US20140231267A1 - Anodic structure for horizontal cells for processes of metal electrodeposition - Google Patents

Anodic structure for horizontal cells for processes of metal electrodeposition Download PDF

Info

Publication number
US20140231267A1
US20140231267A1 US14/351,657 US201214351657A US2014231267A1 US 20140231267 A1 US20140231267 A1 US 20140231267A1 US 201214351657 A US201214351657 A US 201214351657A US 2014231267 A1 US2014231267 A1 US 2014231267A1
Authority
US
United States
Prior art keywords
anodes
slits
electrode
electroplating
electrode according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/351,657
Inventor
Jose Eduardo Gomes De Abreu
Takashi Oishi
Alice CALDERARA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrie de Nora SpA
Original Assignee
Industrie de Nora SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrie de Nora SpA filed Critical Industrie de Nora SpA
Assigned to INDUSTRIE DE NORA S.P.A. reassignment INDUSTRIE DE NORA S.P.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CALDERARA, ALICE, GOMES DE ABREU, JOSE EDUARDO, OISHI, TAKASHI
Publication of US20140231267A1 publication Critical patent/US20140231267A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0607Wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0642Anodes

Definitions

  • the invention relates to an electrode structure for oxygen evolution suitable for plants of galvanic electrodeposition of metals equipped with horizontal cells.
  • non consumable anodes in processes of galvanic electrodeposition of metals in horizontal cells as a replacement of heavier and less performant lead anodes is a well-known practice in the art.
  • Insoluble anodes allow in fact a higher flexibility in plant design and consequent operation mode.
  • Non consumable anodes also allow operating at higher current density than lead anodes with consequent advantages on productivity.
  • oxygen is produced as the result of the anodic reaction. Operating at higher current density making use of non-consumable anodes brings about however an increased oxygen production on the anode surface.
  • electrodeposition plants are equipped with horizontal cells; in such case, a metal ribbon or wire used as cathode is transported across an electrolytic bath between rows of anodes arranged parallel to each other.
  • an increased oxygen production generally implies problems associated with gas stagnation with consequent increase of local current density which negatively affects homogeneity of deposition.
  • the invention relates to an electrode for oxygen evolution in electroplating plants equipped with horizontal cells, comprising a valve metal substrate and an outer catalytic layer, said substrate consisting of a metal sheet provided with slits of area ranging from 2 to 8 cm 2 , said slits being spaced apart by a distance of 5 to 25 cm.
  • the slits are arranged in an evently spaced apart configuration.
  • the electrode has a rectangular shape and said slits have an elongated shape, optionally with the major side arranged parallel to the short side of the electrode.
  • the electrode for oxygen evolution in electroplating plants equipped with horizontal cells is provided with slits regularly spaced apart and having an area of 3 to 5 cm 2 .
  • valve metal of the oxygen-evolving electrode in electroplating plants equipped with horizontal cells is titanium and the catalytic layer comprises oxides of iridium, tantalum and titanium.
  • the present invention relates to a horizontal electrochemical cell for electroplating processes comprising at least one electrode as hereinbefore described. So long as the anodic section is structured in two parallel rows of anodes with the metal ribbon of wire acting as cathode being transported therebetween, slits may be present on one row of anodes only, preferably the upper one.
  • the invention relates to a cell comprising an upper row of anodes and a lower row of anodes, arranged one above the other, and a cathode consisting of a continuous metal ribbon or wire subject to an advancing motion between the upper row of anodes and the lower row of anodes, said direction of advancement being parallel to said parallel rows of anodes and said at least one electrode being an anode of said upper row of anodes.
  • a cell having slits arranged with the major side perpendicular to the direction of advancement of the metal ribbon or wire used as the cathode.
  • the present invention relates to an electroplating plant equipped with at least one horizontal electrochemical cell for electroplating processes comprising at least one electrode as hereinbefore described.
  • FIG. 1 shows a top view of a possible embodiment of an anode according to the invention provided with twelve slits.
  • FIG. 2 shows a side view of a possible embodiment of a horizontal cell according to the invention.
  • FIG. 1 shows a top view of a possible embodiment of an anode A having twelve slits B mutually spaced apart by distance C and at distance D from the periphery.
  • FIG. 2 shows a side view of a possible embodiment of a horizontal cell having eight anodes L with twelve slits each, arranged in two parallel rows through which a metal ribbon I acting as the cathode is transported. There are also indicated electrolyte bath inlet E, depleted electrolyte bath outlet F, discharge of oxygen produced at the anodes G and level of electrolyte bath H.
  • anodes of 1380 mm ⁇ 200 mm ⁇ 6 mm size consisting of a titanium substrate provided with a catalytic coating consisting of two distinct layers, namely a first (internal) layer based on oxides of tantalum and iridium in a 65:35 weight ratio (corresponding to a molar ratio of about 63.6:36.4), at an overall iridium loading of 10 g/m 2 , and a second (external) layer based on oxides of iridium, tantalum and titanium in a 78:20:2 weight ratio (corresponding to a molar ratio of about 72.6:19.9:7.5), at an overall iridium loading of 35 g/m 2 , were subdivided into two groups of eight anodes each and arranged parallel in two corresponding rows on either side of a sheet to be zinc-plated.
  • Each anode was provided with 12 elongated slits of 400 mm 2 area, arranged with the short side oriented parallel to the length of the sheet, mutually spaced apart by 198 mm and at a distance of 25 mm from the periphery of the sheet.
  • Anodes were tested in a zinc-plating plant with horizontal cells at a current density of 13 kA/m 2 with an electrolytic bath containing 100 g/l of zinc, at a temperature of 50° C. and pH 2. Anode deactivation occurred after depositing 210 tons of zinc.
  • an anode In the context of the present description and in accordance with a convention commonly accepted in many zinc-plating plants, an anode is considered to be deactivated when the slope of the ohmic drop in the electrolyte bath increases in time by 20% with respect to the initial value.
  • current distribution becomes uneven with current concentrating in correspondence of the most active zones of the anodes: the concentration of current determines an increase of ohmic drop in the electrolyte bath which hence becomes a representative parameter of the state of conservation of anodes.
  • anodes of 1380 mm ⁇ 200 mm ⁇ 6 mm size consisting of a titanium substrate provided with a catalytic coating consisting of two distinct layers, namely a first (internal) layer based on oxides of tantalum and iridium in a 65:35 weight ratio (corresponding to a molar ratio of about 63.6:36.4), at an overall iridium loading of 10 g/m 2 , and a second (external) layer based on oxides of iridium, tantalum and titanium in a 78:20:2 weight ratio (corresponding to a molar ratio of about 72.6:19.9:7.5), at an overall iridium loading of 35 g/m 2 , were subdivided into two groups of eight anodes each and arranged parallel in two corresponding rows on either side of a sheet to be zinc-plated.
  • Anodes were tested in a zinc-plating plant with horizontal cells at a current density of 13 kA/m 2 with an electrolytic bath containing 100 g/l of zinc, at a temperature of 50° C. and pH 2. Anode deactivation occurred after depositing 100 tons of zinc.
  • anodes of 1380 mm ⁇ 200 mm ⁇ 6 mm size consisting of a titanium substrate provided with a catalytic coating consisting of two distinct layers, namely a first (internal) layer based on oxides of tantalum and iridium in a 65:35 weight ratio (corresponding to a molar ratio of about 63.6:36.4), at an overall iridium loading of 10 g/m 2 , and a second (external) layer based on oxides of iridium, tantalum and titanium in a 78:20:2 weight ratio (corresponding to a molar ratio of about 72.6:19.9:7.5), at an overall iridium loading of 35 g/m 2 , were subdivided into two groups of eight anodes each and arranged parallel in two corresponding rows on either side of a sheet to be zinc-plated.
  • Each anode was provided with 12 elongated slits of 400 mm 2 area, arranged with the short side oriented parallel to the length of the sheet, mutually spaced apart by 198 mm and at a distance of 25 mm from the periphery of the sheet.
  • Anodes were tested in a zinc-plating plant with horizontal cells at a current density of 10 kA/m 2 with an electrolytic bath containing 100 g/l of zinc, at a temperature of 50° C. and pH 2. Anode deactivation occurred after depositing 180 tons of zinc.
  • anodes of 1380 mm x 200 mm x 6 mm size consisting of a titanium substrate provided with a catalytic coating consisting of two distinct layers, namely a first (internal) layer based on oxides of tantalum and iridium in a 65:35 weight ratio (corresponding to a molar ratio of about 63.6:36.4), at an overall iridium loading of 10 g/m 2 , and a second (external) layer based on oxides of iridium, tantalum and titanium in a 78:20:2 weight ratio (corresponding to a molar ratio of about 72.6:19.9:7.5), at an overall iridium loading of 35 g/m 2 , were subdivided into two groups of eight anodes each and arranged parallel in two corresponding rows on either side of a sheet to be zinc-plated.
  • Anodes were tested in a zinc-plating plant with horizontal cells at a current density of 10 kA/m 2 with an electrolytic bath containing 100 g/l of zinc, at a temperature of 50° C. and pH 2. Anode deactivation occurred after depositing 140 tons of zinc.

Abstract

The present invention concerns an electrode for oxygen evolution in electroplating plants comprising a valve metal substrate and an outer catalytic layer, the substrate consisting of a metal plate provided with slits of area ranging from 2 to 8 cm2, said slits being spaced apart by a distance of 5 to 25 cm. The invention also concerns a horizontal electrochemical cell for electro-plating processes comprising at least one of said electrodes, and an electroplating plant equipped with at least one of said cells. The invention also concerns an electroplating process comprising the step of anodically evolving oxygen on the surface of said electrode.

Description

    FIELD OF THE INVENTION
  • The invention relates to an electrode structure for oxygen evolution suitable for plants of galvanic electrodeposition of metals equipped with horizontal cells.
  • BACKGROUND OF THE INVENTION
  • The use of non consumable anodes in processes of galvanic electrodeposition of metals in horizontal cells as a replacement of heavier and less performant lead anodes is a well-known practice in the art. Insoluble anodes allow in fact a higher flexibility in plant design and consequent operation mode. Non consumable anodes also allow operating at higher current density than lead anodes with consequent advantages on productivity. In traditional metal electrodeposition, such as in electrochemical zinc or zinc alloy plating, oxygen is produced as the result of the anodic reaction. Operating at higher current density making use of non-consumable anodes brings about however an increased oxygen production on the anode surface. In many cases, electrodeposition plants are equipped with horizontal cells; in such case, a metal ribbon or wire used as cathode is transported across an electrolytic bath between rows of anodes arranged parallel to each other. In this case, an increased oxygen production generally implies problems associated with gas stagnation with consequent increase of local current density which negatively affects homogeneity of deposition.
  • It would therefore be desirable to provide an electrode with enhanced mechanical characteristics, suitable for facilitating the release of oxygen and improve the solution refreshment rate—thus favouring an adequate cation feed to the cathode—as well as the electrode-to-solution contact.
  • SUMMARY OF THE INVENTION
  • Various aspects of the invention are set out in the accompanying claims.
  • Under one aspect, the invention relates to an electrode for oxygen evolution in electroplating plants equipped with horizontal cells, comprising a valve metal substrate and an outer catalytic layer, said substrate consisting of a metal sheet provided with slits of area ranging from 2 to 8 cm2, said slits being spaced apart by a distance of 5 to 25 cm. In one embodiment, the slits are arranged in an evently spaced apart configuration.
  • Inventors surprisingly observed that the addition of suitably sized slits arranged at an adequate distance has the effect of remarkably increasing the operative lifetime of an electrode for anodic evolution of oxygen used in electroplating processes in plants with horizontal cells.
  • In one embodiment the electrode has a rectangular shape and said slits have an elongated shape, optionally with the major side arranged parallel to the short side of the electrode.
  • In another embodiment, the electrode for oxygen evolution in electroplating plants equipped with horizontal cells is provided with slits regularly spaced apart and having an area of 3 to 5 cm2.
  • Inventors surprisingly observed that the production of metal does not show any advantage with slits having a lower size than the one specified and spaced apart by a larger distance. This could happen because too small and spaced apart slits do not allow a sufficient gas release and recirculation. Conversely, too large and tightly spaced slits entail a loss of active area negatively affecting the homogeneity of deposition.
  • Under another aspect, the valve metal of the oxygen-evolving electrode in electroplating plants equipped with horizontal cells is titanium and the catalytic layer comprises oxides of iridium, tantalum and titanium.
  • Under another aspect, the present invention relates to a horizontal electrochemical cell for electroplating processes comprising at least one electrode as hereinbefore described. So long as the anodic section is structured in two parallel rows of anodes with the metal ribbon of wire acting as cathode being transported therebetween, slits may be present on one row of anodes only, preferably the upper one. Under another aspect the invention relates to a cell comprising an upper row of anodes and a lower row of anodes, arranged one above the other, and a cathode consisting of a continuous metal ribbon or wire subject to an advancing motion between the upper row of anodes and the lower row of anodes, said direction of advancement being parallel to said parallel rows of anodes and said at least one electrode being an anode of said upper row of anodes. Under yet another aspect the invention relates to a cell having slits arranged with the major side perpendicular to the direction of advancement of the metal ribbon or wire used as the cathode.
  • Under yet another aspect, the present invention relates to an electroplating plant equipped with at least one horizontal electrochemical cell for electroplating processes comprising at least one electrode as hereinbefore described.
  • Some implementations exemplifying the invention will now be described with reference to the attached drawing, which has the sole purpose of illustrating the reciprocal arrangement of the different elements relatively to said particular implementations of the invention; in particular, drawings are not necessarily drawn to scale.
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIG. 1 shows a top view of a possible embodiment of an anode according to the invention provided with twelve slits.
  • FIG. 2 shows a side view of a possible embodiment of a horizontal cell according to the invention.
  • DETAILED DESCRIPTION OF THE DRAWING
  • FIG. 1 shows a top view of a possible embodiment of an anode A having twelve slits B mutually spaced apart by distance C and at distance D from the periphery.
  • FIG. 2 shows a side view of a possible embodiment of a horizontal cell having eight anodes L with twelve slits each, arranged in two parallel rows through which a metal ribbon I acting as the cathode is transported. There are also indicated electrolyte bath inlet E, depleted electrolyte bath outlet F, discharge of oxygen produced at the anodes G and level of electrolyte bath H.
  • The following examples are included to demonstrate particular embodiments of the invention, whose practicability has been largely verified in the claimed range of values. It should be appreciated by those of skill in the art that the compositions and techniques disclosed in the examples which follow represent compositions and techniques discovered by the inventors to function well in the practice of the invention; however, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the scope of the invention.
  • EXAMPLE 1
  • Sixteen anodes of 1380 mm×200 mm×6 mm size consisting of a titanium substrate provided with a catalytic coating consisting of two distinct layers, namely a first (internal) layer based on oxides of tantalum and iridium in a 65:35 weight ratio (corresponding to a molar ratio of about 63.6:36.4), at an overall iridium loading of 10 g/m2, and a second (external) layer based on oxides of iridium, tantalum and titanium in a 78:20:2 weight ratio (corresponding to a molar ratio of about 72.6:19.9:7.5), at an overall iridium loading of 35 g/m2, were subdivided into two groups of eight anodes each and arranged parallel in two corresponding rows on either side of a sheet to be zinc-plated. Each anode was provided with 12 elongated slits of 400 mm2 area, arranged with the short side oriented parallel to the length of the sheet, mutually spaced apart by 198 mm and at a distance of 25 mm from the periphery of the sheet. Anodes were tested in a zinc-plating plant with horizontal cells at a current density of 13 kA/m2 with an electrolytic bath containing 100 g/l of zinc, at a temperature of 50° C. and pH 2. Anode deactivation occurred after depositing 210 tons of zinc. In the context of the present description and in accordance with a convention commonly accepted in many zinc-plating plants, an anode is considered to be deactivated when the slope of the ohmic drop in the electrolyte bath increases in time by 20% with respect to the initial value. In fact, at the onset of a partial deactivation of anodes, current distribution becomes uneven with current concentrating in correspondence of the most active zones of the anodes: the concentration of current determines an increase of ohmic drop in the electrolyte bath which hence becomes a representative parameter of the state of conservation of anodes.
  • COUNTEREXAMPLE 1
  • Sixteen anodes of 1380 mm×200 mm×6 mm size consisting of a titanium substrate provided with a catalytic coating consisting of two distinct layers, namely a first (internal) layer based on oxides of tantalum and iridium in a 65:35 weight ratio (corresponding to a molar ratio of about 63.6:36.4), at an overall iridium loading of 10 g/m2, and a second (external) layer based on oxides of iridium, tantalum and titanium in a 78:20:2 weight ratio (corresponding to a molar ratio of about 72.6:19.9:7.5), at an overall iridium loading of 35 g/m2, were subdivided into two groups of eight anodes each and arranged parallel in two corresponding rows on either side of a sheet to be zinc-plated. Anodes were tested in a zinc-plating plant with horizontal cells at a current density of 13 kA/m2 with an electrolytic bath containing 100 g/l of zinc, at a temperature of 50° C. and pH 2. Anode deactivation occurred after depositing 100 tons of zinc.
  • EXAMPLE 2
  • Sixteen anodes of 1380 mm×200 mm×6 mm size consisting of a titanium substrate provided with a catalytic coating consisting of two distinct layers, namely a first (internal) layer based on oxides of tantalum and iridium in a 65:35 weight ratio (corresponding to a molar ratio of about 63.6:36.4), at an overall iridium loading of 10 g/m2, and a second (external) layer based on oxides of iridium, tantalum and titanium in a 78:20:2 weight ratio (corresponding to a molar ratio of about 72.6:19.9:7.5), at an overall iridium loading of 35 g/m2, were subdivided into two groups of eight anodes each and arranged parallel in two corresponding rows on either side of a sheet to be zinc-plated. Each anode was provided with 12 elongated slits of 400 mm2 area, arranged with the short side oriented parallel to the length of the sheet, mutually spaced apart by 198 mm and at a distance of 25 mm from the periphery of the sheet. Anodes were tested in a zinc-plating plant with horizontal cells at a current density of 10 kA/m2 with an electrolytic bath containing 100 g/l of zinc, at a temperature of 50° C. and pH 2. Anode deactivation occurred after depositing 180 tons of zinc.
  • COUNTEREXAMPLE 2
  • Sixteen anodes of 1380 mm x 200 mm x 6 mm size consisting of a titanium substrate provided with a catalytic coating consisting of two distinct layers, namely a first (internal) layer based on oxides of tantalum and iridium in a 65:35 weight ratio (corresponding to a molar ratio of about 63.6:36.4), at an overall iridium loading of 10 g/m2, and a second (external) layer based on oxides of iridium, tantalum and titanium in a 78:20:2 weight ratio (corresponding to a molar ratio of about 72.6:19.9:7.5), at an overall iridium loading of 35 g/m2, were subdivided into two groups of eight anodes each and arranged parallel in two corresponding rows on either side of a sheet to be zinc-plated. Anodes were tested in a zinc-plating plant with horizontal cells at a current density of 10 kA/m2 with an electrolytic bath containing 100 g/l of zinc, at a temperature of 50° C. and pH 2. Anode deactivation occurred after depositing 140 tons of zinc.
  • The previous description shall not be intended as limiting the invention, which may be used according to different embodiments without departing from the scopes thereof, and whose extent is solely defined by the appended claims.
  • Throughout the description and claims of the present application, the term “comprise” and variations thereof such as “comprising” and “comprises” are not intended to exclude the presence of other elements, components or additional process steps.
  • The discussion of documents, acts, materials, devices, articles and the like is included in this specification solely for the purpose of providing a context for the present invention. It is not suggested or represented that any or all of these matters formed part of the prior art base or were common general knowledge in the field relevant to the present invention before the priority date of each claim of this application.

Claims (10)

1. Electrode for oxygen evolution in electroplating plants comprising a valve metal substrate and an outer catalytic layer, the substrate consisting of a metal plate provided with slits of area ranging from 2 to 8 cm2, said slits being spaced apart by a distance of 5 to 25 cm.
2. The electrode according to claim 1 wherein said slits are regularly spaced apart.
3. The electrode according to claim 1 wherein said slits have an elongated shape.
4. The electrode according to claim 1 wherein said slits have an area of 3 to 5 cm2.
5. The electrode according to claim 1 wherein said valve metal is titanium and said catalytic layer comprises oxides of iridium, tantalum and titanium.
6. A horizontal electrochemical cell for electroplating processes comprising at least one electrode according to claim 1.
7. Cell according to claim 6, wherein said at least one electrode comprises elongated slits arranged with the major side perpendicular to the direction of advancement of the metal ribbon or wire used as the cathode.
8. Cell according to claim 6, comprising:
a. an upper row of anodes and a lower row of anodes, arranged one above the other; and
b. a cathode consisting of a continuous metal ribbon or wire subject to an advancing motion between said upper row of anodes and said lower row of anodes, the direction of advancement being parallel to said parallel rows of anodes, wherein said at least one electrode is one anode of said upper row of anodes.
9. Electroplating plant equipped with at least one cell according to claim 6.
10. Electroplating process comprising the step of anodically evolving oxygen on the surface of an electrode according to claim 1.
US14/351,657 2011-11-24 2012-11-23 Anodic structure for horizontal cells for processes of metal electrodeposition Abandoned US20140231267A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITMI2011A002136 2011-11-24
IT002136A ITMI20112136A1 (en) 2011-11-24 2011-11-24 ANODIC STRUCTURE FOR HORIZONTAL CELLS FOR METAL ELECTROPLATE PROCESSES
PCT/EP2012/073527 WO2013076277A2 (en) 2011-11-24 2012-11-23 Anodic structure for horizontal cells for processes of metal electrodeposition

Publications (1)

Publication Number Publication Date
US20140231267A1 true US20140231267A1 (en) 2014-08-21

Family

ID=45420775

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/351,657 Abandoned US20140231267A1 (en) 2011-11-24 2012-11-23 Anodic structure for horizontal cells for processes of metal electrodeposition

Country Status (15)

Country Link
US (1) US20140231267A1 (en)
EP (1) EP2783027A2 (en)
JP (1) JP2015501880A (en)
KR (1) KR20140098155A (en)
CN (1) CN103946428A (en)
AR (1) AR088980A1 (en)
AU (1) AU2012342392A1 (en)
BR (1) BR112014011550A2 (en)
CA (1) CA2851076A1 (en)
EA (1) EA201491025A1 (en)
IL (1) IL232099A0 (en)
IN (1) IN2014KN00725A (en)
IT (1) ITMI20112136A1 (en)
MX (1) MX2014005832A (en)
WO (1) WO2013076277A2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4310403A (en) * 1980-03-07 1982-01-12 Nippon Steel Corporation Apparatus for electrolytically treating a metal strip
US4964965A (en) * 1987-10-01 1990-10-23 Furukawa Circuit Foil Co., Ltd. Insoluble electrode device for treatment of metallic material
US6251254B1 (en) * 1998-09-30 2001-06-26 Permelec Electrode Ltd. Electrode for chromium plating
US20070278107A1 (en) * 2006-05-30 2007-12-06 Northwest Aluminum Technologies Anode for use in aluminum producing electrolytic cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2135873B2 (en) * 1971-07-17 1980-05-14 Conradty Gmbh & Co Metallelektroden Kg, 8505 Roethenbach Cell top for amalgam high-load cells
JPS57101692A (en) * 1980-12-16 1982-06-24 Nippon Steel Corp Horizontal electroplating method by insoluble electrode
AU540287B2 (en) * 1982-02-10 1984-11-08 Nippon Steel Corporation Continuous electrolytic treatment of metal strip using horizontal electrodes
DE3421480A1 (en) * 1984-06-08 1985-12-12 Conradty GmbH & Co Metallelektroden KG, 8505 Röthenbach COATED VALVE METAL ELECTRODE FOR ELECTROLYTIC GALVANIZATION
US6322673B1 (en) * 1999-12-18 2001-11-27 Electroplating Technologies, Ltd. Apparatus for electrochemical treatment of a continuous web
US7273535B2 (en) * 2003-09-17 2007-09-25 Applied Materials, Inc. Insoluble anode with an auxiliary electrode
CN2832836Y (en) * 2005-06-14 2006-11-01 东元电机股份有限公司 Anode metal plate structure for electrophoretic deposition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4310403A (en) * 1980-03-07 1982-01-12 Nippon Steel Corporation Apparatus for electrolytically treating a metal strip
US4964965A (en) * 1987-10-01 1990-10-23 Furukawa Circuit Foil Co., Ltd. Insoluble electrode device for treatment of metallic material
US6251254B1 (en) * 1998-09-30 2001-06-26 Permelec Electrode Ltd. Electrode for chromium plating
US20070278107A1 (en) * 2006-05-30 2007-12-06 Northwest Aluminum Technologies Anode for use in aluminum producing electrolytic cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Merriam-Webster (Slit definition) *

Also Published As

Publication number Publication date
EA201491025A1 (en) 2014-09-30
CN103946428A (en) 2014-07-23
AR088980A1 (en) 2014-07-23
IN2014KN00725A (en) 2015-10-02
JP2015501880A (en) 2015-01-19
BR112014011550A2 (en) 2017-05-09
MX2014005832A (en) 2014-06-04
ITMI20112136A1 (en) 2013-05-25
AU2012342392A1 (en) 2014-04-17
WO2013076277A3 (en) 2013-08-01
KR20140098155A (en) 2014-08-07
IL232099A0 (en) 2014-05-28
WO2013076277A2 (en) 2013-05-30
CA2851076A1 (en) 2013-05-30
EP2783027A2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
US20160168733A1 (en) Chlorine evolution anode
EP2690200B1 (en) Anode for electrowinning and electrowinning method using same
US9556534B2 (en) Anode for electroplating and method for electroplating using anode
EP2079858B1 (en) Anode for electrolysis
FI60039B (en) ELEKTROKEMISK ANORDNING
US4555317A (en) Cathode for the electrolytic production of hydrogen and its use
CN101397691A (en) Apparatus and technology for controlling and improving plating solution PH value on fingerprint resistant production chain
CN106283105A (en) A kind of Ni interlayer that adds prepares low energy consumption, long-life titanio PbO2the method of anode
US4134806A (en) Metal anodes with reduced anodic surface and high current density and their use in electrowinning processes with low cathodic current density
CN106835193B (en) A kind of Pb bases/3D-PbO2/MeOx composite anodes and preparation method thereof
CA1063061A (en) Electrowinning cell with reduced anodic surfaces
CN114207191A (en) Method and device for electrolytically coating steel strip by means of pulse technique
US20140231267A1 (en) Anodic structure for horizontal cells for processes of metal electrodeposition
US6432293B1 (en) Process for copper-plating a wafer using an anode having an iridium oxide coating
CN104204307B (en) Operate the anode and method of electrolysis cells
Vasudevan Anodes for electrochemcial processes (Part-I)
US3578572A (en) Electrodes for use in aqueous alkali metal chloride electrolytes
Zhou et al. The effect of cobalt complex on the activity of the nickel electrode
JP7074197B2 (en) Electroplating bath, manufacturing method of electroplating products, and electroplating equipment
US2532629A (en) Method of electrodepositing iron
Brooks et al. ICI Electrodes Coatings—From Mercury Cells to Automobile Bodies
EP3914757A1 (en) Membrane anode system for electrolytic zinc-nickel alloy deposition
JP2013527324A5 (en)
KR20150034171A (en) Undivided electrolytic cell and use of the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: INDUSTRIE DE NORA S.P.A., ITALY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOMES DE ABREU, JOSE EDUARDO;OISHI, TAKASHI;CALDERARA, ALICE;REEL/FRAME:032678/0011

Effective date: 20140415

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION