795728B2 (en) * 2001-08-17 2004-09-21 Minnesota Medical Physics, Llc Apparatus and method for reducing subcutaneous fat deposits by electroporation
IT1315053B1 (en) 2000-11-10 2003-01-27 Thermo Med 2000 Kft NEEDLE-ELECTRODE WITH RADIOFREQUENCY ACTIVE FILAMENT
US6419641B1 (en) 2000-11-28 2002-07-16 Promex, Llc Flexible tip medical instrument
EP1278061B1 (en) 2001-07-19 2011-02-09 Sony Deutschland GmbH Chemical sensors from nanoparticle/dendrimer composite materials
US6709408B2 (en) 2001-08-09 2004-03-23 Biopsy Sciences, Llc Dual action aspiration biopsy needle
AU2002350126B2 (en) 2001-11-05 2006-06-08 The Procter & Gamble Company Articles comprising impregnated thermoplastic members and method of manufacturing the articles
US6669618B2 (en) 2001-12-21 2003-12-30 The Procter & Gamble Company Method of dynamically pre-fastening a disposable absorbent article having a slot-and-tab fastening system
US8209006B2 (en) 2002-03-07 2012-06-26 Vgx Pharmaceuticals, Inc. Constant current electroporation device and methods of use
WO2003079907A1 (en) * 2002-03-20 2003-10-02 Board Of Regents, The University Of Texas System Biopsy needle
AU2003214623A1 (en) 2002-03-27 2003-10-08 Hadasit Medical Research Services And Development Ltd. Controlled laser treatment for non-invasive tissue alteration, treatment and diagnostics with minimal collateral damage
IL164947A (en) 2002-05-09 2009-06-15 Hemoteq Ag Medical products comprising a haemocompatible coating and methods for their production
US20030233082A1 (en) 2002-06-13 2003-12-18 The Procter & Gamble Company Highly flexible and low deformation fastening device
RU28328U1 (en) 2002-08-01 2003-03-20 Лун-Сюн ЧЭНЬ ADJUSTABLE NEEDLE AND FUSE
ITBO20020083U1 (en) 2002-09-09 2004-03-10 Paolo Avaltroni NEEDLE IMPROVED INSTRUMENT FOR THE COLLECTION OF BIOPTIC OSTEOMIDOLLAR SAMPLES
RU2308873C2 (en) 2003-01-21 2007-10-27 МЕТЕК С.р.Л. Retractor for carrying out operations on rectal artery
CN1572271A (en) 2003-06-10 2005-02-02 普莱姆·美迪泰克公司 Skincare apparatus
AT413790B (en) 2003-08-07 2006-06-15 Frass Michael Dr DEVICE FOR NEEDLE BIOPSIA
US7419472B2 (en) 2003-09-30 2008-09-02 Ethicon Endo-Surgery, Inc. Biopsy instrument with internal specimen collection mechanism
US20050209567A1 (en) 2003-10-27 2005-09-22 Sibbitt Wilmer L Jr Stress-reducing medical devices
US7514399B2 (en) 2003-11-05 2009-04-07 Photobiomed Corporation Bonding tissues and cross-linking proteins with naphthalimide compounds
US8535299B2 (en) 2004-01-23 2013-09-17 Joseph Giovannoli Method and apparatus for skin reduction
CA2554504C (en) * 2004-01-23 2009-04-07 Joseph Giovannoli Method and apparatus for excising skin
US7820875B2 (en) 2004-03-29 2010-10-26 The Procter & Gamble Company Disposable absorbent articles being adaptable to wearer's anatomy
US8568382B2 (en) 2004-03-29 2013-10-29 The Procter & Gamble Company Disposable absorbent articles having co-elongation
US20050245952A1 (en) 2004-04-29 2005-11-03 Feller Alan S Apparatus and method for dermal punch and follicular unit circumferential incision
DE202004010659U1 (en) 2004-07-07 2004-10-07 Kohr, Christine Skin perforation device, for creating multiple perforations in the outer skin layer, comprises a needle, needle plate and needle plate guidance device which is used with a stroke drive to create multiple perforations in the skin
US20060064031A1 (en) 2004-09-17 2006-03-23 Miller Stuart H Biopsy needle
EP1830713B1 (en) 2004-11-29 2011-03-16 Granit Medical Innovations, LLC Rotating fine needle for core tissue sampling
US20080300507A1 (en) * 2005-01-28 2008-12-04 The General Hospital Corporation Biopsy Needle
US20080009802A1 (en) 2005-04-25 2008-01-10 Danilo Lambino Method of treating acne with stratum corneum piercing device
US20060253078A1 (en) 2005-04-25 2006-11-09 Wu Jeffrey M Method of treating skin disorders with stratum corneum piercing device
US7850656B2 (en) 2005-04-29 2010-12-14 Warsaw Orthopedic, Inc. Devices and methods for delivering medical agents
US8376984B2 (en) 2005-07-14 2013-02-19 Terry L. James Apparatus, system, and method to deliver optimal elements in order to enhance the aesthetic appearance of the skin
EP1915116B1 (en) 2005-08-01 2014-04-02 Hawk Medical Technologies Ltd. Eradication of pigmentation and scar tissue
US20070038181A1 (en) 2005-08-09 2007-02-15 Alexander Melamud Method, system and device for delivering a substance to tissue
WO2007024038A1 (en) 2005-08-23 2007-03-01 Konkuk University Industrial Cooperation Corp. Electro active material actuator embedded with interdigitated electrodes
EP1933788B1 (en) 2005-08-30 2009-12-23 Azienda Usl 4 Prato Preparing ocular flaps for laser welding
US9486274B2 (en) * 2005-09-07 2016-11-08 Ulthera, Inc. Dissection handpiece and method for reducing the appearance of cellulite
RU50799U1 (en) * 2005-09-28 2006-01-27 МЛПУЗ "Онкологический диспансер г. Ростова-на-Дону" DEVICE FOR PUNCH BIOPSY
US7962192B2 (en) 2005-09-30 2011-06-14 Restoration Robotics, Inc. Systems and methods for aligning a tool with a desired location or object
US20070179455A1 (en) 2005-12-16 2007-08-02 David Geliebter Needle constructed with a transparent or translucent material
US10799285B2 (en) * 2005-12-22 2020-10-13 Inmode Ltd. Skin rejuvenation resurfacing device and method of use
US20070156161A1 (en) 2005-12-29 2007-07-05 Weadock Kevin S Method and device for repositioning tissue
CN101394793B (en) 2005-12-30 2013-06-12 医疗电子实验室有限公司 Kit for taking biopsies, autopsies, execisions, and resections and methods thereof
KR20080088598A (en) 2006-01-12 2008-10-02 나노패스 테크놀러지스 엘티디. Device for superficial abrasive treatment of the skin
AU2007245098A1 (en) 2006-03-31 2007-11-08 Peak Surgical, Inc. Devices and methods for tissue welding
US20070249960A1 (en) * 2006-04-21 2007-10-25 The Cleveland Clinic Foundation Biopsy punch
US8246611B2 (en) 2006-06-14 2012-08-21 Candela Corporation Treatment of skin by spatial modulation of thermal heating
US10517640B2 (en) * 2006-07-06 2019-12-31 Follicular Technologies, Llc Micro-implanter for hair follicle
RU58359U1 (en) 2006-08-01 2006-11-27 Марият Мурадалиевна Мухина WRINKLE AND LIFTING FACIAL AND / OR BODY NEEDLE NEEDLE
CN201005966Y (en) 2006-10-11 2008-01-16 吴江市云龙医疗器械有限公司 Beauty massage device
HUE042044T2 (en) 2006-10-17 2019-06-28 Inovio Pharmaceuticals Inc Electroporation devices for electroporation of cells in mammals
US20080132979A1 (en) 2006-11-30 2008-06-05 Medtronic, Inc. Method of implanting a medical lead
GB0715429D0 (en) 2007-08-08 2007-09-19 Smith & Nephew Fat pad fragments
KR100819468B1 (en) * 2007-05-31 2008-04-08 (주)엠큐어 Multi injection microneedle theraphy system
US20080312648A1 (en) * 2007-06-12 2008-12-18 Darion Peterson Fat removal and sculpting device
US7722550B2 (en) * 2007-07-26 2010-05-25 Mcclellan W Thomas Biopsy needle with different cross-sectional shapes and associated trap doors
CA2941187C (en) 2007-08-14 2021-03-02 Fred Hutchinson Cancer Research Center Needle array assembly and method for delivering therapeutic agents
US20100121307A1 (en) 2007-08-24 2010-05-13 Microfabrica Inc. Microneedles, Microneedle Arrays, Methods for Making, and Transdermal and/or Intradermal Applications
US8211134B2 (en) * 2007-09-29 2012-07-03 Restoration Robotics, Inc. Systems and methods for harvesting, storing, and implanting hair grafts
WO2009072711A2 (en) 2007-12-07 2009-06-11 Myeong In Lee Disk needle roller
KR100902133B1 (en) * 2008-01-14 2009-06-10 최종수 Multi needle
WO2009099988A2 (en) * 2008-02-01 2009-08-13 The General Hospital Corporation Method and apparatus for fat removal
US8382660B2 (en) 2008-03-13 2013-02-26 Olympus Medical Systems Corp. Endoscope system having an endoscope and a tissue-collecting apparatus
KR20100135863A (en) 2008-04-01 2010-12-27 더 제너럴 하스피탈 코포레이션 Method and apparatus for cooling biological tissue
WO2009146072A1 (en) 2008-04-01 2009-12-03 The General Hospital Corporation Method and apparatus for tissue expansion
KR101912816B1 (en) 2008-04-01 2018-10-29 더 제너럴 하스피탈 코포레이션 Apparatus for tissue grafting
WO2009137288A2 (en) 2008-05-08 2009-11-12 Mayo Foundation For Medical Education And Research Biopsy devices
CN101347346B (en) 2008-06-26 2010-06-02 张震 Pressure regulation instrument of fine needle puncture
CN103083795A (en) 2008-09-03 2013-05-08 迪特斯实验室株式会社 Skin stimulator
US20100160822A1 (en) 2008-12-18 2010-06-24 Parihar Shailendra K Biopsy Device with Detachable Needle
KR101060722B1 (en) 2009-01-12 2011-08-31 이희영 Plastic injection needle with wrinkle removal surgeon
EP2730313A1 (en) 2009-02-25 2014-05-14 Syneron Medical Ltd. Electrical skin rejuvenation
US8480592B2 (en) 2009-12-23 2013-07-09 C. R. Bard, Inc. Biopsy probe mechanism having multiple echogenic features
EP3892213B1 (en) 2010-05-07 2023-10-11 The General Hospital Corporation Apparatus for tissue grafting and copying
US8491497B2 (en) 2010-05-13 2013-07-23 Ethicon Endo-Surgery, Inc. Method and apparatus for morcellating tissue
US8128639B2 (en) 2010-05-20 2012-03-06 Restoration Robotics, Inc. Tools and methods for harvesting follicular units
US20110313345A1 (en) * 2010-05-21 2011-12-22 Sound Surgical Technologies Llc Ultrasonic device for harvesting adipose tissue
EP2627400B1 (en) 2010-10-17 2016-04-06 Syneron Medical Ltd. A disposable patch for personal aesthetic skin treatment
MX349915B (en) 2011-01-28 2017-08-18 Massachusetts Gen Hospital Method and apparatus for discontinuous dermabrasion.
JP5944925B2 (en) 2011-01-28 2016-07-05 ザ ジェネラル ホスピタル コーポレイション Method and apparatus for resurfacing skin
WO2012103483A2 (en) 2011-01-28 2012-08-02 The General Hospital Corporation Apparatus and method for tissue biopsy
BR112013022525B1 (en) 2011-03-03 2020-09-24 Neodyne Biosciences, Inc. SKIN TREATMENT DEVICES
US20120253333A1 (en) 2011-04-01 2012-10-04 Garden Jerome M Combination Laser Treatment of Skin Conditions
US9468459B2 (en) 2011-04-20 2016-10-18 Kci Licensing, Inc. Skin graft devices and methods
CA2846229C (en) 2011-07-21 2019-08-27 The General Hospital Corporation Method and apparatus for damage and removal of fat
US20140296741A1 (en) 2011-07-21 2014-10-02 The General Hospital Corporation Method and apparatus for subsurface tissue sampling
CA2910687A1 (en) 2013-05-03 2014-11-06 Cytrellis Biosystems, Inc. Microclosures and related methods for skin treatment
BR112016002695B1 (en) 2013-08-09 2022-09-20 Cytrellis Biosystems, Inc DEVICE WITH AN ABLATIVE DEVICE, A REMOVAL DEVICE AND A POSITIONING DEVICE

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3683892A (en) * 1970-07-13 1972-08-15 Battelle Development Corp Device for the extraction of core samples
US4649918A (en) * 1980-09-03 1987-03-17 Custom Medical Devices, Inc. Bone core removing tool
US4903709A (en) * 1988-09-21 1990-02-27 Skinner Bruce A J Biopsy method
US20040073195A1 (en) * 1990-12-14 2004-04-15 Cucin Robert L. Power-assisted tissue-aspiration instrument system employing an electronically-controlled air-flow valve assembly within an external instrument controller
US5922000A (en) * 1997-11-19 1999-07-13 Redfield Corp. Linear punch
US6022324A (en) * 1998-01-02 2000-02-08 Skinner; Bruce A. J. Biopsy instrument
US6264618B1 (en) * 1999-01-28 2001-07-24 Minrad, Inc. Sampling device and method of retrieving a sample
US6461369B1 (en) * 1999-08-05 2002-10-08 Jung Chul Kim Hair transplanter
US20030158521A1 (en) * 2002-02-21 2003-08-21 Ameri Darius M. Trocar placement guide needle
US20080045858A1 (en) * 2003-08-07 2008-02-21 Marco Tessitore Device for Transcutaneous Biopsy of Tissues
US20050165329A1 (en) * 2004-01-22 2005-07-28 Reflux Corporation Multiple biopsy collection device
US20060161179A1 (en) * 2004-12-23 2006-07-20 Kachenmeister Robert M Follicular transplantation device and method
US20070060888A1 (en) * 2005-09-06 2007-03-15 Kerberos Proximal Solutions, Inc. Methods and apparatus for assisted aspiration
US20070078473A1 (en) * 2005-09-30 2007-04-05 Restoration Robotics, Inc. Methods of harvesting and implanting follicular units using a coaxial tool
US20070198000A1 (en) * 2006-02-21 2007-08-23 Olympus Medical Systems Corp. Overtube and operative procedure via bodily orifice
US20070213634A1 (en) * 2006-02-24 2007-09-13 Boston Scientific Scimed, Inc. Obtaining a tissue sample
US20080234699A1 (en) * 2007-03-19 2008-09-25 Oostman Jr Clifford A Biological unit removal tools with concentric tubes
US20090227895A1 (en) * 2008-03-04 2009-09-10 Goldenberg Alec S Biopsy needle
US20110105949A1 (en) * 2008-06-25 2011-05-05 Neodynamics Ab Core biopsy arrangement
US20100082042A1 (en) * 2008-09-30 2010-04-01 Drews Michael J Biological unit removal tool with occluding member
US20100185116A1 (en) * 2009-01-19 2010-07-22 King Saud University Punch biopsy device
US20110245834A1 (en) * 2010-03-30 2011-10-06 S.U.A. Martin Gmbh & Co. Kg Surgical punch

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10773064B2 (en) 2009-12-18 2020-09-15 Srgi Holdings, Llc Skin treatment device and methods
US11090473B2 (en) 2009-12-18 2021-08-17 Srgi Holdings, Llc Skin treatment device
US10967162B2 (en) 2010-12-17 2021-04-06 Srgi Holdings, Llc Systems, devices and methods for fractional resection, fractional skin grafting, fractional scar reduction and fractional tattoo removal
US10905865B2 (en) 2010-12-17 2021-02-02 Srgi Holdings, Llc Systems, devices and methods for fractional resection, fractional skin grafting, fractional scar reduction and fractional tattoo removal
US10772658B2 (en) 2010-12-17 2020-09-15 Srgi Holdings, Llc Pixel array medical systems, devices and methods
US11116540B2 (en) 2010-12-17 2021-09-14 Srgi Holdings, Llc Pixel array medical devices and methods
US10856900B2 (en) 2010-12-17 2020-12-08 Srgi Holdings, Llc Pixel array medical systems, devices and methods
US11103275B2 (en) 2010-12-17 2021-08-31 Srgi Holdings, Llc Pixel array medical systems, devices and methods
US10661063B2 (en) 2010-12-17 2020-05-26 Srgi Holdings, Llc Systems, devices and methods for fractional resection, fractional skin grafting, fractional scar reduction and fractional tattoo removal
US11278309B2 (en) 2010-12-17 2022-03-22 Srgi Holdings, Llc Pixel array medical systems, devices and methods
US10702684B2 (en) 2010-12-17 2020-07-07 Srgi Holdings, Llc Systems, devices and methods for fractional resection, fractional skin grafting, fractional scar reduction and fractional tattoo removal
US10716924B2 (en) 2010-12-17 2020-07-21 Srgi Holdings, Llc Systems, devices and methods for fractional resection, fractional skin grafting, fractional scar reduction and fractional tattoo removal
US11612410B2 (en) 2010-12-17 2023-03-28 Srgi Holdings, Llc Pixel array medical systems, devices and methods
US11839402B2 (en) 2010-12-17 2023-12-12 Srgi Holdings, Llc Pixel array medical systems, devices and methods
US11871959B2 (en) 2010-12-17 2024-01-16 Srgi Holdings, Llc Pixel array medical systems, devices and methods
US11051844B2 (en) 2010-12-17 2021-07-06 Srgi Holdings, Llc Pixel array medical devices and methods
US10695546B2 (en) 2010-12-17 2020-06-30 Srgi Holdings, Llc Systems, devices and methods for fractional resection, fractional skin grafting, fractional scar reduction and fractional tattoo removal
US11000310B2 (en) 2010-12-17 2021-05-11 Srgi Holdings, Llc Pixel array medical systems, devices and methods
US11419588B2 (en) 2011-01-28 2022-08-23 The General Hospital Corporation Apparatus and method for tissue biopsy
US10278677B2 (en) 2011-01-28 2019-05-07 The General Hospital Corporation Apparatus and method for tissue biopsy
US11364049B2 (en) 2011-01-28 2022-06-21 The General Hospital Corporation Method and apparatus for skin resurfacing
US10327800B2 (en) 2011-01-28 2019-06-25 The General Hospital Corporation Method and apparatus for skin resurfacing
US11337720B2 (en) 2011-07-21 2022-05-24 The General Hospital Corporation Method and apparatus for damage and removal of fat
US11534344B2 (en) 2013-02-20 2022-12-27 Cytrellis Biosystems, Inc. Methods and devices for skin tightening
US10543127B2 (en) 2013-02-20 2020-01-28 Cytrellis Biosystems, Inc. Methods and devices for skin tightening
US10251792B2 (en) 2013-02-20 2019-04-09 Cytrellis Biosystems, Inc. Methods and devices for skin tightening
US10555754B2 (en) 2013-08-09 2020-02-11 Cytrellis Biosystems, Inc. Methods and apparatuses for skin treatment using non-thermal tissue ablation
US10736653B2 (en) 2013-12-06 2020-08-11 Srgi Holdings, Llc Pixel array medical systems, devices and methods
US11937846B2 (en) 2013-12-06 2024-03-26 Srgi Holdings Llc Pixel array medical systems, devices and methods
US20180000504A1 (en) * 2013-12-06 2018-01-04 Edward KNOWLTON Pixel array medical systems, devices and methods
US11730511B2 (en) 2013-12-06 2023-08-22 Srgi Holdings, Llc Pixel array medical systems, devices and methods
US11109887B2 (en) * 2013-12-06 2021-09-07 Srgi Holdings, Llc Pixel array medical systems, devices and methods
US11229452B2 (en) 2013-12-06 2022-01-25 Srgi Holdings, Llc Pixel array medical systems, devices and methods
US10953143B2 (en) 2013-12-19 2021-03-23 Cytrellis Biosystems, Inc. Methods and devices for manipulating subdermal fat
US20160015416A1 (en) * 2014-07-15 2016-01-21 The General Hospital Corporation Method and Apparatus for Tissue Copying and Grafting
US11065027B2 (en) * 2014-07-15 2021-07-20 The General Hospital Corporation Method and apparatus for tissue copying and grafting
US11324534B2 (en) 2014-11-14 2022-05-10 Cytrellis Biosystems, Inc. Devices and methods for ablation of the skin
US11896261B2 (en) 2014-11-14 2024-02-13 Cytrellis Biosystems, Inc. Devices and methods for ablation of the skin
WO2016128976A1 (en) * 2015-02-10 2016-08-18 Shemi Daniela Efficient subcutaneous tissue treatment
US11751904B2 (en) 2015-08-31 2023-09-12 Srgi Holdings, Llc Pixel array medical systems, devices and methods
US11751903B2 (en) 2015-08-31 2023-09-12 Srgi Holdings, Llc Pixel array medical systems, devices and methods
US11759231B2 (en) 2015-08-31 2023-09-19 Srgi Holdings, Llc Pixel array medical systems, devices and methods
US11490952B2 (en) 2015-08-31 2022-11-08 Srgi Holdings, Llc Pixel array medical devices and methods
AU2021218190B2 (en) * 2015-09-27 2023-09-07 Follica, Inc. Needling device and drug applicator
EP3981337A1 (en) * 2015-09-27 2022-04-13 Follica, Inc. Needling device
US11166743B2 (en) 2016-03-29 2021-11-09 Cytrellis Biosystems, Inc. Devices and methods for cosmetic skin resurfacing
US11464954B2 (en) 2016-09-21 2022-10-11 Cytrellis Biosystems, Inc. Devices and methods for cosmetic skin resurfacing
US11564706B2 (en) 2019-10-28 2023-01-31 Srgi Holdings, Llc Pixel array medical systems, devices and methods

Also Published As

Publication number Publication date
EP2734249B1 (en) 2018-09-05
EP2734249A4 (en) 2015-03-11
AU2012283861B2 (en) 2016-11-24
US20180193054A1 (en) 2018-07-12
WO2013013196A1 (en) 2013-01-24
CA2846229A1 (en) 2013-01-24
US20230065372A1 (en) 2023-03-02
ES2833525T3 (en) 2021-06-15
AU2017200903A1 (en) 2017-03-02
CA2846229C (en) 2019-08-27
AU2012283861A2 (en) 2014-03-13
AU2012283861A1 (en) 2014-03-13
AU2017200903B2 (en) 2018-11-08
PT2734249T (en) 2018-11-13
ES2693162T3 (en) 2018-12-07
EP3427768B1 (en) 2020-10-14
IL230573A0 (en) 2014-03-31
EP2734249A1 (en) 2014-05-28
HUE042454T2 (en) 2019-07-29
BR112014001248B1 (en) 2020-12-08
BR112014001248A2 (en) 2017-02-21
US11337720B2 (en) 2022-05-24
DK2734249T3 (en) 2018-12-10
EP3427768A1 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
US20230065372A1 (en) Method and Apparatus for Damage and Removal of Fat
US11364049B2 (en) Method and apparatus for skin resurfacing
US20210178028A1 (en) Methods and devices for manipulating subdermal fat
KR101116432B1 (en) Harvesting tools for biological units
WO2013013199A2 (en) Method and apparatus for subsurface tissue sampling
US8876839B2 (en) Follicula unit removal tool with pivoting retention member and method of its use
US8986324B2 (en) Systems and methods for harvesting follicular units
US20100185116A1 (en) Punch biopsy device
RU2650199C1 (en) Cannula for implantation of filaments
KR101571291B1 (en) Bio-puncture needle and manufacturing method thereof
US10076352B2 (en) Implantation needle
JP3130137U (en) Flock
WO2023250452A2 (en) Systems and methods for preparing a transplant site for receiving follicular transplants and for effectuating follicular transplants
KR102226088B1 (en) Hair Transplantation Device
US20150289626A1 (en) Method and apparatus for extraction of folicular units
US20150289625A1 (en) Method and apparatus for extraction of folicular units

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE GENERAL HOSPITAL CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AUSTEN, WILLIAM G.;REEL/FRAME:033219/0254

Effective date: 20140627

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION