US20140137816A1 - Engine system having thermostat - Google Patents

Engine system having thermostat Download PDF

Info

Publication number
US20140137816A1
US20140137816A1 US13/946,597 US201313946597A US2014137816A1 US 20140137816 A1 US20140137816 A1 US 20140137816A1 US 201313946597 A US201313946597 A US 201313946597A US 2014137816 A1 US2014137816 A1 US 2014137816A1
Authority
US
United States
Prior art keywords
engine
coolant
temperature
load
coolant temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/946,597
Inventor
IL Jung
Gun Tae Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Kia Corp
Original Assignee
Hyundai Motor Co
Kia Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co, Kia Motors Corp filed Critical Hyundai Motor Co
Assigned to KIA MOTORS CORPORATION, HYUNDAI MOTOR COMPANY reassignment KIA MOTORS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JUNG, IL, KIM, GUN TAE
Publication of US20140137816A1 publication Critical patent/US20140137816A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2070/00Details
    • F01P2070/04Details using electrical heating elements

Definitions

  • the present invention relates to an engine system having a thermostat that changes a passage of a coolant depending on the temperature of the coolant and actively controls the coolant temperature to prevent overheating thereof.
  • a thermostat for a vehicle is disposed between an engine and a radiator, is automatically opened/closed by the temperature variation of a coolant to adjust the flow rate of the coolant, and therefore the temperature of the coolant is controlled in a predetermined range.
  • a mechanical thermostat expands a wax depending on the temperature of the coolant, and the expanding force of the wax makes a piston move the valve of the thermostat.
  • the mechanical thermostat is operated in a predetermined opening/closing temperature of the coolant to open/close the valve only in a predetermined temperature condition, and therefore the mechanical thermostat does not actively move against changes of the driving circumstances of the vehicle.
  • an electrical thermostat has been introduced to complement the drawback of the mechanical thermostat, and the electrical thermostat is operated to sustain the coolant temperature in an optimized range.
  • the electrical thermostat actively controls the coolant temperature of the engine according to the driving circumstances such as the load level of the vehicle to sustain the optimized coolant temperature, and the electrical thermostat can improve fuel consumption efficiency and reduce exhaust gas.
  • a drive portion that is a temperature sensitive type and is electrically controlled has been applied to open or close the valve of a thermostat, and the drive portion includes wax, semi-fluid, a rubber piston, a back-up plate, and a main piston.
  • the coolant temperature that the thermostat is operated is fixed and the thermostat is operated regardless of a load of an engine and an outside temperature, and therefore the energy is wasted and fuel consumption is increased.
  • the present disclosure has been made in an effort to provide an engine system with a thermostat having advantages of varying the coolant temperature that a thermostat is operated by considering a load condition of an engine and an outside temperature so as to reduce the wasted energy.
  • An engine system may include an engine that is configured to generate a torque, a coolant temperature sensor that is configured to detect a temperature of a coolant circulating the engine, an atmosphere temperature sensor that is configured to detect an atmosphere temperature, a thermostat that is disposed on a coolant line to regulate a coolant passage, an operating portion that is disposed in the thermostat and electrically regulates the coolant passage, and a control portion that variably controls the coolant temperature that the operating portion is operated according to the coolant temperature transmitted from the coolant temperature sensor and the atmosphere temperature transmitted from the atmosphere sensor.
  • the engine system may further include a cooling fan that is disposed near a radiator, wherein the control portion variably controls an operating timing of the cooling fan according to the coolant temperature transmitted from the coolant temperature sensor and the atmosphere temperature transmitted from the atmosphere sensor.
  • the control portion may determine a load of the engine by using a driving information of the engine and characterize the load of the engine into a low load, a middle load, and a high load.
  • the control portion may variably control the coolant temperature that the operating portion is operated depending on the load of the engine.
  • the coolant temperature that the operating portion is operated at the high load is lower than those at the middle load and at the low load.
  • the coolant temperature that the operating portion is operated at the low load is higher than those at the middle load and at the high load.
  • the coolant temperature that the operating portion is operated is lower than that when the load of the engine is low.
  • the coolant temperature that the operating portion is operated is lower than that when the atmosphere temperature is low.
  • An engine system having a thermostat variably controls the coolant temperature that a thermostat is operated according to an engine load and an outside temperature to minimize energy that is wasted and reduce fuel consumption. And, the fuel consumption is reduced and quality of exhaust gas is improved. Further, energy for operating cooling fan sending air through a radiator can be saved.
  • FIG. 1 is a schematic diagram of an exemplary engine system having a thermostat according to the present disclosure.
  • FIG. 2 is a graph showing characteristics of an exemplary thermostat that is operated depending on a coolant temperature according to the present disclosure.
  • FIG. 3 is a table showing characteristics of an exemplary thermostat that is operated depending on a coolant temperature and an engine load according to the present disclosure.
  • FIG. 4 is a flowchart showing an exemplary method for controlling a thermostat according to the present disclosure.
  • FIG. 1 is a schematic diagram of an exemplary engine system having a thermostat according to various embodiments of the present disclosure.
  • an engine system includes a thermostat that is disposed on a coolant line to convert or regulate a coolant passage, an engine 190 , a radiator 194 , an outside temperature sensor 180 , a coolant temperature sensor 192 , a cooling fan 196 , and a control portion 200 , the thermostat includes a heater 100 , a wax 110 , a main piston 120 , a valve guide 130 , a main valve 140 , a bypass valve 150 , and an elastic member 160 .
  • a main inlet passage 170 is formed at an upper portion to be connected to the radiator 194
  • a bypass passage 172 is formed at a lower portion to be connected to a coolant outlet of the engine 190
  • a main outlet passage 174 is formed at a side to be connected to a coolant inlet of the engine 190 .
  • the elastic member 160 elastically supports the valve guide 130 in an upper direction or upwardly such that the main valve 140 closes the main inlet passage 170 and the bypass valve 150 opens the bypass passage 172 .
  • the control portion 200 uses each signal that is transmitted from the outside temperature sensor 180 , the engine 190 , and the coolant temperature sensor 192 to control the thermostat.
  • the outside temperature sensor 180 detects the temperature of outside air of vehicle to transmit this to the control portion 200 and the control portion 200 uses a driving condition of the engine 190 to detect the load condition of the engine. Further, the coolant temperature sensor 192 detects coolant temperature to transmit this to the control portion 200 .
  • the control portion 200 uses the detected driving conditions (coolant temperature, outside temperature, and load condition) to variably control the coolant temperature that the thermostat is operated.
  • control portion 200 supplies power to the heater 100 of the thermostat through a power portion, and therefore the wax 110 is heated to be expanded. And, the expanded wax 110 pushes the main piston 120 in a lower side direction or downwardly.
  • the main valve 140 opens the main inlet passage 170 , and the bypass valve 150 closes the bypass passage 172 such that the coolant passes the radiator 194 to be cooled.
  • the cooling fan 196 is disposed near the radiator 194 to cool coolant. And, the cooling fan 196 can be variably operated by the control portion 200 through a clutch.
  • An operating portion for the thermostat includes the heater 100 , the wax 110 , and the main piston 120 , and the control portion 200 actively controls the thermostat by controlling power that is supplied to the heater 100 .
  • the thermostat is operated by the variation of the temperature of the coolant and the heater 100 .
  • FIG. 2 is a graph showing characteristics of an exemplary thermostat that is operated depending on a coolant temperature according to the present disclosure.
  • a horizontal axis denotes a coolant temperature and a vertical axis denotes a lift amount that the valve guide 130 is lifted.
  • “ascent” and “descent” denotes a lift amount in a condition that the power is not supplied to the heater 100 as an operating portion of the thermostat according to the coolant temperature.
  • 75 Celsius degrees power denotes that electric power is supplied to the heater 100 when the coolant temperature reaches 75 Celsius degrees, wherein a lift amount that the valve guide 130 is lifted is shown therein.
  • 80 Celsius degrees power denotes that electric power is supplied to the heater 100 when the coolant temperature reaches 80 Celsius degrees, wherein a lift amount that the valve guide 130 is lifted is shown therein.
  • 85 Celsius degrees power denotes that electric power is supplied to the heater 100 when the coolant temperature reaches 85 Celsius degrees, wherein a lift amount that the valve guide 130 is lifted is shown therein.
  • 90 Celsius degrees power denotes that electric power is supplied to the heater 100 when the coolant temperature reaches 90 Celsius degrees, wherein a lift amount that the valve guide 130 is lifted is shown therein.
  • FIG. 3 is a table showing characteristics of an exemplary thermostat that is operated depending on a coolant temperature and an engine load according to the present disclosure. Referring to FIG. 3 , this table denotes coolant temperature that the thermostat is operated according to atmospheric temperature in a high load condition, a middle load condition, and a low load condition of the engine 190 .
  • control portion 200 uses load condition of the engine 190 to determine whether the engine 190 is in a high load condition, a middle load condition, or a low load condition.
  • control portion 200 determines the load condition of the engine by measuring RPM and fuel injection amount.
  • the thermostat In a condition that the engine 190 is in a high load condition and the atmospheric temperature is 35 Celsius degrees, the thermostat starts to be operated when the coolant temperature reaches 90 Celsius degrees, and in a condition that the engine 190 is in a high load condition and the atmospheric temperature is 15 Celsius degrees, the thermostat starts to be operated when the coolant temperature reaches 96 Celsius degrees.
  • the thermostat In a condition that the engine 190 is in a middle load condition and the atmospheric temperature is 35 Celsius degrees, the thermostat starts to be operated when the coolant temperature reaches 95 Celsius degrees, and in a condition that the engine 190 is in a middle load condition and the atmospheric temperature is 15 Celsius degrees, the thermostat starts to be operated when the coolant temperature reaches 97 Celsius degrees.
  • the thermostat In a condition that the engine 190 is in a low load condition and the atmospheric temperature is 35 Celsius degrees, the thermostat starts to be operated when the coolant temperature reaches 100 Celsius degrees, and in a condition that the engine 190 is in a low load condition and the atmospheric temperature is 15 Celsius degrees, the thermostat starts to be operated when the coolant temperature reaches 103 Celsius degrees.
  • the higher the load of the engine becomes the lower the coolant temperature that the operating portion is operated becomes; the lower the load of the engine becomes, the higher the coolant temperature that the operating portion is operated becomes.
  • an antifreezing solution is added to the coolant, the pressure of the coolant having the antifreezing solution is higher than the atmospheric pressure, and therefore the coolant does not boil at a condition higher than 100 Celsius degrees.
  • FIG. 4 is a flowchart showing an exemplary method for controlling a thermostat according to the present disclosure.
  • the control portion 200 determines the load of the engine 190 in step S 400 .
  • the load of the engine 190 can be determined by a predetermined program or method through data that is collected for a predetermined time.
  • control portion 200 detects real time outside temperature through the outside temperature sensor 180 in step S 410 . And the control portion 200 detects the coolant temperature from the coolant temperature sensor 192 and sets the coolant temperature that the thermostat is operated in step S 420 .
  • the coolant temperature that the thermostat is operated is variably controlled according to the engine load and the outside temperature such that the energy that is wasted through the coolant is minimized and fuel consumption is reduced. Further, energy for operating the cooling fan sending air through the radiator can be saved.

Abstract

An engine system may include an engine configured to generate a torque, a coolant temperature sensor configured to detect a temperature of a coolant circulating the engine, an atmosphere temperature sensor configured to detect an atmosphere temperature, a thermostat disposed on a coolant line to regulate a coolant passage, an operating portion disposed in the thermostat and electrically regulating the coolant passage, and a control portion that variably controls the coolant temperature. The operating portion is operated according to the coolant temperature transmitted from the coolant temperature sensor, the atmosphere temperature transmitted from the atmosphere sensor, and/or an engine load.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application claims priority of Korean Patent Application Number 10-2012-0131796 filed Nov. 20, 2012, the entire contents of which application are incorporated herein for all purposes by this reference.
  • BACKGROUND OF INVENTION
  • 1. Field of Invention
  • The present invention relates to an engine system having a thermostat that changes a passage of a coolant depending on the temperature of the coolant and actively controls the coolant temperature to prevent overheating thereof.
  • 2. Description of Related Art
  • A thermostat for a vehicle is disposed between an engine and a radiator, is automatically opened/closed by the temperature variation of a coolant to adjust the flow rate of the coolant, and therefore the temperature of the coolant is controlled in a predetermined range.
  • A mechanical thermostat expands a wax depending on the temperature of the coolant, and the expanding force of the wax makes a piston move the valve of the thermostat.
  • The mechanical thermostat is operated in a predetermined opening/closing temperature of the coolant to open/close the valve only in a predetermined temperature condition, and therefore the mechanical thermostat does not actively move against changes of the driving circumstances of the vehicle.
  • Accordingly, an electrical thermostat has been introduced to complement the drawback of the mechanical thermostat, and the electrical thermostat is operated to sustain the coolant temperature in an optimized range.
  • The electrical thermostat actively controls the coolant temperature of the engine according to the driving circumstances such as the load level of the vehicle to sustain the optimized coolant temperature, and the electrical thermostat can improve fuel consumption efficiency and reduce exhaust gas.
  • A drive portion that is a temperature sensitive type and is electrically controlled has been applied to open or close the valve of a thermostat, and the drive portion includes wax, semi-fluid, a rubber piston, a back-up plate, and a main piston.
  • Meanwhile, the coolant temperature that the thermostat is operated is fixed and the thermostat is operated regardless of a load of an engine and an outside temperature, and therefore the energy is wasted and fuel consumption is increased.
  • The information disclosed in this Background section is only for enhancement of understanding of the general background of the invention and should not be taken as an acknowledgement or any form of suggestion that this information forms the prior art already known to a person skilled in the art.
  • SUMMARY OF INVENTION
  • The present disclosure has been made in an effort to provide an engine system with a thermostat having advantages of varying the coolant temperature that a thermostat is operated by considering a load condition of an engine and an outside temperature so as to reduce the wasted energy.
  • An engine system according to various aspects of the present disclosure may include an engine that is configured to generate a torque, a coolant temperature sensor that is configured to detect a temperature of a coolant circulating the engine, an atmosphere temperature sensor that is configured to detect an atmosphere temperature, a thermostat that is disposed on a coolant line to regulate a coolant passage, an operating portion that is disposed in the thermostat and electrically regulates the coolant passage, and a control portion that variably controls the coolant temperature that the operating portion is operated according to the coolant temperature transmitted from the coolant temperature sensor and the atmosphere temperature transmitted from the atmosphere sensor.
  • The engine system may further include a cooling fan that is disposed near a radiator, wherein the control portion variably controls an operating timing of the cooling fan according to the coolant temperature transmitted from the coolant temperature sensor and the atmosphere temperature transmitted from the atmosphere sensor.
  • The control portion may determine a load of the engine by using a driving information of the engine and characterize the load of the engine into a low load, a middle load, and a high load. The control portion may variably control the coolant temperature that the operating portion is operated depending on the load of the engine.
  • The coolant temperature that the operating portion is operated at the high load is lower than those at the middle load and at the low load. The coolant temperature that the operating portion is operated at the low load is higher than those at the middle load and at the high load.
  • When the load of the engine is high, the coolant temperature that the operating portion is operated is lower than that when the load of the engine is low. When the atmosphere temperature is high, the coolant temperature that the operating portion is operated is lower than that when the atmosphere temperature is low.
  • The higher the load of the engine becomes, the lower the coolant temperature that the operating portion is operated becomes. The lower the load of the engine becomes, the higher the coolant temperature that the operating portion is operated becomes.
  • The lower the atmosphere temperature becomes, the higher the coolant temperature that the operating portion is operated becomes. The higher the atmosphere temperature becomes, the lower the coolant temperature that the operating portion is operated becomes.
  • An engine system having a thermostat according to various aspects of the present disclosure variably controls the coolant temperature that a thermostat is operated according to an engine load and an outside temperature to minimize energy that is wasted and reduce fuel consumption. And, the fuel consumption is reduced and quality of exhaust gas is improved. Further, energy for operating cooling fan sending air through a radiator can be saved.
  • The methods and apparatuses of the present invention have other features and advantages which will be apparent from or are set forth in more detail in the accompanying drawings, which are incorporated herein, and the following Detailed Description, which together serve to explain certain principles of the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram of an exemplary engine system having a thermostat according to the present disclosure.
  • FIG. 2 is a graph showing characteristics of an exemplary thermostat that is operated depending on a coolant temperature according to the present disclosure.
  • FIG. 3 is a table showing characteristics of an exemplary thermostat that is operated depending on a coolant temperature and an engine load according to the present disclosure.
  • FIG. 4 is a flowchart showing an exemplary method for controlling a thermostat according to the present disclosure.
  • DETAILED DESCRIPTION
  • Reference will now be made in detail to various embodiments of the present invention(s), examples of which are illustrated in the accompanying drawings and described below. While the invention(s) will be described in conjunction with exemplary embodiments, it will be understood that present description is not intended to limit the invention(s) to those exemplary embodiments. On the contrary, the invention(s) is/are intended to cover not only the exemplary embodiments, but also various alternatives, modifications, equivalents and other embodiments, which may be included within the spirit and scope of the invention as defined by the appended claims.
  • FIG. 1 is a schematic diagram of an exemplary engine system having a thermostat according to various embodiments of the present disclosure. Referring to FIG. 1, an engine system includes a thermostat that is disposed on a coolant line to convert or regulate a coolant passage, an engine 190, a radiator 194, an outside temperature sensor 180, a coolant temperature sensor 192, a cooling fan 196, and a control portion 200, the thermostat includes a heater 100, a wax 110, a main piston 120, a valve guide 130, a main valve 140, a bypass valve 150, and an elastic member 160.
  • Further, a main inlet passage 170 is formed at an upper portion to be connected to the radiator 194, a bypass passage 172 is formed at a lower portion to be connected to a coolant outlet of the engine 190, and a main outlet passage 174 is formed at a side to be connected to a coolant inlet of the engine 190.
  • The elastic member 160 elastically supports the valve guide 130 in an upper direction or upwardly such that the main valve 140 closes the main inlet passage 170 and the bypass valve 150 opens the bypass passage 172.
  • The control portion 200 uses each signal that is transmitted from the outside temperature sensor 180, the engine 190, and the coolant temperature sensor 192 to control the thermostat.
  • The outside temperature sensor 180 detects the temperature of outside air of vehicle to transmit this to the control portion 200 and the control portion 200 uses a driving condition of the engine 190 to detect the load condition of the engine. Further, the coolant temperature sensor 192 detects coolant temperature to transmit this to the control portion 200.
  • The control portion 200 uses the detected driving conditions (coolant temperature, outside temperature, and load condition) to variably control the coolant temperature that the thermostat is operated.
  • More particularly, the control portion 200 supplies power to the heater 100 of the thermostat through a power portion, and therefore the wax 110 is heated to be expanded. And, the expanded wax 110 pushes the main piston 120 in a lower side direction or downwardly.
  • Accordingly, the main valve 140 opens the main inlet passage 170, and the bypass valve 150 closes the bypass passage 172 such that the coolant passes the radiator 194 to be cooled.
  • Here, the cooling fan 196 is disposed near the radiator 194 to cool coolant. And, the cooling fan 196 can be variably operated by the control portion 200 through a clutch.
  • An operating portion for the thermostat includes the heater 100, the wax 110, and the main piston 120, and the control portion 200 actively controls the thermostat by controlling power that is supplied to the heater 100. In various embodiments of the present disclosure, the thermostat is operated by the variation of the temperature of the coolant and the heater 100.
  • FIG. 2 is a graph showing characteristics of an exemplary thermostat that is operated depending on a coolant temperature according to the present disclosure. Referring to FIG. 2, a horizontal axis denotes a coolant temperature and a vertical axis denotes a lift amount that the valve guide 130 is lifted.
  • In the graph of FIG. 2, “ascent” and “descent” denotes a lift amount in a condition that the power is not supplied to the heater 100 as an operating portion of the thermostat according to the coolant temperature.
  • “75 Celsius degrees power” denotes that electric power is supplied to the heater 100 when the coolant temperature reaches 75 Celsius degrees, wherein a lift amount that the valve guide 130 is lifted is shown therein.
  • “80 Celsius degrees power” denotes that electric power is supplied to the heater 100 when the coolant temperature reaches 80 Celsius degrees, wherein a lift amount that the valve guide 130 is lifted is shown therein.
  • “85 Celsius degrees power” denotes that electric power is supplied to the heater 100 when the coolant temperature reaches 85 Celsius degrees, wherein a lift amount that the valve guide 130 is lifted is shown therein.
  • “90 Celsius degrees power” denotes that electric power is supplied to the heater 100 when the coolant temperature reaches 90 Celsius degrees, wherein a lift amount that the valve guide 130 is lifted is shown therein.
  • Generally, the lower the atmosphere temperature becomes, the higher the coolant temperature that the operating portion is operated becomes; the higher the atmosphere temperature becomes, the lower the coolant temperature that the operating portion is operated becomes.
  • FIG. 3 is a table showing characteristics of an exemplary thermostat that is operated depending on a coolant temperature and an engine load according to the present disclosure. Referring to FIG. 3, this table denotes coolant temperature that the thermostat is operated according to atmospheric temperature in a high load condition, a middle load condition, and a low load condition of the engine 190.
  • More specifically, the control portion 200 uses load condition of the engine 190 to determine whether the engine 190 is in a high load condition, a middle load condition, or a low load condition. Here, the control portion 200 determines the load condition of the engine by measuring RPM and fuel injection amount.
  • In a condition that the engine 190 is in a high load condition and the atmospheric temperature is 35 Celsius degrees, the thermostat starts to be operated when the coolant temperature reaches 90 Celsius degrees, and in a condition that the engine 190 is in a high load condition and the atmospheric temperature is 15 Celsius degrees, the thermostat starts to be operated when the coolant temperature reaches 96 Celsius degrees.
  • In a condition that the engine 190 is in a middle load condition and the atmospheric temperature is 35 Celsius degrees, the thermostat starts to be operated when the coolant temperature reaches 95 Celsius degrees, and in a condition that the engine 190 is in a middle load condition and the atmospheric temperature is 15 Celsius degrees, the thermostat starts to be operated when the coolant temperature reaches 97 Celsius degrees.
  • In a condition that the engine 190 is in a low load condition and the atmospheric temperature is 35 Celsius degrees, the thermostat starts to be operated when the coolant temperature reaches 100 Celsius degrees, and in a condition that the engine 190 is in a low load condition and the atmospheric temperature is 15 Celsius degrees, the thermostat starts to be operated when the coolant temperature reaches 103 Celsius degrees.
  • Generally, the higher the load of the engine becomes, the lower the coolant temperature that the operating portion is operated becomes; the lower the load of the engine becomes, the higher the coolant temperature that the operating portion is operated becomes.
  • In various embodiments of the present disclosure, an antifreezing solution is added to the coolant, the pressure of the coolant having the antifreezing solution is higher than the atmospheric pressure, and therefore the coolant does not boil at a condition higher than 100 Celsius degrees.
  • FIG. 4 is a flowchart showing an exemplary method for controlling a thermostat according to the present disclosure. Referring to FIG. 4, first, the control portion 200 determines the load of the engine 190 in step S400. The load of the engine 190 can be determined by a predetermined program or method through data that is collected for a predetermined time.
  • And, the control portion 200 detects real time outside temperature through the outside temperature sensor 180 in step S410. And the control portion 200 detects the coolant temperature from the coolant temperature sensor 192 and sets the coolant temperature that the thermostat is operated in step S420.
  • Accordingly, the coolant temperature that the thermostat is operated is variably controlled according to the engine load and the outside temperature such that the energy that is wasted through the coolant is minimized and fuel consumption is reduced. Further, energy for operating the cooling fan sending air through the radiator can be saved.
  • For convenience in explanation and accurate definition in the appended claims, the terms “upper” or “lower” “upwardly” or “downwardly”, and etc. are used to describe features of the exemplary embodiments with reference to the positions of such features as displayed in the figures.
  • The foregoing descriptions of specific exemplary embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teachings. The exemplary embodiments were chosen and described in order to explain certain principles of the invention and their practical application, to thereby enable others skilled in the art to make and utilize various exemplary embodiments of the present invention, as well as various alternatives and modifications thereof. It is intended that the scope of the invention be defined by the Claims appended hereto and their equivalents.

Claims (8)

What is claimed is:
1. An engine system, comprising:
an engine that is configured to generate a torque;
a coolant temperature sensor that is configured to detect a temperature of a coolant circulating the engine;
an atmosphere temperature sensor that is configured to detect an atmosphere temperature;
a thermostat that is disposed on a coolant line to regulate a coolant passage;
an operating portion that is disposed in the thermostat and electrically regulates the coolant passage; and
a control portion that variably controls the coolant temperature that the operating portion is operated according to the coolant temperature transmitted from the coolant temperature sensor and the atmosphere temperature transmitted from the atmosphere sensor.
2. The engine system of claim 1, further comprising a cooling fan that is disposed near a radiator, wherein the control portion variably controls an operating timing of the cooling fan according to the coolant temperature transmitted from the coolant temperature sensor and the atmosphere temperature transmitted from the atmosphere sensor.
3. The engine system of claim 1, wherein the control portion determines a load of the engine by using a driving information of the engine and characterizes the load of the engine into a low load, a middle load, and a high load.
4. The engine system of claim 3, wherein the control portion variably controls the coolant temperature that the operating portion is operated depending on the load of the engine.
5. The engine system of claim 4, wherein when the load of the engine is high, the coolant temperature that the operating portion is operated is lower than that when the load of the engine is low.
6. The engine system of claim 4, wherein the coolant temperature that the operating portion is operated at the high load is lower than those at the middle load and at the low load.
7. The engine system of claim 4, wherein the coolant temperature that the operating portion is operated at the low load is higher than those at the middle load and at the high load.
8. The engine system of claim 1, wherein when the atmosphere temperature is high, the coolant temperature that the operating portion is operated is lower than that when the atmosphere temperature is low.
US13/946,597 2012-11-20 2013-07-19 Engine system having thermostat Abandoned US20140137816A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0131796 2012-11-20
KR20120131796 2012-11-20

Publications (1)

Publication Number Publication Date
US20140137816A1 true US20140137816A1 (en) 2014-05-22

Family

ID=50625699

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/946,597 Abandoned US20140137816A1 (en) 2012-11-20 2013-07-19 Engine system having thermostat

Country Status (3)

Country Link
US (1) US20140137816A1 (en)
JP (1) JP2014101876A (en)
DE (1) DE102013108137A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130092366A1 (en) * 2010-06-18 2013-04-18 Hitachi Construction Machinery Co., Ltd. Work Machine
US20180156146A1 (en) * 2016-12-07 2018-06-07 Hyundai Motor Company System and method of heat management for vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101558803B1 (en) 2014-08-27 2015-10-12 현대자동차주식회사 Apparatus and method for controlling cooling system of vehicle

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4545333A (en) * 1983-06-08 1985-10-08 Nissan Motor Co., Ltd. System for controlling coolant temperature of internal combustion engine
US4616599A (en) * 1984-02-09 1986-10-14 Mazda Motor Corporation Cooling arrangement for water-cooled internal combustion engine
US4726325A (en) * 1986-03-28 1988-02-23 Aisin Seiki Kabushki Kaisha Cooling system controller for internal combustion engines
US5036803A (en) * 1987-11-12 1991-08-06 Robert Bosch Gmbh Device and method for engine cooling
US5390632A (en) * 1992-02-19 1995-02-21 Honda Giken Kogyo Kabushiki Kaisha Engine cooling system
US5458096A (en) * 1994-09-14 1995-10-17 Hollis; Thomas J. Hydraulically operated electronic engine temperature control valve
US5507251A (en) * 1995-06-06 1996-04-16 Hollis; Thomas J. System for determining the load condition of an engine for maintaining optimum engine oil temperature
US5529025A (en) * 1993-07-19 1996-06-25 Bayerische Motoren Werke Ag Cooling system for an internal-combustion engine of a motor vehicle comprising a thermostatic valve which contains an electrically heatable expansion element
US5758607A (en) * 1995-05-26 1998-06-02 Bayerische Motoren Werke Aktiengesellschaft Cooling system having an electrically adjustable control element
US6055947A (en) * 1999-01-14 2000-05-02 Tosok Corporation Engine cooling water control system
US6109219A (en) * 1997-05-29 2000-08-29 Nippon Thermostat Co., Ltd. Cooling control apparatus and cooling control method for internal combustion engines
US20020007806A1 (en) * 2000-07-17 2002-01-24 Jean-Pierre Chamot Driven proportional-control thermostatic device with back-up thermostatic element
US20040237911A1 (en) * 2003-05-30 2004-12-02 Nippon Thermostat Co., Ltd. Control method for electronically controlled thermostat
US7011049B2 (en) * 2000-02-03 2006-03-14 Peugeot Citroen Automobiles Sa Method and device for cooling a motor vehicle engine
US7011050B2 (en) * 2002-01-09 2006-03-14 Nippon Thermostat Co., Ltd. Control method of electronic control thermostat
US7320434B2 (en) * 2002-10-18 2008-01-22 Nippon Thermostat Co., Ltd. Method of controlling electronic controlled thermostat

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101262367B1 (en) 2011-05-26 2013-05-08 주식회사 포스코건설 Movable scrap chute

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4545333A (en) * 1983-06-08 1985-10-08 Nissan Motor Co., Ltd. System for controlling coolant temperature of internal combustion engine
US4616599A (en) * 1984-02-09 1986-10-14 Mazda Motor Corporation Cooling arrangement for water-cooled internal combustion engine
US4726325A (en) * 1986-03-28 1988-02-23 Aisin Seiki Kabushki Kaisha Cooling system controller for internal combustion engines
US5036803A (en) * 1987-11-12 1991-08-06 Robert Bosch Gmbh Device and method for engine cooling
US5390632A (en) * 1992-02-19 1995-02-21 Honda Giken Kogyo Kabushiki Kaisha Engine cooling system
US5529025A (en) * 1993-07-19 1996-06-25 Bayerische Motoren Werke Ag Cooling system for an internal-combustion engine of a motor vehicle comprising a thermostatic valve which contains an electrically heatable expansion element
US5458096A (en) * 1994-09-14 1995-10-17 Hollis; Thomas J. Hydraulically operated electronic engine temperature control valve
US5758607A (en) * 1995-05-26 1998-06-02 Bayerische Motoren Werke Aktiengesellschaft Cooling system having an electrically adjustable control element
US5507251A (en) * 1995-06-06 1996-04-16 Hollis; Thomas J. System for determining the load condition of an engine for maintaining optimum engine oil temperature
US6109219A (en) * 1997-05-29 2000-08-29 Nippon Thermostat Co., Ltd. Cooling control apparatus and cooling control method for internal combustion engines
US6055947A (en) * 1999-01-14 2000-05-02 Tosok Corporation Engine cooling water control system
US7011049B2 (en) * 2000-02-03 2006-03-14 Peugeot Citroen Automobiles Sa Method and device for cooling a motor vehicle engine
US20020007806A1 (en) * 2000-07-17 2002-01-24 Jean-Pierre Chamot Driven proportional-control thermostatic device with back-up thermostatic element
US7011050B2 (en) * 2002-01-09 2006-03-14 Nippon Thermostat Co., Ltd. Control method of electronic control thermostat
US7320434B2 (en) * 2002-10-18 2008-01-22 Nippon Thermostat Co., Ltd. Method of controlling electronic controlled thermostat
US20040237911A1 (en) * 2003-05-30 2004-12-02 Nippon Thermostat Co., Ltd. Control method for electronically controlled thermostat

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130092366A1 (en) * 2010-06-18 2013-04-18 Hitachi Construction Machinery Co., Ltd. Work Machine
US9322603B2 (en) * 2010-06-18 2016-04-26 Hitachi Construction Machinery Co., Ltd. Work machine
US20180156146A1 (en) * 2016-12-07 2018-06-07 Hyundai Motor Company System and method of heat management for vehicle

Also Published As

Publication number Publication date
JP2014101876A (en) 2014-06-05
DE102013108137A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
US10400661B2 (en) Engine cooling system, electronic thermostat control system and control method for the same
JP5945306B2 (en) Thermal management system for vehicles
US9506394B2 (en) Method of controlling temperature
US7320434B2 (en) Method of controlling electronic controlled thermostat
EP1308609B1 (en) Method of engine cooling
KR100521913B1 (en) CONTROL METHOD OF Adjustable Electronic Thermostat
US8973537B2 (en) Engine having thermostat and system thereof
KR101338468B1 (en) Control sytem of electrical thermostat and the system thereof
US10677141B2 (en) Cooling system for internal combustion engine
US7011050B2 (en) Control method of electronic control thermostat
KR20150080660A (en) Exhaust gas processing device
JP5618945B2 (en) Cooling control device for internal combustion engine
KR102496811B1 (en) Control method of cooling system for vehicle
US20140137816A1 (en) Engine system having thermostat
JP2014218938A (en) Cooling control device
CN106257009A (en) For the method and apparatus controlling the water pump of vehicle
US10730383B2 (en) Vehicle grille shutter system and method of operation
CN211524942U (en) Temperature adjusting device and hybrid power system
CN112373354B (en) Thermal management system and control method of hydrogen energy fuel cell automobile
US20170023439A1 (en) Fault diagnosis method of thermostat
US20140345547A1 (en) Cooling system of engine
KR102041920B1 (en) System and method for turbo charger cooling
CN112955637B (en) Method for early opening of cold thermostat in engine cooling system
US11502317B2 (en) Fuel cell
US20120138696A1 (en) Control method for electric thermostat and control apparatus thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: HYUNDAI MOTOR COMPANY, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JUNG, IL;KIM, GUN TAE;REEL/FRAME:030840/0800

Effective date: 20130510

Owner name: KIA MOTORS CORPORATION, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JUNG, IL;KIM, GUN TAE;REEL/FRAME:030840/0800

Effective date: 20130510

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION